LOGALLY CONVEX HYPERSURFAGES

L. B. JONKER AND R. D. NORMAN

1. Introduction. Let M be an n-dimensional connected topological manifold. Let $\xi: M \rightarrow \mathbf{R}^{n+1}$ be a continuous map with the following property: to each $x \in M$ there is an open set $x \in U_{x} \subset M$, and a convex body $K_{x} \subset \mathbf{R}^{n+1}$ such that $\xi\left(U_{x}\right)$ is an open subset of ∂K_{x} and such that $\xi \mid U_{x}: U_{x} \rightarrow \partial K_{x}$ is a homeomorphism onto its image. We shall call such a mapping ξ a locally convex immersion and, along with Van Heijenoort [8] we shall call $\xi(M)$ a locally convex hypersurface of \mathbf{R}^{n+1}. Note that we do not assume that ξ is $1-1$ or a homeomorphism onto its image or that $\xi(M)$ is closed in \mathbf{R}^{n+1}. We may define on M a metric induced by ξ as follows: if $x, y \in M$

$$
d(x, y)=\inf \{\text { length }(\xi \circ \gamma) \mid \gamma \text { a rectifiable curve between } x \text { and } y\} .
$$

We assume always that M is complete in this metric.
We will summarize the assumptions made so far by saying that M is immersed in \mathbf{R}^{n+1} as a complete connected locally convex hypersurface.

In this paper we prove the following analogue of the theorems of Sacksteder, Hartman, and Nirenberg [6;3;2] that concern complete hypersurfaces of non-negative sectional curvature in a Euclidean space:

Theorem. Let M be an n-dimensional connected topological manifold immersed in \mathbf{R}^{n+1} as a complete locally convex hypersurface. Then either $\xi(M)$ is a hypercylinder (the product of \mathbf{R}^{n-1} with a curve) or else it is the boundary of an open convex subset of \mathbf{R}^{n+1}.

This theorem depends on and generalizes a result of Van Heijenoort [8]. We give a somewhat shorter proof of Van Heijenoort's theorem in Proposition 2.
2. Preliminary results. We must first introduce some further terminology. If $x \in M$ and K_{x} has a hyperplane of support at $\xi(x)$ that meets K_{x} only at $\xi(x)$, then we say that ξ is strictly locally convex at x and that $\xi(M)$ is strictly locally convex at $\xi(x)$. This condition on $\xi(x)$ is also expressed in the literature by saying that $\xi(x)$ is an exposed point of K_{x} (see [5]). We remind the reader that a point p on a convex body K is called an extreme point of K if p does not lie in the interior of any line segment contained in K.

By a hyperplane of support T_{x} at $x \in M$ we shall mean any hyperplane of support for K_{x} at $\xi(x) . \tau(x)$ will denote the set of hyperplanes of support at x.

Received February 10, 1972 and in revised form, March 20, 1972.

A line in M is a subset $l \subset M$ such that $\xi l l$ is a homeomorphism of l onto a line in \mathbf{R}^{n+1}. A line segment is defined similarly. By a flat r-space in M we shall mean a subset $L \subset M$ such that $\xi \mid L$ is a homeomorphism of L onto a linear r-manifold in \mathbf{R}^{n+1}. A flat convex set in M is a connected subset C of M such that $\xi \mid C$ maps C homeomorphically onto a convex subset of \mathbf{R}^{n+1}.

Without loss of generality we will always assume that the sets U_{x} introduced in the introduction are such that for some $T_{x} \in \tau(x)$ the orthogonal projection of $\xi\left(U_{x}\right)$ into T_{x} is a homeomorphism onto an open ball centred at $\xi(x)$ (see Buseman [1, Theorem (1.12)]). It follows that if $y \in U_{x}$ and if π is a plane containing $\xi(x), \xi(y)$, and the direction normal to this preferred hyperplane of support T_{x}, then x and y lie in the same connected component of $\xi^{-1}(\pi)$.

Let $x \in M$, and $\xi(x) \in L$ where L is a linear submanifold of \mathbf{R}^{n+1}. If for some $T_{x} \in \tau(x)$ we have $L \subset T_{x}$ we say that M and L are tangent at x; if not, we say that M and L are transverse at x.

