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LOCALLY CONVEX HYPERSURFACES 

L. B. JONKER AND R. D. NORMAN 

1. Introduction. Let M be an ^-dimensional connected topological mani
fold. Let £ : M —» R%+1 be a continuous map with the following property: 
to each x £ M there is an open set x £ Ux Q M, and a convex body 
Kx C Rw+1 such that %{UX) is an open subset of dKx and such that 
£\UX : Ux—> dKx is a homeomorphism onto its image. We shall call such a 
mapping £ a locally convex immersion and, along with Van Heijenoort [8] we 
shall call £(M) a locally convex hypersurface of Rw+1. Note that we do not 
assume that £ is 1 — 1 or a homeomorphism onto its image or that £(ikf) is 
closed in R^+1. We may define on M a metric induced by £ as follows: if 
x, y Ç M 

d(x, y) = inf{length (£ o Y ) | 7 a rectifiable curve between x and 3/}. 

We assume always that M is complete in this metric. 
We will summarize the assumptions made so far by saying that M is 

immersed in Rn+1 as a complete connected locally convex hypersurface. 
In this paper we prove the following analogue of the theorems of Sacksteder, 

Hartman, and Nirenberg [6; 3; 2] that concern complete hypersurfaces of 
non-negative sectional curvature in a Euclidean space: 

THEOREM. Let M be an n-dimensional connected topological manifold immersed 
in Kn+1 as a complete locally convex hypersurface. Then either £(ikf) is a hyper-
cylinder (the product of Rw_1 with a curve) or else it is the boundary of an open 
convex subset of Rw+1. 

This theorem depends on and generalizes a result of Van Heijenoort [8]. 
We give a somewhat shorter proof of Van Heijenoort's theorem in Propo
sition 2. 

2. Preliminary results. We must first introduce some further terminology. 
If x G M and Kx has a hyperplane of support at £(x) that meets Kx only at 
£(x), then we say that £ is strictly locally convex at x and that £(ikf) is strictly 
locally convex at £(x). This condition on £(x) is also expressed in the literature 
by saying that £(x) is an exposed point of Kx (see [5]). We remind the reader 
that a point p on a convex body K is called an extreme point of K if p does not 
lie in the interior of any line segment contained in K. 

By a hyperplane of support Tx at x G M we shall mean any hyperplane of 
support for Kx at £(x). r(x) will denote the set of hyperplanes of support at x. 
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A line in M is a subset / C M such that %\l is a homeomorphism of I onto a 
line in Rw+1. A line segment is denned similarly. By aflat r-space in M we shall 
mean a subset L Ç_ M such that £|L is a homeomorphism of L onto a linear 
r-manifold in Kn+l. A flat convex set in M is a connected subset C oî M such 
that £|C maps C homeomorphically onto a convex subset of Rw+1. 

Without loss of generality we will always assume that the sets Ux intro
duced in the introduction are such that for some Tx £ r(x) the orthogonal 
projection of £(UX) into Tx is a homeomorphism onto an open ball centred at 
£(#) (see Buseman [1, Theorem (1.12)]). It follows that if y Ç £7̂  and if ir 
is a plane containing £(x), £60» a n d the direction normal to this preferred 
hyperplane of support Tx, then x and 3/ lie in the same connected component 
of r 1 ^) . 

Let x £ M, and £(x) £ L where L is a linear submanifold of Rw+1. If for 
some Tx £ r(x) we have L C. Tx we say that Af a?zd L are tangent at x; if not, 
we say that M and L are transverse at x. 

PROPOSITION 1. Let £ : M —* Rw+1 be an immersion of M as a complete locally 
convex hyper surface. Let L C Rw+1 be any linear submanifold of Kn+1. Let 
N C M be a connected component of £~l(L). Then N is complete, and there are 
only two possibilities: 

(a) M and L are transverse everywhere on N and N is an embedded submani
fold of M, and £|iV : N —» L is a locally convex immersion. 

(b) M and L are tangent everywhere on N and N is an embedded submanifold-
with-boundary of M and £(N) is a convex subset of L. In this case, if N does not 
contain a flat (n — 1)-space, N has a neighbourhood U such that U — N is 
connected and does not meet £ -1(L). 

