LOCALLY CONVEX HYPERSURFACES

L. B. JONKER AND R. D. NORMAN

1. Introduction. Let M be an n-dimensional connected topological manifold. Let $\xi: M \to \mathbb{R}^{n+1}$ be a continuous map with the following property: to each $x \in M$ there is an open set $x \in U_x \subset M$, and a convex body $K_x \subset \mathbb{R}^{n+1}$ such that $\xi(U_x)$ is an open subset of ∂K_x and such that $\xi|U_x: U_x \to \partial K_x$ is a homeomorphism onto its image. We shall call such a mapping ξ a locally convex immersion and, along with Van Heijenoort [8] we shall call $\xi(M)$ a locally convex hypersurface of \mathbb{R}^{n+1} . Note that we do not assume that ξ is 1 - 1 or a homeomorphism onto its image or that $\xi(M)$ is closed in \mathbb{R}^{n+1} . We may define on M a metric induced by ξ as follows: if $x, y \in M$

 $d(x, y) = \inf\{ \operatorname{length}(\xi \circ \gamma) | \gamma \text{ a rectifiable curve between } x \text{ and } y \}.$

We assume always that *M* is complete in this metric.

We will summarize the assumptions made so far by saying that M is immersed in \mathbb{R}^{n+1} as a complete connected locally convex hypersurface.

In this paper we prove the following analogue of the theorems of Sacksteder, Hartman, and Nirenberg [6; 3; 2] that concern complete hypersurfaces of non-negative sectional curvature in a Euclidean space:

THEOREM. Let M be an n-dimensional connected topological manifold immersed in \mathbb{R}^{n+1} as a complete locally convex hypersurface. Then either $\xi(M)$ is a hypercylinder (the product of \mathbb{R}^{n-1} with a curve) or else it is the boundary of an open convex subset of \mathbb{R}^{n+1} .

This theorem depends on and generalizes a result of Van Heijenoort [8]. We give a somewhat shorter proof of Van Heijenoort's theorem in Proposition 2.

2. Preliminary results. We must first introduce some further terminology. If $x \in M$ and K_x has a hyperplane of support at $\xi(x)$ that meets K_x only at $\xi(x)$, then we say that ξ is *strictly locally convex at* x and that $\xi(M)$ is strictly locally convex at $\xi(x)$. This condition on $\xi(x)$ is also expressed in the literature by saying that $\xi(x)$ is an *exposed point of* K_x (see [5]). We remind the reader that a point p on a convex body K is called an *extreme point* of K if p does not lie in the interior of any line segment contained in K.

By a hyperplane of support T_x at $x \in M$ we shall mean any hyperplane of support for K_x at $\xi(x)$. $\tau(x)$ will denote the set of hyperplanes of support at x.

Received February 10, 1972 and in revised form, March 20, 1972.

A line in M is a subset $l \subset M$ such that $\xi | l$ is a homeomorphism of l onto a line in \mathbb{R}^{n+1} . A line segment is defined similarly. By a *flat r-space* in M we shall mean a subset $L \subset M$ such that $\xi | L$ is a homeomorphism of L onto a linear *r*-manifold in \mathbb{R}^{n+1} . A *flat convex set* in M is a connected subset C of M such that $\xi | C$ maps C homeomorphically onto a convex subset of \mathbb{R}^{n+1} .

Without loss of generality we will always assume that the sets U_x introduced in the introduction are such that for some $T_x \in \tau(x)$ the orthogonal projection of $\xi(U_x)$ into T_x is a homeomorphism onto an open ball centred at $\xi(x)$ (see Buseman [1, Theorem (1.12)]). It follows that if $y \in U_x$ and if π is a plane containing $\xi(x)$, $\xi(y)$, and the direction normal to this preferred hyperplane of support T_x , then x and y lie in the same connected component of $\xi^{-1}(\pi)$.

Let $x \in M$, and $\xi(x) \in L$ where L is a linear submanifold of \mathbb{R}^{n+1} . If for some $T_x \in \tau(x)$ we have $L \subset T_x$ we say that M and L are tangent at x; if not, we say that M and L are transverse at x.

