SOME LOCAL-GLOBAL PRINCIPLES FOR FORMALLY REAL FIELDS

M. MARSHALL

1. Introduction. Let F be a formally real field, and let Δ be a preordering of F; that is, a subset of F satisfying $\Delta+\Delta=\Delta, \Delta \Delta=\Delta, F^{2} \subseteq \Delta$. Denote by X_{Δ} the set of all orderings P of F satisfying $P \supseteq \Delta$. Thus $\Delta=\bigcap_{P \in X_{\Delta}} P$. This result is well known. It was first proved by Artin [3, Satz 1] in the case $\Delta=\sum F^{2}$.

For P an ordering of F, denote by F_{P}, the real closure of F at P. Denote by $W=W(F)$ the Witt ring of $F[\mathbf{1 4}]$, and by $M=M(F)$ the augmentation ideal of W, that is, the ideal of even dimensional forms. $W_{\Delta}=W_{\Delta}(F)$ will denote the ideal of W generated by all forms of the type $\langle 1,-s\rangle, s \in \Delta^{\times}$. (Thus, $\mathrm{W}_{\Delta}=M$, if $\Delta=F$.)

Theorem 1. Suppose Δ is a (proper) preordering of F. Then the kernel of the natural ring homomorphism from $W(F)$ into $\prod_{P \in X_{\Delta}} W\left(F_{P}\right)$ is $W_{\Delta}(F)$.

This theorem was originally proved by Pfister [12] in the case $\Delta=\sum F^{2}$. The general case follows, for example from the theory developed in [4]. For completeness, a proof is given here following the proof of Theorem 2.

Denote by $k_{*} F$ the graded ring $\oplus_{i=0}^{\infty} k_{i} F$ as defined by Milnor in [11]. Let $k_{* \Delta} F$ denote the ideal of $k_{*} F$ generated by the elements $l(s), s \in \Delta^{\times}$. (Thus $k_{* \Delta} F=\oplus_{i=0}^{\infty} k_{i \Delta} F$ where $k_{i \Delta} F$ is generated by all elements of the form $l\left(a_{1}\right) \ldots l\left(a_{i}\right), a_{1} \in \Delta^{\times}, a_{2} \ldots a_{i} \in F^{\times}$.)

In this paper we examine the following conjectures.
Conjecture 1. The kernel of the natural ring homomorphism from $k_{*} F$ into $\prod_{P \in X_{\Delta}} k_{*} F_{P}$ is $k_{* \Delta} F$.

Conjecture 2. For each positive integer $i, M^{i} \cap W_{\Delta}=M^{i-1} W_{\Delta}$.
Conjecture 1 is the main conjecture. Its connection with Conjecture 2 is described in Corollaries 2 and 3, Section 2.

Both of these conjectures are shown to be true if either
(i) Δ satisfies the descending chain condition, or
(ii) Δ is 2-stable.

These results are proved in Sections 4 and 5 respectively. The major result is Theorem 7. Sections 2 and 3 are devoted to pointing out various consequences of Conjecture 1.

[^0]Although the conjectures are stated for Δ an arbitrary (proper) preordering, there is special interest in the case $\Delta=\sum F^{2}$. At the present time we know about as much in this case as we do in the more general situation.

Conjecture 1 amounts to the statement that, for each non-negative integer i, $k_{i \Delta} F$ is the kernel of the natural mapping from $k_{i} F$ into $\prod_{P \in X_{\Delta}} k_{i} F_{P}$. It is trivially true for $i=0$ (since we assume $\Delta \neq F$). Also, the natural isomorphism $F^{\times} / F^{\times^{2}} \cong k_{1} F$ carries $\Delta^{\times} / F^{\times^{2}}$ onto $k_{1 \Delta} F$. Thus, the Artin formula, $\bigcap_{P \in X_{\Delta}} P=\Delta$, implies the conjecture is valid for $i=1$. The question is open for $i \geqq 2$.

