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WALL STABILIZATION IN MINES BY SPRAY-ON LINERS
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Abstract

Thin spray-on liners (TSLs) have been found to be effective for structurally supporting
the walls of mining tunnels and thus reducing the occurrence of rock bursts, an effect
primarily due to the penetration of cracks by the liner. Surface tension effects are thus
important. However, TSLs are also used to simply stabilize rock surfaces, for example,
to prevent rock fall, and in this context crack penetration is desirable but not necessary,
and the tensile and shearing strength and adhesive properties of the liner determine its
effectiveness. We examine the effectiveness of nonpenetrating TSLs in a global lined
tunnel and in a local rock support context. In the tunnel context, we examine the effect
of the liner on the stress distribution in a tunnel subjected to a geological or mining
event. We show that the liner has little effect on stresses in the surrounding rock and
that tensile stresses in the rock surface are transmitted across the liner, so that failure is
likely to be due to liner rupture or detachment from the surface. In the local rock support
context, loose rock movements are shown to be better achieved using a liner with small
Young’s modulus, but high rupture strength.

2020 Mathematics subject classification: primary 74B05; secondary 74A10.

Keywords and phrases: thin spray-on liners, tensile and shearing strength, stress
concentration factor, cylindrical excavation.

1. Introduction

Shotcrete (concrete) has been used over the past 60 years [3] and possibly longer for
mining tunnel strengthening; however, over the past 20 years thin (4 mm) spray-on
liners (TSLs) have been used and have also been found to be effective for both
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protecting the miners from falling rock and reducing the occurrence of rock bursts and
tunnel collapse. Evidently, the application of a spray to a tunnel wall is much simpler
and cheaper than applying shotcrete to the wall, so that TSLs are much preferred
provided they are effective. The support mechanism associated in the two cases is
very different. Whereas shotcrete, being elastically strong, provides direct structural
(arching) support, the elastically weak and thin TSLs cannot directly provide such
support. The TSLs act by filling cracks in the rock face, and this effectively repairs the
rock face by both preventing crack extension so that key rocks stay in place (Fowkes
et al. [2]), and by increasing the hoop stress support in the filled surface layer of rock to
that of the undamaged rock (Mason and Stacey [3]). However, mining engineers now
use TSLs in a variety of mining environments which do not rely on the strengthening
caused by crack penetration, although such penetration would be an added bonus. A
case in point is the coating of a newly mined surface to stabilize it by preventing rock
fall, thus enabling work to proceed unimpeded. In these (nonpenetration) applications
the liners provide some resistance to the fracture failure caused by crack creation and
extension, but in cases in which the rock is already fractured the liners act to prevent
further dilation. In such contexts it is important to select the “right” TSL for the specific
application and geological situation. The mechanical properties of the liner (elastic
properties and tensile or shear strength) and the bonding strength of the liner on the
rock surface are most important in this regard. Some end-users view tensile strength
to be the most important property and the bonding to be an inferior one, while some
others consider the bonding to be important also.

Stacey and Yu [5] and Tannant [6] identified various mechanisms for the action of
TSLs, and discrete element models were used by Stacey [4] to simulate liner behaviour
in tunnels. While such numerical work is useful in a particular context, it is not so
useful for determining the effect of various liner and contact adhesion properties on
the outcome. The analytical models developed here are more useful in this regard.

In Sections 2 and 3 the stress distribution in a TSL lined cylindrical tunnel due
to the application of a tensile stress at infinity (associated with either a geological
or mining event) is determined, with particular emphasis placed on the liner tensile
strength and adhesion properties. In Section 4 the local rock support properties of the
liner are examined; again the effects of elastic and tensile strength and bond strength
on the outcome are determined. While the specific circumstances examined do not
cover all possible circumstances of TSL use, it is felt that the situations considered are
representative. We present conclusions in Section 5.

2. Cylindrical excavation with a liner in a tensile field

Consider a cylindrical tunnel in a rock mass to which a TSL has been applied. The
tunnel is perturbed by a tensile stress T at infinity which models a seismic event or
a disturbance due to a mining excavation. Cylindrical polar coordinates (r, θ, z) with
origin at the centre of a cross-section of the tunnel are used with the z-axis along the
axis of the tunnel. The tunnel has radius b and the rock mass is the region b ≤ r ≤ ∞.
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FIGURE 1. Cylindrical tunnel of radius b in an infinite elastic rock mass (region 2, b ≤ r ≤ ∞) with a
spray-on liner (region 1, a ≤ r ≤ b) subjected to a uniform tensile stress T at infinity.

The TSL occupies the region a ≤ r ≤ b. It is assumed that the tunnel is sufficiently long
that the plane strain theory of elasticity applies. All elastic variables are independent of
z and there is no displacement in the z-direction. Quantities in the liner are denoted by a
subscript or superscript 1, and quantities in the rock mass by a subscript or superscript
2. The tunnel and liner with the cylindrical polar and Cartesian coordinate systems are
illustrated in Figure 1. We choose the perturbing tensile stress T to be in the x-direction
because this will give the greatest hoop stress at θ = π/2 and the rocks which are
detached will fall under gravity.