PROPOSITION 1. Let $\xi: M \to \mathbb{R}^{n+1}$ be an immersion of M as a complete locally convex hypersurface. Let $L \subset \mathbb{R}^{n+1}$ be any linear submanifold of \mathbb{R}^{n+1} . Let $N \subset M$ be a connected component of $\xi^{-1}(L)$. Then N is complete, and there are only two possibilities:

(a) M and L are transverse everywhere on N and N is an embedded submanifold of M, and $\xi | N : N \to L$ is a locally convex immersion.

(b) M and L are tangent everywhere on N and N is an embedded submanifoldwith-boundary of M and $\xi(N)$ is a convex subset of L. In this case, if N does not contain a flat (n - 1)-space, N has a neighbourhood U such that U - N is connected and does not meet $\xi^{-1}(L)$.

Proof. Certainly $\xi^{-1}(L)$ is closed since ξ is continuous.

Suppose that there is a point $x \in N$ such that L is tangent to M at x. That is, L is contained in a hyperplane of support at x. If L meets $\xi(U_x)$ at another point y, then clearly L is tangent to M at y as well. Let $O \subset N$ be the subset of all points at which M and L are tangent: we have just shown that O is open in N (for $x \in N \cap U_x \subset O$). O is also closed (even in M), for if $x \in \overline{O}$ then $x \in O$ by [1, (1.6)]. Since N is connected it follows that N = O, and Nis a closed subset of M.

Moreover, N is locally convex in the sense that each point of N has an N-neighbourhood which is flat convex subset of M. To see this, note that if $y, z \in U_x \cap N$ then

$$\xi(y), \xi(z) \in L \cap \xi(U_x) \subset L \subset \partial K_x,$$

whence $[\xi(y), \xi(z)] \subset \partial K_x$. Since $\xi(U_x)$ is projected homeomorphically onto a ball in some hyperplane, $[\xi(y), \xi(z)] \subset L \cap \xi(U_x)$. Since y and z are arbitrary points in $U_x \cap N$ it follows that $U_x \cap N$ is a flat convex subset of M. There are two consequences. Since N is connected, these flat convex neighbourhoods have the same dimension throughout N. Thus N is an embedded submanifold-with-boundary of M.

On the other hand, if a line segment lies in N then its endpoints lie in N. This, together with the local convexity of N, allows a successful application of an argument of Klee [4, Propositions (5.1) and (5.2)] to show that $\xi(N)$ is a convex subset of L.

Now suppose N does not contain a flat (n-1)-space. Then one of the following three situations occurs: (1) N has dimension $\leq n-2$ so that $U_x - N$ is always connected for $x \in N$, (2) N is (n-1)-dimensional and bounded so that $U_x - N$ is connected for at least one $x \in N$, (3) N is n-dimensional and bounded so that $U_x' - N$ is connected for all $x \in N$ if $U_x' \subset U_x$ is a suitably chosen neighbourhood of x. In each case a simple argument shows that if $U = \bigcup_{x \in N} U_x$, then U - N is connected.

The only remaining possibility is that M and L are transverse at all points of N. It is clear that in this case N is an embedded submanifold and that $\xi|N: N \to L$ is a locally convex embedding.

COROLLARY 1. The convex bodies K_x for M may be chosen in such a way that on the complement of the unions of the flat (n-1)-spaces contained in M, if $U_x \cap U_y \neq \emptyset$ then int $K_x \cap \operatorname{int} K_y \neq \emptyset$.

Proof. Let $z \in U_x \cap U_y$. Suppose z is not contained in an *n*-dimensional convex subset of M. Then clearly int $K_x \cap \operatorname{int} K_y \neq \emptyset$. If N is an *n*-dimensional convex set not including a flat (n - 1)-space, then if U is as in the proof of Proposition 1, $\xi(U)$ lies entirely on one side of the hyperplane L containing $\xi(N)$. Hence the sets $K_x, x \in \partial N$, all lie on one side of L. For interior points x of N, if K_x does not already lie on that side of L we can achieve this by reflecting K_x in L. The result is now obvious.

PROPOSITION 2 (Van Heijenoort's theorem). Let M be a connected topological manifold, immersed by ξ in \mathbb{R}^{n+1} as a complete locally convex hypersurface, and suppose M has at least one exposed point x. Then $\xi(M)$ bounds an open convex subset of \mathbb{R}^{n+1} .