Proposition 1. Let $\xi: M \rightarrow \mathbf{R}^{n+1}$ be an immersion of M as a complete locally convex hypersurface. Let $L \subset \mathbf{R}^{n+1}$ be any linear submanifold of \mathbf{R}^{n+1}. Let $N \subset M$ be a connected component of $\xi^{-1}(L)$. Then N is complete, and there are only two possibilities:
(a) M and L are transverse everywhere on N and N is an embedded submanifold of M, and $\xi \mid N: N \rightarrow L$ is a locally convex immersion.
(b) M and L are tangent everywhere on N and N is an embedded submanifold-with-boundary of M and $\xi(N)$ is a convex subset of L. In this case, if N does not contain a flat $(n-1)$-space, N has a neighbourhood U such that $U-N$ is connected and does not meet $\xi^{-1}(L)$.

Proof. Certainly $\xi^{-1}(L)$ is closed since ξ is continuous.
Suppose that there is a point $x \in N$ such that L is tangent to M at x. That is, L is contained in a hyperplane of support at x. If L meets $\xi\left(U_{x}\right)$ at another point y, then clearly L is tangent to M at y as well. Let $O \subset N$ be the subset of all points at which M and L are tangent: we have just shown that O is open in N (for $x \in N \cap U_{x} \subset O$). O is also closed (even in M), for if $x \in \bar{O}$ then $x \in O$ by $[\mathbf{1},(1.6)]$. Since N is connected it follows that $N=O$, and N is a closed subset of M.

Moreover, N is locally convex in the sense that each point of N has an N-neighbourhood which is flat convex subset of M. To see this, note that if $y, z \in U_{x} \cap N$ then

$$
\xi(y), \xi(z) \in L \cap \xi\left(U_{x}\right) \subset L \subset \partial K_{x}
$$

whence $[\xi(y), \xi(z)] \subset \partial K_{x}$. Since $\xi\left(U_{x}\right)$ is projected homeomorphically onto a ball in some hyperplane, $[\xi(y), \xi(z)] \subset L \cap \xi\left(U_{x}\right)$. Since y and z are arbitrary points in $U_{x} \cap N$ it follows that $U_{x} \cap N$ is a flat convex subset of M. There are two consequences.

Since N is connected, these flat convex neighbourhoods have the same dimension throughout N. Thus N is an embedded submanifold-with-boundary of M.

On the other hand, if a line segment lies in N then its endpoints lie in N. This, together with the local convexity of N, allows a successful application of an argument of Klee [4, Propositions (5.1) and (5.2)] to show that $\xi(N)$ is a convex subset of L.

Now suppose N does not contain a flat ($n-1$)-space. Then one of the following three situations occurs: (1) N has dimension $\leqq n-2$ so that $U_{x}-N$ is always connected for $x \in N$, (2) N is ($n-1$)-dimensional and bounded so that $U_{x}-N$ is connected for at least one $x \in N$, (3) N is n dimensional and bounded so that $U_{x}^{\prime}-N$ is connected for all $x \in N$ if $U_{x}{ }^{\prime} \subset U_{x}$ is a suitably chosen neighbourhood of x. In each case a simple argument shows that if $U=\bigcup_{x \in N} U_{x}$, then $U-N$ is connected.

The only remaining possibility is that M and L are transverse at all points of N. It is clear that in this case N is an embedded submanifold and that $\xi \mid N: N \rightarrow L$ is a locally convex embedding.

Corollary 1. The convex bodies K_{x} for M may be chosen in such a way that on the complement of the unions of the flat $(n-1)$-spaces contained in M, if $U_{x} \cap U_{y} \neq \emptyset$ then int $K_{x} \cap \operatorname{int} K_{y} \neq \emptyset$.

Proof. Let $z \in U_{x} \cap U_{y}$. Suppose z is not contained in an n-dimensional convex subset of M. Then clearly int $K_{x} \cap$ int $K_{y} \neq \emptyset$. If N is an n-dimensional convex set not including a flat ($n-1$)-space, then if U is as in the proof of Proposition $1, \xi(U)$ lies entirely on one side of the hyperplane L containing $\xi(N)$. Hence the sets $K_{x}, x \in \partial N$, all lie on one side of L. For interior points x of N, if K_{x} does not already lie on that side of L we can achieve this by reflecting K_{x} in L. The result is now obvious.