The second conjecture is trivially true for $i=1$. It is also true for $i=2$. The proof is a simple modification of that given in [7, Theorem 2.8] for the case $\Delta=\sum F^{2}$. The question is open for $i \geqq 3$. However, for $\Delta=\sum F^{2}$, Elman and Lam have shown in [9, Theorem 3], that $M^{2} W_{\Delta}=0$ implies $M^{3} \cap W_{\Delta}=$ 0 . It follows that Conjecture 2 is true in case $\Delta=\sum F^{2}, M^{2} W_{\Delta}=0$.

It is worthwhile pointing out that a weak version of the two conjectures is known to hold in general, namely:

Theorem 2. Let Δ be any preordering of F.
(i) Let $f \in k_{*} F$. Thenf is zero in $k_{*} F_{P}$ for all $P \in X_{\Delta}$ if and only if $l(-1)^{v} \cdot f$ $\in k_{*, \Delta} F$ holds for some integer $v \geqq 0$.
(ii) Let $f \in M^{i} \cap W_{\Delta}$. Then there exists an integer $v \geqq 0$ such that $2^{v} \times f \in$ $M^{i+v-1} W_{\Delta}$.
(Thus, if it were always possible to choose $v=0$, we would have the conjectures.)

It should be noted that, in case $\Delta=\sum F^{2}$, each element of $k_{* \Delta} F$ is annihilated by some power of $l(-1)$. Thus the equation $l(-1)^{v} f \in k_{* \Delta} F$ can be replaced by $l(-1)^{v} f=0$ in this case. Also note that, in this same case, (ii) is a triviality, since the elements of W_{Δ} are two-power torsion.

A proof of (i) in the case $\Delta=\sum F^{2}$ is found in [1]. However, for completeness, a full proof is presented here.

Proof of Theorem 2. For $a=\left(a_{1}, \ldots, a_{n}\right)$ a tuple of elements of $F^{\times}, \Delta(a)=$ $\Delta\left(a_{1}, \ldots, a_{n}\right)$ will denote the preordering of F generated by a_{1}, \ldots, a_{n} over Δ. Use the notations of $\left[\mathbf{1 3}\right.$, p. 42], i.e. $\psi_{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle, \pi_{a}=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$. Let $\psi_{a} \in M^{i}$ and suppose its signatures satisfy $\operatorname{sgn}_{P} \psi_{a}=0$ for all $P \in X_{\Delta}$ (respectively, $\operatorname{sgn}_{P} \psi_{a} \equiv 0 \bmod 2^{i+1}$ for all $P \in X_{\Delta}$). By [13, Lemma 2.1.6] we have

$$
2^{n} \times \psi_{a}=\oplus_{\epsilon} \psi_{\epsilon} \otimes \pi_{\epsilon a} \quad \text { in } W
$$

the sum running through all n-tuples $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ of ± 1. There are two cases to consider:
(i) $\Delta(\epsilon a) \neq F$. In this case there exists $P \in X_{\Delta}$ satisfying $\operatorname{sgn}_{P} a_{i}=\operatorname{sgn}_{P} \epsilon_{i}$, $i=1, \ldots, n$, so $\psi_{\epsilon}=0$ in W (respectively, $\psi_{\epsilon}=2^{i+1} v$ in W, v some integer). Thus $\psi_{\epsilon} \otimes \pi_{\epsilon a}=0$ in W (respectively, $\psi_{\epsilon} \otimes \pi_{\epsilon a} \in M^{i+n+1}$).
(ii) $\Delta(\epsilon a)=F$. This implies that for a sufficiently large set of elements $s_{1}, \ldots, s_{v} \in \Delta^{\times}$, we have that $\pi_{s} \otimes \pi_{\epsilon a}$ is isotropic and hence zero in W.

Thus, by picking s_{1}, \ldots, s_{v} to be a sufficiently large set of elements of Δ^{\times} [for example including n ones, and all elements required by the terms of type (ii)] we have $\pi_{s} \otimes \psi_{a}=0$ in W (respectively, $\pi_{s} \otimes \psi_{a} \in M^{v+i+1}$).

Now write $\langle 1, s\rangle=2-\langle 1,-s\rangle$ and expand what we have just obtained to get $2^{v} \times \psi_{a} \in M^{i+v-1} W_{\Delta}$ (respectively, $2^{v} \times \psi_{a} \in M^{i+v-1} W_{\Delta}+M^{i+v+1}$). This proves the second statement.