Proof. It is easy to see that coordinates (u^1, \ldots, u^{n+1}) may be selected on \mathbb{R}^{n+1} to make $T_x = \{u^{n+1} = 0\}$ a support plane at $x = (0, \ldots, 0)$. Since x is exposed we may assume in addition that on $\xi(U_x)$ we have $u^{n+1} = f(u^1, \ldots, u^n)$ where f is convex and $f(u^1, \ldots, u^n) = 0 \Leftrightarrow u^1 = u^2 = \ldots = u^n = 0$.

For $a \in (0, \infty)$ let

$$R_a = \{ (u^1, \ldots, u^{n+1}) | u^{n+1} = a \}.$$

For $a \in (0, \infty]$ let

$$J_a = \{ (u^1, \ldots, u^{n+1}) | u^{n+1} < a \}$$

and let P_a be the connected component of $\xi^{-1}(J_a)$ that contains x. Note that

 $J_{\infty} = \mathbf{R}^{n+1}$ and that $P_{\infty} = M$. For any $a \in (0, \infty]$ let K_a denote the closed convex hull of $\xi(P_a)$. For $a \in (0, \infty]$ let A(a) denote the condition:

 $A(a): \xi | P_a$ is a homeomorphism of P_a onto $\partial K_a \cap J_a$.

It is clear that A(a) holds for sufficiently small a. We will show that A(a) is true for all $a \in (0, \infty)$ and then that this implies $A(\infty)$, which is the conclusion of the theorem.

Let $S \subset \mathbf{R}_+$ be the set $\{b \in \mathbf{R}_+ | A(b) \text{ is true}\}$. Since A(b) clearly implies A(a) for all $a \leq b$ it is clear that S is connected.

S is closed. For suppose A(a) is true for all a < b. Let $y \in P_b$. Then $y \in P_a$ for some a < b. Let H_y be any closed half-space containing K_a such that $\xi(y) \in \partial H_y$. Let $z \in P_b$. Then $z \in P_{a'}$ for some $a' \in (a, b)$. A(a') implies that because ∂H_y is a supporting hyperplane for a neighbourhood of $\xi(y) \in K_{a'}$, it is a supporting hyperplane for $K_{a'}$. Thus $z \in K_{a'} \subset H_y$. Thus $\xi(P_b) \subset H_y$ and $\xi(y) \in \partial K_b$. Therefore $\xi(P_b) \subset \partial K_b$. It is now easy to see that ξ is a homeomorphism of P_b onto $\partial K_b \cap J_b$.

To show that S is also open we need to know that ∂P_b is connected. This is proved in the lemma below. Assuming it for now, let $y \in \partial P_b$ and suppose M and R_b are tangent at y. Let N be the connected component of $\xi^{-1}(R_b)$ that contains y. By Proposition 1, N is convex. Clearly $\partial P_b \subset \partial N$. It is clear that N cannot contain an (n-1)-flat, and so by Proposition 1 there is a neighbourhood U of N such that U - N is connected and

$$(U-N) \cap \xi^{-1}(R_b) = \emptyset.$$

Thus $U - N \subset P_b$. Hence $\partial P_b = \partial N$ and $M = P_b \cup N$ since M is connected. It follows that for c > b, $P_c = M$ so that A(c) is trivially true.

Now suppose M and R_b are transverse throughout ∂P_b . Then ∂P_b is a connected component of $\xi^{-1}(R_b)$. On the other hand, $\xi(\partial P_b) = \partial'(K_b \cap R_b)$ where ∂' denotes the boundary taken in R_b . For every $y \in \partial P_b$,

$$\xi(U_y \cap \partial P_b) = \xi(U_y) \cap R_b$$

is an (n-1)-dimensional submanifold of R_b . Hence $K_b \cap R_b$ must have an interior in R_b . Let z lie in this interior. Let C be the solid cylinder

$$C = \{ (u^1, \ldots, u^{n+1}) | (u^1, \ldots, u^n, b) \in K_b \cap R_b \}.$$

Then any line l_y from z to $\xi(y)$, $y \in \partial P_b$, passes through int C. For at least one point $y \in \partial P_b$, l_y also passes through int K_y . Since K_b cannot contain any flat (n-1)-space it follows from Corollary 1 that l_y passes through int K_y for all $y \in \partial P_b$. But then y has a neighbourhood V_y such that cylindrical projection from the line l through z parallel to the u^{n+1} -axis maps $\xi(V_y)$ homeomorphically to a neighbourhood W_y of $\xi(y)$ in ∂C . Since \overline{P}_b is compact we can choose an open neighbourhood V of ∂P_b so that $\xi(V)$ is protected from l homeomorphically onto $W = \partial C \cap \{b - \epsilon < u^{n+1} < b + \epsilon\}$. That implies in particular that each ray $h(t), 0 \leq t < \infty$, perpendicular to l at