Proposition 2 (Van Heijenoort's theorem). Let M be a connected topological manifold, immersed by ξ in \mathbf{R}^{n+1} as a complete locally convex hypersurface, and suppose M has at least one exposed point x. Then $\xi(M)$ bounds an open convex subset of \mathbf{R}^{n+1}.

Proof. It is easy to see that coordinates (u^{1}, \ldots, u^{n+1}) may be selected on \mathbf{R}^{n+1} to make $T_{x}=\left\{u^{n+1}=0\right\}$ a support plane at $x=(0, \ldots, 0)$. Since x is exposed we may assume in addition that on $\xi\left(U_{x}\right)$ we have $u^{n+1}=f\left(u^{1},, u^{n}\right)$ where f is convex and $f\left(u^{1}, \ldots, u^{n}\right)=0 \Leftrightarrow u^{1}=u^{2}=\ldots=u^{n}=0$.

For $a \in(0, \infty)$ let

$$
R_{a}=\left\{\left(u^{1}, \ldots, u^{n+1}\right) \mid u^{n+1}=a\right\} .
$$

For $a \in(0, \infty]$ let

$$
J_{a}=\left\{\left(u^{1}, \ldots, u^{n+1}\right) \mid u^{n+1}<a\right\}
$$

and let P_{a} be the connected component of $\xi^{-1}\left(J_{a}\right)$ that contains x. Note that
$J_{\infty}=\mathbf{R}^{n+1}$ and that $P_{\infty}=M$. For any $a \in(0, \infty]$ let K_{a} denote the closed convex hull of $\xi\left(P_{a}\right)$. For $a \in(0, \infty]$ let $A(a)$ denote the condition:

$$
A(a): \xi \mid P_{a} \text { is a homeomorphism of } P_{a} \text { onto } \partial K_{a} \cap J_{a} .
$$

It is clear that $A(a)$ holds for sufficiently small a. We will show that $A(a)$ is true for all $a \in(0, \infty)$ and then that this implies $A(\infty)$, which is the conclusion of the theorem.

Let $S \subset \mathbf{R}_{+}$be the set $\left\{b \in \mathbf{R}_{+} \mid A(b)\right.$ is true . Since $A(b)$ clearly implies $A(a)$ for all $a \leqq b$ it is clear that S is connected.
S is closed. For suppose $A(a)$ is true for all $a<b$. Let $y \in P_{b}$. Then $y \in P_{a}$ for some $a<b$. Let H_{y} be any closed half-space containing K_{a} such that $\xi(y) \in \partial H_{y}$. Let $z \in P_{b}$. Then $z \in P_{a^{\prime}}$ for some $a^{\prime} \in(a, b)$. $A\left(a^{\prime}\right)$ implies that because ∂H_{y} is a supporting hyperplane for a neighbourhood of $\xi(y) \in K_{a^{\prime}}$, it is a supporting hyperplane for $K_{a^{\prime}}$. Thus $z \in K_{a^{\prime}} \subset H_{y}$. Thus $\xi\left(P_{b}\right) \subset H_{y}$ and $\xi(y) \in \partial K_{b}$. Therefore $\xi\left(P_{b}\right) \subset \partial K_{b}$. It is now easy to see that ξ is a homeomorphism of P_{b} onto $\partial K_{b} \cap J_{b}$.

To show that S is also open we need to know that ∂P_{b} is connected. This is proved in the lemma below. Assuming it for now, let $y \in \partial P_{b}$ and suppose M and R_{b} are tangent at y. Let N be the connected component of $\xi^{-1}\left(R_{b}\right)$ that contains y. By Proposition 1, N is convex. Clearly $\partial P_{b} \subset \partial N$. It is clear that N cannot contain an $(n-1)$-flat, and so by Proposition 1 there is a neighbourhood U of N such that $U-N$ is connected and

$$
(U-N) \cap \xi^{-1}\left(R_{b}\right)=\emptyset .
$$

Thus $U-N \subset P_{b}$. Hence $\partial P_{b}=\partial N$ and $M=P_{b} \cup N$ since M is connected. It follows that for $c>b, P_{c}=M$ so that $A(c)$ is trivially true.

