AN ANALYTIC EXTENSION OF A SPACELIKE MAXIMAL SURFACE

SUNG-EUN KOH

It is shown that a spacelike maximal surface in the three dimensional Lorentz-Minkowski space can be extended analytically if it meets a spacelike plane at a constant hyperbolic angle.

Let \mathbb{L}^3 be the three dimensional Lorentz-Minkowski space, that is, the real vector space \mathbb{R}^3 endowed with the Lorentzian metric tensor $\langle \cdot, \cdot \rangle$ given by $\langle \cdot, \cdot \rangle = dx^2 + dy^2 - dt^2$ where (x, y, t) are the canonical coordinate of \mathbb{R}^3 . An immersed surface $\Sigma \subset \mathbb{L}^3$ is called *spacelike* if the induced metric on Σ is a Riemannian metric, which is equivalent to the fact that the unit normal vector field η to Σ is a timelike vector field. If the trace of the map $d\eta : T\Sigma \to T\Sigma$ is zero everywhere on Σ , the surface Σ is called a *maximal* surface. It is well knows that for a spacelike maximal surface Σ the coordinate functions $x, y, t: \Sigma \to \mathbb{R}$ are harmonic functions and hence it admits a Weierstrass representation [4], similar to minimal surfaces in the three dimensional Euclidean space \mathbb{E}^3 . But it is very different from the minimal surfaces in \mathbb{E}^3 in that it has naturally arising singularities due to the geometry of the unit normal vector field η .

If a spacelike maximal surface Σ has no singular point, the unit normal vector field can be considered as a map $\eta : \Sigma \to \mathbb{H}^2 = \{(x, y, t) : x^2 + y^2 - t^2 = -1\}$. Let $\sigma : \mathbb{C} - \{|z| = 1\} \to \mathbb{H}^2$ be the stereographic projection defined by

$$\sigma(z) = \left(\frac{2\operatorname{Re}(z)}{1-|z|^2}, \ \frac{2\operatorname{Im}(z)}{1-|z|^2}, \ \frac{1+|z|^2}{1-|z|^2}\right), \quad \sigma(\infty) = (0,0,-1),$$

that is, $\sigma(z)$ is the intersection of \mathbb{H}^2 and the line joining the point $(\operatorname{Re}(z), \operatorname{Im}(z), 0)$ and "the south pole" (0, 0, -1) of \mathbb{H}^2 . It is well known that σ is conformal in the natural manner. Then one has a complex-valued conformal Gauss map $\sigma^{-1} \circ \eta : \Sigma \to \mathbb{C} - \{|z| = 1\}$. If, moreover, Σ is connected (which is assumed in this paper), one has by the connectivity either $\eta : \Sigma \to \mathbb{H}^2_+ = \{(x, y, t) : x^2 + y^2 - t^2 = -1, t > 0\}$ and consequently $|\sigma^{-1} \circ \eta(p)| < 1$ for every $p \in \Sigma$ or $\eta : \Sigma \to \mathbb{H}^2_- = \{(x, y, t) : x^2 + y^2 - t^2 = -1, t < 0\}$

Received 17th October, 2006

The author would like to express his gratitude to Professor Young Wook Kim, Professor Heayong Shin and Professor Seong-Deog Yang for their interests in this paper. This work was supported by KRF R14-2002-007-01003-0.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

and consequently $|\sigma^{-1} \circ \eta(p)| > 1$ for every $p \in \Sigma$. Hence, if Σ has a singular point, say $q \in \Sigma$, then one has $|\sigma^{-1} \circ \eta(q)| = 1$ and vice versa.

On the other hand, it has long been known that in the three dimensional Euclidean space \mathbb{E}^3 one can reflect a minimal surface across a part of its boundary if the minimal surface meets a plane at a constant angle (not necessarily 90 degrees) along the boundary [3]. The proof of this fact makes use of H.A. Schwarz's reflection principle for holomorphic functions.

Then, since a spacelike maximal surface in \mathbb{L}^3 is represented with holomorphic data, similar to a minmal surface in \mathbb{E}^3 , one may expect that a spacelike maximal surface in \mathbb{L}^3 has the same reflection property. In fact, the argument in [3] gives the following theorem.

THEOREM 1. Let $\Sigma \subset \mathbb{L}^3$ be a spacelike maximal surface (possibly with singular points) and let Π be a spacelike plane. Suppose that $L \subset \Sigma \cap \Pi$ is a C^1 -curve, Σ is C^1 along L and at all points of L the tangent plane to Σ makes a constant hyperbolic angle $\theta > 0$ with Π . Then Σ can be analytically extended across L to a spacelike maximal surface $\overline{\Sigma}$ satisfying the following properties:

- (i) $\overline{\Sigma} = \Sigma \cup \Sigma^*$ where Σ^* is the set of all images p^* of $p \in \Sigma$ under the analytic extension map *.
- (ii) Two points p and p^* are separated by Π in such a way that

$$d(p,\Pi) = d(p^*,\Pi)$$

where d is the Lorentzian distance.