$$x' \in l \cap \{b - \epsilon < u^{n+1} < b + \epsilon\}$$

meets $\xi(V)$ precisely once, say at h(1). The set of points

$$O = \operatorname{int} K_b \cup \{h(t), 0 \leq t < 1, h \text{ as above}\}$$

then forms an open set whose boundary is locally convex in such a way that the convex bodies K_y associated with points on the boundary all intersect O. Then by a theorem of Tietze (see [7, p. 53]), O is convex. Put $\overline{O} = K_{b+\epsilon}$ and we see easily that $A(b + \epsilon)$ is true. Thus S is open.

It follows that A(a) is true for all $a \in (0, \infty)$. It remains to prove $A(\infty)$. If $\xi(y) \in K_{\infty} \cap \overline{J}_b$, $\xi(y) \in K_a$ for some a > b and so $\xi(y) \in K_a \cap \overline{J}_b = K_b$. Thus $K_{\infty} \cap \overline{J}_b = K_b$ for all $b \in (0, \infty)$. ξ maps M onto ∂K_{∞} , for if $q \in \partial K_{\infty}$ then $q \in \partial K_a$ for some a, and thus q is in the image of ξ . It is similarly clear that ξ is 1-1 and a local homeomorphism. Thus $A(\infty)$ is true.

LEMMA. If A(b) holds, then ∂P_b is connected.

Proof. Suppose to the contrary, that B_1 and B_2 are non-empty disjoint closed subsets of M covering ∂P_b . Since M is metric, hence normal, there are open disjoint sets U_1 , U_2 containing B_1 and B_2 respectively. Choose a sequence $\{a_i\}$ of real numbers, such that $a_i < b$, and $\lim a_i = b$. Since ∂P_{a_i} is connected, we may choose $y_i \in \partial P_{a_i} - (U_1 \cup U_2)$. Since $\overline{\xi(P_b)}$ is compact, we may assume that $\{\xi(y_i)\}$ is a Cauchy sequence. Let $\xi(y_i) \to p$; clearly $p \in \partial(\xi P_b)$. If we show that $\{y_i\}$ is Cauchy in M, with limit $y \in \partial P_b - (U_1 \cap U_2)$, we will have a contradiction.

Let T be a support hyperplane to K_b at p such that the orthogonal projection π is a homeomorphism of a compact neighbourhood W of $p \in \partial K_b$ to a closed ball $V \subset T$, centred at p. Then by Busemann [1, 1.6], we may assume that for some $\theta \in (0, \pi/2)$ the angle between the support hyperplanes T' at $p' \in W$, and T at p is always less than θ . It follows that if y, z are points of M such that $\xi(y), \xi(z) \in W$, then

$$|\xi(y) - \xi(z)|| \leq \sec \theta ||\pi\xi(y) - \pi\xi(z)|| \leq \sec \theta ||\xi(y) - \xi(z)||.$$

Hence if α is a path in W, length $(\alpha) \leq \sec \theta \operatorname{length}(\pi \circ \alpha)$. Now let $B = \pi(K_b \cap R_b)$. Clearly $p \in B$ and $\pi\xi(y_i) \notin B$. If the affine space L generated by B is (n-1)-dimensional and p lies in the interior of B with respect to L we take a subsequence $\pi\xi(y_i)$ that lies entirely on one side of L in T. In any case, it is now possible to find paths α_{ij} in T - B that join $\pi\xi(y_i)$ and $\pi\xi(y_j)$ and such that length $(\alpha_{ij}) \to 0$ as $i, j \to \infty$. But then the paths $\xi^{-1}\pi^{-1}(\alpha_{ij})$ are paths in P_b and

$$d(y_i, y_j) \leq \text{length}(\xi^{-1}\pi^{-1}(\alpha_{ij})) \leq \text{sec } \theta \text{ length}(\alpha_{ij}).$$

Thus $\{y_i\}$ is a Cauchy sequence in M with $(\lim y_i) \in \partial P_b - (U_1 \cap U_2)$ and we have a contradiction.

