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Abstract. We bound the number of distinct minimal subsystems of a given transitive
subshift of linear complexity, continuing work of Ormes and Pavlov [On the complexity
function for sequences which are not uniformly recurrent. Dynamical Systems and
Random Processes (Contemporary Mathematics, 736). American Mathematical Society,
Providence, RI, 2019, pp. 125–137]. We also bound the number of generic measures such
a subshift can support based on its complexity function. Our measure-theoretic bounds
generalize those of Boshernitzan [A unique ergodicity of minimal symbolic flows with
linear block growth. J. Anal. Math. 44(1) (1984), 77–96] and are closely related to those
of Cyr and Kra [Counting generic measures for a subshift of linear growth. J. Eur. Math.
Soc. 21(2) (2019), 355–380].
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1. Introduction
In this work, we study symbolically defined dynamical systems called subshifts. A subshift
is defined by a finite set A (called an alphabet), the (left) shift action σ on AZ, and
a set X ⊂ AZ of sequences that is closed in the product topology and σ -invariant. For
convenience, we will refer to a subshift (X, σ) only as X since the dynamics are always
understood to come from σ . (See §2.1 for more details.)

Given a subshift X, let cX(n) denote the number of words of length n that appear in
X, that is, the complexity function of X. Assuming that X is transitive (meaning that X is
the closure of the σ -orbit of some x ∈ X) and cX(n) grows linearly, we ask: what is the
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interplay between cX(n) and the structure of the subdynamical systems of X? We study
this question in both the topological and measure-theoretic categories.

In the topological category, we provide bounds on the number of distinct minimal
subsystems that the transitive subshiftX can have depending on how quickly cX(n) grows.
By the Morse–Hedlund theorem (Theorem 3.2), if there exists n ≥ 1 such that cX(n) ≤ n,
then X is merely a finite set of periodic points. In [10], Ormes and Pavlov showed that if

lim sup
n→∞

(cX(n)− 1.5n) < ∞,

then X must itself be minimal. They proved this by contrapositive: were there to exist
a proper minimal subsystem M ⊂ X, then by carefully counting the words that occur in
points (which exist by transitivity) whose orbits enter and exit neighborhoods of M , they
showed that lim supn→∞(cX(n)− 1.5n) = ∞.

Moreover, they showed that this bound is sharp in the sense that there would
exist non-minimal examples were the threshold 1.5n increased to 1.5n+ g(n), where
g : N → N is any non-decreasing, unbounded function.

For X such that cX(n) grows faster than 1.5n, in §3 we establish the following.

THEOREM 1.1. Let X be a transitive subshift which is the orbit closure of a recurrent
point x, where X has j ≥ 2 proper minimal subsystems, exactly i of which are infinite
(0 ≤ i ≤ j). For k ∈ N, if either:
(1) lim supn→∞(cX(n)− (k + 1)n) < ∞; or
(2) lim infn→∞(cX(n)− kn) < ∞,
then i + j < k. Moreover, this bound is sharp.

The notion that the bound is sharp is the same as in [10]; namely, if either of the
thresholds (k + 1)n or kn in (1) or (2) were increased by adding a non-decreasing,
unbounded function g : N → N, then there would exist X for which i + j = k.

In §4, we consider the case of a general (not necessarily recurrent) transitive subshift.
We establish bounds on the growth rate of cX(n) in the special cases whereX contains one
or two minimal subsystems and then prove the following.

THEOREM 1.2. Let X be a transitive (not necessarily recurrent) subshift where X has
j ≥ 3 minimal subsystems, exactly i of which are infinite (0 ≤ i ≤ j ). For k ∈ N, if

lim inf
n→∞ (cX(n)− kn) < ∞,

then i + j < k.

Of course, the condition

lim sup
n→∞

(cX(n)− kn) < ∞

also implies that i + j < k, and we show that this bound is sharp in the same sense as
above.

Turning our attention to the measure-theoretic category, we consider the well-studied
problem of bounding the number of ergodic measures that a given subshift can support.
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For example, in [2], Boshernitzan showed that if X is minimal and

lim inf
n→∞ (cX(n)−Kn) = −∞,

then X can support at most K − 1 ergodic measures. He also showed, again assuming
minimality, that X is uniquely ergodic provided that

lim sup
n→∞

cX(n)

n
< 3.

In [3], Cyr and Kra, motivated by work of Katok [6] and Veech [13] on interval exchange
transformations, extended Boshernitzan’s work by considering arbitrary (not necessarily
minimal) subshifts and non-atomic generic (not necessarily ergodic) measures (restated
here as Theorem 5.1). In [4, 5], Damron and Fickenscher proved stronger bounds on
the number of ergodic measures for transitive subshifts satisfying linear complexity plus
additional technical conditions; these results apply, in particular, to codings of interval
exchanges.

Because Cyr and Kra do not assume transitivity of the subshift X, they are not able to
bound the number of non-atomic measures. As an example to illustrate this issue, suppose
thatX is known to have generic measures δ0∞ and δ1∞ (supported entirely on the sequences
of all 0’s and all 1’s). With no other assumptions, it would be possible to simply have X =
{0∞, 1∞}, in which case cX(n) = 2 for every n. However, by merely assuming that there
exists a point x ∈ X that is not eventually periodic in both directions and whose orbit is
dense (as we do in Theorem 1.4 below), one can show that lim infn→∞(cX(n)− 2n) > ∞,
as is done in [10, Lemma 3.3].

Our measure-theoretic results are as follows and are proved in §5.

THEOREM 1.3. Let X = O(x) be a transitive subshift where x is recurrent and aperiodic.
If

lim sup
n→∞

cX(n)

n
< 3,

then X is uniquely ergodic.

THEOREM 1.4. Let X = O(x) be a transitive subshift where x is not eventually periodic
in both directions. If

lim inf
n→∞ (cX(n)− gn) = −∞

for g ∈ N, then X has at most g − 1 generic measures.

Note that Theorem 1.4 does not imply Theorem 1.2. Indeed, if X contains g minimal
subsystems, then there are at least g generic measures onX. Theorem 1.4 would then imply
that

lim inf
n→∞ (cX(n)− gn) > −∞,

whereas Theorem 1.2 gives the stronger conclusion

lim inf
n→∞ (cX(n)− gn) = ∞.
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The methods we use to prove Theorems 1.3 and 1.4 take advantage of the given
‘transitive point’ x ∈ X. Specifically, drawing on techniques developed in [2], our proofs
revolve around keeping track of so-called right special words that occur in x. (A word is
right special if it can be followed by at least two different letters.) This differs from the
approach in [3], where transitivity was not assumed.

While this paper focuses on two-sided subshifts (indexed by Z), one could study similar
questions for one-sided subshifts (indexed by N). With some necessary modifications, and
by treating two-sided subshifts as natural extensions of one-sided subshifts, we believe
that it would be possible to prove some analogous versions of our results in the context of
one-sided subshifts. But for brevity we restrict our attention to the two-sided context.

The paper is organized as follows. We first establish preliminary definitions in §2. In
§3, we prove Theorem 1.1. As in [10], we give a proof by contrapositive by supposing that
there exist proper minimal subsystems M1, . . . , Mj and counting the words that occur
in points whose orbits transition between neighborhoods of these subsystems. We handle
the possibility that i of these j subsystems are infinite by first reducing to the i = 0 case
with factor maps; the i = 0 case then completes the counting argument. To complete the
proof of Theorem 1.1, we provide a family of examples that establish the sharpness of our
bounds. In §4, we prove Theorem 1.2, which involves modifying arguments from §3 to
more a general setting where systems are transitive but not necessarily recurrent. In §5, we
transition to the measure-theoretic category and prove Theorems 1.3 and 1.4.

2. Preliminaries
2.1. Subshifts. We recall some basic definitions; for more information, see [7, 8, 14].

A full shift is a pair (AZ, σ), where A is a finite alphabet, AZ has the product of the
discrete topology on A, and σ : AZ → AZ is the left shift defined by σ(x)i = xi+1 for
each x = (xi)i∈Z ∈ AZ. A subshift is a pair (X, σ), where X is a closed and σ -invariant
subset of some AZ. To conserve notation, we will often refer to the subshift (X, σ) as
simply X.

A subshift X is transitive if there exists x ∈ X such that X = O(x), the closure of the
orbit O(x) = {σn(x) : n ∈ Z}. We call such a point x ∈ X a transitive point. If X = O(x)
for every x ∈ X, then X is minimal. A transitive subshift X is periodic if it has a transitive
point x which is periodic, meaning that there exists p ∈ Z such that σp(x) = x. Note that
a transitive subshift X is periodic if and only if X has finite cardinality.