To prove the first let $f \in k_{i} F$ be zero over F_{P} for all $P \in X_{\Delta}$, and let $s_{i}(f)$ denote the image of f in M^{i} / M^{i+1} under the natural map [11]. Say $s_{i}(f)=$ $\psi_{a}+M^{i+1}$. Then ψ_{a} satisfies $\operatorname{sgn}_{P} \psi_{a} \equiv 0 \bmod 2^{i+1}$ for all $P \in X_{\Delta}$, so by our previous considerations, there is a non-negative integer v such that $2^{*} \times \psi_{a} \in$ $M^{i+v-1} W_{\Delta}+M^{i+v+1}$. Thus we can write $l(-1)^{v} f=g+h, g \in k_{i+v, \Delta} F, h$ in the kernel of the mapping $s_{i+v}: k_{i+v} F \rightarrow M^{i+v} / M^{i+v+1}$. Thus, by [11, p. 332] $l(-1)^{t} h=0$ for some non-negative integer t, so $l(-1)^{v+t} f \in k_{* \Delta} F$.

Using the proof of Theorem 2 given above, there is now a very easy proof of Theorem 1 .

Proof of Theorem 1. Suppose ψ_{a} is zero over F_{P} for all $P \in X_{\Delta}$. Then by the proof of Theorem $2, \pi_{s} \otimes \psi_{a}=0$ in W_{F} for some v-tuple $s=\left(s_{1}, \ldots, s_{v}\right)$ of elements of Δ^{\times}. By the distributive property, this yields $a_{1} \pi_{s} \oplus \ldots \oplus a_{n} \pi_{s}=$ 0 so there exist t_{1}, \ldots, t_{n} represented by π_{s} (and hence in Δ) not all zero, such that $a_{1} t_{1}+\ldots+a_{n} t_{n}=0$. Let $a^{\prime}=\left(a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right)$ be defined by $a_{i}{ }^{\prime}=a_{i}$, if $t_{i}=0 ; a_{i}{ }^{\prime}=a_{i} t_{i}$, if $t_{i} \neq 0$. Then $\psi_{a^{\prime}}$ is isotropic and $\psi_{a^{\prime}}-\psi_{a} \in W_{\Delta}$. Also, since $t_{i} \pi_{s} \cong \pi_{s}$ if $t_{i} \neq 0$, we have $\pi_{s} \otimes \psi_{a^{\prime}}=\pi_{s} \otimes \psi_{a}=0$ in W. Thus, by induction on the dimension, we have $\psi_{a^{\prime}}$ (and hence ψ_{a}) is in W_{Δ}.

It is not clear how this proof could be modified to yield a proof of the conjectures.
2. Some consequences of Conjecture 1. Denote by gr $W(F)$ the graded ring $\oplus_{i=0}^{\infty} M^{i} / M^{i+1}$, and by $\operatorname{gr}_{\Delta} W(F)$ the ideal of gr $W(F)$ generated by the elements $\langle 1,-s\rangle+M^{2}, s \in \Delta^{\times}$.

Theorem 3. If Conjecture 1 holds for Δ, then the kernel of the ring homomorphism from gr $W(F)$ into $\Pi_{P \in X_{\Delta}} \operatorname{gr} W\left(F_{P}\right)$ is $\mathrm{gr}_{\Delta} W(F)$.

Proof. The natural ring homomorphism $s: k_{*} F \rightarrow \mathrm{gr} W(F)$ is surjective, carries $k_{* \Delta} F$ onto $\operatorname{gr}_{\Delta} W(F)$, and is an isomorphism if F is real closed.

Note that if the assumption that Conjecture 1 holds is dropped, then one still has the following weaker result: $f \in \operatorname{gr} W(F)$ is zero in $\operatorname{gr} W\left(F_{P}\right)$ for all $P \in X_{\Delta}$ if and only if $\left(2+M^{2}\right)^{v} . f \in \operatorname{gr}_{\Delta} W(F)$ holds for some integer $v \geqq 0$. This is implicit in the proof of Theorem 2.