In order to obtain the boundary condition as r → ∞, consider the Cauchy stress
tensor at large distances from the excavation expressed in Cartesian coordinates (x, y):

r → ∞, τ(2)
xx = T , τ(2)

xy = 0, τ(2)
yy = 0. (2.1)

The Airy stress function φ(x, y) is defined by [1]

τxx =
∂2φ

∂y2 , τxy = −
∂2φ

∂x∂y
, τyy =

∂2φ

∂y2 . (2.2)

Solving (2.1) and (2.2) for the Airy stress function gives

r → ∞ : φ2 =
1
2 T y2 = 1

4 T r2(1 − cos 2θ),

where terms linear in x and y are dropped because they do not contribute to the stress
tensor. The boundary condition as r → ∞ is imposed on φ2(r, θ) because φ2(r, θ) is
defined on the domain b ≤ r ≤ ∞.
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FIGURE 2. Weak bonding of the liner to the excavation.

The Airy stress functions, φ1(r, θ) and φ2(r, θ), satisfy the biharmonic equation:

a ≤ r ≤ b, ∇4φ1 = 0,

b ≤ r ≤ ∞, ∇4φ2 = 0,

where in cylindrical polar coordinates

∇4 =

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2

)2
.

The linear surface r = a is traction-free. An aim of this investigation is to determine
if the bonding of the TSL on the rock is a major contributing factor in stabilizing the
surface of the tunnel. We therefore introduce a weak bonding factor λ (0 ≤ λ ≤ 1) to
model an excavation in which the liner is not in contact with the rock at all points
of the surface, as illustrated in Figure 2. The radial and tangential components of the
displacement vector are ur(r, θ) and uθ(r, θ). The boundary conditions are

r = a : τ(1)
rr (a, θ) = 0, (2.3)

r = a : τ(1)
rθ (a, θ) = 0, (2.4)

r = b : τ(2)
rr (b, θ) = τ(1)

rr (b, θ), (2.5)

r = b : τ(2)
rθ (b, θ) = λ τ(1)

rθ (b, θ), 0 ≤ λ ≤ 1, (2.6)

r = b : u(2)
r (b, θ) = u(1)

r (b, θ), (2.7)

r = b : u(2)
θ (b, θ) = u(1)

θ (b, θ), (2.8)

r → ∞ : φ2(r, θ) =
T
4

r2 − T
4

r2 cos 2θ. (2.9)

A liner not firmly bonded to the rock mass is modelled in (2.6) by unequal tangential
stress at the interface. One can think of the weak bonding factor λ as representing the
ratio of the actual area of contact to the surface area of the rock at the interface. The
boundary conditions (2.7) and (2.8) depend on the elastic constants through the inverse
Hooke’s law, and the stress will therefore depend on the elastic constants of the liner
and rock mass.
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Guided by the boundary condition (2.9), we look for a solution in each region of
the form

φ(r, θ) = f0(r) + f2(r) cos 2θ. (2.10)

Equation (2.10) satisfies the biharmonic equation provided

d4f0
dr4 +

2
r

d3f0
dr3 −

1
r2

d2f0
dr2 +

1
r3

df0
dr
= 0, (2.11)

d4f2
dr4 +

2
r

d3f2
dr3 −

9
r2

d2f2
dr2 +

9
r3

df2
dr
= 0. (2.12)

Equation (2.11) and (2.12) are both equidimensional (Euler) differential equations in r.
We therefore look for solutions of the form

f (r) = Anrn, (2.13)

where An is a constant. Equation (2.13) satisfies (2.11) provided n = 0, 0, 2, 2. Since
n = 0 and n = 2 are repeated roots, the general solution of (2.11) is [1]

f0(r) = A + Br2 + C ln r + Dr2 ln r,

where A, B, C and D are constants. Equation (2.13) satisfies (2.12), provided
n = 4, 2, 0,−2, and therefore the general solution of (2.12) is

f2(r) = M r4 + N r2 + P +
Q
r2 ,

where M, N, P and Q are constants. Hence,

φs(r, θ) = As + Bs r2 + Cs ln r + Ds r2 ln r

+

(
Ms r4 + Ns r2 + Ps +

Qs

r2

)
cos 2θ, s = 1, 2.

Since the components of the Cauchy stress tensor are defined in terms of the
derivatives of φ, we can take A1 = 0 and A2 = 0, while from the boundary condition
(2.9) as r → ∞,

B2 =
T
4

, D2 = 0, M2 = 0, N2 = −
T
4

.

Hence,

φ1(r, θ) = B1r2 + C1 ln r +D1r2 ln r +
(
M1r4 + N1r2 + P1 +

Q1

r2

)
cos 2θ, (2.14)

φ2(r, θ) =
T
4

r2 + C2 ln r +
(
− T

4
r2 + P2 +

Q2

r2

)
cos 2θ. (2.15)

Equations (2.14) and (2.15) contain 10 unknown constants which will be obtained from
10 algebraic equations derived from the boundary conditions.
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In order to impose the boundary conditions, it is first necessary to calculate the
components of the Cauchy stress tensor which, in terms of the Airy stress function,
are

τrr =
1
r2

∂2φ

∂θ2
+

1
r
∂φ

∂r
, (2.16)

τrθ = −
∂

∂r

(1
r
∂φ

∂θ

)
, (2.17)

τθθ =
∂2φ

∂r2 . (2.18)

The equations of static equilibrium with zero body force are identically satisfied by
(2.16)–(2.18). The components of the Cauchy stress tensor in the liner are

τ(1)
rr (r, θ) = 2B1 + D1 +

C1

r2 + 2D1 ln r +
[
− 2N1 −

4P1

r2 −
6 Q1

r4

]
cos 2θ, (2.19)

τ(1)
rθ (r, θ) =

[
6M1r2 + 2N1 −

2P1

r2 −
6 Q1

r4

]
sin 2θ, (2.20)