Given a subshift X, a word of length n in X is a block of symbols w = w1w2 · · · wn
that occurs in some point x ∈ X, that is, w = xixi+1 · · · xi+n−1 for some i ∈ Z. Let
Ln(X) denote the set of all words of length n occurring in some point in X, and
L(X) = ⋃∞

n=1 Ln(X). The complexity function of X is the function cX(n) : N → N that
gives the cardinality of Ln(X). If X is transitive, then X = O(x) for some x ∈ X, and in
this case cX(n) is equal to the number of words of length n in x.

For a symbol a ∈ A and n ≥ 1, the expression an denotes the word of length n

formed by concatenating a with itself n times. Correspondingly, a∞ denotes the infinite
concatenation of a with itself. Depending on the situation, a∞ may denote a bi-infinite
sequence, a left-infinite sequence, or a right-infinite sequence. The choice of meaning
should be clear from context.
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A point x ∈ X is recurrent if every word in x occurs at least twice (equivalently,
infinitely often). If every word in x occurs infinitely often with uniformly bounded gaps
between occurrences, then x is uniformly recurrent. By [1], a subshift X is minimal if and
only if X = O(x) for some uniformly recurrent x ∈ X. (See also [7, Theorem 2.19].)

If X and Y are subshifts, then for any continuous f : X → Y such that f ◦ σ =
σ ◦ f , there exist m, a ∈ N such that for every x ∈ X, f (x)0 is determined by the word
x−m · · · x0 · · · xa . In this case f is called an (m+ a + 1)-block map with memory m and
anticipation a. If such a map f is surjective, then it is a factor map. In this paper, when
we define a factor map f on a subshift X, we always define Y = f (X). In addition, any
(m+ a + 1)-block map has an obvious associated action on finite words as well (for any
n-letter word w, f (n) has length n−m− a); we use f to refer to this function also since
usage should always be clear from context.

A word w in L(X) is right-special if there exist a, b ∈ A such that wa, wb ∈ L(X)
with a 
= b. Similarly, w is left-special if there exist a, b ∈ A such that aw, bw ∈ L(X)
with a 
= b. Let RSX(n) (or just RS(n) if X is understood) denote the set of right-special
words in X of length n.

Let x be an element of a subshift X. By the omega-limit set of x, we mean the set

ω(x) =
⋂
N≥1

{σn(x) : n ≥ N}.

For any x ∈ X, the set ω(x) is a closed and shift-invariant subset of X, so is itself a
subshift.

We say that a point x in a subshift X is eventually periodic to the right if there exist
integers p > 0 and N > 0 such that for all i > N , xi = xi+p. Similarly, we say that x is
eventually periodic to the left if there exist integers p > 0 and N > 0 such that for all
i < −N , xi = xi−p.

2.2. Sturmian subshifts. There are several different approaches to defining Sturmian
subshifts (see [12] for an introduction). We outline one such approach here.

For any irrational β, define the map Rβ : [0, 1) → [0, 1) by Rβ(x) = x + βmod 1. For
any x ∈ (0, 1), define the sequence s(x) ∈ {0, 1}Z by

sn(x) =
{

1 if Rnβ(x) ∈ [0, β),

0 if Rnβ(x) ∈ [β, 1).

The bi-infinite sequence s(x) is called a Sturmian sequence for β. A subshift X ⊂ {0, 1}Z
is a Sturmian subshift if X can be obtained as the orbit closure of a Sturmian sequence.

For a Sturmian subshift X, a couple of properties that will be useful (e.g., in the proof
of Theorem 4.1) are:
• for every n ∈ N, there is exactly one right-special word of length n; and
• if (1/n) < β < (1/(n+ 1)), then the number of zeros in any word of the form

1000 · · · 01 must be either n or n− 1.
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2.3. Bounds on the complexity function. Here we introduce shorthand notation for
bounds on the complexity function.

Definition 2.1. Given a function f : N → R, write cX(n) � f (n) if

lim sup
n→∞

(cX(n)− f (n)) = ∞.

Definition 2.2. Given a function f : N → R, write cX(n) � f (n) if

lim inf
n→∞ (cX(n)− f (n)) = ∞.

To prove Theorem 1.1, note that it is sufficient to prove, under the given hypotheses on
X, that both cX(n) � (j + i + 1)n and cX(n) � (j + i)n. This will be our approach in
§3.2.

Similarly, to prove Theorem 1.2, in §4.2 we will show (under the given hypotheses) that
cX(n) � (j + i)n.

A bound of the form cX(n) � f (n) (or cX(n) � f (n)) which holds under some
hypotheses on X is sharp if it fails when any non-decreasing unbounded g : N → N is
added to f (n), that is, if for any such g there exists a subshift X satisfying the relevant
hypotheses for which cX(n) � f (n)+ g(n) (or cX(n) � f (n)+ g(n)) is false.

3. Transitive systems with a recurrent transitive point
The main goal of this section is to prove Theorem 1.1, which assumes that X contains two
or more minimal subsystems. We will do this in §3.2 by showing that both cX(n) � (j +
i + 1)n and cX(n) � (j + i)n. But first we recall some existing results that can be used to
treat X containing a single minimal subsystem.

3.1. Single minimal subsystem. If X is itself minimal and not a periodic orbit, then the
following two results establish that

cX(n) ≥ n+ 1

for all n ≥ 1 and that this bound cannot be improved.

THEOREM 3.1. [9] If X is a Sturmian subshift, then

cX(n) = n+ 1 for all n ≥ 1.

THEOREM 3.2. [9] Let X be any subshift. If there exists n ≥ 1 such that cX(n) ≤ n, then
X is a finite set of periodic points.

Thus, the Sturmian subshifts are examples of the lowest-complexity subshifts that are
not periodic (see [11] for more). If X is transitive and not minimal, then the following
(sharp) bound was proved in [10].

THEOREM 3.3. [10] Suppose that X is a transitive subshift with a recurrent transitive
point x. If X is not minimal, then

cX(n) � 1.5n

and this bound is sharp.
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Combining the results of [10] and techniques of the proof of Theorem 1.1, we will be
able to establish the following.

THEOREM 3.4. Suppose that X is a transitive subshift with a recurrent transitive point x.
If X properly contains an infinite minimal subsystem, then

cX(n) � 2.5n

and this bound is sharp.

We postpone the proof of Theorem 3.4 until after the proof of Theorem 1.1.

3.2. Multiple minimal subsystems. For j ≥ 2 and 0 ≤ i ≤ j , consider the set of sub-
shifts S = S(j , i), where X ∈ S(j , i) if and only if X is transitive with a recurrent
transitive point, and X has j distinct minimal subsystems, exactly i of which are infinite.
To prove Theorem 1.1 for X ∈ S(j , i), we first reduce to the i = 0 case via factor maps.

3.2.1. Reduction to the i = 0 case. We define a factor map π that maps the j distinct
minimal subsystems ofX to j distinct points, which are fixed by σ . Lemma 3.5 will provide
an inequality between the complexity sequences for X and π(X), which will allow us to
simply work with π(X) moving forward.

Let M1, . . . , Mj denote the minimal subsystems of X, where, without loss of
generality, M1, . . . , Mi are infinite and Mi+1, . . . , Mj are finite. Since the sets
M1, . . . , Mj are pairwise disjoint closed subsets of X, there is an r ≥ 1 such that the
sets Lr (M1), . . . , Lr (Mj ) are pairwise disjoint. Fix such a value of r; pick j distinct
symbols a1, . . . , aj that do not occur in x and define an r-block map φ with domain X,
memory zero, and anticipation (r − 1) as follows:

φ(y)q =
{
ap if yq · · · yq+r−1 ∈ Lr (Mp),

yq otherwise.

Now pick a symbol b that does not occur in φ(x) and define a 2-block map ψ with domain
φ(X), memory zero, and anticipation 1 as follows:

ψ(z)q =
{
b if zqzq+1 ∈ {aps, sap} for some p and s 
= ap,

zq otherwise.

Note that post-composing φ with ψ has the effect of ensuring that words of the form anp
are always preceded and followed by the ‘marker’ symbol b. Define π = ψ ◦ φ. Then the
minimal subsystems of π(X) are simply the one-point sets π(Mp) = {a∞

p }. IfX ∈ S(j , i),
it follows that π(X) ∈ S(j , 0).

LEMMA 3.5. If X ∈ S(j , i) with j ≥ 2 and π is the factor map defined above, then, for
every n > r , cX(n) ≥ cπ(X)(n− r)+ in.