Corollary 1. Assume Conjecture 1 holds for Δ. Let k be a positive integer, and let $f \in W$. Then $\operatorname{sgn}_{P} f \equiv 0 \bmod 2^{k}$ holds for all $P \in X_{\Delta}$ if and only if $f \in W_{\Delta}+M^{k}$.

Proof. This is immediate from the previous theorem, using induction on k.
If $f \in M^{i} \cap W_{\Delta}$, then $\bar{f} \in M^{i} / M^{i+1}$ is zero locally for all $P \in X_{\Delta}$. It follows by Theorem 3 that if Conjecture 1 holds for Δ, then $f \in M^{i-1} W_{\Delta}+$ M^{i+1}. Thus $M^{i} \cap W_{\Delta}=M^{i-1} W_{\Delta}+M^{i+1} \cap W_{\Delta}$. Repeating this process we get:

Corollary 2. Suppose Conjecture 1 holds for Δ. Then for all integers $i, k \geqq 1$, $M^{i} \cap W_{\Delta}=M^{i-1} W_{\Delta}+M^{i+k} \cap W_{\Delta}$,

This is "almost" Conjecture 2. In particular we have the following:
Corollary 3. Suppose that Conjecture 1 holds for Δ, and that $M^{k} \cap W_{\Delta}=0$ holds for some positive integer k. Then Conjecture 2 holds for Δ.

Note that the assumption $M^{k} \cap W_{\Delta}=0$ implies $2^{k-1}\langle 1,-s\rangle=0$ in W for all $s \in \Delta^{\times}$; i.e. that $\Delta=\sum F^{2}$. Thus Corollary 3 is really a result only about $\Delta=\sum F^{2}$.

Denote by G_{F} the Galois group of $\bar{F} / F ; \bar{F}$ being the algebraic closure of F. Denote by $H^{*}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ the graded ring of cohomology groups $H^{*}\left(G_{F}\right.$, $\mathbf{Z} / 2 \mathbf{Z})=\oplus_{i=0}^{\infty} H^{i}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$, and by $h: k_{*} F \rightarrow H^{*}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ the canonical ring homomorphism. Thus $h\left(k_{*} F\right)$ is the subring of $H^{*}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ generated by the elements $\delta(a), a \in F^{\times}$.

Theorem 4. Assume Conjecture 1 holds for Δ. Then the kernel of the natural ring homomorphism from $h\left(k_{*} F\right)$ into $\prod_{P \in X_{\Delta}} H^{*}\left(G_{F_{P}}, \mathbf{Z} / 2 \mathbf{Z}\right)$ is the ideal of $h\left(k_{*} F\right)$ generated by the elements $\delta(s), s \in \Delta^{\times}$.

Proof. $h: k_{*} F \rightarrow H^{*}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ is an isomorphism if F is real closed.
Since $h\left(k_{2} F\right)$ can be identified with the subgroup of the Brauer group B_{F} generated by the quaternion algebras $(a, b / F), a, b \in F^{\times}$, we have the following result:

Corollary. Suppose that Conjecture 1 holds for Δ. Suppose $x \in B_{F}$ is a product of quaternion algebras, and that x splits over all real closures $F_{P}, P \in X_{\Delta}$. Then x is of the form

$$
\prod_{i=1}^{n}\left(\frac{a_{i}, s_{i}}{F}\right),
$$

with $a_{i} \in F^{\times}, s_{i} \in \Delta^{\times}, i=1, \ldots, n$.
3. The injectivity of the homomorphisms s, h. It has been conjectured in [11] that the mappings $s: k_{*} F \rightarrow \mathrm{gr} W(F), h: k_{*} F \rightarrow H^{*}\left(F_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ are injective. In case Conjecture 1 holds for $\Delta=\sum F^{2}$, one can get some partial results in this direction.

The first result holds without the assumption of Conjecture 1 , and is an immediate consequence of [2] and [6, Theorem 3.2].