τ(1)
θθ (r, θ) = 2B1 + 3D1 −

C1

r2 + 2D1 ln r +
[
12M1r2 + 2N1 +

6 Q1

r4

]
cos 2θ. (2.21)

The components of the Cauchy stress tensor in the rock mass are obtained from
(2.19)–(2.21) by setting

B1 =
T
4

, C1 = C2, D1 = 0, M1 = 0, N1 = −
T
4

, P1 = P2, Q1 = Q2. (2.22)

This gives

τ(2)
rr (r, θ) =

T
2
+

C2

r2 +

[T
2
− 4P2

r2 −
6 Q2

r4

]
cos 2θ,

τ(2)
rθ (r, θ) =

[
− T

2
− 2P2

r2 −
6 Q2

r4

]
sin 2θ,

τ(2)
θθ (r, θ) =

T
2
− C2

r2 +

[
− T

2
+

6 Q2

r4

]
cos 2θ. (2.23)

The four boundary conditions for the stress tensor, (2.3)–(2.6), give two systems
of linear algebraic equations for the 10 constants. The first system consists of two
equations for the four constants B1, C1, D1 and C2:

2a2B1 + C1 + a2(1 + 2 ln a)D1 = 0, (2.24)

2b2B1 + C1 + b2(1 + 2 ln b)D1 − C2 =
b2

2
T . (2.25)
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The second system consists of four equations for the six constants M1, N1, P1, Q1, P2
and Q2:

a4N1 + 2a2P1 + 3Q1 = 0, (2.26)

3a6M1 + a4N1 − a2P1 − 3Q1 = 0, (2.27)

b4N1 + 2b2P1 + 3Q1 − 2b2P2 − 3Q2 = −
b4

2
T , (2.28)

3λb6M1 + λb4N1 − λb2P1 − 3λQ1 + b2P2 + 3Q2 = −
b4

4
T . (2.29)

Finally, consider the displacement boundary conditions (2.7) and (2.8). The com-
ponents ur(r, θ) and uθ(r, θ) of the displacement vector are calculated as follows. The
inverse Hooke’s law for plane strain is first applied to obtain the strain tensor eik in
terms of the stress tensor τik:

err =
(1 − σ2)

E
τrr −

σ(1 + σ)
E

τθθ, (2.30)

erθ =
(1 + σ)

E
τrθ, (2.31)

eθθ =
(1 − σ2)

E
τθθ −

σ(1 + σ)
E

τrr, (2.32)

where E is Young’s modulus and σ (0 ≤ σ ≤ 1/2) is the Poisson ratio. But in
cylindrical polar coordinates

err =
∂ur

∂r
, (2.33)

erθ =
1
2

(1
r
∂ur

∂θ
+
∂uθ
∂r
− uθ

r

)
, (2.34)

eθθ =
1
r
∂uθ
∂θ
+

ur

r
. (2.35)

The system (2.33)–(2.35) consists of three first-order partial differential equations
for the two unknowns, ur and uθ. The compatibility condition for this system is the
biharmonic equation for the Airy stress function which will be satisfied because the
stress tensor which will be used in the inverse Hooke’s law is calculated from an Airy
stress function.

Consider first the displacement components, ur and uθ, in the liner. We substitute
(2.19)–(2.21) into the inverse Hooke’s law (2.30)–(2.32), and then substitute the
components of the strain tensor into (2.33)–(2.35). We obtain the following three
first-order partial differential equations for ur and uθ:
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∂u(1)
r

∂r
=

1 + σ1

E1

[
2(1 − 2σ1)B1 +

C1

r2 + (1 − 4σ1)D1 + 2(1 − 2σ1)D1 ln r

+

(
− 12σ1M1r2 − 2N1 − 4(1 − σ1)

P1

r2 −
6 Q1

r4

)
cos 2θ

]
, (2.36)

1
r
∂u(1)

r

∂θ
+
∂u(1)
θ

∂r
−

u(1)
θ

r
=

1 + σ1

E1

[
12M1r2 + 4N1 −

4P1

r2 −
12 Q1

r4

]
sin 2θ, (2.37)

∂u(1)
θ

∂θ
+ u(1)

r =
1 + σ1

E1

[
2(1 − 2σ1)B1r − C1

r
+ (3 − 4σ1)D1r + 2(1 − 2σ1)D1r ln r

+

(
12(1 − σ1)M1r3 + 2N1r + 4σ1

P1

r
+

6Q1

r3

)
cos 2θ

]
. (2.38)

We integrate (2.36) and (2.38) with respect to r and θ, which gives ur(r, θ) and uθ(r, θ).
They contain arbitrary functions of integration which are obtained by substituting ur

and uθ into the remaining equation (2.37) and using separation of variables. This gives

u(1)
r (r, θ) =

1 + σ1

E1

[
2(1 − 2σ1)B1r − C1

r
− D1r + 2(1 − 2σ1)D1r ln r

+

(
− 4σ1M1r3 − 2N1r + 4(1 − σ1)

P1

r
+

2Q1

r3

)
cos 2θ

]

− F1 sin θ + G1 cos θ, (2.39)

u(1)
θ (r, θ) =

1 + σ1

E1

[
4(1 − σ1)D1rθ

+

(
2(3 − 2σ1)M1r3 + 2N1r − 2(1 − 2σ1)

P1

r
+

2Q1

r3

)
sin 2θ

]

− F1 cos θ − G1 sin θ + H1r, (2.40)

where F1, G1 and H1 are constants. The displacement in the rock mass is obtained
from (2.39) and (2.40) by using the transformation (2.22):

u(2)
r (r, θ) =

1 + σ2

E2

[
(1 − 2σ2)