Proof. Note that for any q-block factor map from a subshift X onto a subshift Y , a word
of length m in X determines a word of length m− q + 1 in Y . It follows that cX(m) ≥
cY (m− q + 1).
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Applying this to our situation, since ψ is a 2-block map, cφ(X)(n) ≥ cπ(x)(n− 1). To
complete the proof, it is enough to show that cX(n) ≥ cφ(X)(n− r + 1)+ in. For any n,
let W0 denote the set of words in φ(X) of the form an−r+1

p , where n ≥ r and 1 ≤ p ≤ i,
and letW1 = Ln−r+1(φ(X)) \W0. Each word inW1 has at least one φ-preimage in Ln(X),
but each an−r+1

p ∈ W0 has at least n+ 1 preimages in Ln(Mp), since any word in Ln(Mp)

is a preimage of an−r+1
p , and cMp(n) ≥ n+ 1 for all n, using Theorem 3.2 and the fact that

Mp is infinite.

LEMMA 3.6. For each p ∈ {1, . . . , j} and n ∈ N, anp is both right- and left-special in
π(X).

Proof. Recall that π(Mp) = {a∞
p }. Therefore, a∞

p ∈ π(X), so anp can be followed by ap.
Assume for a contradiction that anp is not right-special, that is, it can only be followed by
ap. Since π(X) 
= {a∞

p }, there must exist m ∈ Z so that

σm(x) = · · · y−3y−2y−1.a∞
p ,

where y−1 
= ap. Since x is recurrent, y−k · · · y−k+n = y−1a
n
p for some k ≥ n+ 2.

Then −k + n ≤ −2, so there is some smallest q ≥ 1 such that y−k+n+q 
= ap. Then
y−k+q · · · y−k+n+q−1 = anp and y−k+n+q 
= ap, implying that anp is right-special, which
is a contradiction. Our original assumption was then false, that is, anp is right-special; a
symmetric argument shows that anp is left-special.

To establish that cX(n) � (j + i + 1)n and cX(n) � (j + i)n, first observe that, by
Lemma 3.5, it is enough to show only that these bounds hold for π(X). Indeed, if we
prove that cπ(X)(n) � (j + 1)n, then there is a strictly increasing sequence (nk) such that
cπ(X)(nk − r) > (j + 1)(nk − r)+ k for all k. So, by Lemma 3.5,

cX(nk) ≥ cπ(X)(nk − r)+ ink

> (j + 1)(nk − r)+ k + ink

= (j + i + 1)nk + k − r(j + 1),

which implies that cX(n) � (j + i + 1)n. By a similar argument, cπ(X)(n) � jn implies
that cX(n) � (j + i)n.

Because of this, to simplify notation we will replace π(X) with X and make the
following assumptions.

ASSUMPTIONS 3.7. Throughout §3.2.2 below, we assume that:
• (A1): X ∈ S(j , 0);
• (A2): the minimal subsystems of X are the one-point systems M1 = {a∞

1 }, . . . , Mj =
{a∞
j }; and

• (A3): for any word in X of the form aps or sap, s = b or s = ap.

3.2.2. Proof that cX(n) � (j + i + 1)n and cX(n) � (j + i)n when i = 0. Under the
hypotheses of Theorem 1.1 (and under Assumptions 3.7), there is a transitive point x
for X that is recurrent, and that therefore cannot be both eventually periodic to the left
and eventually periodic to the right. Without loss of generality, assume that x is not
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eventually periodic to the right. Our proof will involve bounding from below the number
of right-special words in X of various lengths (were x eventually periodic to the right, we
would instead count left-special words). The following elementary lemma will be used to
verify that cX(n) � (j + 1)n.

LEMMA 3.8. Under Assumptions 3.7, for each n ≥ 2, cX(n) ≥ cX(n− 1)+ #RS(n− 1).
Therefore, for m < n, cX(n) ≥ cX(m)+ ∑n−1

	=m #RS(	).

Proof. For every n, each word of length n− 1 can be extended to at least one word
of length n, while each right-special word of length n− 1 can be extended to at least
two words of length n. This yields cX(n) ≥ cX(n− 1)+ #RS(n− 1). Applying this
recursively, we obtain the inequality cX(n) ≥ cX(m)+ ∑n−1

	=m #RS(	) for m < n.

We begin by considering the set of right-special words provided by Lemma 3.6, which
we will call B:

B := {anp : 1 ≤ p ≤ j and n ∈ N}.
By just considering the elements of B, we see that #RS(n) ≥ j for all n.

By combining the inequality #RS(n) ≥ j with Lemma 3.8, we can show that the bound
cX(n) � (j + 1)n would imply that cX(n) � jn. Indeed, note that cX(n) � (j + 1)n
implies that there exists an increasing sequence of integers (nk) such that cX(nk) ≥
(j + 1)nk . Thus, for n > nk ,

cX(n) ≥ cX(nk)+
n−1∑
	=nk

#RS(n)

≥ (j + 1)nk + j (n− nk)

≥ jn+ nk ,

which gives cX(n) � jn.
Thus, we will be done if we establish the bound cX(n) � (j + 1)n. We divide the proof

into cases, beginning with the simplest case.
Case (i). For all sufficiently large n, #RS(n) ≥ j + 1 and there is a strictly increasing
sequence (nk) where #RS(nk) ≥ j + 2 for all k.

The assumptions imply that, for n > nk ,
n∑
	=1

#RS(	) ≥ (j + 1)n+ k.

This implies that cX(n) � (j + 1)n, which completes the proof of Theorem 1.1 in
Case (i).

We now assume that the hypotheses of Case (i) do not hold. That is, precisely one of
the following two conditions holds.
Case (ii). There is a strictly increasing sequence (nk) such that #RS(nk) = j , that is,
RS(nk) ⊂ B for all k;
Case (iii). For all sufficiently large n, #RS(n) = j + 1.
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LEMMA 3.9. Under Assumptions 3.7, suppose that either Case (ii) or (iii) holds. Then
there exists a strictly increasing sequence (nk) such that for each k, after re-indexing
the minimal subsystemsM1, . . . , Mj if necessary, there exist words w(k)12 , w(k)23 , . . . , w(k)j1 ,
each of which begins and ends with the symbol b, such that the transitive point x ∈ X has
one of the following forms:

x = · · · a≥nk
1 w

(k)
12 a

≥nk
2 w

(k)
23 · · · a≥nk

j w
(k)
j1 a

≥nk
1 w

(k)
12 · · · or

x = a∞
1 w

(k)
12 a

≥nk
2 w

(k)
23 · · · a≥nk

j w
(k)
j1 a

≥nk
1 w

(k)
12 · · · ,

where each a≥nk
p represents a word of the form anp for some n ≥ nk .

Proof. Recall that x is a transitive point that is not eventually periodic to the right. For
all p ∈ {1, . . . , j} and all n ≥ 1, anp occurs in x. Since x is not eventually periodic to the
right, anpb must occur as well. Since x is recurrent, anpb occurs infinitely many times in x.
It follows that banp also occurs infinitely many times in x.

In Case (ii), we are given a strictly increasing sequence (nk) such that #RS(nk) = j

for all k. Fix k ≥ 1 and p ∈ {1, . . . , j}. Define w1 = b. Since #RS(nk) = j , ank−1
p w1 
∈

RS(nk), so there is only one symbol, call it w2, that can appear after ank−1
p w1. Similarly,

there is only one symbol that can appear after ank−2
p w1w2. Continuing in this way, each

successive symbol wi is forced (at least) until some wi · · · wi+nk−1 ∈ RS(nk), that is,
wi · · · wi+nk−1 = a

nk
r for some r . There must exist some smallest i for which this is true,

since the omega-limit set ω(x) must contain one of the minimal subsystemsM1, . . . , Mj .
Set w(p) = w1w2 · · · wi−1. Note that w(p) is the only word that begins with b that can
follow a

nk
p in x, and that ankr is the only word that can follow w(p). Set f (p) = r .

Since 1 ≤ p ≤ j was arbitrary, we obtain a function f : {1, . . . , j} → {1, . . . , j}.
Since bankp appears in x for each p, each p ∈ {1, . . . , j} is equal to f (q) for some q ∈
{1, . . . , j}, that is, f is a bijection and thereby a composition of cyclic permutations. If f
were the composition of two or more cyclic permutations, then x would not contain all ankp
for 1 ≤ p ≤ j , in contradiction to transitivity of x. Therefore, f must cyclically permute
the elements of {1, . . . , j}. Re-indexing if necessary, we may assume that f (p) = p + 1
for p < j and f (j) = 1. For p ∈ {1, . . . , j}, set w(k)pf (p) = w(p). After re-indexing again
in the case where x is eventually periodic to the left, it follows that x has one of the two
prescribed forms.

Now assume the hypothesis of Case (iii). By the assumptions on x, there must exist a
strictly increasing sequence (nk) such that bank1 b occurs in x for all k. Because bank+1

1 also
occurs in x, we know that bank1 is right-special for every k. By deleting the first few terms
of the sequence (nk) if necessary, this together with the assumption of Case (iii) implies
that

RS(nk + 1) = {bank1 , ank+1
1 , . . . , ank+1

j }
for every k. The word ank1 b 
∈ RS(nk + 1), so, as in Case (ii), the word ank1 b forces a
transition word w(1) (whose first symbol is b). But note that the only symbols that can
follow ba

nk
1 are also a1 or b, which similarly implies that the word bank1 b forces the same
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transition word w(1). The rest of the argument from Case (ii) carries through with nk
replaced by nk + 1. We obtain the same possible forms of x as in Case (ii).