Theorem 5. Let i be any positive integer, and let $\Delta=\sum F^{2}$. Then the following statements are equivalent:
(i) $k_{i \Delta} F=0$
(ii) $M^{i-1} W_{\Delta}=0$
(iii) $M^{i-1} W_{\Delta}=M^{i} W_{\Delta}$.

Define the v-invariant of F to be the greatest integer (or ∞ if no such integer exists) satisfying $k_{v, \Delta} F \neq 0$, (with $\Delta=\sum F^{2}$). In view of the previous theorem, this invariant can be characterized as the greatest integer for which there is a v-fold Pfister form over F which is both anisotropic and torsion.

If u denotes the generalized u-invariant of F as defined in [8], then it is clear that $2^{v} \leqq u$. In fact $2^{v}=u$, if $u \leqq 4$.

For the rest of this section, assume that Conjecture 1 holds for $\Delta=\sum F^{2}$.
Theorem 6. $s_{i}: k_{i} F \rightarrow M^{i} / M^{i+1}$ and $h_{i}: k_{i} F \rightarrow H^{i}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ are injective if and only if they are injective on $k_{i \Delta} F .\left(\Delta=\sum F^{2}\right)$.

Proof. This is clear, since s_{i}, h_{i} are locally isomorphisms.
Corollary 1. If $i>v$, then s_{i}, h_{i} are injective.
Proof. This follows from Theorems 5 and 6.
Corollary 2. Supposev $\leqq 2$. Then s, h are injective.
Proof. Since $s_{0}, s_{1}, s_{2}, h_{0}$, and h_{1} are injective, and since s_{i}, h_{i} are injective for $i \geqq 3$ by the previous corollary, all that is required is to show that h_{2} is injective. The mapping $c=h_{2} \circ s_{2}^{-1}: M^{2} / M^{3} \rightarrow H^{2}\left(G_{F}, \mathbf{Z} / 2 \mathbf{Z}\right)$ is the Clifford mapping. By [9, Theorem 3], this mapping is injective on $\left(M W_{\Delta}+M^{3}\right) / M^{3}$. Thus h_{2} is injective on $k_{2, \Delta} F$ and hence (by Corollary 1) on $k_{2} F$ also.
4. The descending chain condition. For Δ a preordering of F, and a_{1}, $i \in I$ elements of $F^{\times}, \Delta\left(a_{i} \mid i \in I\right)$ will denote the preordering of F generated by $a_{i}, i \in I$ over Δ.

We will say that Δ satisfies the descending chain condition (abbreviated D.C.C.) if every descending chain $\Delta_{1} \supseteq \Delta_{2} \supseteq \Delta_{3} \supseteq \ldots$ of preorderings, each of which is finitely generated over Δ, terminates. This is equivalent to the condition that every non-empty set consisting of preorderings of F which are finitely generated over Δ has minimal elements.

Examples. (i) If the group index ($F^{\times}: \Delta^{\times}$) is finite, then Δ satisfies D.C.C. Such preorderings are obtained by taking the intersection of a finite set of orderings of F.
(ii) Let $F=\cup_{n=1}^{\infty} \mathbf{R}\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{n}\right)\right)$. Then F is superpythagorian, so the proper preorderings of F are just the sets of the form $\Delta=\Delta^{\times} \cup\{0\}$ where Δ^{\times}
is a subgroup of F^{\times}which does not contain -1 [7, Theorem 4.3]. Thus all preorderings of F satisfy D.C.C. This provides an example of a field F and a preordering $\Delta \subseteq F$ satisfying D.C.C. for which the index ($F^{\times}: \Delta^{\times}$) is infinite. Other such examples can be found where F is not superpythagorian. \dagger
(iii) Let F be an algebraic number field (possibly infinite dimensional over Q). Every preordering finitely generated over $\Delta=\sum F^{2}$ is of the form $\Delta(a)$ for some $a \in F^{\times}$. Suppose Δ satisfies D.C.C. Let P be any ordering of F. Pick $\Delta(a)$ minimal such that $a \notin P$. Then, among all preorderings in P finitely generated over $\Delta, \Delta(-a)$ is maximal. It follows that $\Delta(-a)=P$. Thus X_{Δ} is discrete. Since X_{Δ} is also compact, this implies X_{Δ} is finite. Thus, if we pick an algebraic number field F in such a way that it has infinitely many orderings (for example, pick $F=\mathbf{Q}(\sqrt{p} \mid p$ a prime integer) then $\Delta=\sum F^{2}$ does not satisfy D.C.C. (However Conjectures 1 and 2 still hold for such a field since it is a direct limit of fields for which the conjectures hold!)

