AN ANALYTIC EXTENSION OF A SPACELIKE MAXIMAL SURFACE

Sung-Eun Koh

It is shown that a spacelike maximal surface in the three dimensional LorentzMinkowski space can be extended analytically if it meets a spacelike plane at a constant hyperbolic angle.

Let \mathbb{L}^{3} be the three dimensional Lorentz-Minkowski space, that is, the real vector space \mathbb{R}^{3} endowed with the Lorentzian metric tensor $\langle\cdot, \cdot\rangle$ given by $\langle\cdot, \cdot\rangle=d x^{2}+d y^{2}-d t^{2}$ where (x, y, t) are the canonical coordinate of \mathbb{R}^{3}. An immersed surface $\Sigma \subset \mathbb{L}^{3}$ is called spacelike if the induced metric on Σ is a Riemannian metric, which is equivalent to the fact that the unit normal vector field η to Σ is a timelike vector field. If the trace of the map $d \eta: T \Sigma \rightarrow T \Sigma$ is zero everywhere on Σ, the surface Σ is called a maximal surface. It is well knows that for a spacelike maximal surface Σ the coordinate functions $x, y, t: \Sigma \rightarrow \mathbb{R}$ are harmonic functions and hence it admits a Weierstrass representation [4], similar to minimal surfaces in the three dimensional Euclidean space \mathbb{E}^{3}. But it is very different from the minimal surfaces in \mathbb{E}^{3} in that it has naturally arising singularities due to the geometry of the unit normal vector field η.

If a spacelike maximal surface Σ has no singular point, the unit normal vector field can be considered as a map $\eta: \Sigma \rightarrow \mathbb{H}^{2}=\left\{(x, y, t): x^{2}+y^{2}-t^{2}=-1\right\}$. Let $\sigma: \mathbb{C}-\{|z|=1\} \rightarrow \mathbb{H}^{2}$ be the stereographic projection defined by

$$
\sigma(z)=\left(\frac{2 \operatorname{Re}(z)}{1-|z|^{2}}, \frac{2 \operatorname{Im}(z)}{1-|z|^{2}}, \frac{1+|z|^{2}}{1-|z|^{2}}\right), \quad \sigma(\infty)=(0,0,-1)
$$

that is, $\sigma(z)$ is the intersection of \mathbb{H}^{2} and the line joining the point $(\operatorname{Re}(z), \operatorname{Im}(z), 0)$ and "the south pole" $(0,0,-1)$ of \mathbb{H}^{2}. It is well known that σ is conformal in the natural manner. Then one has a complex-valued conformal Gauss map $\sigma^{-1} \circ \eta: \Sigma \rightarrow \mathbb{C}-\{|z|=$ $1\}$. If, moreover, Σ is connected (which is assumed in this paper), one has by the connectivity either $\eta: \Sigma \rightarrow \mathbb{H}_{+}^{2}=\left\{(x, y, t): x^{2}+y^{2}-t^{2}=-1, t>0\right\}$ and consequently $\left|\sigma^{-1} \circ \eta(p)\right|<1$ for every $p \in \Sigma$ or $\eta: \Sigma \rightarrow \mathbb{H}_{-}^{2}=\left\{(x, y, t): x^{2}+y^{2}-t^{2}=-1, t<0\right\}$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.
and consequently $\left|\sigma^{-1} \circ \eta(p)\right|>1$ for every $p \in \Sigma$. Hence, if Σ has a singular point, say $q \in \Sigma$, then one has $\left|\sigma^{-1} \circ \eta(q)\right|=1$ and vice versa.

On the other hand, it has long been known that in the three dimensional Euclidean space \mathbb{E}^{3} one can reflect a minimal surface across a part of its boundary if the minimal surface meets a plane at a constant angle (not necessarily 90 degrees) along the boundary [3]. The proof of this fact makes use of H.A. Schwarz's reflection principle for holomorphic functions.