We proceed by assuming the conclusion of Lemma 3.9. For each p ∈ {1, . . . , j} and
k ∈ N, define

	k,p := min{	 ≥ nk : ba	pb ∈ L(X)}
and set 	0,p := 0. Consider the following set of words:

E(k) := {a	k,1
1 w

(k)
12 a

	k,2
2 , . . . , a

	k,j
j w

(k)
j1 a

	k,1
1 }.

It follows from Lemma 3.9 that, if u ∈ E(k), then any suffix of u is right-special. Some of
these suffixes, namely, the constant suffixes a	k,2

2 , . . . , a	k,1
1 , are in B. But many of these

suffixes are not constant and therefore not in B.
For example, let E1(k) denote the set of suffixes of a	k,1

1 w
(k)
12 a

	k,2
2 that are longer than

	k,2 but no longer than 	k,2 + 	k,1. Then each u ∈ E1(k) is right-special and not in B.
In general, for 1 ≤ p ≤ j , let Ep(k) denote the set of suffixes of a

	k,p
p w

(k)
pq a

	k,q
q that are

longer than 	k,q but no longer than 	k,q + 	k,p, where q = p + 1 if 2 ≤ p < j and q = 1
if p = j . Note that #Ep(k) = 	k,p and therefore

j∑
p=1

#Ep(k) = 	k,1 + · · · + 	k,j . (3.1)

Also, each Ep(k) ∩ B = ∅ and, for r 
= p, Ep(k) ∩ Er(k) = ∅.

PROPOSITION 3.10. Under Assumptions 3.7, for each k ∈ N,

cX(	k,1 + · · · + 	k,j ) ≥ (j + 1)(	k,1 + · · · + 	k,j )+ (	k−1,1 + · · · + 	k−1,j ).

Proof. To simplify notation, let Lk = 	k,1 + · · · + 	k,j . We proceed by induction, where,
since L0 = 0, the base case is the assertion that cX(L1) ≥ (j + 1)L1. This assertion
follows from Lemma 3.8 together with the following observations:
• for 1 ≤ 	 ≤ L1 − 1, there are j right-special words of length 	 in B;
• there are L1 (distinct) right-special words in

⋃j

p=1 Ep(1), none of which are in B.
Now assume that cX(Lk−1) ≥ (j + 1)Lk−1 + Lk−2 and observe that, by Lemma 3.8

together with equation (3.1),

cX(Lk) ≥ cX(Lk−1)+
Lk−1∑
	=Lk−1

#RS(	)

≥ [(j + 1)Lk−1 + Lk−2] + [j (Lk − Lk−1)+ Lk]

≥ (j + 1)Lk + Lk−1.

Since (	k−1,1 + · · · + 	k−1,j ) → ∞ as k → ∞, it follows from Proposition 3.10 that
cX(n) � (j + 1)n, which by our earlier discussion completes the proof of Theorem 1.1 in
Cases (ii) and (iii).
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3.2.3. Sharpness of Theorem 1.1 when i = 0. Here we define a family of examples that
demonstrates the sharpness of the bounds cX(n) � (j + i + 1)n and cX(n) � (j + i)n.
We will consider the i = 0 cases first, and then show how to modify the argument for
i > 0. Let g : N → N be a given non-decreasing unbounded function.

Define a sequence ω = ω1ω2ω3 · · · via the rule that ω2mk+2m−1 = m for m ≥ 1 and
k ≥ 0, so that ω = 1213121412131215 · · · . Then define a doubly-infinite sequence

x = j∞. (1n
1
12n

2
1 · · · jnj1 )(1n1

2 2n
2
2 · · · jnj2 )(1n1

1 2n
2
1 · · · jnj1 )(1n1

32n
2
3 · · · jnj3 ) · · ·

for a doubly-indexed sequence npk satisfying

n1
1 << n2

1 << · · · << n
j

1 << n1
2 << n2

2 · · · << n
j

2 << · · · .

(The pattern of npk within x is as follows: the superscript p is always the same as the
letter being repeated, and the subscript k comes from ω, in that it is ω1 = 1 for the first j
exponents, then ω2 = 2 for the next j , then ω3 = 1 for the next j , and so on.) Note that
while ω is fixed, different sequences (npk ) give rise to different sequences x. In other words,
x represents a family of examples parametrized by (npk ).

Regardless of choice of (npk ), the transitive subshift X = O(x) has j minimal subsys-
tems:M1 = {1∞}, . . . , Mj = {j∞}. Also, we can enumerate the right-special words inX
as follows.

All words in the previously defined set B are again right-special, and any right-special
word not in B must end with a word from the set

C = {12n
2
k , 23n

3
k , . . . , j1n

1
k : k ∈ N}.

For 1 ≤ p ≤ j − 1 and for any given k, the word

pn
p
k (p + 1)n

p+1
k

is maximally right-special in the sense that:

• any suffix of pn
p
k (p + 1)n

p+1
k is right-special; and

• for any symbol s, the word spn
p
k (p + 1)n

p+1
k fails to be right-special.

Let D = D(k) denote the set of words that are not in B and are suffixes of such
a maximally right-special word pn

p
k (p + 1)n

p+1
k . Each n in an interval of the form

(n
p+1
k , np+1

k + n
p
k ] corresponds to the length of a word in D. Moreover, we can ensure

that these intervals are disjoint by requiring that

n3
k > n2

k + n1
k , n4

k > n3
k + n2

k , . . . , njk > n
j−1
k + n

j−2
k .

Now consider right-special words ending in j1n
1
k . In ω, the left-most occurrence of

k is ω2k−1; any occurrence of a symbol m ≥ k in ω is directly preceded by the word
ω1 · · · ω2k−1−1; and any occurrence of the word ω1 · · · ω2k−1−1 is directly followed by
a symbolm ≥ k. Moreover, any occurrence of the word kω1 · · · ω2k−1−1 must be followed
by a symbol m > k; and any occurrence of the word mω1 · · · ω2k−1−1 for m > k must be
followed by k.
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It follows from these observations about ω that, in x, there is a unique word u = u(k)

of length

L = L(k) =
j∑
i=1

(niω1
+ niω2

+ · · · + niω2k−1−1
),

namely,

u := x0 · · · xL−1 = (1n
1
1 · · · jnj1 )(1n1

2 · · · jnj2 ) · · · (1n1
1 · · · jnj1 )︸ ︷︷ ︸

2k−1 parenthetical blocks

that directly precedes any occurrence of 1n
1
k . It follows that jn

j
k u1n

1
k is maximally

right-special.
Let F = F(k) denote the set of words that are not in B and are suffixes of jn

j
k u1n

1
k , and

note that F ∩D = ∅. Then, for each n ∈ (n1
k , n

1
k + n

j
k + L(k)], there is exactly one word

of length n in F and that word is right-special.
We have established the following.

PROPOSITION 3.11. The set of right-special words in X is
∞⋃
n=1

RS(n) = B ∪
∞⋃
k=1

(D(k) ∪ F(k)).

Moreover,

#RS(n) ≤

⎧⎪⎪⎨
⎪⎪⎩
j if njk + n1

k + L(k) < n ≤ n1
k+1 for some k,

j + 2 if npk < n ≤ n
p
k + n

p−1
k for some k and 2 ≤ p ≤ j ,

j + 1 otherwise.

Set nj0 = 0. Since g is non-decreasing and unbounded, we can choose the sequence
n1

1 < n2
1 < · · · < n

j

1 < n1
2 < · · · to grow fast enough so that for each k ∈ N and p ∈

{1, . . . , j}, g(npk ) is larger than the sum of all nq	 smaller than npk . More specifically,
choose (npk ) so that for all k ≥ 1 and p ∈ {1, . . . , j},

g(n
p
k ) >

k−1∑
	=1

j∑
q=1

n
q

	 +
p−1∑
q=1

n
q
k .

Note that the right-hand side above provides an upper bound on the number of n ∈
[1, np+1

k ) with #RS(n) = j + 2. Lemma 3.8 then implies that for n ∈ [npk , np+1
k ),

cX(n) ≤ (j + 1)n+ g(n
p
k ) ≤ (j + 1)n+ g(n).

Similarly, if n ∈ [njk−1, n1
k) for some k ≥ 1, then

cX(n) ≤ (j + 1)n+ g(n
j

k−1) ≤ (j + 1)n+ g(n).