T
2

r − C2

r
+

(T
2

r + 4(1 − σ2)
P2

r
+

2Q2

r3

)
cos 2θ

]

− F2 sin θ + G2 cos θ, (2.41)

u(2)
θ (r, θ) =

1 + σ2

E2

[
− T

2
r − 2(1 − σ2)

P2

r
+

2Q2

r3

]
sin 2θ

− F2 cos θ − G2 sin θ + H2r, (2.42)

where F2, G2 and H2 are constants. For single-valued solutions for u(1)
θ (r, θ) it is

necessary that

D1 = 0. (2.43)
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We now substitute (2.39)–(2.43) into the displacement boundary conditions (2.7)
and (2.8). We obtain

2(1 − 2σ1)b2B1 − C1 +

(1 − σ1

1 − σ2

) E′1
E′2

C2 =
1
2

(1 − 2σ2)
(1 − σ1

1 − σ2

) E′1
E′2

b2T , (2.44)

2σ1 b6M1 + b4N1 − 2(1 − σ1)b2P1 − Q1 + 2(1 − σ1)
E′1
E′2

b2P2

+

(1 − σ1

1 − σ2

) E′1
E′2

Q2 = −
1
4

(1 − σ1

1 − σ2

) E′1
E′2

b4T , (2.45)

(3 − 2σ1)6M1 + b4N1 − (1 − 2σ1) b2P1 + Q1 + (1 − 2σ2)
(1 − σ1

1 − σ2

)E′1
E′2

b2P2

−
(1 − σ1

1 − σ2

)E′1
E′2

Q2 = −
1
4

(1 − σ1

1 − σ2

)E′1
E′2

b4T , (2.46)

and

F1 = F2 = F, G1 = G2 = G, H1 = H2 = H,

where the reduced elastic modulus E′ is defined by

E′ =
E

1 − σ2 .

We will see that the solution depends on the ratio E′1/E
′
2 of the reduced elastic moduli.

Consider now the physical interpretation [1] of the displacement

ur(r, θ) = −F sin θ + G cos θ,

uθ(r, θ) = −F cos θ − G sin θ + Hr,

which occurs in (2.39) and (2.40). When written in Cartesian coordinates this
displacement is

ux(x, y) = G − Hy, uy(x, y) = −F + Hx,

which describes a rigid body translation of G and −F in the x- and y-directions and a
rigid body rotation H about the z-axis. We therefore take F = G = H = 0.

Since D1 = 0, only nine constants remain to be determined. The nine linear
algebraic equations for the nine constants split into two uncoupled systems. Equations
(2.24) and (2.25) with D1 = 0 and (2.44) form a system of three equations for the three
unknown constants B1, C1 and C2 which we will refer to as System A. System A can
be written in matrix form as

EX = F, (2.47)
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where

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a2 1 0
2b2 1 −1

2(1 − 2σ1)b2 −1
(1 − σ1

1 − σ2

) E′1
E′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1

C1

C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2

b2T

1
2

(1 − 2σ2)
(1 − σ1

1 − σ2

)
b2T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.48)

Equations (2.26)–(2.29), (2.45) and (2.46) form a system of six equations for six
unknown constants, M1, N1, P1, Q1, P2 and Q2 which we will refer to as System B.
System B can be written in matrix form as

RY = S,

where

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a4 2a2 3 0 0

3b6 a4 −a2 −3 0 0

0 b4 2b2 3 −2b2 −3

3λb6 λb4 −λb2 −3λ b2 3

2σ1b6 b4 −2(1 − σ1)b2 −1 2(1 − σ1)
E′1
E′2

b2
(1 − σ1

1 − σ2

)E′1
E′2

(3 − 2σ1)b6 b4 −(1 − 2σ1)b2 1 (1 − 2σ2)
(1 − σ1

1 − σ2

)E′1
E′2

b2
(1 − σ1

1 − σ2

)E′1
E′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

N1

P1

Q1

P2

Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S = −1

4
b4T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1(1 − σ1

1 − σ2

)E′1
E′2(1 − σ1

1 − σ2

)E′1
E′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.49)

The exact solution of Systems A and B can be derived using Mathematica or
a similar computer language. However, the results are not sufficiently simple to be
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useful for physical interpretation. A perturbation solution of Systems A and B will be
performed in Section 3, the physical interpretation of which is more apparent.

3. Perturbation solution for the stress

Since the radius of the cylindrical excavation is r = b, we take for the perturbation
parameter

ε =
b − a

b
,

and therefore

a = b(1 − ε). (3.1)

If the radius of the tunnel is b = 2 m and the thickness of the TSL is 10 mm, then
ε = 0.005. We therefore need to derive the solution only to first order in ε.

The limit ε = 0 corresponds to no lining. The first-order correction describes the
effect of the lining on the mine wall.

