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A basis {x;};—, for a Banach space X is said to be boundedly complete [4, p. 284] if

< 4+, then Z ax;

i=

whenever {a;};, is a sequence of scalars for which sup Z (4

converges. It is well-known [2, p. 70] that if {x;};~, is a boundedly complete basis for X
then X is isometric to a conjugate space; in fact, X =[f;]*, where {f;}7=, = X* is the
sequence of coefficient functionals associated with the basis {x;};~,. It follows that no
basis for C[0, 1] can be boundedly complete since no separable conjugate space contains
co[1)], yet C[0, 1] is a separable space which contains ¢;.

In fact, a considerably stronger result of the same general nature is true.

THEOREM. There is no semi-normalized basis {x;};~, for C[0, 1] with the property that

.Z a;x;
i=1

whenever {a;} € ¢, and sup < 4, then -E,a*xf converges in C[0, 1].

Proof. Suppose {x;}7—, is a semi-normalized basis for C[0, 1] with the property that

0

< 4, then .Zjla,-x,- converges in C[0,1]. Then

whenever {a;}7~, €c, and sup Z ax;
n i=1
since 0 <inf ||x;|| <sup ||x;|| < +e it follows that any semi-normalized block basic se-
] !
Nis1~-1

quence {b;}i-\ ={ Z c,-x,-} taken with respect to the basis {x;};, in C[0, 1] has the

i=Ny
same property. We show this cannot be.
Let A denote the symmetric sequence space defined by

3 e
={(c;) € ¢o| lim = 1=0 )
n_m.Z =
i=11
where .
ZC,*
el = supi=
Y-
i=11

and {c}}7, denotes the arrangement of the sequence {|c; |} “, into one which decreases to
zero. It 1s well-known that with the indicated norm A is a Banach space in which the
sequence {¢;}i=, defined by ¢, =(1,0,0,...),e,=(0,1,0,0,...), etc., is a basis which is
equivalent to each of its subbases (i.e. 21: be converges in /1<:>Z_] be,, converges in A, for
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any subsequence {n;}=, of the positive integers). Moreover the basis {¢;}i, converges

= ld7]

i=1 1
of these matters). It is also easy to see that the basis {e;};~, in A does not have

weakly to zero in A since A* = {(di) EcCy < oo} (see [3, p- 139-150] for a discussion

. . . . 1 .
the property mentioned in the theorem since if a;=- for all i then (g;)ec, and
i

L oag
i=1
Now A is separable so it can be isometrically embedded in C[0, 1}, and since the basis

{e;}7=, for A converges weakly to zero it follows that a subsequence {e, }%-, is equivalent
Nes1—1 %

to a semi-normalized block basis sequence {b;}z-, ={ v C;X;} in C[0, 1] [1]. Since

k=1

i=Ng

sup

=1, but yet ¥ ae;=(1,%,3,...)is not in A.
i=1 :

{e; }%=, is equivalent to {e;}i=, and {e;}~, fails to have the property in question it follows
that {b,}7-, also fails to have it, a contradiction to our previous assumption. Since {x;};~,
was an arbitrary semi-normalized basis for C[0, 1] the theorem follows.

In particular the classical Schauder basis {g;};=, for C[0, 1] defined by @,(f)=1,

(pl(t) =1, and
. 20-2 21
0if t¢<—2n+l ’F)
Pra)=4  2-1 ,
1ift= F

linear otherwise on [0, 1]

where n=0,1,2,...and/=1,2,...,2" fails to have the given property. The purpose of
this note is to observe that, in contrast, the Schauder system {@,}i=, does have a weaker
(yet closely related) property to which we now give a name.

oc

DerFiNTION. The semi-normalized basis {x;};=, for the Banach space X is said to be
monotonically boundedly complete if whenever {a;};—, is a sequence of scalars which

n o

decreases monotonically to zero and for which sup
converges. "

E a;x;

i=1

< 4o, then ¥ aux;

i=1

The fact that Schauder’s basis {@;};=, (along with certain other non-boundedly
complete bases) is monotonically boundedly complete is a consequence of the following
general result.

THEOREM. Let {x;};=, be a semi-normalized basis for a Banach space X satisfying the
following conditions:
(i) There exists a strictly increasing sequence {N,}i-, of positive integers and a
Nev1—1
smo( sup |c,~|> for all

Lo CiX;
=Ny Ne<i<Ng 4

constant my>0 for which N,=1 and for which
k=1,2,3,... and for all scalars {c;}i_,.
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(ii) There exists a co stant P >0 such that given any k=1,2, . .. there is F, € X* for
which ||F|l=1, (F,x;) =0 for all i satisfying 1<i<N,, and (F.,xy)=P for i=
1,2,...,k.

Then {x;};Z, is a monotonically boundedly complete basis for X.