We have shown that cX(n) ≤ (j + 1)n+ g(n) for all n. Since g was arbitrary, this shows
that the bound cX(n) � (j + 1)n is sharp.
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To see that the bound cX(n) � jn is sharp, we consider the complexity along the
subsequence (n1

k). If we choose (npk ) to grow fast enough, then, for all k ≥ 1,

g(n1
k+1) > (j + 2)(njk + n1

k + L(k)).

Then Lemma 3.8 and Proposition 3.11 imply that

cX(n
1
k+1) ≤ cX(n

j
k + n1

k + L(k))+ j (n1
k+1 − (n

j
k + n1

k + L(k)))

≤ (j + 2)(njk + n1
k + L(k))+ jn1

k+1 − j (n
j
k + n1

k + L(k))

≤ g(n1
k+1)+ jn1

k+1 − j (n
j
k + n1

k + L(k)).

Since cX(n) ≤ jn+ g(n) along the sequence n1
k and g was arbitrary, the bound

cX(n) � jn is sharp.

3.2.4. Sharpness of Theorem 1.1 when i > 0. We now wish to show that the sharp
examples constructed in §3.2.3 can be extended to the i > 0 case. For this, first consider a
system X ∈ S(j , 0) constructed using the form from §3.2.3, that is, X is the orbit closure
of a sequence of the form

x = j∞.(1n
1
12n

2
1 · · · jnj1 )(1n1

22n
2
2 · · · jnj2 )(1n1

1 2n
2
1 · · · jnj1 )(1n1

3 2n
2
3 · · · jnj3 ) · · · .

Now let 1 ≤ i ≤ j , and let Sj−i+1, . . . , Sj be arbitrary Sturmian subshifts with
alphabets disjoint from each other and from {1, . . . , j − i}. Our goal is to replace constant
strings of symbols from {j − i + 1, . . . , j} with sequences chosen from Sj−i+1, . . . , Sj
to create X′ ∈ S(j , i) in such a way that the complexity is increased by exactly in. We
begin with an elementary observation about minimal subshifts, which applies in particular
to Sj−i+1, . . . , Sj .

LEMMA 3.12. Given a minimal subshift S and a word w ∈ L(S), there exist arbitrarily
long words v with the property that wvw ∈ L(S).
Proof. By minimality, every point in x ∈ S contains w infinitely many times. Therefore,
we can find two instances of w in x occurring at indices that are arbitrarily far apart.

To stitch Sj−i+1, . . . , Sj into X, we need to impose a further assumption on the
sequences (nim)m∈N. By Lemma 3.12, we can recursively define n1

1, n2
1, . . . , nj1, n1

2,
n2

2, . . . , nj2, n1
3, . . . in such a way that, associated to each p ∈ {j − i + 1, . . . , j} and

k ∈ N, there is a word wpk ∈ Lnpk (Sp), and every such wpk is both a prefix and a suffix of

w
p

k+1. The proof of sharpness only required rapid growth of the sequence (npk ), and Lemma
3.12 ensures that we may recursively choose npk with arbitrarily rapid growth such that the
words wpk have the desired conditions. Since each wjk is a suffix of wjk+1, the sequence wjk
has a left-infinite limit (as k → ∞), which we denote by wj∞.

Now define

x′ = w
j∞.

(
1n

1
1 · · · (j − i)n

j−i
1 w

j−i+1
1 · · · wj1

)(
1n

1
2 · · · (j − i)n

j−i
2 w

j−i+1
2 · · · wj2

) · · · ,
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the sequence obtained by replacing each pn
p
k in x by wpk , and replacing j∞ by wj∞. Then

each Sp for p ∈ {j − i + 1, . . . , j} is an infinite minimal subsystem of X′ := O(x′), and
each {p∞} for p ∈ {1, . . . , j − i} is a finite minimal subsystem of X′. It is not hard to
check that X′ contains no other minimal subsystems and so X′ ∈ S(j , i). It remains to
show that cX′(n) = cX(n)+ in.

For this, consider the following 1-block factor map φ applied to X′. Since the alphabets
of the Sp are disjoint, we may map any letter in the alphabet of Sp to p and leave other
letters (for p ∈ {1, . . . , j − 1}) unchanged. The map φ induces a surjection from Ln(X′)
to Ln(X) for all n. We claim that every word in L(X)which is not constant has only a single
φ-preimage. To see this, consider w ∈ L(X) containing multiple letters. Without loss of
generality, we can extend w on the left and right so that w contains some an

a
m as a prefix

and bn
b
m as a suffix; if the extension has only one preimage, then of course w did as well.

Then, by construction of x′, the only subword of x′ mapping to w under φ is obtained by
replacing every maximal subword of the form pn

p
k in x by wpk for p ∈ {j − i + 1, . . . , j}.

(The only possible ambiguity comes from an
a
m and bn

b
m , but recall that wpk is a prefix and a

suffix of wp
k′ for all k′ > k, and so even if an

a
m and/or bn

b
m were portions of longer runs of

a’s or b’s in x, the corresponding word in x′ still contains wam and/or wbm at those locations
if a and/or b are in {j − i + 1, . . . , j}.)

On the other hand, for k ∈ {j − i + 1, . . . , j}, any constant word of the form kn

has every word in Ln(Sk) as a preimage, since Sk ⊂ X′, and all words in Ln(Sk) map
to kn under φ. Since cSk (n) = n+ 1 for all n, this means that all such words have
n+ 1 preimages under φ. Combining this yields cX′(n) = 1 · (cX(n)− i)+ (n+ 1)i =
cX(n)+ in for all n.

Now the proof from §3.2.3 provides examples of X ∈ S(j , 0) demonstrating sharpness
of the bounds

cX(n) � (j + 1)n and cX(n) � jn

in the i = 0 case. The procedure above yields, for any 0 ≤ i ≤ j , X′ ∈ S(j , i) with
cX′(n) = cX(n)+ in, and so such X′ demonstrate the sharpness of the more general
bounds cX(n) � (j + i + 1)n and cX(n) � (j + i)n.

3.3. Proof of Theorem 3.4. We sketch the proof of Theorem 3.4 here. Suppose that X
is a transitive subshift with a recurrent transitive point x such that X properly contains
an infinite minimal subshift M . Because M 
= X, there is an r ≥ 1 such that Lr (M) 
=
Lr (X). Define a factor map π on X such that

π(z)k =
{

0 if zk · · · zk+r−1 ∈ Lr (M),
1 otherwise.

The image π(x) is a recurrent transitive point for π(X), and the subshift π(X) contains
a unique minimal subshift π(M) = {0∞}. Since π(X) 
= {0∞}, Theorem 3.3 gives
cπ(X)(n) � 1.5n. Using an estimate as in Lemma 3.5 with i = 1 yields cX(n) � 2.5n.

To see that the bound cX(n) � 2.5n is sharp, let g : N → N be a given non-decreasing
unbounded function. In [10], the bound cπ(X)(n) � 1.5n is shown to be sharp using
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examples of the form π(X) = O(y), where

y = 0∞ . 1 0n1 1 0n2 1 0n1 1 0n3 1 0n1 1 0n2 1 0n1 1 0n4 1 · · · .

Here the sequence of subscripts on the exponents ni is the sequence ω = 12131214 · · ·
used in §3.2.3; by choosing n1 << n2 << n3 << · · · to grow sufficiently fast, it is shown
in [10] that the inequality cπ(X)(n) < 1.5n+ g(n) can be achieved for all sufficiently large
n. Now simply modify these examples using the technique (from §3.2.4) of filling in blocks
0ni with Sturmian words to obtain X that properly contains an infinite minimal subshift
and satisfies cX(n) < 2.5n+ g(n).

4. General transitive systems
Our main theorem in the recurrent case, Theorem 1.1, provides bounds in terms of i and j
for subshifts in the sets S(j , i). Our main theorem in the general transitive case, Theorem
1.2, offers similar bounds in terms of sets that we will refer to as T (j , i). Here T (j , i) ⊃
S(j , i) is the set of all transitive subshifts with j ≥ 1 minimal subsystems, exactly i of
which are infinite where 0 ≤ i ≤ j .

4.1. Two or fewer subsystems. We first tackle the cases where j ≤ 2. When j = 1, the
results of Theorems 3.1 and 3.2 yield the minimal complexity sequence of cX(n) = n+ 1
for X not periodic.

When j = 2, the orbit closure of the sequence

x = . . . 0000.11111 . . .

produces a transitive system in T (2, 0) satisfying cX(n) = n+ 1 for all n.

THEOREM 4.1. Let X ∈ T (2, i), where i > 0. Then

lim inf
n→∞ (cX(n)− (i + 1)n) > −∞.

Moreover, this bound is optimal in that the −∞ cannot be replaced by any integer.

Proof. Suppose that X contains two minimal subsystems M1 and M2. Then there is an
r > 0 such that Lr (M1) ∩ Lr (M2) = ∅. Define a factor map π on X such that

π(z)k =
{
i if zk · · · zk+r−1 ∈ Lr (Mi) for i = 1, 2,

0 otherwise.