Theorem 7. Suppose that Δ_{0} is a preordering of F satisfying D.C.C. Then Conjectures 1 and 2 hold for all preorderings Δ of F satisfying $\Delta_{0} \subseteq \Delta$.

Proof. (1) Let $i>1$, and let $f \in k_{i} F$ be such that it is zero in $k_{i} F_{P}$ for all $P \in X_{\Delta}$. We wish to show that $f \in k_{i, \Delta} F$. Using Theorem 2, for example, we may assume that Δ is finitely generated over Δ_{0}, and hence that Δ itself satisfies D.C.C. There exists a preordering Δ_{1} finitely generated over Δ such that $f \in k_{i, \Delta_{1}} F$. (For example, take $\Delta_{1}=\Delta(-1)=F$.) By D.C.C. we may suppose that Δ_{1} is chosen minimal such that this is so. Suppose Δ_{2} is any preordering over Δ (but not necessarily finitely generated over Δ) such that $f \in k_{i \Delta_{2}} F, \Delta_{2} \subseteq \Delta_{1}, \Delta_{2} \neq \Delta_{1}$. Then evidently there exists Δ_{3} finitely generated over Δ such that $\Delta_{3} \subseteq \Delta_{2}, f \in k_{i, \Delta_{3}} F$. This contradicts the minimality of Δ_{1}. Thus Δ_{1} is minimal among all preorderings Δ_{2} over Δ satisfying $f \in k_{i, \Delta_{2}} F$.

If $\Delta_{1}=\Delta$ we are finished. Otherwise there exists $P \in X_{\Delta}, P \notin X_{\Delta_{1}}$. Let $\Delta_{2}=\Delta_{1} \cap P$. Then

$$
\Delta_{1} \times / \Delta_{2} \times=\Delta_{1} \times / \Delta_{1} \times \cap P^{\times} \cong \Delta_{1} \times P^{\times} / P^{\times}=F^{\times} / P^{\times},
$$

so the group index $\left(\Delta_{1} \times: \Delta_{2} \times\right)$ is two, and if a is a group generator of $\Delta_{1} \times$ over $\Delta_{2} \times$, then $\Delta_{1}=\Delta_{2} \cup \Delta_{2} a$. If we show $f \in k_{i, \Delta_{2}} F$, we will have the desired contradiction.

From $\Delta_{1}=\Delta_{2} \cup \Delta_{2} a$ it follows that

$$
k_{*_{\Delta_{1}}} F=k_{*_{\Delta_{2}}} F+l(a) k * F .
$$

Thus $f=f_{1}+l(a) g$, with $f_{1} \in k_{i \Delta_{2}} F, g \in k_{i-1} F$. Evidently, we have $l(-1) g=$ 0 in $k_{i} F_{P}$ for all $P \in X_{\Delta_{2}(-a)}$. But $l(-1)$ is not a divisor of zero in $k_{*} F_{P}$, so $g=0$ locally for all such P. It follows by induction on i that $g \in k_{i-1, \Delta_{2}(-a)} F$.