3.1. System A Consider first the system (2.47) and the perturbation expansion

B1 = B10 + εB11 + O(ε2),

C1 = C10 + εC11 + O(ε2),

C2 = C20 + εC21 + O(ε2),

as ε→ 0. System A at zero order in ε can be expressed in matrix form as

E0X0 = F0 , (3.2)

where

E0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2b2 1 0
2b2 1 −1

2(1 − 2σ1)b2 −1
(1 − σ1

1 − σ2

)E′1
E′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.3)

and

X0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B10

C10

C20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F0 = F,

where F is given by (2.48). The system (3.2) can be solved either manually or by using
Mathematica or a similar computer language. We find that

B10 =
1
4

E′1
E′2

T , C10 = −
1
2

E′1
E′2

b2T , C20 = −
1
2

b2T .

https://doi.org/10.1017/S1446181123000172 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000172


66 D. P. Mason et al. [12]

System A at first order in ε written in matrix form is

E0X1 = F1, (3.4)

where E0 is given by (3.3) and

X1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
B11
C11
C21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E′1
E′2

b2T

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The solution of (3.4) is readily obtained, because the inverse of the same matrix E0
as for the zero-order system (3.2) has to be calculated. The solution is

B11 =
1
4

[ 1
1 − σ1

− 1
1 − σ2

E′1
E′2

] E′1
E′2

T ,

C11 =
1
2

[1 − 2σ1

1 − σ1
− 1

1 − σ2

E′1
E′2

] E′1
E′2

b2T ,

C21 =
E′1
E′2

b2T .

3.2. System B Consider next System B and the perturbation expansion

M1 = M10 + εM11 + O(ε2),

N1 = N10 + εN11 + O(ε2),

P1 = P10 + εP11 + O(ε2),

Q1 = Q10 + εQ11 + O(ε2),

P2 = P20 + εP21 + O(ε2),

Q2 = Q20 + εQ21 + O(ε2),

as ε→ 0. System B at zero order in ε in matrix form is

R0Y0 = S0, (3.5)

where

R0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b4 2b2 3 0 0
3bb b4 −b2 −3 0 0
0 b4 2b2 3 −2b2 −3

3λb6 λb4 −λb2 −3λ b2 3

2σ1b6 b4 −2(1 − σ1)b2 −1 2(1 − σ1)
E′1
E′2

b2
(1 − σ1

1 − σ2

)E′1
E′2

(3 − 2σ1)b6 b4 −(1 − 2σ1)b2 1 (1 − 2σ2)
(1 − σ1

1 − σ2

)E′1
E′2

b2
(1 − σ1

1 − σ2

)E′1
E′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

https://doi.org/10.1017/S1446181123000172 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000172


[13] Wall stabilization in mines by spray-on liners 67

and

Y0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M10

N10

P10

Q10

P20

Q20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S0 = S,

where the matrix S is given by (2.49). The solution to zero order in ε is

M10 = 0, N10 = −
1
4

E′1
E′2

T , P10 =
1
2

E′1
E′2

b2T ,

Q10 = −
1
4

E′1
E′2

b4T , P20 =
1
2

b2T , Q20 = −
1
4

b2T .

(3.7)

This solution is independent of the weak bounding factor λ. To understand why this is
the case, we observe that λ occurs only in the boundary condition (2.6). But at zero
order in ε, from (3.1), a = b and the boundary condition (2.4) becomes

τ(1)
rθ (b, θ) = 0.

Hence the boundary condition (2.6) reduces to

τ(2)
rθ (b, θ) = 0,

which does not depend on λ. The parameter λ is therefore absent from System B at
zero order in ε and its solution does not depend on the strength of the bonding at the
interface.

System B to first order in ε in matrix form is

R0Y1 = S1,

where R0 is given by (3.6) and

Y1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11

N11

P11

Q11

P21

Q21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S1 =
E′1
E′2

b4T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−2

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The inverse of the same matrix R0 as in the zero-order system (3.5) has to be evaluated.
The solution to first order in ε is

M11 = −
1
12

[ 3
1 − σ1

− 2λ + 1
1 − σ2

E′1
E′2

]E′1
E′2

T
b2 ,

N11 =
1
2

[
σ1

1 − σ1
− (2λ − 1)σ2 + 1 − λ

1 − σ2

E′1
E′2

]E′1
E′2

T ,

P11 = −
1
4

[ 1
1 − σ1

+
(2λ − 1)(3 − 4σ2)

1 − σ2

E′1
E′2

]E′1
E′2

b2T ,

Q11 =
1
2

[
1 +

5λ − 2 − 3(2λ − 1)σ2

3(1 − σ2)

E′1
E′2

]E′1
E′2

b4T ,

P21 = −(2λ − 1)
E′1
E′2

b2T ,

Q21 =
1
3

(4λ − 1)
E′1
E′2

b4T .

The weak bonding factor λ first occurs in the components of the Cauchy stress
tensor in the liner and rock mass at order ε and only in the coefficients of cos 2θ and
sin 2θ. The components of the stress tensor in the liner and rock mass depend on the
Young’s modulus only through the ratio E′1/E

′
2 of the reduced elastic moduli. They

also depend explicitly on the Poisson ratio in the liner and rock mass.

3.3. Stress in liner and rock mass to first order in ε We first investigate the
contribution made by the TSL to the transfer of stress from the rock mass and the
effect of weak bonding on this stress transfer. From (2.23) the hoop stress in the rock
mass correct to order ε is

τ(2)
θθ (r, θ) =

1
2

T
[
1 +
(
1 − 2ε

E′1
E′2

)(b
r

)2

−
(
1 + 3

(
1 − 4

3
ε (4λ − 1)

E′1
E′2

)(b
r

)4)
cos 2θ

]
. (3.8)

The hoop stress in the rock mass at the interface r = b is

τ(2)
θθ (b, θ) = T

[
1 − ε

E′1
E′2
− 2
(
1 − ε(4λ − 1)

E′1
E′2

)
cos 2θ

]
. (3.9)

The presence of the cylindrical excavation in the rock mass increases the hoop stress
in the rock when the rock mass is subjected to tension. This is described by the stress
concentration factor, K, which is defined as the ratio of the maximum tensile stress in
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the rock mass with the tunnel to the tensile stress in the rock mass without the tunnel.
The hoop stress (3.8) is a maximum at r = b and θ = π/2:

τ(2)
θθ

(
b,
π

2

)
= 3T

[
1 − 8

3

(
λ − 1

8

) E′1
E′2
ε
]
. (3.10)

The tensile stress in the absence of the tunnel is T. Thus,

K = 3
[
1 − 8

3

(
λ − 1

8

) E′1
E′2
ε
]
.