Let y = π(x). Then, for all n ≥ 1, the words 1n and 2n occur in y. This means that y is
not periodic, so, by the Morse–Hedlund theorem, cY (n) ≥ n+ 1 for all n. Since i > 0, we
may assume without loss of generality thatM1 is infinite and so again by Morse–Hedlund,
cM1(n) ≥ n+ 1 for all n. Since π is an r-block map, for n ≥ r , the word 1n−r+1 has at
least cM1(n) ≥ n+ 1 π -preimages, so we obtain

cX(n) ≥ cπ(X)(n− r + 1)+ n > 2n− r + 1.
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If M2 is also infinite, then both 1n−r+1 and 2n−r+1 have at least n+ 1 preimages and
all of those preimages are distinct. Therefore,

cX(n) ≥ cπ(X)(n− r + 1)+ 2n > 3n− r + 1.

We also claim that the −∞ in Theorem 4.1 cannot be replaced by any integer. We will
use the properties of Sturmian subshifts described in §2.2.

We first treat the i = 1 case: choose any N > 3 and define a Sturmian subshift Z ⊂
{0, 1}Z created by β, where (1/(N + 1)) < β < (1/N). Then 10k1 ∈ L(Z) if and only if
k = N − 1 or N . Consider a right-infinite word s in Z, let

x = 0∞.s,

and let X = O(x). Then, for 1 ≤ n < N , there is only one right-special word in
Ln(X), namely, 0n. Therefore, cX(N) = N + 1. Sturmian systems contain exactly one
right-special word of length n for every n ≥ 1. Therefore, when n ≥ N , there are two
right-special words in X: 0n and a different one that is a subword of s. Lemma 3.8 then
implies that cX(n) = 2n−N + 1 for n ≥ N , so lim inf cX(n)− 2n = −N + 1. Since N
could be arbitrarily large, there is no uniform lower bound in the i = 1 case of Theorem 4.1.

For the i = 2 case, consider two Sturmian subshiftsZ1, Z2 ⊂ {0, 1}Z created by distinct
β1, β2 ∈ (1/(N + 1), 1/N) for any N > 3. Consider a left-infinite word r ∈ Z1 ending in
1 and a right-infinite word s ∈ Z2 beginning with 1. Let

x = r .s

and let X = O(x).
There are three types of words in x: subwords of r , subwords of s, and words that

contain the word 11. For n ≥ 2, there are exactly n− 1 subwords of x that contain 11. For
1 ≤ n ≤ N , Ln(Z1) = Ln(Z2); both of these equal the set of words of length n in {0, 1}n
that contain at most one 1. Therefore, cX(n) = (n− 1)+ (n+ 1) = 2n for 1 ≤ n ≤ N .

For n > N , there are at most three right-special words: a single word w1 in Ln(Z1) that
can be extended in two ways in L(Z1), a single word w2 in Ln(Z2) that can be extended
in two ways in L(Z2), and the n-letter suffix w3 of r . Therefore, by Lemma 3.8, cX(n) =
3n−N for n > N and so lim inf cX(n)− 3n = −N , implying that there is no uniform
lower bound in the i = 2 case of Theorem 4.1.

4.2. Three or more subsystems. We now proceed with the proof of Theorem 1.2, which
gives the bound cX(n) � (j + i)n forX ∈ T (j , i)with j ≥ 3. For such anX, let x ∈ X be
a transitive point. Consider the same r-block factor map π as constructed in §3.2.1. Then
π(X) ∈ T (j , 0) for j ≥ 3. Set y = π(x) and note that y is a transitive point for π(X). We
also note that y cannot be eventually periodic in both directions, or else π(X) would have
at most two minimal subsystems, namely, the alpha- and omega-limit sets of y:

α(y) =
⋂
N≥1

{σ−n(x) : n ≥ N}
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and

ω(y) =
⋂
N≥1

{σn(x) : n ≥ N}.

We then assume without loss of generality that y is not eventually periodic to the right.
(If y were eventually periodic to the right, then below we would consider left-special, as
opposed to right-special, words and arrive at the same conclusion.)

For each p ∈ {1, . . . , j} and n ∈ N, we claim that anp is right-special. Indeed, an+1
p

must occur in y for all p since {a∞
p } is a minimal subsystem of π(X). Since y is not

eventually periodic to the right, the word anpb must also occur in y.
Therefore, cπ(X)(n) ≥ jn for all n ≥ 1. By Lemma 3.8, we may establish that

cπ(X)(n) � jn by finding an infinite set of n for which #RSπ(X)(n) ≥ j + 1. Fix p so
that {a∞

p } is in the omega-limit set ω(y). Then there exist infinitely many n for which
banpb occurs in y. Recall that ban+1

p occurs in y for all n ≥ 1, so banp ∈ RSπ(x)(n+ 1),
that is, #RSπ(x)(n+ 1) ≥ j + 1, for infinitely many n.

We then have cπ(X)(n) � jn. Finally, as in Lemma 3.5, for every p with π−1{a∞
p }

infinite, the number of π -preimages of an−r+1
p is at least n, establishing that

cX(n) � (j + i)n.

Remark 4.2. The proof above also works if X ∈ S(2, i) has a transitive point x such that
π(x) is not both eventually periodic to the right and eventually periodic to the left.

THEOREM 4.3. Let X ∈ T (j , i), where j ≥ 3. Then the bound

cX(n) � (j + i)n

holds and is sharp.

Proof. The bound itself follows immediately from Theorem 1.2. To see that the bound is
sharp, let g : N → N be any non-decreasing unbounded function. Consider a point of the
form

x = 0∞.1n12n2 · · · (j − 1)nj−11nj 2nj+1 · · · (j − 1)n2j−2 · · · , (4.1)
where n1 << n2 << n3 << · · · , and set X = O(x).

For any n ≥ 1, 0n, 1n, . . . , (j − 1)n are all right-special inX. No word inX containing
01 is right-special, nor is any word that contains three distinct symbols. The only other
right-special words are of the form

pm(p + 1)nk where k ≡ p + 1mod (j − 1), 1 ≤ m ≤ nk−1

or
(j − 1)m1nk where k ≡ 1mod (j − 1), 1 ≤ m ≤ nk−1.

In other words, we have #RS(n) = j + 1 only for n ∈ (nk , nk + nk−1]. Therefore, if n ∈
[nk , nk+1), the number of right-special words of length less than n which are not of the
form an is at most

∑k−1
i=1 ni . If the sequence (nk) grows sufficiently fast, then g(nk) >∑k−1

i=1 ni and then Lemma 3.8 implies that

cX(n) < jn+ g(n)

for all n.
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For the T (j , i) bound where j ≥ 3 and i > 0, consider the family of examples obtained
by replacing the blocks 0∞, 1n1 , 2n2 , . . . , (i − 1)ni−1 , 1nj , 2nj+1 , . . . , (i − 1)nj+i−2 , . . . with
blocks from Sturmian sequences as in §3.2.4. Then the estimate in Lemma 3.5 gives the
sharpness of the bound.

5. Generic measures
We say that a point x in a subshift X is generic for a measure μ if the measures νn(x) :=
(1/n)

∑n−1
i=0 δσ ix converge to μ in the weak topology, that is, if

lim
N→∞

1
N

N−1∑
i=0

f (σ i(x)) =
∫
f dμ

for all continuous f : X → R. The pointwise ergodic theorem implies that whenever μ is
ergodic, μ-almost every x ∈ X is generic for μ. We say that a measure μ is a generic
measure on X if there exists x ∈ X that is generic for μ. All ergodic measures are
clearly generic by the pointwise ergodic theorem, but generic measures are not necessarily
ergodic; for instance, it is easily checked that

x = 0∞.011000111100000111111 . . .

is generic and not ergodic for μ = (δ0∞ + δ1∞)/2.
Our goal is to provide bounds on the number of generic measures a transitive subshift

can support. One of the more general results in this vein is the following theorem of Cyr
and Kra, which does not assume transitivity of the subshift, but also does not control the
number of atomic measures supported on periodic subshifts.

THEOREM 5.1. [3] Suppose that X is a subshift and there exists k ≥ 3 such that

lim sup
n→∞

cX(n)

n
< k.

IfX has a generic measure μ and there is a generic point z ∈ X for μ such that the subshift
Z = O(z) is not uniquely ergodic, then X has at most k − 2 distinct, non-atomic, generic
measures.

Combining the Cyr–Kra result above with others in this paper, we obtain the same
conclusion under a different hypothesis.

THEOREM 5.2. Suppose that X is a transitive subshift which is the orbit closure of a
recurrent point and there exists k ≥ 3 such that

lim sup
n→∞

cX(n)

n
< k.