Now suppose M and R_{b} are transverse throughout ∂P_{b}. Then ∂P_{b} is a connected component of $\xi^{-1}\left(R_{b}\right)$. On the other hand, $\xi\left(\partial P_{b}\right)=\partial^{\prime}\left(K_{b} \cap R_{b}\right)$ where ∂^{\prime} denotes the boundary taken in R_{b}. For every $y \in \partial P_{b}$,

$$
\xi\left(U_{y} \cap \partial P_{b}\right)=\xi\left(U_{y}\right) \cap R_{b}
$$

is an $(n-1)$-dimensional submanifold of R_{b}. Hence $K_{b} \cap R_{b}$ must have an interior in R_{b}. Let z lie in this interior. Let C be the solid cylinder

$$
C=\left\{\left(u^{1}, \ldots, u^{n+1}\right) \mid\left(u^{1}, \ldots, u^{n}, b\right) \in K_{b} \cap R_{b}\right\}
$$

Then any line l_{y} from z to $\xi(y), y \in \partial P_{b}$, passes through int C. For at least one point $y \in \partial P_{b}, l_{y}$ also passes through int K_{y}. Since K_{b} cannot contain any flat ($n-1$)-space it follows from Corollary 1 that l_{y} passes through int K_{y} for all $y \in \partial P_{b}$. But then y has a neighbourhood V_{y} such that cylindrical projection from the line l through z parallel to the u^{n+1}-axis maps $\xi\left(V_{y}\right)$ homeomorphically to a neighbourhood W_{y} of $\xi(y)$ in ∂C. Since \bar{P}_{b} is compact we can choose an open neighbourhood V of ∂P_{b} so that $\xi(V)$ is protected from l homeomorphically onto $W=\partial C \cap\left\{b-\epsilon<u^{n+1}<b+\epsilon\right\}$. That implies in
particular that each ray $h(t), 0 \leqq t<\infty$, perpendicular to l at

$$
x^{\prime} \in l \cap\left\{b-\epsilon<u^{n+1}<b+\epsilon\right\}
$$

meets $\xi(V)$ precisely once, say at $h(1)$. The set of points

$$
O=\operatorname{int} K_{b} \cup\{h(t), 0 \leqq t<1, h \text { as above }\}
$$

then forms an open set whose boundary is locally convex in such a way that the convex bodies K_{y} associated with points on the boundary all intersect O. Then by a theorem of Tietze (see [7, p. 53]), O is convex. Put $\bar{O}=K_{b+\epsilon}$ and we see easily that $A(b+\epsilon)$ is true. Thus S is open.

It follows that $A(a)$ is true for all $a \in(0, \infty)$. It remains to prove $A(\infty)$. If $\xi(y) \in K_{\infty} \cap \bar{J}_{b}, \xi(y) \in K_{a}$ for some $a>b$ and so $\xi(y) \in K_{a} \cap \bar{J}_{b}=K_{b}$. Thus $K_{\infty} \cap \bar{J}_{b}=K_{b}$ for all $b \in(0, \infty)$. ξ maps M onto ∂K_{∞}, for if $q \in \partial K_{\infty}$ then $q \in \partial K_{a}$ for some a, and thus q is in the image of ξ. It is similarly clear that ξ is $1-1$ and a local homeomorphism. Thus $A(\infty)$ is true.
Lemma. If $A(b)$ holds, then ∂P_{b} is connected.
Proof. Suppose to the contrary, that B_{1} and B_{2} are non-empty disjoint closed subsets of M covering ∂P_{b}. Since M is metric, hence normal, there are open disjoint sets U_{1}, U_{2} containing B_{1} and B_{2} respectively. Choose a sequence $\left\{a_{\imath}\right\}$ of real numbers, such that $a_{i}<b$, and $\lim a_{\imath}=b$. Since $\partial P_{a_{i}}$ is connected, we may choose $y_{i} \in \partial P_{a_{i}}-\left(U_{1} \cup U_{2}\right)$. Since $\overline{\xi\left(P_{b}\right)}$ is compact, we may assume that $\left\{\xi\left(y_{i}\right)\right\}$ is a Cauchy sequence. Let $\xi\left(y_{i}\right) \rightarrow p$; clearly $p \in \partial\left(\xi P_{b}\right)$. If we show that $\left\{y_{i}\right\}$ is Cauchy in M, with limit $y \in \partial P_{b}-\left(U_{1} \cap U_{2}\right)$, we will have a contradiction.