(iii) The Gauss map $g: \overline{\Sigma} \to \mathbb{C}$ satisfies

$$\overline{g(p)}g(p^*) = \tanh^2(\theta/2).$$

For the definition of the hyperbolic angle, see for example, [2, p. 57].

REMARK 1. Since the hypothesis on L requires that the tangent plane is defined at every point of L, it is assumed implicitly in Theorem 1 that L contains no singular point of Σ . REMARK 2. For a given *real analytic* curve γ in the spacelike plane II, the existence of the spacelike maximal surface Σ which meets Π along γ at a constant hyperbolic angle $\theta \neq 0$ is guaranteed by the Björling's representation formula [1].

PROOF: We may assume that $\Pi = \{(x, y, t,) : t = 0\}$ and $\eta(\Sigma) \subset \mathbb{H}^2_+$. Since x, y, t are harmonic functions on the spacelike maximal surface Σ , one can find the conjugate harmonic (possibly multi-valued) functions $\overline{x}, \overline{y}, \overline{t}$ to x, y, t respectively on Σ . Then

$$u = x + i\overline{x}, v = y + i\overline{y}, w = t + i\overline{t}$$

are holomorphic (possibly multi-valued) functions on Σ and

$$du = dx + id\overline{x}, \ dv = dy + id\overline{y}, \ dw = dt + id\overline{t}$$

are holomorphic 1-forms on Σ . Introduce t, \bar{t} as conformal parameters on Σ . Then Σ can be recaptured by setting

$$x = \operatorname{Re} \int^{w} du, \ y = \operatorname{Re} \int^{w} dv, \ t = \operatorname{Re} \int^{w} dw.$$

From the holomorphicity of u, v, w, it follows that

$$du^2 + dv^2 - dw^2 \equiv 0.$$

Define a meromorphic function g on Σ by

$$g = rac{dw}{du - idv}$$

Then we have

(1)
$$x = \operatorname{Re} \int^{w} \frac{1}{2} \left(g + \frac{1}{g}\right) dw,$$
$$y = \operatorname{Re} \int^{w} -\frac{i}{2} \left(g - \frac{1}{g}\right) dw,$$
$$t = \operatorname{Re} \int^{w} dw$$

Put

$$-\Sigma = \big\{ (x, y, -t) : (x, y, t) \in \Sigma \big\}$$

and define a surface

 $\widetilde{\Sigma} = \Sigma \cup (-\Sigma).$

For any $p \in \Sigma$, let $-p = (x, y, -t) \in -\Sigma$. Since t = 0 on $L \subset \Sigma \cap (-\Sigma)$, we can extend the conformal parameters t, \bar{t} over $\tilde{\Sigma}$ across L by the usual reflection with respect to Π ; that is

$$t(-p) = -t(p), \ \overline{t}(-p) = \overline{t}(p)$$

for any $-p \in (-\Sigma)$. Hence we see that dw is a well-defined holomorphic 1-form on the surface $\tilde{\Sigma}$.

On the other hand, it is well known that g is the same as the complex-valued Gauss map, $g = \sigma^{-1} \circ \eta$. Then the constant hyperbolic angle hypothesis implies

$$|g(p)| = \frac{\sinh\theta}{\cosh\theta+1} = \tanh(\theta/2)(\neq 1)$$

for all $p \in L$. That is, g maps L into a circle of radius $\neq 1$ in C. Since Σ is C^1 along L and L plays the same role in the surface $\tilde{\Sigma}$ as a line does in C, we can extend g holomorphically over $\tilde{\Sigma}$ across L as follows:

Define the extension of g, still called g, by

(2)
$$g(-p) = \tanh^2(\theta/2)\overline{g(p)}^{-1}, \ -p \in (-\Sigma).$$

S-E. Koh

Clearly g is holomorphic on $-\Sigma$ and continuous on $\widetilde{\Sigma}$. Let $h : \mathbb{C} \to \mathbb{C}$ be a linear fractional transformation which maps the circle $|w| = \tanh(\theta/2)$ onto the imaginary axis of \mathbb{C} . Then the real part of $h \circ g$ is continuous on $\widetilde{\Sigma}$ and harmonic on Σ and $-\Sigma$. Moreover, we have

$$\operatorname{Re}[h \circ g(-p)] = \operatorname{Re}[h \circ g(p)] = 0 \text{ for } p \in L,$$

$$\operatorname{Re}[h \circ g(-p)] = -\operatorname{Re}[h \circ g(p)] \text{ for } -p \in (-\Sigma).$$

Hence by the reflection principle we conclude that $h \circ g$ is holomorphic on $\tilde{\Sigma}$ and so is g.

Using this extended map g, the extended 1-form dw and the representation formula (1), we can define the analytic extension map * as follows:

For any $p \in \Sigma$, p^* is determined by integrating (1) over a contour on $\widetilde{\Sigma}$ from a fixed point to -p.

Then we can obtain the extended spacelike maximal surface $\overline{\Sigma} = \Sigma \cup \Sigma^*$. This completes the proof of (i).