Then, since a spacelike maximal surface in $\mathbb{L}^{\mathbf{3}}$ is represented with holomorphic data, similar to a minmal surface in \mathbb{E}^{3}, one may expect that a spacelike maximal surface in \mathbb{L}^{3} has the same reflection property. In fact, the argument in [3] gives the following theorem.

Theorem 1. Let $\Sigma \subset \mathbb{L}^{3}$ be a spacelike maximal surface (possibly with singular points) and let Π be a spacelike plane. Suppose that $L \subset \Sigma \cap \Pi$ is a C^{1}-curve, Σ is C^{1} along L and at all points of L the tangent plane to Σ makes a constant hyperbolic angle $\theta>0$ with Π. Then Σ can be analytically extended across L to a spacelike maximal surface $\bar{\Sigma}$ satisfying the following properties:
(i) $\bar{\Sigma}=\Sigma \cup \Sigma^{*}$ where Σ^{*} is the set of all images p^{*} of $p \in \Sigma$ under the analytic extension map *.
(ii) Two points p and p^{*} are separated by II in such a way that

$$
d(p, \Pi)=d\left(p^{*}, \Pi\right)
$$

where d is the Lorentzian distance.
(iii) The Gauss map $g: \bar{\Sigma} \rightarrow \mathbb{C}$ satisfies

$$
\overline{g(p)} g\left(p^{*}\right)=\tanh ^{2}(\theta / 2)
$$

For the definition of the hyperbolic angle, see for example, [2, p. 57].
REMARK 1. Since the hypothesis on L requires that the tangent plane is defined at every point of L, it is assumed implicitly in Theorem 1 that L contains no singular point of Σ.

REmARK 2. For a given real analytic curve γ in the spacelike plane Π, the existence of the spacelike maximal surface Σ which meets Π along γ at a constant hyperbolic angle $\theta \neq 0$ is guaranteed by the Björling's representation formula [1].

Proof: We may assume that $\Pi=\{(x, y, t):, t=0\}$ and $\eta(\Sigma) \subset \mathbb{H}_{+}^{2}$. Since x, y, t are harmonic functions on the spacelike maximal surface Σ, one can find the conjugate harmonic (possibly multi-valued) functions $\bar{x}, \bar{y}, \bar{t}$ to x, y, t respectively on Σ. Then

$$
u=x+i \bar{x}, v=y+i \bar{y}, w=t+i \bar{t}
$$

are holomorphic (possibly multi-valued) functions on Σ and

$$
d u=d x+i d \bar{x}, d v=d y+i d \bar{y}, d w=d t+i d \bar{t}
$$

are holomorphic 1-forms on Σ. Introduce t, \bar{t} as conformal parameters on Σ. Then Σ can be recaptured by setting

$$
x=\operatorname{Re} \int^{w} d u, y=\operatorname{Re} \int^{w} d v, t=\operatorname{Re} \int^{w} d w
$$

From the holomorphicity of u, v, w, it follows that

$$
d u^{2}+d v^{2}-d w^{2} \equiv 0
$$

Define a meromorphic function g on Σ by

$$
g=\frac{d w}{d u-i d v}
$$

Then we have

$$
\begin{align*}
& x=\operatorname{Re} \int^{w} \frac{1}{2}\left(g+\frac{1}{g}\right) d w \\
& y=\operatorname{Re} \int^{w}-\frac{i}{2}\left(g-\frac{1}{g}\right) d w \tag{1}\\
& t=\operatorname{Re} \int^{w} d w
\end{align*}
$$

Put

$$
-\Sigma=\{(x, y,-t):(x, y, t) \in \Sigma\}
$$

and define a surface

$$
\tilde{\Sigma}=\Sigma \cup(-\Sigma)
$$

For any $p \in \Sigma$, let $-p=(x, y,-t) \in-\Sigma$. Since $t=0$ on $L \subset \Sigma \cap(-\Sigma)$, we can extend the conformal parameters t, \bar{t} over $\tilde{\Sigma}$ across L by the usual reflection with respect to Π; that is

$$
t(-p)=-t(p), \bar{t}(-p)=\bar{t}(p)
$$

for any $-p \in(-\Sigma)$. Hence we see that $d w$ is a well-defined holomorphic 1 -form on the surface $\widetilde{\Sigma}$.