Let T be a support hyperplane to K_{b} at p such that the orthogonal projection π is a homeomorphism of a compact neighbourhood W of $p \in \partial K_{b}$ to a closed ball $V \subset T$, centred at p. Then by Busemann [1, 1.6], we may assume that for some $\theta \in(0, \pi / 2)$ the angle between the support hyperplanes T^{\prime} at $p^{\prime} \in W$, and T at p is always less than θ. It follows that if y, z are points of M such that $\xi(y), \xi(z) \in W$, then

$$
\|\xi(y)-\xi(z)\| \leqq \sec \theta\|\pi \xi(y)-\pi \xi(z)\| \leqq \sec \theta\|\xi(y)-\xi(z)\| .
$$

Hence if α is a path in W, length $(\alpha) \leqq \sec \theta$ length $(\pi \circ \alpha)$. Now let $B=\pi\left(K_{b} \cap R_{b}\right)$. Clearly $p \in B$ and $\pi \xi\left(y_{i}\right) \notin B$. If the affine space L generated by B is $(n-1)$-dimensional and p lies in the interior of B with respect to L we take a subsequence $\pi \xi\left(y_{i}\right)$ that lies entirely on one side of L in T. In any case, it is now possible to find paths $\alpha_{i j}$ in $T-B$ that join $\pi \xi\left(y_{i}\right)$ and $\pi \xi\left(y_{j}\right)$ and such that length $\left(\alpha_{i j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$. But then the paths $\xi^{-1} \pi^{-1}\left(\alpha_{i j}\right)$ are paths in P_{b} and

$$
d\left(y_{i}, y_{j}\right) \leqq \text { length }\left(\xi^{-1} \pi^{-1}\left(\alpha_{i j}\right)\right) \leqq \sec \theta \text { length }\left(\alpha_{i j}\right)
$$

Thus $\left\{y_{i}\right\}$ is a Cauchy sequence in M with $\left(\lim y_{i}\right) \in \partial P_{b}-\left(U_{1} \cap U_{2}\right)$ and we have a contradiction.

In the next proposition we prove the main theorem for the case of a surface.
Proposition 3. Let M be a two-dimensional connected topological manifold immersed in \mathbf{R}^{3} as a complete locally convex surface. Then either $\xi(M)$ is a cylinder or else it is the boundary of an open convex subset of \mathbf{R}^{3}.

Proof. If, for some $x \in M, \xi(x)$ is an extreme point of K_{x} then by [5, Theorem 2.1], there are exposed points of K_{x} arbitrarily near $\xi(x)$. In particular there is a point $y \in U_{x}$ at which ξ is strictly locally convex. But then Van Heijenoort's theorem (Proposition 2) shows that $\xi(M)$ is the boundary of an open convex subset of \mathbf{R}^{3}.

Thus we may assume for the remainder of this proof that every $x \in M$ is contained in the interior of a line segment. Let $T_{x} \in \tau(x)$ and let $N\left(T_{x}\right)$ be the connected component of $\xi^{-1}\left(T_{x}\right)$ containing x. If $N\left(T_{x}\right)$ is one-dimensional it must be a line for otherwise it would have an endpoint which would not lie in the interior of a line segment. Suppose $N\left(T_{x}\right)$ is two-dimensional. If $\xi\left(N\left(T_{x}\right)\right)=T_{x}$ it is easy to see that $N\left(T_{x}\right)=M$ and that M is immersed as a plane. If $N\left(T_{x}\right)$ is a proper two-dimensional subset it must be a slab between two lines whose images are parallel, for otherwise its boundary would contain a point whose image is extreme. Thus if we exclude the case where $\xi(M)$ is a plane, every point x lies on a unique line l_{x}. It remains only to show that the images of these lines are parallel.