When the liner is absent, ε = 0 and the stress concentration factor is 3. If 1/8 < λ ≤ 1,
the effect of the liner is to decrease the stress concentration in the rock mass due to
the transfer of stress from the rock to the liner. The weaker the bonding, the less the
reduction of the stress in the rock. If 0 < λ < 1/8 such that the bonding is very weak,
the presence of the liner increases the stress concentration in the rock. However, since
ε for a TSL is very small (ε � 0.005), the stress concentration factor (3.10) shows that
a TSL does not make a significant contribution to the reduction of stress in the rock
mass.

Consider now the tensile stress in the liner which is given by (2.21). Because the
tensile stress in the liner is important, we write it out in full, correct to first order in ε,
to show its dependence on λ and on the elastic constants:

τ(1)
θθ (r, θ) =

E′1
E′2

T
[1
2
+ εB∗11 +

(1
2
+ εC∗11

)(b
r

)2

+

(
εM∗11

( r
b

)2
− 1

2
+ εN∗11 +

(
− 3

2
+ εQ∗11

)(b
r

)4)
cos 2θ

]
,

where

B∗11 =
1
2

[ 1
1 − σ1

− 1
1 − σ2

E′1
E′2

]
,

C∗11 = −
1
2

[1 − 2σ1

1 − σ1
+

1
1 − σ2

E′1
E′2

]
,

M∗11 = −
[ 3
1 − σ1

− 12λ + 1
1 − σ2

E′1
E′2

]
,

N∗11 =
σ1

1 − σ1
− (2λ − 1)σ2 + 1 − λ

1 − σ2

E′1
E′2

,

Q∗11 = 3
[
1 +

5λ − 2 − 3(2λ − 1)σ2

3(1 − σ2)

E′1
E′2

]
.

The weak bonding parameter λ enters only at order ε in the coefficient of cos 2θ and
does not contribute significantly to the tension in the liner. The tensile stress in the
liner at the interface r = b correct to order ε is
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τ(1)
θθ (b, θ) =

E′1
E′2

T
[
1 + ε

(
σ1

1 − σ1
− 1

1 − σ1

E′1
E′2

)

− 2
{
1 + ε

(
σ1

1 − σ1
− 4λ − 1 + 2(1 − 2λ)σ2

1 − σ2

E′1
E′2

)}
cos 2θ

]
, (3.11)

and at θ = π/2,

τ(1)
θθ

(
b,
π

2

)
= 3

E′1
E′2

T
[
1 + ε

(
σ1

1 − σ1
− 8λ − 1 + 4(1 − 2λ)σ2

3(1 − σ2)

E′1
E′2

)]
. (3.12)

A significant difference between (3.11) and (3.12) in the liner at the interface and (3.9)
and (3.10) in the rock at the interface is the factor E′1/E

′
2 at zero order in the liner. To

prevent the build up of tensile stress in the liner the ratio E′1/E
′
2 should be kept small by

selecting a liner with suitably small reduced elastic modulus E′1. The zero-order term
in (3.11) and (3.12) does not depend on the weak bonding factor λ or on the thickness
of the liner, the effects of which are first order in ε.

Finally, consider the shear stress at the interface r = b. Using (2.20), it can be
verified that the shear stress in the liner at the interface correct to order ε is

τ(1)
rθ (b, θ) = −4ε

E′1
E′2

T sin 2θ,

which is independent of the weak bonding factor λ that will enter at order ε2. Unlike
the tensile stress, the shear stress is proportional to the thickness of the liner through ε
and therefore is small in a TSL. From the boundary condition (2.6) the shear stress in
the rock mass at the interface is

τ(2)
rθ (b, θ) = λτ(1)

rθ (b, θ) = −4 ε λ
E′1
E′2

T sin 2θ.

The liner can fail under tension, not under shear, because the shear stress in the
liner is small, of order ε. Slip or debonding between the liner and the rock will reduce
tension in the liner and prevent liner failure under tension.

The shear and tensile stress in the liner and rock mass depend on the ratio E′1/E
′
2 of

the reduced elastic moduli. Typical numerical values for the elastic constants are

E1 = 6 G Pa, σ1 = 0.3, E2 = 40 G Pa, σ2 = 0.25,

which gives for the ratio

E′1
E′2
� 0.15.

The effect of the liner on the stress distribution in the rock mass surrounding the
tunnel is small and is little influenced by the boundary conditions. This is very different
from the effect of penetration of liner material into cracks and fractures in the rock
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mass [2, 3]. The effect of the tunnel on the liner tensile stress is large, at zero order,
through the ratio E′1/E

′
2 of the reduced elastic moduli. This can cause the liner to

detach.

4. Local rock support due to a TSL

Here we are concerned with the effectiveness of TSLs for restraining the movement
of “loose” rocks on a wall surface, which may correspond to a tunnel wall. In the tunnel
case considered in Sections 2 and 3 the liner may rupture under tension or may detach
from the surface of the rock due to excessive shear across the adhesive layer. Such a
separation of liner from the rock face will occur at isolated locations on the tunnel wall
where the adhesion is weak (perhaps due to loose sand) or due to local protuberances.