Proof. Certainly £ - 1(£) 1S closed since £ is continuous. 
Suppose that there is a point x Ç N such that L is tangent to M at x. That 

is, L is contained in a hyperplane of support at x. If L meets %(UX) at another 
point y, then clearly L is tangent to M at y as well. Let 0 C N be the subset 
of all points at which M and L 2xe tangent: we have just shown that 0 is 
open in N (for x £ N /^ Ux (Z 0). 0 is also closed (even in M), for if x G Ô 
then x 6 0 by [1, (1.6)]. Since N is connected it follows that N = 0, and N 
is a closed subset of M. 

Moreover, N is locally convex in the sense that each point of N has an 
iV-neighbourhood which is flat convex subset of M. To see this, note that if 
y,z e Uxr\N then 

Hy\m e Lnt(Ux) CLCdKx, 

whence [£(y), £(z)] C dKx. Since %(UX) is projected homeomorphically onto 
a ball in some hyperplane, [£(3/), £(s)] C L r\ £(UX). Since y and z are arbi
trary points in Ux C\ N it follows that Ux C\ N is a flat convex subset of Jkf. 
There are two consequences. 
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Since N is connected, these flat convex neighbourhoods have the same 
dimension throughout N. Thus N is an embedded submanifold-with-boundary 
of M. 

On the other hand, if a line segment lies in N then its endpoints lie in N. 
This, together with the local convexity of N, allows a successful application 
of an a rgument of Klee [4, Propositions (5.1) and (5.2)] to show tha t £(iV) is a 
convex subset of L. 

Now suppose N does not contain a flat (n — 1)-space. Then one of the 
following three si tuations occurs: (1) N has dimension S n — 2 so t h a t 
Ux — N is always connected for x £ N, (2) N is in — 1)-dimensional and 
bounded so t h a t Ux — N is connected for a t least one x £ N, (3) iV is w-
dimensional and bounded so t ha t Ux — N is connected for all x 6 iV if 
Ux

r C ^ i is a sui tably chosen neighbourhood of x. In each case a simple 
a rgument shows t h a t if U = UZGAT £4, then U — N is connected. 

The only remaining possibility is t h a t M and L are t ransverse a t all points 
of N. I t is clear t h a t in this case N is an embedded submanifold and t h a t 
£|iV : N —-> L is a locally convex embedding. 

COROLLARY 1. TTze convex bodies Kx for M may be chosen in such a way that 
on the complement of the unions of the fiat (n — 1)-spaces contained in M, if 
UxC\Uy 5* 0 then int Kx C\ int Ky ^ 0. 

Proof. Let z d Ux C\ Uy. Suppose s is not contained in an ^-dimensional 
convex subset of M. Then clearly int Kx C\ int Ky ?£ 0. If iV is an /z-dimensional 
convex set not including a flat (n — 1)-space, then if U is as in the proof of 
Proposition 1, i-(U) lies entirely on one side of the hyperplane L containing 
£(iV). Hence the sets Kx, x G dN, all lie on one side of L. For interior points 
x of N, if Kx does not already lie on t h a t side of L we can achieve this by 
reflecting Kx in L. The result is now obvious. 

PROPOSITION 2 (Van Heijenoort 's theorem). Let M be a connected topological 
manifold, immersed by § in Kn+1 as a complete locally convex hyper surface, and 
suppose M has at least one exposed point x. Then £ (M) bounds an open convex 
subset of Rn+1. 

Proof. I t is easy to see t ha t coordinates (u1, . . . , un+l) may be selected on 
Kn+1 to make Tx = {un+l = 0} a support plane a t x = (0, . . . , 0 ) . Since x is 
exposed we m a y assume in addit ion t h a t on £(UX) we have un+l = f(ul, , un) 
where / is convex and f(ul, . . . , un) = 0 <=> u1 = u2 = . . . = un = 0. 

For a e (0, oo ) let 

Ra = {(u\ . . . > « n + 1 ) | « w + 1 = a}. 

For a £ (0, oo] let 

Ja = { ( « 1 , . . . l «
n + 1 ) | w » + 1 < a } 

and let P a be the connected component of ^~l{Ja) t h a t contains x. Note t h a t 
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Jœ = Rw+i and that Pœ = M. For any a G (0, oo] let Ka denote the closed 
convex hull of £(Pa)> For a G (0, oo] let A (a) denote the condition: 

A (a): £\Pa is a homeomorphism of Pa onto di£a P\ J a . 

It is clear that A (a) holds for sufficiently small a. We will show that A (a) 
is true for all û f (0, oo ) and then that this implies A(co), which is the 
conclusion of the theorem. 