First we show that the map $x \rightarrow \xi\left(l_{x}\right)$ that associates to x the unique line in $\xi(M)$ through $\xi(x)$ is continuous. Let $\left\{x_{i}\right\} \rightarrow x$. It follows from the compactness of the projective space of lines through $\xi(x)$ that there must be a subsequence $\left\{x_{i}{ }^{\prime}\right\}$ of $\left\{x_{i}\right\}$ such that the sequence $\left\{\xi\left(l_{x_{i}}{ }^{\prime}\right)\right\}$ converges to a line m through $\xi(x)$. It follows from the completeness of M that m is the image of a line l through x. Then $l=l_{x}$ since l_{x} is unique. For the same reason $\left\{\xi\left(l_{x_{i}}\right)\right\}$ cannot have cluster points other than m. Thus the sequence $\left\{\xi\left(l_{x_{i}}\right)\right\}$ approaches $\xi\left(l_{x}\right)$.

Now let $x \in M$ and let $y \in U_{x}$. If x and y belong to a flat convex subset of M, then either for some $T_{x} \in \boldsymbol{\tau}(x), N\left(T_{x}\right)$ must be a slab with $y \in N\left(T_{x}\right)$ or else y lies on l_{x}. In either case $\xi\left(l_{x}\right)$ and $\xi\left(l_{y}\right)$ are parallel. If x and y do not belong to a flat convex set, no support plane at x is parallel to any support plane at y; moreover, then $\xi\left(U_{x}\right)$ is not flat and thus for any $z \in U_{x}$ and $T_{z} \in \tau(z), \xi\left(U_{x}\right)$ is contained in precisely one of the closed half-spaces bounded by T_{z}. We will show that $\xi\left(l_{x}\right)$ is parallel to T_{y} and $\xi\left(l_{y}\right)$ to T_{x}. Suppose to the contrary that $\xi\left(l_{y}\right)$ meets T_{x} in $\xi(z)$. Let L be the plane through $\xi(x)$, containing the normal direction to T_{x} and also containing $\xi(y)$. Because of the conditions on U_{x}, x and y belong to the same connected component σ of $\xi^{-1}(L) \cap U_{x} . \sigma$ is a curve which we parametrize in such a way that $\sigma(0)=x$ and $\sigma(1)=y$. We now restrict σ to $0 \leqq t \leqq 1$ and we call the restricted curve γ. Then no two lines of support for this (convex) curve σ at points of γ make an angle greater than or equal to $\pi / 2$. Also $l_{\gamma(t)}$ is transverse to L for $0 \leqq t \leqq 1$, for otherwise x and y would belong to the flat convex subset $U_{x} \cap l_{\gamma(t)}$ of M. Let L^{\prime} be the
plane through $\xi(z)$ parallel to L. Let σ^{\prime} be the curve in $\xi^{-1}\left(L^{\prime}\right)$ such that $\sigma^{\prime}(t) \in l_{\sigma(t)}$. Define γ^{\prime} similarly. Orient \mathbf{R}^{3} in such a way that $\xi\left(U_{x}\right)$ lies above T_{x}. Now since $N\left(T_{x}\right)$ is either l_{x}, or a slab containing l_{x} but not y, we may define $t_{1} \in[0,1)$ to be the greatest t such that $l_{\gamma(t)} \subset N\left(T_{x}\right)$. No point of $l_{\gamma\left(t_{1}\right)}$ has a flat neighbourhood; clearly then, all points of $l_{\gamma\left(t_{1}\right)}$ have neighbourhoods whose images lie on the same side of T_{x}, namely, above T_{x}. Thus for some $\epsilon>0, \xi \gamma^{\prime}\left(t_{1}+\epsilon\right)$ lies above T_{x}. But the height of $\xi \gamma^{\prime}(t)$ above $T_{x} \cap L^{\prime}$ is zero when $t=0$ and $t=1$. Hence for some $t_{0} \in(0,1)$, this height attains a positive maximum. Then necessarily γ^{\prime} has a line of support at $\gamma^{\prime}\left(t_{0}\right)$ which is parallel to $T_{x} \cap L^{\prime}$, and $\xi\left(\gamma^{\prime}\right)$ lies below this line of support. Since the lines of support of σ^{\prime} at points of γ^{\prime} are necessarily parallel to the lines of support of σ at corresponding points of γ this means that a line of support to σ at $\gamma(0)=x$ and a line of support to σ at $\gamma\left(t_{0}\right)$ make an angle of π. We already indicated that this cannot happen, so we must conclude that $\xi\left(l_{y}\right)$ does not meet T_{x}.