On the other hand, it is well known that g is the same as the complex-valued Gauss map, $g=\sigma^{-1} \circ \eta$. Then the constant hyperbolic angle hypothesis implies

$$
|g(p)|=\frac{\sinh \theta}{\cosh \theta+1}=\tanh (\theta / 2)(\neq 1)
$$

for all $p \in L$. That is, g maps L into a circle of radius $\neq 1$ in \mathbb{C}. Since Σ is C^{1} along L and L plays the same role in the surface $\widetilde{\Sigma}$ as a line does in \mathbb{C}, we can extend g holomorphically over $\widetilde{\Sigma}$ across L as follows:

Define the extension of g, still called g, by

$$
\begin{equation*}
g(-p)=\tanh ^{2}(\theta / 2) \overline{g(p)}^{-1},-p \in(-\Sigma) \tag{2}
\end{equation*}
$$

Clearly g is holomorphic on $-\Sigma$ and continuous on $\tilde{\Sigma}$. Let $h: \mathbb{C} \rightarrow \mathbb{C}$ be a linear fractional transformation which maps the circle $|w|=\tanh (\theta / 2)$ onto the imaginary axis of \mathbb{C}. Then the real part of $h \circ g$ is continuous on $\widetilde{\Sigma}$ and harmonic on Σ and $-\Sigma$. Moreover, we have

$$
\begin{aligned}
& \operatorname{Re}[h \circ g(-p)]=\operatorname{Re}[h \circ g(p)]=0 \text { for } p \in L \\
& \operatorname{Re}[h \circ g(-p)]=-\operatorname{Re}[h \circ g(p)] \quad \text { for }-p \in(-\Sigma) .
\end{aligned}
$$

Hence by the reflection principle we conclude that $h \circ g$ is holomorphic on $\tilde{\Sigma}$ and so is g.
Using this extended map g, the extended 1 -form $d w$ and the representation formula (1), we can define the analytic extension map * as follows:

For any $p \in \Sigma, p^{*}$ is determined by integrating (1) over a contour on $\tilde{\Sigma}$ from a fixed point to $-p$.
Then we can obtain the extended spacelike maximal surface $\bar{\Sigma}=\Sigma \cup \Sigma^{*}$. This completes the proof of (i).

Conclusion (ii) follows from symmetry of $-\Sigma$ to Σ and the formula for t in (1).
Conclusion (iii) follows from (2).
Let Σ be the spacelike maximal surface in Theorem 1. For any real number $0<r<1$, let us denote by Σ_{r} the spacelike maximal surface in \mathbb{L}^{3} defined by the formula

$$
\begin{aligned}
& x=\operatorname{Re} \int^{w} \frac{1}{2}\left(r g+\frac{1}{r g}\right) d w \\
& y=\operatorname{Re} \int^{w}-\frac{i}{2}\left(r g-\frac{1}{r g}\right) d w \\
& t=\operatorname{Re} \int^{w} d w
\end{aligned}
$$

Then we see that Σ can be deformed into a l-parameter family of spacelike maximal surfaces and that this deformation preserves t-coordinates and multiplies g by r. As a corollary of the proof, we have the following theorem:

THEOREM 2. Let $\Sigma \subset \mathbb{L}^{3}$ be a spacelike maximal surface with nonempty boundary $\partial \Sigma$ which makes a constant angle $\theta>0$ with the spacelike plane Π along $\partial \Sigma \cap \Pi$. For any $\alpha>0$, there exists an $r>0$ such that the spacelike maximal surface Σ_{r} makes a constant angle α with Π along $\partial \Sigma_{r} \cap \Pi$.