Let 5 C R+ be the set {b G R+\A(b) is true}. Since A (b) clearly implies 
A (a) for all a ^ b it is clear that S is connected. 

5 is closed. For suppose A (a) is true for all a < b. Let y G Pb. Then y £ Pa 

for some a < b. Let ify be any closed half-space containing i£a such that 
£(y) G di/y. Let s G P&. Then z G Pa* for some a' G (a, &). 4̂ (a') implies 
that because dHy is a supporting hyperplane for a neighbourhood of £ (j) G i£a ', 
it is a supporting hyperplane for i ^ . Thus z G -Kv C Hy. Thus £(P&) C ^ 
and £(3/) G di£6. Therefore £(P&) C d^&- It is now easy to see that £ is a 
homeomorphism of Pb onto di£6 P\ J&. 

To show that S is also open we need to know that dPb is connected. This is 
proved in the lemma below. Assuming it for now, let y G dPb and suppose 
M and Rb are tangent at y. Let N be the connected component of £_1(P&) 
that contains y. By Proposition 1, N is convex. Clearly dP& C dN. It is clear 
that N cannot contain an (n — l)-flat, and so by Proposition 1 there is a 
neighbourhood U of N such that U — N is connected and 

(tz-iv)nrw = 0. 
Thus U — N CP*. Hence dP6 = dN and M = PbKJ N since Af is connected. 
It follows that for c > b, Pc = M so that 4̂ (c) is trivially true. 

Now suppose M and P 6 are transverse throughout dP&. Then dP& is a 
connected component of £-1(P&). On the other hand, £(dP6) = d'(Kb C\ Rb) 
where df denotes the boundary taken in Rb. For every y G dP6, 

£ ( ^ n a p 6 ) = £([/,) n p & 

is an (n — 1)-dimensional submanifold of Rb. Hence Kb C\ Rb must have an 
interior in Rb. Let z lie in this interior. Let C be the solid cylinder 

c = {(« i,...,ttB+ i)|(w i
l...,w»f6) G x&np 6 } . 

Then any line /y from s to £(3/), 3/ G dP&, passes through int C For at least 
one point y G dPb, ly also passes through int Ky. Since Kb cannot contain any 
flat in — 1)-space it follows from Corollary 1 that ly passes through int Ky 

for all y G dPb. But then y has a neighbourhood Vy such that cylindrical 
projection from the line / through z parallel to the ww+1-axis maps £(Vy) 
homeomorphically to a neighbourhood Wy of £(3/) in dC. Since P 6 is compact 
we can choose an open neighbourhood V of dPb so that £(F) is protected from / 
homeomorphically onto PF = dC Pi {b — e < un+1 < b + e}. That implies in 
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part icular t ha t each ray h(t), 0 ^ t < co, perpendicular to I a t 

x' G ir\ {b - e < un+l < b + e} 

meets i-(V) precisely once, say a t h(l). The set of points 

0 = int Kb W {hit), 0 S t < 1, h as above} 

then forms an open set whose boundary is locally convex in such a way t h a t 
the convex bodies Ky associated with points on the boundary all intersect O. 
Then by a theorem of Tietze (see [7, p . 53]), 0 is convex. P u t Ô = Kb+€ and 
we see easily t ha t A (b + e) is t rue. Thus S is open. 

I t follows t ha t A (a) is t rue for all a G (0, oo ). I t remains to prove A (oo ). 
If £(y) G i ^ H J&, {(y) G i£« for some a > b and so {(y) G KaC\Jb = Kb. 
T h u s Kœnjb = Kb for all 6 6 (0, a) ). £ maps M onto d i ^ , for if g G dKœ 

then g G dKa for some a, and thus q is in the image of £. I t is similarly clear 
t ha t £ is 1-1 and a local homeomorphism. Thus A (oo ) is t rue. 

L E M M A . If A(b) holds, then dPb is connected. 

Proof. Suppose to the contrary, t ha t Bi and B2 are non-empty disjoint 
closed subsets of M covering dPb. Since M is metric, hence normal, there are 
open disjoint sets Ui, U2 containing B\ and B2 respectively. Choose a sequence 
{at} of real numbers, such tha t at < b, and lim a% = b. Since dPai is connected, 
we may choose y* G dPai - ( [ / i U U2). Since £(P&) is compact, we m a y 
assume t h a t {£(y*)} is a Cauchy sequence. Let Ky*) —>/>; clearly £ G d(£P&). 
If we show tha t {y*} is Cauchy in M, with limit y G dP& - ( [ / i H t/2), we 
will have a contradiction. 