Proof. Let {a;};~, decrease monotonically to zero and suppose sup Z} a,x,“ M<
Nesr—1 n
4o If, for each k=1,2,...,welety,= ¥ aux; then |y, +y,+.. .+yk|| < M for all
i=Ng

k. Hence if {F}z-, < X* is as in (ii) above, then (F, y;+ ... +y.) <M for all k=
1,2,....That is, foreveryk=1,2,...,
(Fe,ax + ..o+ an,_xXn,—1) + (B, gy, + oo+ Ay iXng1) + ..
+(F, anxn + .. Fan, XN, 1) SM.
But since {a;};2, | 0 and F, satisfies (ii) above, this says that ay, . P+ ... +ay,4, . P<M
for all &, so )j ay, converges.
Now let‘;l> 0 be given, m, the number given in (i), and r a positive integer for which

}] ay < ——(note then, that 0<gq; < £ for all i=N,). If N <m <n we then have
i=r ' 3m 3m0

”amxm + am+]xm+1 +...+ anxn”
= (@, +. ..+ Ay 1Xn-1) TYNF YN+ YNt (Anadn ot ax)|
(for some j and g >r for which m =N, —1and n <N, — 1)
9
= ”anrxm +...+ aNi—lxN,-—IH + 2 ”yN,” + ||aNq+lqu+1 +...+ anxn”
i=j

q
=m,. Sup lail + 2 my . sup la;| +mq.  sup |a;| (by (i)).

m=i<N;—1 i=j Niss<sN;j -1 Ny+1<isn
Since (a;) | O this last is
q
=my. a, +z mo.a,\,,_+m0.a,\,q+l
i=j
€ €
<my.—+tmg. 2 ay,+my. —
3my Py 3my
< [ € + £ + £ ]
my —+— =t
3m, 3m, 3m, ’

by choice of r. That is, if N,<m <n then

n £
5 agi|<£, so ¥ ax; converges in X and
i=m i=1

{x;}i~, has been shown to be monotonically boundedly complete.

CoroLLaRY. The Schauder basis {@;}i-y for C[0,1] is monotonically boundedly
complete.
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°

Proof . 1t is sufficient to show that the basic sequence {x;};=, = {®;};=; is monotoni-
cally boundedly complete. We show the conditions of the previous theorem are satisfied
for the sequence {x;}i~, in C[0, 1].

To do this we first define a sequence of dyadic rational numbers {¢,};_, by: ¢, =4,
t,=%, and t,,,=4(s, +¢t,.,) for all n=1. By the Nested Interval Theorem the sequence
{te}5=1 converges to some number ¢, € [0, 1]. Moreover each ¢, is the midpoint of the
interval of support of a unique function in the set {¢;};=;. If we denote this function by
Xy, then xy = @i, Xy, = @, Xn,=@,;,..., and by construction of {#}7., and the
definition of the Schauder functions it is clear that x,,(t,) =4 for all k =1,2,.... If for
each k=1,2,... we let F, =6, € C[0, 1]* then (F,x;) =x;(t,)=0 for all i=1,2,...,
(Fe,xn,) = x5 (to) =3 for k=1,2,..., and condition (ii) of the previous theorem is
satisfied with P =1,

To see that (i) is also satisfied, note that for any k, x,,, = @x,, for some 1</=<2*
and hence each x; for which N, <i<N,,, is either of the form x;= @y, for some
1<r=<2* or of the form x; = @y+,, for some 1<s=<2k+! It follows, then, from the
definition of the Schauder functions (and the fact that a linear combination of such
functions is piecewise-linear with a relative maximum or minimum only at nodal points)
that for any k and any scalars {c;}*3~" we have

kr1—1
{VZ Cixi”s% sup el

i=Ng Np<i<Np4)

Therefore condition (i) of the previous theorem also holds (with m,=%), and by the
previous theorem we conclude that the basis {g;}iz, for C[0,1] is monotonically
boundedly complete.

REMARKs. 1. A semi-normalized basis {x;};=, for a Banach space X is said to be of

type P [4, p. 308] if sup ||¥ x;

i=1

<+, It is known that a basis {x;};=, of type P has the

oc
o

property that if {a,;};~, decreases monotonically to zero then ¥ ax; converges in X [4, p.
i=1

308]. The fact that {@;}iL, is neither boundedly complete nor of type P in C[0, 1] gives

significance to the preceding result.

2. One can show in a roughly analogous (yet simpler) way that the normalized Haar
system in L*[0,1] is also monotonically boundedly complete (but not boundedly
complete, nor of type P). A natural problem which arises is the investigation of other
“classical”” bases and basic sequences in regard to monotone bounded completeness. In
particular, is the normalized Haar basis for L'[0, 1] {4, p. 13] monotonically boundedly
complete? What about the Franklin basis for C[0, 1] obtained by applying the Gram-
Schmidt orthonormalization procedure to {@;}7,?
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