This argument may be repeated with the roles of x and y interchanged but using the same set U_{x} and plane L. Thus also $\xi\left(l_{x}\right)$ does not meet T_{y}.

Since T_{x} and T_{y} are not parallel it is clear that $\xi\left(l_{x}\right)$ and $\xi\left(l_{y}\right)$ are parallel to the line of intersection of T_{x} and T_{y} and hence to each other, if $x, y \in U_{x}$. Since M is connected it now follows that $\xi\left(l_{x}\right)$ and $\xi\left(l_{y}\right)$ are parallel for all $x, y \in M$.
3. Proof of the theorem. Suppose that through $x \in M$ there is a line l. Let $T_{x} \in \tau(x)$ be the preferred hyperplane of support with the property that the orthogonal projection onto T_{x} maps $\xi\left(U_{x}\right)$ homeomorphically onto an open ball. Let m be the line normal to T_{x}. Choose $y \in U_{x}$. We will show that through y there passes a line l^{\prime} such that $\xi(l)$ and $\xi\left(l^{\prime}\right)$ are parallel. If l already passes through y there is nothing to prove. If not, $\xi(x), \xi(y), \xi(l)$, and m are contained in a unique 3 -space π which is transverse to M at x and thus also at y. By our assumptions about the sets U_{x}, x and y lie in the same connected component N of $\xi^{-1}(\pi)$. N with the immersion

$$
\xi \mid N: N \rightarrow \pi
$$

satisfies the conditions of Proposition 3, and hence there is a line l^{\prime} through y such that $\xi\left(l^{\prime}\right)$ and $\xi(l)$ are parallel. Since y is an arbitrary point in U_{x} it follows that every point in U_{x} lies on a line parallel to l. Since M is connected it follows that every point in M lies on a line parallel to l.

Now suppose r is the largest integer such that x is contained in a flat r-space L_{x}. It follows from the preceding discussion that through every $y \in M$ there is a parallel r-space L_{y} and that r is the largest dimension possible at y.

Let H be the ($\mathrm{n}+1-r$-space through x orthogonal to L_{x}. It is now clear that $P=\xi^{-1}(H)$ is connected. It is also clear that P contains a point at which $\xi \mid P: P \rightarrow H$ is strictly locally convex, for otherwise every point of P would
lie on the interior of a line segment and hence on a line (see the first two sentences in the proof of Proposition 3).

If $\operatorname{dim} P \geqq 2$, we can apply Van Heijenoort's theorem (Proposition 2) to show that $\xi(P)=\partial K$ where K is an open convex set in H. It then follows immediately that

$$
\xi(M)=\partial\left(K \times \mathbf{R}^{r}\right)
$$

so that $\xi(M)$ is the boundary of an open convex subset of \mathbf{R}^{n+1}.
If $\operatorname{dim} P=1, P$ is a curve and $\xi(M)$ is a hypercylinder.

References

1. H. Busemann, Convex surfaces (Interscience Publishers, New York 1958).
2. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
3. P. Hartman, On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curvatures. II, Trans. Amer. Math. Soc. 147 (1970), 529-539.
4. V. L. Klee, jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
5. - Extremal structure of convex sets. II, Math. Z. 69 (1958), 90-104.
6. R. Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. $8 \mathbb{Z}$ (1960), 609-630.
7. F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).
8. J. Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math. 5 (1952), 223-242.

Queen's University,
Kingston, Ontario