Let T be a support hyperplane to Kb a t £ such t h a t the orthogonal projec
tion 7T is a homeomorphism of a compact neighbourhood W of p G di£& to a 
closed ball V C_ T, centred a t p. Then by Busemann [1, 1.6], we may assume 
t h a t for some 0 G (0, w/2) the angle between the support hyperplanes T' a t 
p' G W, and J1 a t £ is always less than 6. I t follows t h a t if y, z are points of Af 
such t ha t £(y), £(2) G IF, then 

11*60 - f(*) | | S sec0||irÉ(y) - irf(*)|| ^ sec0| |£(y) - £(*)||-

Hence if a is a pa th in IF, length (a) rg sec 6 length (r o a). Now let 
5 = ir(Kbr\Rb). Clearly p G 5 and ir£(y,) S £ . If the affine space L 
generated by B is (n — 1)-dimensional and p lies in the interior of B with 
respect to L we take a subsequence 7r£(y*) t h a t lies entirely on one side of L 
in T. In any case, it is now possible to find pa ths atj in T — B t h a t join 
7r£(yi) and 7r£(y^) and such t h a t length (atj) —> 0 as i,j—>co. Bu t then the 
pa ths f - V - ^ a ^ ) are pa ths in P 6 and 

d(yifyj) S length (^T-1 (aij)) ^ sec 0 length ( a „ ) . 

T h u s {ji) is a Cauchy sequence in M with (lim y*) G dP& — (£/i ^ U2) and 
we have a contradiction. 
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In the next proposition we prove the main theorem for the case of a surface. 

P R O P O S I T I O N 3. Let M be a two-dimensional connected topological manifold 
immersed in R 3 as a complete locally convex surface. Then either %(M) is a 
cylinder or else it is the boundary of an open convex subset of R3 . 

Proof. If, for some x £ M, £(#) is an extreme point of Kx then by 
[5, Theorem 2.1], there are exposed points of Kx arbi trar i ly near £(x). In 
part icular there is a point y G Ux a t which £ is str ictly locally convex. B u t 
then Van Heijenoort 's theorem (Proposition 2) shows t h a t £(M) is the 
boundary of an open convex subset of R3 . 

T h u s we m a y assume for the remainder of this proof t h a t every x G M is 
contained in the interior of a line segment. Let Tx G T{X) and let N{TX) be 
the connected component of %~l(Tx) containing x. If N(TX) is one-dimensional 
it mus t be a line for otherwise it would have an endpoint which would not lie 
in the interior of a line segment. Suppose N(TX) is two-dimensional. If 
£(N(TX)) = Tx it is easy to see t ha t N(Tx) = M and t h a t M is immersed as 
a plane. If N(TX) is a proper two-dimensional subset it mus t be a slab between 
two lines whose images are parallel, for otherwise its boundary would contain 
a point whose image is extreme. T h u s if we exclude the case where £(M) is a 
plane, every point x lies on a unique line lx. I t remains only to show t h a t the 
images of these lines are parallel. 

Firs t we show t h a t the map x —> £(lx) t h a t associates to x the unique line 
in £(M) through £(x) is continuous. Le t {x^} —•» x. I t follows from the compact
ness of the projective space of lines through £(x) t h a t there must be a subse
quence {x/} of {xt} such t h a t the sequence {£(lx/)} converges to a line m 
through £(x). I t follows from the completeness of M t h a t m is the image of a 
line I through x. Then I = lx since lx is unique. For the same reason {i-(lxi)} 
cannot have cluster points other than m. T h u s the sequence {£(lxi)} approaches 

Now let x G M and let y G Ux. If x and y belong to a flat convex subset of M, 
then either for some Tx G r ( x ) , N(TX) mus t be a slab with y G N(TX) or else 
y lies on lx. In either case £(lx) and £(ly) are parallel. If x and y do no t belong 
to a flat convex set, no suppor t plane a t x is parallel to any suppor t plane a t y ; 
moreover, then i-(Ux) is not flat and thus for any z G Ux and Tz G r (z ) , £(UX) 
is contained in precisely one of the closed half-spaces bounded by Tz. W e will 
show t h a t £(lx) is parallel to Ty and %(ly) to Tx. Suppose to the cont rary t h a t 
£(ly) meets Tx in £(z). Let L be the plane through £(x), containing the normal 
direction to Tx and also containing £(y). Because of the conditions on UXJ 