Then X has at most k − 2 distinct, non-atomic, generic measures.

Proof. Let X be a transitive subshift with a recurrent transitive point. Fix a generic
measure μ for X and let z be a generic point for μ. If O(z) is not uniquely ergodic, then
we are done by Theorem 5.1. Thus, we may assume that Z = O(z) is uniquely ergodic.
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Since Z is uniquely ergodic, it follows that every point x ∈ Z is generic for μ (see, for
instance, [14]).

Now assume for a contradiction that X has k − 1 ≥ 2 generic measures μ1, . . . , μk−1,
with respective generic points z1, . . . , zk−1. Then, by the preceding paragraph, we obtain
k − 1 disjoint subsystems Z1, . . . , Zk−1 such that for all x ∈ Zi , x is generic for μi . Each
Zi contains a distinct minimal subsystem. Therefore, by Theorem 1.1,

lim sup
n→∞

(cX(n)− kn) = ∞,

which is a contradiction.

In general, there does not appear to be a simple way to combine our results with those
of [3] in order to use an upper bound on lim supn→∞ cX(n)/n to bound the number of
generic (not necessarily non-atomic) measures in the transitive case. However, with some
effort, we are able to show that in the case where k = 3, that is, when X is transitive with
a recurrent transitive point and

lim sup
n→∞

cX(n)

n
< 3,

then X is uniquely ergodic; this is our Theorem 1.3.

5.1. Proof of Theorem 1.3. If X is minimal, then this is Theorem 1.5 from [2]. If
X is not minimal, then it cannot be the case that X contains two or more minimal
subsystems, since our Theorem 1.1 would imply that cX(n) � 3n, which would contradict
lim supn→∞(cX(n)/n) < 3.

So, X contains a unique minimal subsystem M1. By Theorem 1.5 from [2], there is a
unique (ergodic) measure μ supported on M1. Consider the factor map π (as defined in
§3.2.1); then μ pushes forward under π to δa∞

1
in π(X) and it is the only measure which

does so. So, if we are able to prove that π(X) is uniquely ergodic, then its unique measure
is δa∞

1
, which implies that μ is the unique measure on X.

Since the hypotheses of Theorem 1.3 are preserved under application of a factor map,
we can assume without loss of generality thatX has a unique minimal subsystem {a∞

1 }. We
can further reduce (by applying a 1-block factor map sending a1 to 0 and all other letters to
1) to the case where X ⊆ {0, 1}Z and that X has unique minimal subsystem {0∞}. Toward
a contradiction, suppose that such an X has an ergodic μ 
= δ0∞ .

LEMMA 5.3. Let (nk) ⊆ N be a strictly increasing sequence and x a generic point for μ.
Then, for all sufficiently large k, x[0,∞) has the form

x[0,∞) = w
(k)
0 0≥nk w(k)1 0≥nk w(k)2 · · · ,

where every w
(k)
i begins and ends with 1 and does not contain 0nk . Moreover,

(|w(k)0 |/nk) → ∞.

Proof. We first note that since x is generic for μ 
= δ0∞ , x[0,∞) contains infinitely many
1’s. Moreover, since 0∞ is the only minimal subsystem of X, the omega-limit set of x
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must contain 0∞, that is, x[0,∞) contains 0n for arbitrarily large n. Therefore, x[0,∞) has
the claimed form and it remains only to show that (|w(k)0 |/nk) → ∞.

By genericity,

μ([0]) =
∫
χ[0] dμ

= lim
N→∞

1
N

N−1∑
i=0

χ[0](σ
i(x))

= lim
N→∞

# zeros in x0 · · · xN−1

N
.

Observe that μ([0]) < 1 since we are assuming that μ 
= δ0∞ . It follows that |w(k)0 | →
∞. Therefore, if we let rk = |w(k)0 | and zk denote the number of zeros in w(k)0 , then

lim
k→∞

zk

rk
= μ([0]) and lim

k→∞
zk + nk

rk + nk
= μ([0]).

Through some algebraic manipulation,

0 = lim
k→∞

(
zk

rk
− zk + nk

rk + nk

)
= lim
k→∞

((
nk

nk + rk

)(
zk − rk

rk

))
.

Now

lim
k→∞

(
zk − rk

rk

)
= lim
k→∞

(
zk

rk
− 1

)
= μ([0])− 1 
= 0,

so limk→∞(nk/(nk + rk)) = 0, which implies that (rk/nk) → ∞.

LEMMA 5.4. If x is a sequence which is not eventually periodic to the right, n ∈ N, and w
is a subword of x with length at least cX(n)+ n, then w contains an n-letter right-special
word.

Proof. Assume that x and w are as in the lemma. By assumption, w contains more than
cX(n) subwords of length n and therefore one is repeated, call it u. If no n-letter subword
of w is right-special, then for every n-letter subword of w, there is only one choice of a
letter which may follow it in x. However, this would mean that the portion of x between the
two occurrences of u would have to repeat indefinitely to the right, a contradiction to the
assumption that x is not eventually periodic to the right. Therefore, w contains an n-letter
right-special word.

LEMMA 5.5. There does not exist a strictly increasing sequence (nk) such that #RS(nk) =
1 for all k.

Proof. If such a sequence (nk) exists, then, for every k, the only right-special word of
length nk is 0nk . Let x be generic for μ. We note that x cannot be eventually periodic to the
right: if that periodic point were 0∞, then by genericity μ = δ0∞ ; and if it were not 0∞,
then X would contain a minimal subsystem other than {0∞}.
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Considerw(k)0 as defined in Lemma 5.3. We note thatw(k)0 cannot contain a right-special
word of length nk , since by definition it would not be 0nk , which is a contradiction.
Therefore, by Lemma 5.4, |w(k)0 | < cX(nk)+ nk .

Next we observe that there exists K ∈ N such that cX(n) < Kn for all n. To see this,
note that, since lim supn→∞(cX(n)/n) < 3, there exists N ∈ N such that cX(n) < 3n for
all n ≥ N . And, for 1 ≤ n ≤ N − 1, we can simply let K(n) ∈ N be any value such that
K(n) > cX(n). Then just define

K := max{3, K(1), . . . , K(N − 1)}.
Then |w(k)0 | < cX(nk)+ nk < (K + 1)nk for all k, which contradicts the conclusion from
Lemma 5.3 that (|w(k)0 |/nk) → ∞.

Following [2], we define a strictly increasing sequence (nk) to be logarithmically
syndetic if there exists M such that (nk+1/nk) < M for all k.

LEMMA 5.6. There is a logarithmically syndetic sequence (nk) such that #RS(nk) ≤ 2 for
all k. Moreover, ifRS(nk) = {0nk , bk} for some k and bk 
= 0nk , then bk cannot be followed
by three or more symbols.

Proof. Let ε = 3 − lim supn→∞(cX(n)/n). Then there exists N such that (cX(n)/n) <
3 − ε/2 for all n ≥ N . We claim that any interval of the form [i, (6/ε) · i] where i ≥ N

must contain a value of n such that c(n+ 1)− c(n) ≤ 2. The statement of Lemma 5.6 then
follows immediately by Lemma 3.8.

To prove the claim, let i ≥ N and suppose that cX(n+ 1)− cX(n) ≥ 3 for all n ∈ [i, j ],
where j = (6/ε) · i. Then

cX(j) ≥ cX(i)+ 3(j − i)

> 3(j − i)

= j (3 − ε/2).

But (cX(j)/j) < 3 − ε/2 since j ≥ N .

Let (nk) be a fixed logarithmically syndetic sequence as given by Lemma 5.6 and let
M > 1 be a constant such that (nk+1/nk) < M . By Lemma 5.5, by deleting a finite number
of terms in (nk) if necessary, we can assume that #RS(nk) = 2 for all k. Let bk denote the
only right-special word of length nk other than 0nk . By passing to a subsequence and
increasing M to 10M if necessary, we can assume that

10 <
nk+1

nk
< M for all k. (5.1)

Since (|w(k)0 |/nk) → ∞ and lim supk→∞(cX(nk)/nk) ≤ lim supn→∞(cX(n)/n) < 3,
we see that |w(k)0 | > cX(nk)+ nk for sufficiently large k. By Lemma 5.4, w(k)0 contains
a right-special word of length nk , which cannot be 0nk , so w(k)0 contains at least one
occurrence of bk .
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Define ak to be the shortest (possibly empty) word such that

w
(k)
0 = akbkrk (5.2)

for some word rk and define dk to be the shortest word such that

w
(k)
0 = 	kbkdk (5.3)

for some word 	k . Therefore, we can write

w
(k)
0 = akbkukdk

for some (possibly empty) word uk . Observe that |ak|, |dk| < cX(nk)+ nk < 4nk for
all sufficiently large k, since otherwise, by Lemma 5.4, ak or dk would contain bk ,
contradicting minimality of length in their definitions. By definition, bk is a suffix of
akbkuk , but, since (|w(k)0 |/nk) → ∞, for sufficiently large k we can assume that

|w(k)0 | > 13nk
= 4nk + nk + 4nk + 4nk
> |ak| + |bk| + |dk| + cX(nk)+ nk ,

which implies that |uk| > cX(nk)+ nk . Therefore, by Lemma 5.4, uk contains at least one
copy of bk .