[^1]However, if $s \in \Delta_{2}(-a)$, then $s=\alpha-\beta a, \alpha, \beta \in \Delta_{2}$. It follows that $l(a) l(s)$ $\equiv 0$ modulo $k_{{ }_{*_{2}}} F$. (For if $\alpha, \beta \neq 0$, then $s / \alpha+\beta a / \alpha=1$, and $l(a) l(s) \equiv$ $l(\beta a / \alpha) l(s / \alpha)=0 \bmod k_{*_{\Delta_{2}}} F$. The proof is even simpler if either α or β is zero.) It follows that $l(a) k_{*_{\Delta_{2}(-a)}} F \subseteq k_{*_{\Delta_{2}}} F$, so $f=f_{1}+l(a) g \in k_{*_{\Delta_{2}}} F$.
(2) The proof of the second conjecture is completely similar. We may assume $i \geqq 3$. Let $f \in M^{i} \cap W_{\Delta}$. We wish to show $f \in M^{i-1} W_{\Delta}$. We may assume Δ satisfies D.C.C. Using D.C.C. pick $\Delta_{1} \mid \Delta$ minimal such that $f \in M^{i-1}$ $W_{\Delta_{1}}$. If $\Delta_{1} \neq \Delta$, then define Δ_{2} as above. If $s \in \Delta_{2}$, then $\langle 1,-s a\rangle=\langle 1,-s\rangle+$ $s\langle 1,-a\rangle$. It follows that

$$
W_{\Delta_{1}}=W_{\Delta_{2}}+\langle 1,-a\rangle W, \quad \text { and } \quad M^{i-1} W_{\Delta_{1}}=M^{i-1} W_{\Delta_{2}}+\langle 1,-a\rangle M^{i-1}
$$

Proceeding as in (1) this yields $f \in M^{i-1} W_{\Delta_{2}}$, contradicting the minimality of Δ_{1}.

Remark. In this proof one would like to replace D.C.C. by Zorn's Lemma but it is not clear how this can be done.
5. Stability. The preorder Δ is said to be k-stable if every preorder which is finitely generated over Δ is of the form $\Delta\left(a_{1}, \ldots, a_{k}\right)$ for some $a_{1}, \ldots, a_{k} \in F^{\times}$. Several conditions are known which are equivalent to k-stability [5]. For example, Δ is k-stable if and only if the image of M^{k} in Cont $\left(X_{\Delta}, \mathbf{Z}\right)$ is Cont ($X_{\Delta}, 2^{k} \mathbf{Z}$).

In this section, some general theory is developed, and as a corollary of this it follows that Conjectures 1 and 2 hold if Δ is 2 -stable.

We will say that the quadratic form $f=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ over F represents $x \in F$ modulo W_{Δ}, if there exist elements $s_{1}, \ldots, s_{n} \in \Delta$ satisfying $x=s_{1} b_{1}+$ $\ldots+s_{n} b_{n}$. There is a well developed theory of forms modulo W_{Δ}, which may be found in [4] or (more generally) in [10]. A basic result is the following:

Lemma 1. A form $f=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ represents $x \in F^{\times}$modulo W_{Δ} if and only if there exist $x_{2}, \ldots, x_{n} \in F^{\times}$such that $f \equiv\left\langle x, x_{2}, \ldots, x_{n}\right\rangle \bmod W_{\Delta}$.

Lemma 2. Let $f=l\left(-a_{1}\right) \ldots l\left(-a_{n}\right)$, let $f_{1}=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$, and let $f_{1}{ }^{\prime}$ denote the form derived from f_{1} via $f_{1} \cong f_{1}{ }^{\prime} \oplus\langle 1\rangle$. Suppose $f_{1}{ }^{\prime}$ represents b modulo $W_{\Delta}, b \neq 0$. Then there exist $b_{2}, \ldots, b_{n} \in F^{\times}$such that $f_{1} \equiv\left\langle\left\langle b, b_{2}, \ldots\right.\right.$, $\left.\left.b_{n}\right\rangle\right\rangle$ modulo $M^{n-1} W_{\Delta}$ and $f \equiv l(-b) l\left(-b_{2}\right) \ldots l\left(-b_{n}\right)$ modulo $k_{* \Delta} F$.

Proof. The proof is only given for f. The result concerning f_{1} is obtained in an analogous way. To simplify notations in the proof, congruences will denote congruences modulo $k_{* \Delta} F$.