In the next proposition we prove the main theorem for the case of a surface.

PROPOSITION 3. Let M be a two-dimensional connected topological manifold immersed in \mathbb{R}^3 as a complete locally convex surface. Then either $\xi(M)$ is a cylinder or else it is the boundary of an open convex subset of \mathbb{R}^3 .

Proof. If, for some $x \in M$, $\xi(x)$ is an extreme point of K_x then by [5, Theorem 2.1], there are exposed points of K_x arbitrarily near $\xi(x)$. In particular there is a point $y \in U_x$ at which ξ is strictly locally convex. But then Van Heijenoort's theorem (Proposition 2) shows that $\xi(M)$ is the boundary of an open convex subset of \mathbb{R}^3 .

Thus we may assume for the remainder of this proof that every $x \in M$ is contained in the interior of a line segment. Let $T_x \in \tau(x)$ and let $N(T_x)$ be the connected component of $\xi^{-1}(T_x)$ containing x. If $N(T_x)$ is one-dimensional it must be a line for otherwise it would have an endpoint which would not lie in the interior of a line segment. Suppose $N(T_x)$ is two-dimensional. If $\xi(N(T_x)) = T_x$ it is easy to see that $N(T_x) = M$ and that M is immersed as a plane. If $N(T_x)$ is a proper two-dimensional subset it must be a slab between two lines whose images are parallel, for otherwise its boundary would contain a point whose image is extreme. Thus if we exclude the case where $\xi(M)$ is a plane, every point x lies on a unique line l_x . It remains only to show that the images of these lines are parallel.

First we show that the map $x \to \xi(l_x)$ that associates to x the unique line in $\xi(M)$ through $\xi(x)$ is continuous. Let $\{x_i\} \to x$. It follows from the compactness of the projective space of lines through $\xi(x)$ that there must be a subsequence $\{x_i'\}$ of $\{x_i\}$ such that the sequence $\{\xi(l_{x_i'})\}$ converges to a line m through $\xi(x)$. It follows from the completeness of M that m is the image of a line l through x. Then $l = l_x$ since l_x is unique. For the same reason $\{\xi(l_{x_i})\}$ cannot have cluster points other than m. Thus the sequence $\{\xi(l_{x_i})\}$ approaches $\xi(l_x)$.

Now let $x \in M$ and let $y \in U_x$. If x and y belong to a flat convex subset of M, then either for some $T_x \in \tau(x)$, $N(T_x)$ must be a slab with $y \in N(T_x)$ or else y lies on l_x . In either case $\xi(l_x)$ and $\xi(l_y)$ are parallel. If x and y do not belong to a flat convex set, no support plane at x is parallel to any support plane at y; moreover, then $\xi(U_x)$ is not flat and thus for any $z \in U_x$ and $T_z \in \tau(z)$, $\xi(U_x)$ is contained in precisely one of the closed half-spaces bounded by T_z . We will show that $\xi(l_x)$ is parallel to T_y and $\xi(l_y)$ to T_x . Suppose to the contrary that $\xi(l_y)$ meets T_x in $\xi(z)$. Let L be the plane through $\xi(x)$, containing the normal direction to T_x and also containing $\xi(y)$. Because of the conditions on U_x , x and y belong to the same connected component σ of $\xi^{-1}(L) \cap U_x$. σ is a curve which we parametrize in such a way that $\sigma(0) = x$ and $\sigma(1) = y$. We now restrict σ to $0 \leq t \leq 1$ and we call the restricted curve γ . Then no two lines of support for this (convex) curve σ at points of γ make an angle greater than or equal to $\pi/2$. Also $l_{\gamma(t)}$ is transverse to L for $0 \leq t \leq 1$, for otherwise x and y would belong to the flat convex subset $U_x \cap l_{\gamma(t)}$ of M. Let L' be the plane through $\xi(z)$ parallel to L. Let σ' be the curve in $\xi^{-1}(L')$ such that $\sigma'(t) \in l_{\sigma(t)}$. Define γ' similarly. Orient \mathbb{R}^3 in such a way that $\xi(U_x)$ lies above T_x . Now since $N(T_x)$ is either l_x , or a slab containing l_x but not y, we may define $t_1 \in [0, 1)$ to be the greatest t such that $l_{\gamma(t)} \subset N(T_x)$. No point of $l_{\gamma(t_1)}$ has a flat neighbourhood; clearly then, all points of $l_{\gamma(t_1)}$ have neighbourhoods whose images lie on the same side of T_x , namely, above T_x . Thus for some $\epsilon > 0$, $\xi\gamma'(t_1 + \epsilon)$ lies above T_x . But the height of $\xi\gamma'(t)$ above $T_x \cap L'$ is zero when t = 0 and t = 1. Hence for some $t_0 \in (0, 1)$, this height attains a positive maximum. Then necessarily γ' has a line of support at $\gamma'(t_0)$ which is parallel to $T_x \cap L'$, and $\xi(\gamma')$ lies below this line of support. Since the lines of σ at corresponding points of γ this means that a line of support to σ at $\gamma(0) = x$ and a line of support to σ at $\gamma(t_0)$ make an angle of π . We already indicated that this cannot happen, so we must conclude that $\xi(l_y)$ does not meet T_x .