Proof: We have $t=0$ on every point of $\partial \Sigma \cap \Pi$. Since the deformation preserves the t-coordinate, we have $t=0$ as well on every point of $\partial \Sigma_{r} \cap \Pi$. Now take

$$
r=\tanh (a / 2)[\tanh (\theta / 2)]^{-1}
$$

Then we have

$$
\{t=0\}=\{|g|=\tanh (\theta / 2)\}=\{|r g|=\tanh (a / 2)\}
$$

which implies that, since $r g$ is the complex-valued Gauss map if Σ_{r}, the surface Σ_{r} makes a constant angle α with Π along $\partial \Sigma_{r} \cap \Pi$.

The following example shows a behaviour of the singular point under the analytic extension, which cannot happen in the case of minimal surfaces in \mathbb{E}^{3}.

Example. Let Σ be an elliptic catenoid $\Sigma=\left\{(x, y, t): x^{2}+y^{2}-\sinh ^{2} t=0\right\}$ which has the singular point $(0,0,0)$. Now consider $\Sigma_{[a, b)}=\left\{(x, y, t): x^{2}+y^{2}-\sinh ^{2} t=0\right.$, $0 \neq a \leqslant t<b\} \subset \Sigma$ which meets the spacelike plane $\Pi_{a}=\{(x, y, t): t=a\}$ at a constant hyperbolic angle. Note that Σ is a surface of rotation whose axis of rotation is the t-axis. Then by (ii) of Theorem 1, the extended surface $\bar{\Sigma}_{[a, b]}$ of $\Sigma_{[a, b)}$ is

$$
\bar{\Sigma}_{[a, b)}=\Sigma_{(2 a-b, b)}=\left\{(x, y, t): x^{2}+y^{2}-\sinh ^{2} t=0,2 a-b<t<b\right\} .
$$

We first consider the case when $a>0$.
(i) If $b<2 a$, since $2 a-b>0$, neither $\Sigma_{[a, b)}$ nor the extended surface $\bar{\Sigma}_{[a, b)}$ have singular points.
(ii) If $b>2 a$, the surface $\Sigma_{[a, b)}$ has no singular point but the extended surface $\bar{\Sigma}_{[a, b]}$ contains a singular point ($0,0,0$) since $2 a-b<0<b$. In fact, every point $(x, y, 2 a) \in \Sigma_{[a, b)}$ reflects to the singular point ($0,0,0$). This happens because the set $\{(x, y, 2 a)\} \subset \Sigma_{[a, b)}$ is parameterised by $\{|g|=c\}$ for a constant $c \neq 0,1$ which reflects to the set parametrised by $\{|g|=1\}$, which is the (singular) parametrisation of the singular point $(0,0,0)$.
(iii) If $b=\infty$, the surface $\Sigma_{[a, b]}$ extends to make the whole elliptic catenoid Σ. We next consider the case when $a<0$.
(iv) If $b<0$, the same case as (i) or (ii) occurs.
(v) If $b>0$, the surface $\Sigma_{[a, b)}$ contains the singular point $(0,0,0)$ and the singular point $(0,0,0)$ reflects to the whole $\{(x, y, 2 a)\}$. The reason of this result is the same as the case (ii).

References

[1] L.J. Aías, R.M.B. Chaves and P. Mira, 'Bjöling problem for maximal surfaces in Lorents-Minkowski space', Math. Proc. Cambridge Philos. Soc. 134 (2003), 289-316.
[2] J.J. Callahan, The geometry of spacetime (Springer-Verlag, New York, 2000).
[3] J. Choe, 'On the analytic reflection of a minimal surface', Pacific J. Math 157 (1993), 29-36.
[4] O. Kobayashi, 'Maximal surfaces in the 3-dimensional Minkowski space L^{3}, Tokyo J. Math 6 (1983), 297-309.

Department of Mathematics
Konkuk University
Seoul 143-701
Korea
e-mail: sekoh@konkuk.ac.kr

[^0]: Received 17th October, 2006
 The author would like to express his gratitude to Professor Young Wook Kim, Professor Heayong Shin and Professor Seong-Deog Yang for their interests in this paper. This work was supported by KRF R14-2002-007-01003-0.