While our focus is on “local restraint” issues, it must be kept in mind that if
displaced rocks are key components for the structure then global collapse may occur, so
such geometric issues necessarily play a role. Depending on the stability of the global
structure and the local geological and mining forcing, one can decide to either strongly
restrict the movement of loose rocks relative to the wall, thus strongly constraining the
geometry, or weakly constrain the geometry. In this context, we have the following.

• Shotcrete can provide strong “structural” support. This strong resistance to
movement, however, will result in large stresses if there is significant external
forcing, and if rupture occurs then it is likely to be dramatic because of the large
elastic energy build-up in the shotcrete before rupture.

• At the other end of the spectrum we have steel meshes (with supporting bolts)
which simply capture falling rocks; there is almost no strong structural support.

• The TSL liners are “elastically weak” but “lightly” constrain small movement
(unless there is liner penetration). If, however, the liner detaches then rocks may
be “basketed” by the liner, but less weakly than if mesh is used.

Figure 4 displays laboratory results for pull tests for various support types [6]. Note
that steel reinforced shotcrete strongly resists movement until rupture. If weaker mesh
reinforcement is used with shotcrete then again there is strong resistance to small
movements but greater displacements can occur without rupture. A bolted wire mesh
provides no resistance to wall movement until the mesh is fully stretched. Ideally, as
displayed, one would like the liner to strongly resist movement but again allow larger
displacements to occur without “collapse”, as displayed in the ideal load–displacement
curve. In practice, one might expect a load–displacement response for TSLs of the
“generic type” shown. Here the liner provides moderate resistance to loading up until
a limit Lmax is reached, and then responds to additional loading by stretching a distance
dmax before collapsing; the TSL thus accomplishes the desirable attributes of both
shotcrete and bolted wire mesh. In a particular mining and geological context Lmax and
dmax may be prescribed so as to ensure structural stability, and the aim is to identify or
design the TSL that realizes these values. The required elastic and adhesive parameters
to achieve this behaviour may be obtained by changing the thickness of the liner or
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FIGURE 3. Load versus displacement (pull test) curves for various wall support procedures, including a
generic TSL liner. An ideal load–displacement curve is also indicated. (Taken from [6].)

FIGURE 4. The rock tilts and remains in place due to the liner.

adjusting the chemical composition of the liner or adhesive. Loading–displacement
curves of this nonlinear type are typical of rubber materials, so that it may be possible
to simply design the TSL liner without consideration of the adhesive, but it seems
more likely that adjustment of the adhesive properties will be necessary.

4.1. Support mechanisms and failure We will now examine various typical
situations involving the use of liner support in mining. This work closely follows the
work of Tannant [6].

Figure 4 shows a loose rock that remains in place on the roof of the tunnel because
of liner constraint. This situation would arise if the rock split off from the wall after the
liner was applied; in such a case there would be no penetration of the liner into wall
cracks. Note in this case that the loose rock is partially supported by the competent
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FIGURE 5. Failure through liner rupture. Left: The supported rock. Right: A close up of the situation near
the rupture point (circle). Two liner rupture modes are possible: shear failure and tensile failure.

TABLE 1. Polyurethane liner properties.

Young’s modulus E = 69–690 MPa

Tensile strength τl = 8 MPa
Adhesive strength τb = 1 MPa
Maximum strain e = 10−1

Bond width wb = 5 mm
Liner thickness wl = 4 mm

wall and partially supported by the liner. If the rock is sufficiently large the liner will
not tightly restrain it and it will break loose.

One possible scenario is that the liner will fail either through shear rupture or
through diagonal tensile rupture, as depicted in Figure 5 (right). Tannant noted that
crude estimates of the size of rock that can be supported can be simply obtained by
determining the force required to pull the loose bonded rock from the competent rock
which is given approximately by

F = τl wl L

where τl (N/m) is the shear strength of the TSL and wl is its thickness, and L the length
of the crack separating the rock from the surface of the wall. Using Tannant’s data for
a wl = 4 mm polyurethane liner (Table 1), and using a rock density of 2600 kg/m3,
this gives a prediction that a square rock of size 1 × 1 m and depth 0.5 m would be
supported by a 4 mm TSL liner before rupture. Similar results are obtained if tensile
rupture occurs. These results are much larger than one would expect, which suggests
that the liner itself is unlikely to fail by this type of rupture. It seems more likely that
the liner would tear. Laboratory and field observations suggest that this is the case [6].

The implication of the above is that liner rupture is very unlikely to be the failure
mechanism; adhesive detachment from the wall is likely to occur before stress levels
in the liner are sufficient to cause rupture, which is consistent with the results for
polyurethane presented in Table 1; the bonding strength of the liner is much less than
the shear and tensile strength T.

The liner acts as a membrane which exerts a tension force on the suspended
rock. Under the action of an increasing expulsion force (in this case an increasing
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FIGURE 6. Cylindrical rock support geometry. Note that along the line of attachment (see circle) we have
B = T sin θ.

FIGURE 7. Attached and unattached rock held in place by a liner.

rock weight) liner/rock adhesive loss will first occur at some location around the
perimeter of the wall crack separating the rock from the wall, and the liner will tear
away from the crack and wall face while the normal component of the tensile force
in the liner membrane exceeds the bonding force B (N/m), as shown in Figure 6. This
process will cease when the forces are in balance so that

B = T sin θ, (4.1)

where

B = τbwb, T = τlwl, (4.2)

and wb ≈ wl is the bond width. This result determines the equilibrium angle of
attachment θ in terms of the bonding strength and local liner tension. During the
detachment process the suspended loose rock will descend and rotate until the rock
is fully supported with the net force and torque acting on the rock in balance, and
with the attachment condition (4.2) being satisfied around the contact boundary. The
rock may be partially supported by the wall or may be fully supported as depicted in
Figure 7.
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Figure 6 displays a symmetric case in which a cylindrical rock of height h and radius
R detaches from the wall. In this case the force balance for the rock requires

2π
[
R +

H
tan θ

]
B = Mg, (4.3)

and the tension in the liner is uniform around the (cylindrical) line of attachment.
Torque balance is ensured by symmetry.