This argument may be repeated with the roles of x and y interchanged but using the same set U_x and plane L. Thus also $\xi(l_x)$ does not meet T_y .

Since T_x and T_y are not parallel it is clear that $\xi(l_x)$ and $\xi(l_y)$ are parallel to the line of intersection of T_x and T_y and hence to each other, if $x, y \in U_x$. Since M is connected it now follows that $\xi(l_x)$ and $\xi(l_y)$ are parallel for all $x, y \in M$.

3. Proof of the theorem. Suppose that through $x \in M$ there is a line l. Let $T_x \in \tau(x)$ be the preferred hyperplane of support with the property that the orthogonal projection onto T_x maps $\xi(U_x)$ homeomorphically onto an open ball. Let m be the line normal to T_x . Choose $y \in U_x$. We will show that through y there passes a line l' such that $\xi(l)$ and $\xi(l')$ are parallel. If l already passes through y there is nothing to prove. If not, $\xi(x)$, $\xi(y)$, $\xi(l)$, and m are contained in a unique 3-space π which is transverse to M at x and thus also at y. By our assumptions about the sets U_x , x and y lie in the same connected component N of $\xi^{-1}(\pi)$. N with the immersion

$$\xi | N : N \to \pi$$

satisfies the conditions of Proposition 3, and hence there is a line l' through y such that $\xi(l')$ and $\xi(l)$ are parallel. Since y is an arbitrary point in U_x it follows that every point in U_x lies on a line parallel to l. Since M is connected it follows that every point in M lies on a line parallel to l.

Now suppose r is the largest integer such that x is contained in a flat r-space L_x . It follows from the preceding discussion that through every $y \in M$ there is a parallel r-space L_y and that r is the largest dimension possible at y.

Let *H* be the (n + 1 - r)-space through *x* orthogonal to L_x . It is now clear that $P = \xi^{-1}(H)$ is connected. It is also clear that *P* contains a point at which $\xi|P: P \to H$ is strictly locally convex, for otherwise every point of *P* would

lie on the interior of a line segment and hence on a line (see the first two sentences in the proof of Proposition 3).

If dim $P \ge 2$, we can apply Van Heijenoort's theorem (Proposition 2) to show that $\xi(P) = \partial K$ where K is an open convex set in H. It then follows immediately that

$$\xi(M) = \partial(K \times \mathbf{R}^r)$$

so that $\xi(M)$ is the boundary of an open convex subset of \mathbb{R}^{n+1} .

If dim P = 1, P is a curve and $\xi(M)$ is a hypercylinder.

References

- 1. H. Busemann, Convex surfaces (Interscience Publishers, New York 1958).
- 2. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
- 3. P. Hartman, On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curvatures. II, Trans. Amer. Math. Soc. 147 (1970), 529–539.
- 4. V. L. Klee, jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
- 5. Extremal structure of convex sets. II, Math. Z. 69 (1958), 90-104.
- 6. R. Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. 82 (1960), 609-630.
- 7. F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).
- 8. J. Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math. 5 (1952), 223-242.

Queen's University, Kingston, Ontario