Conclusion (ii) follows from symmetry of $-\Sigma$ to Σ and the formula for t in (1).

Conclusion (iii) follows from (2).

Let Σ be the spacelike maximal surface in Theorem 1. For any real number 0 < r < 1, let us denote by Σ_r the spacelike maximal surface in \mathbb{L}^3 defined by the formula

$$x = \operatorname{Re} \int^{w} \frac{1}{2} \left(rg + \frac{1}{rg} \right) dw,$$

$$y = \operatorname{Re} \int^{w} -\frac{i}{2} \left(rg - \frac{1}{rg} \right) dw,$$

$$t = \operatorname{Re} \int^{w} dw.$$

Then we see that Σ can be deformed into a 1-parameter family of spacelike maximal surfaces and that this deformation preserves *t*-coordinates and multiplies *g* by *r*. As a corollary of the proof, we have the following theorem:

THEOREM 2. Let $\Sigma \subset \mathbb{L}^3$ be a spacelike maximal surface with nonempty boundary $\partial \Sigma$ which makes a constant angle $\theta > 0$ with the spacelike plane Π along $\partial \Sigma \cap \Pi$. For any $\alpha > 0$, there exists an r > 0 such that the spacelike maximal surface Σ_r makes a constant angle α with Π along $\partial \Sigma_r \cap \Pi$.

PROOF: We have t = 0 on every point of $\partial \Sigma \cap \Pi$. Since the deformation preserves the *t*-coordinate, we have t = 0 as well on every point of $\partial \Sigma_r \cap \Pi$. Now take

$$r = \tanh(a/2) [\tanh(\theta/2)]^{-1}.$$

Then we have

$$\{t=0\} = \{|g| = \tanh(\theta/2)\} = \{|rg| = \tanh(a/2)\},\$$

Π

47

which implies that, since rg is the complex-valued Gauss map if Σ_r , the surface Σ_r makes a constant angle α with Π along $\partial \Sigma_r \cap \Pi$.

The following example shows a behaviour of the singular point under the analytic extension, which cannot happen in the case of minimal surfaces in \mathbb{E}^3 .

EXAMPLE. Let Σ be an elliptic catenoid $\Sigma = \{(x, y, t) : x^2 + y^2 - \sinh^2 t = 0\}$ which has the singular point (0, 0, 0). Now consider $\Sigma_{[a,b)} = \{(x, y, t) : x^2 + y^2 - \sinh^2 t = 0, 0 \neq a \leq t < b\} \subset \Sigma$ which meets the spacelike plane $\Pi_a = \{(x, y, t) : t = a\}$ at a constant hyperbolic angle. Note that Σ is a surface of rotation whose axis of rotation is the *t*-axis. Then by (ii) of Theorem 1, the extended surface $\overline{\Sigma}_{[a,b)}$ of $\Sigma_{[a,b)}$ is

$$\overline{\Sigma}_{[a,b)} = \Sigma_{(2a-b,b)} = \left\{ (x, y, t) : x^2 + y^2 - \sinh^2 t = 0, \ 2a - b < t < b \right\}.$$

We first consider the case when a > 0.

- (i) If b < 2a, since 2a b > 0, neither $\Sigma_{[a,b)}$ nor the extended surface $\overline{\Sigma}_{[a,b)}$ have singular points.
- (ii) If b > 2a, the surface Σ_{[a,b)} has no singular point but the extended surface Σ_{[a,b)} contains a singular point (0,0,0) since 2a b < 0 < b. In fact, every point (x, y, 2a) ∈ Σ_{[a,b)} reflects to the singular point (0,0,0). This happens because the set {(x, y, 2a)} ⊂ Σ_{[a,b)} is parameterised by {|g| = c} for a constant c ≠ 0, 1 which reflects to the set parametrised by {|g| = 1}, which is the (singular) parametrisation of the singular point (0,0,0).

(iii) If $b = \infty$, the surface $\Sigma_{[a,b]}$ extends to make the whole elliptic catenoid Σ . We next consider the case when a < 0.

- (iv) If b < 0, the same case as (i) or (ii) occurs.
- (v) If b > 0, the surface $\Sigma_{[a,b)}$ contains the singular point (0,0,0) and the singular point (0,0,0) reflects to the whole $\{(x,y,2a)\}$. The reason of this result is the same as the case (ii).

References

- L.J. Aías, R.M.B. Chaves and P. Mira, 'Bjöling problem for maximal surfaces in Lorents-Minkowski space', Math. Proc. Cambridge Philos. Soc. 134 (2003), 289-316.
- [2] J.J. Callahan, The geometry of spacetime (Springer-Verlag, New York, 2000).
- J. Choe, 'On the analytic reflection of a minimal surface', Pacific J. Math 157 (1993), 29-36.
- [4] O. Kobayashi, 'Maximal surfaces in the 3-dimensional Minkowski space L³', Tokyo J. Math 6 (1983), 297-309.

Department of Mathematics Konkuk University Seoul 143-701 Korea e-mail: sekoh@konkuk.ac.kr