x and y belong to the same connected component a of ^ ( X ) H Ux. a- is a 
curve which we parametr ize in such a way t h a t o-(O) = x and c ( l ) = 3 / . W e 
now restrict a to 0 ^ t ^ 1 and we call the restricted curve 7. Then no two 
lines of suppor t for this (convex) curve a a t points of 7 make an angle greater 
t han or equal to w/2. Also Z7(0 is t ransverse to L for 0 ^ £ ^ 1, for otherwise 
x and y would belong to the flat convex subset Ux H / 7 ( 0 of itf. Le t 1 / be the 
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plane through £(z) parallel to L. Let a' be the curve in %~l(Lf) such t h a t 
crf (t) G lo(t)- Define y' similarly. Orient R 3 in such a way t h a t £(UX) lies above 
Tx. Now since N(TX) is either lx, or a slab containing lx bu t not y, we may define 
h € [0, 1) to be the greatest t such tha t ly(t) C N(TX). No point of ly(t\) has 
a flat neighbourhood; clearly then, all points of / 7 ( / l ) have neighbourhoods 
whose images lie on the same side of Tx, namely, above Tx. T h u s for some 
e > 0, %y'(h + e) lies above Tx. But the height of £y'(t) above Tx f~\ V is 
zero when t = 0 and t = 1. Hence for some to G (0, 1), this height a t ta ins 
a positive maximum. Then necessarily y' has a line of support a t y' (to) which 
is parallel to Tx C\ L', and £ ( T ' ) lies below this line of support . Since the lines 
of support of <yr a t points of y! are necessarily parallel to the lines of suppor t 
of a a t corresponding points of y this means t h a t a line of support to a a t 
7 (0) = x and a line of support to a a t y (to) make an angle of ir. We already 
indicated t h a t this cannot happen, so we must conclude t h a t %(ly) does not 
meet Tx. 

This argument may be repeated with the roles of x and y interchanged bu t 
using the same set Ux and plane L. Thus also %(lx) does not meet Ty. 

Since Tx and Ty are not parallel it is clear t h a t £(lx) and £(ly) are parallel 
to the line of intersection of Tx and Ty and hence to each other, if x, y G Ux. 
Since M is connected it now follows t ha t %(lx) and £(ly) are parallel for all 
x, y G M. 

3. Proof of t h e t h e o r e m . Suppose t ha t through x G M there is a line /. 
Let Tx G r (x ) be the preferred hyperplane of support with the proper ty t ha t 
the orthogonal projection onto Tx maps £(UX) homeomorphically onto an 
open ball. Let m be the line normal to Tx. Choose y G Ux. We will show t h a t 
through y there passes a line V such t ha t £(/) and £(/') are parallel. If / already 
passes through y there is nothing to prove. If not, £(x), Z(y), %(l), and m are 
contained in a unique 3-space ir which is transverse to M a t x and thus also 
a t y. By our assumptions about the sets Ux, x and y lie in the same connected 
component N of ^(T). N with the immersion 

? | iV: iV->7r 

satisfies the conditions of Proposition 3, and hence there is a line V through y 
such t h a t £(/') and £(/) are parallel. Since y is an arbi t rary point in Ux it 
follows t h a t every point in Ux lies on a line parallel to /. Since M is connected 
it follows t h a t every point in M lies on a line parallel to I. 

Now suppose r is the largest integer such tha t x is contained in a flat r-space 
Lx. It follows from the preceding discussion t h a t through every y G M there 
is a parallel r-space Ly and t ha t r is the largest dimension possible a t y. 

Let i f be the (n + 1 — r)-space through x orthogonal to Lx. I t is now clear 
t h a t P = ^(H) is connected. I t is also clear t h a t P contains a point a t which 
£\P : P —» H is strictly locally convex, for otherwise every point of P would 
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lie on the interior of a line segment and hence on a line (see the first two 
sentences in the proof of Proposition 3). 

If dim P ^ 2, we can apply Van Heijenoort's theorem (Proposition 2) to 
show that £(P) = dK where K is an open convex set in H. It then follows 
immediately that 

f(M) = d(KXRr) 

so that £(M) is the boundary of an open convex subset of Rw+1. 
If dim P = 1, P is a curve and l-(M) is a hypercylinder. 
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