Assuming the liner remains bonded to the exposed face of the rock (the most likely
scenario) the extension of the liner (change in length of the liner per unit initial length)
is, from Figure 6, given by

e =
1

cos θ
− 1, (4.4)

and, assuming a Young’s law behaviour, we have, since τ
 = E(S
/
),

T = Ele = El

[ 1
cos θ

− 1
]
, (4.5)

where

E
 = w
 E; (4.6)

here E is Young’s modulus for the liner material.
Equations (4.1)–(4.6) determine the equilibrium state (θ, H, T) for the cylindrical

rock with its supporting liner as a function of the known mass of the rock and the
bonding strength of the liner. The liner attachment angle θ can be eliminated from the
system in favour of the tension T using (4.1) to give

T = El

[ T
√

T2 − B2
− 1
]
,

2πB
[
R + H

√
T2 − B2

B

]
= Mg.

It is useful to use the total bonding force around the perimeter of the crack (2πRB) as
a force scale and also scale lengths according to the rock radius,

T = BT ′, Mg = (2πRB)W′, H = RH′, (4.7)

in terms of which the equations reduce to the dimensionless form,

T ′ =
El

B

[ T ′
√

T ′2 − 1
− 1
]
, (4.8)

H′ =
W ′ − 1
√

T ′2 − 1
. (4.9)

https://doi.org/10.1017/S1446181123000172 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000172


76 D. P. Mason et al. [22]

FIGURE 8. Loading versus displacement for the liner supported cylindrical rock.

Young’s law, equation (4.8), can be solved exactly for T ′(El/B) using an algebraic
package (the expression is complicated) and then the scaled rock displacement H′(W ′)
follows from (4.9).

One feature that comes out of the scaling is that significant movements (compared
with the radius of the rock) will occur for rock masses of order (2πRB)/g, which
is clear from (4.7), so that a doubling of the bonding strength will double the rock
weight that can be supported. For W′ > 1 the scaled displacement increases in direct
proportion to (W′ − 1), with the proportionality factor dependent on the Young’s
modulus. This happens until the liner breaks. The generic behaviour is thus as shown
in Figure 8, where the bonding strength and maximum stretch will vary with liner type
and thickness, as will the Young’s modulus and so the slope of the load–displacement
curve. For the polyurethane liner case described in Table 1 it follows from (4.1) that the
liner breaks when θ = arcsin (1/8), which gives a maximum angle of 7 degrees before
liner breakage. This curve should be compared with that shown earlier in Figure 3. The
stress versus strain relationship for plastics is not quite linear; typically the material
becomes stiffer at higher displacements, so that Figure 3 would be experimentally
determined but the principles presented above hold.

In the above work, we envisaged a situation in which the tendency was for the
rock to move perpendicularly to the wall face. In the tunnel situation, shear and hoop
stresses can be set up in the surface of the wall, so that the liner may be subjected to
longitudinal extension in the plane of the wall. Now if there is a crack in the wall face
then the liner stretched across that crack will be locally strongly stretched and rupture
is very likely. This occurs for example when paint covers a crack that then expands;
the paint cracks.

In all the above work, we assumed no penetration of the liner into cracks. It should
be remembered that any such penetration will have a major effect on the outcome.
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5. Conclusions

We first investigated the effectiveness of nonpenetrating TSLs in a lined tunnel
subjected to a tensile perturbation due either to a seismic event or a mining disturbance.
It was found that the shear and tensile stress in the liner and rock mass depend on
the ratio E′1/E

′
2 of the reduced elastic moduli. The effect of the liner on the stress

distribution in the rock mass surrounding the tunnel is small, of order of magnitude
of the thickness of the TSL, and is little influenced by the weak bonding factor λ.
This is very different from the significant effect that penetration of liner material
into fractures and cracks has on the stress distribution of the surrounding rock. The
effect of the excavation on the liner tensile stress is large and occurs at zero order in
ε through the factor E′1/E

′
2. To prevent build-up of tensile stress in the liner E′1/E

′
2

should be kept small by choosing a liner with suitably small reduced elastic modulus
E′1. The zero-order term in the tensile stress in the liner does not depend on the weak
bonding factor λ. It was found that the shear stress at the interface is small, of the
order of magnitude of the thickness of the liner, and to this order it is independent of
the weak bonding factor λ. The liner could therefore fail under tension but not under
shear because the shear stress in the liner is only of order ε. In practice debonding
between the liner and the rock will reduce tension in the liner and prevent liner failure
under tension. The results show that in the liner tensile stress is more important than
shear stress in supporting rocks and that debonding does not significantly affect the
stress.

We next investigated local rock support. It was shown that support of loose rock
movements is better achieved using a TSL with small Young’s modulus but high
rupture tensile strength. A doubling of the bonding strength of the liner to the rock
will double the weight of rock that can be supported by the liner. Adhesive detachment
from the tunnel wall is likely to occur before stress levels in the liner are sufficient to
cause rupture because bonding strength is less than the shear and tensile strength of
the liner.
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