Remark 5.7. Let p > 0 be an arbitrary positive integer. As above, for sufficiently large k,
we have

|w(k)0 | > (13 + 4p)nk
> |ak| + |bk| + |dk| + p(cX(nk)+ nk).

Applying Lemma 5.4, we see that for sufficiently large k, uk contains at least p copies
of bk .

Observe that bk is a suffix of akbkuk , and bk is the only word in RS(nk) that appears
in w(k)0 . Also, ak and dk are the shortest words that satisfy (5.2) and (5.3) and (by Lemma
5.6) bk can only be followed by two distinct symbols. Therefore, w(k)0 must have the form

w
(k)
0 = akbk(ekbk)

mkdk , (5.4)

where ek is the shortest (possibly empty) word such that w(k)0 = akbkekbkqk for some
word qk .

In the form (5.4), observe (by Lemma 5.4) that

|ek| < cX(nk)+ nk < 4nk (5.5)

for all sufficiently large k since ek does not contain any right-special word of length nk .
Also, mk → ∞ by Remark 5.7. Therefore, by deleting a finite number of terms from the
beginning of (nk) if necessary, we can assume that

mk > M2 + 1 for all k ≥ 1. (5.6)
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Observe that the first symbols of ek and dk must be different: if they were the same,
then, since bk is the only word in RS(nk) that appears in w(k)0 , we would have ek = dk

and x[0,∞) = akbk(ekbk)
∞. As noted, for example, in the proof of Lemma 5.5, this cannot

happen because x cannot be eventually periodic to the right.
Now observe that all suffixes of (ekbk)mk−1 of length at least nk are right-special: this is

due to the fact that any such suffix can be followed by either ek or dk and, as we just noted,
the first symbols of ek and dk must be different. By construction, none of these suffixes
have the form 0n. Therefore, #RS(n) ≥ 2 for each n ∈ (nk , (mk − 1) · |ekbk|].
LEMMA 5.8. For all k, both bk+1 and bk+2 are suffixes of (ekbk)mk−1.

Proof. Using (5.1) and (5.6), observe that

|bk+1| = nk+1

< M · nk
< (mk − 1) · nk
≤ (mk − 1) · |ekbk|.

Therefore, |bk+1| ∈ (nk , (mk − 1) · |ekbk|). And, bk+1 is the only right-special word of
length nk+1 other than 0nk+1 , which implies that bk+1 is a suffix of (ekbk)mk−1.

Next, observe that by (5.1) and (5.6),

|bk+2| = nk+2

< M · nk+1

< M2 · nk
< (mk − 1) · nk
≤ (mk − 1) · |ekbk|.

Therefore, bk+2 is also a suffix of (ekbk)mk−1.

LEMMA 5.9. For all k, ekbkekbk is a suffix of bk+1.

Proof. By Lemma 5.8, bk+1 is a suffix of (ekbk)mk−1, so it is enough to show that |bk+1| ≥
|ekbkekbk|. To see this, observe that, using (5.1) and (5.5),

|bk+1| = nk+1

> 10nk
= 4nk + nk + 4nk + nk

> |ek| + |bk| + |ek| + |bk|
= |ekbkekbk|.

PROPOSITION 5.10. For all k, ek+1bk+1ek+1bk+1 is a suffix of (ekbk)mk−1.

Proof. If we apply Lemma 5.9 to k + 1 instead of k, we see that ek+1bk+1ek+1bk+1 is a
suffix of bk+2, which, by Lemma 5.8, is a suffix of (ekbk)mk−1.
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Finally, to arrive at a contradiction, we will use the words ekbkekbk to construct a
minimal subsystem of X other than {0∞}. To do this, first define Lk to be the length of
the longest block of zeros occurring in ekbkekbk . Then Lk is also the length of the longest
block of zeros in (ekbk)mk−1 (assuming that mk ≥ 3, which is trivial since mk → ∞).

PROPOSITION 5.11. (Lk) is a constant sequence.

Proof. By Proposition 5.10, ek+1bk+1ek+1bk+1 is a suffix of (ekbk)mk−1, so Lk+1 ≤ Lk .
On the other hand, by Lemma 5.9, ekbkekbk is a suffix of bk+1, so Lk ≤ Lk+1.

For each k, define y(k) to be any point in X of the form

y(k) = 	k ek bk . ek bk rk ,

where 	k and rk are left- and right-infinite sequences. By compactness, a subsequence
of (y(k)) converges to a point y ∈ X. But by construction (and applying Proposition
5.11), O(y) is a subsystem of X that is disjoint from {0∞}. Therefore, O(y) contains a
minimal subsystem other than {0∞}, which is a contradiction, completing the proof of
Theorem 1.3. �

Remark 5.12. The assumption of recurrence was only used above to establish that X has
a single minimal subsystem. Our results in this paper show that the only transitive X with
more than one minimal subsystem and lim supn→∞(cX(n)/n) < 3 are of the following
types.
• X has two periodic minimal subsystems (e.g., the orbit closure of x = . . . 000.1111 . . .

or x = 1∞.0n110n210n31 . . .).
• π(X) is eventually periodic in both directions and X has one infinite subsystem (e.g.,

x = . . . 000.s . . . , where s is a one-sided sequence from a Sturmian system).

We now conclude with a proof of Theorem 1.4, which establishes an upper bound of
g − 1 on the number of generic measures whenX = O(x) for some x that is not eventually
periodic in both directions and

lim inf(cX(n)− gn) = −∞.

5.2. Proof of Theorem 1.4. Assume that X is as above and x is not eventually periodic
to the right. Since lim inf(cX(n)− gn) = −∞, Lemma 3.8 implies that the number of
n-letter right-special words is strictly less than g for infinitely many n. Therefore, there
exist C ≤ g − 1 and a strictly increasing sequence (nk) such that there are exactly C
right-special words of length nk; call them b

(i)
k for 1 ≤ i ≤ C. We may further assume

that

cX(nk) < 2gnk

for every k by considering values of n where cX(n)− gn is smaller than all previous
values cX(i)− gi for i < n; see the discussion following Theorem 2.2 in [2] for details.
Therefore, by Lemma 5.4, every word of length (2g + 1)nk contains at least one word b(i)k .

https://doi.org/10.1017/etds.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.8


1992 A. Dykstra, N. Ormes and R. Pavlov

For each k and i, choose a point x(i)k with the word b(i)k appearing in coordinates 0

through nk − 1, and define the measure ν(i)k := ν
x
(i)
k
nk as discussed at the start of §5, that is,

ν
(i)
k = 1

nk

nk−1∑
j=0

δ
σj x

(i)
k

.

By compactness, we can pass to a subsequence and assume without loss of generality that
for all i,

(
ν
(i)
k

)
k

converges to a limit ν(i). We claim that every generic measure is some ν(i).
For this, assume that μ is an arbitrary generic measure and let x ∈ X be generic for μ.

For each k, the word x0 · · · x(2g+1)nk−1 contains some b(ik)k by Lemma 5.4 and, by again
passing to a subsequence, we can assume that ik is always equal to some fixed i. For each
k, define mk ≤ 2gnk so that xmk · · · xmk+nk−1 = b

(i)
k .

Since x is generic for μ, both νxmk and νxmk+nk−1 converge to μ in the weak topology.
This topology is induced by the metric

d(μ, ν) :=
∑
n∈N

2−n|μ([wn])− ν([wn])|,

where {wn} is an arbitrary enumeration of the set of finite words on {0, 1}. Then, for any
ε > 0, we may chooseK so that for all k > K , d(νxmk , μ), d(ν

x
mk+nk , μ) < ε. This implies

that

d(mkν
x
mk

, mkμ) < mkε and d((mk + nk)ν
x
mk+nk , (mk + nk)μ) < (mk + nk)ε,

which together imply that

d((mk + nk)ν
x
mk+nk −mkν

x
mk

, nkμ) < (2mk + nk)ε.

Therefore,

d(νσ
mk x

nk
, μ) <

2mk + nk

nk
ε ≤ (4g + 1)ε.

Since ε > 0 was arbitrary, νσ
mk x

nk
→ μ. Recall that σmkx begins with b(i)k and so νσ

mk x
nk

→
ν(i) by definition of ν(i). Therefore, μ = ν(i) and, since μ was an arbitrary generic
measure, every generic measure is one of the ν(i). Since there are C ≤ g − 1 such
measures, the proof is complete. �
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