The proof is by induction on n. If $n=1$, then $b=s a_{1}, s \in \Delta^{\times}$, so $l(-b)=$ $l\left(-a_{1}\right)+l(s) \equiv l\left(-a_{1}\right)$. Assume $n>1$. Let $g=l\left(-a_{2}\right) \ldots l\left(-a_{n}\right), g_{1}=$ $\left\langle\left\langle a_{2}, \ldots, a_{n}\right\rangle\right\rangle$. Then $f_{1} \cong g_{1} \oplus a_{1} g_{1}$, so $f_{1}{ }^{\prime} \cong g_{1}{ }^{\prime} \oplus a_{1} g_{1}$. Thus $b=c+a_{1} d$. with c and d represented (modulo W_{Δ}) by $g_{1}{ }^{\prime}$ and g_{1} respectively. Also $d=$ $s+d^{\prime}, s \in \Delta, d^{\prime}$ represented by $g_{1}{ }^{\prime}$ modulo Δ. Thus by induction, g decomposes as $g \equiv l\left(-d^{\prime}\right) \ldots$, so $l(d) g \equiv l(d) l\left(-d^{\prime}\right) \ldots$ Now $l(d) l\left(-d^{\prime}\right) \equiv$
$l(d / s) l\left(-d^{\prime} / s\right) \equiv 0$, since $s \in \Delta$, and $(d / s)-\left(d^{\prime} / s\right)=1$. (If either $s=0$ or $d^{\prime}=0$, the proof is even simpler.) Thus $l\left(-a_{1}\right) g-l\left(-a_{1} d\right) g=-l(d) g \equiv 0$. Also, by induction g decomposes as $g \equiv l(-c) \ldots$, so $f=l\left(-a_{1}\right) g \equiv$ $l\left(-a_{1} d\right) g \equiv l\left(-a_{1} d\right) l(-c) \ldots$ But $b=c+a_{1} d$, so $l\left(-a_{1} d\right) l(-c)=$ $l(-b) l\left(-a_{1} d c\right)$.

Note. The idea in the proof of this lemma is not new. It may be found in [13, Lemma 2.4.4), for example.

One should compare the next theorem to the "Main Theorem" in [6].
Theorem 8. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in F^{*}$. Then the following statements are equivalent:
(i) $\Delta\left(a_{1}, \ldots, a_{n}\right)=\Delta\left(b_{1}, \ldots, b_{n}\right)$
(ii) $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle \equiv\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle \bmod W_{\Delta}$
(iii) $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle \equiv\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle \bmod M^{n-1} W_{\Delta}$
(iv) $l\left(-a_{1}\right) \ldots l\left(-a_{n}\right) \equiv l\left(-b_{1}\right) \ldots l\left(-b_{n}\right) \bmod k_{* \Delta} F$.

Proof. It is clear that (i) \Leftrightarrow (ii) and that (iii) \Rightarrow (ii) and (iv) \Rightarrow (ii). For example, just compare signatures of $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ and $\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle$ at all $P \in X_{\Delta}$. A proof is given here that (ii) \Rightarrow (iv). The proof that (ii) \Rightarrow (iii) is similar and will not be included.

The proof is by induction on n, the result being clear if $n=1$. By the lemmas we have $c_{2}, \ldots, c_{n} \in F^{\times}$such that $l\left(-a_{1}\right) \ldots l\left(-a_{n}\right) \equiv l\left(-b_{1}\right) l\left(-c_{2}\right)$ $\ldots l\left(-c_{n}\right)$ modulo $k_{* \Delta} F$. Thus $\Delta\left(b_{1}, c_{2}, \ldots, c_{n}\right)=\Delta\left(a_{1}, \ldots, a_{n}\right)=\Delta\left(b_{1}, \ldots\right.$, $\left.b_{n}\right)$ so by induction $l\left(-c_{2}\right) \ldots l\left(-c_{n}\right) \equiv l\left(-b_{2}\right) \ldots l\left(-b_{n}\right)$ modulo $k_{* \Delta\left(b_{1}\right)} F$. Now if $s \in \Delta\left(b_{1}\right)^{\times}, s=\alpha+\beta b_{1}, \alpha, \beta \in \Delta$, so

$$
l\left(-b_{1}\right) l(s) \equiv l\left(\frac{-\beta b_{1}}{\alpha}\right) l\left(\frac{s}{\alpha}\right) \equiv 0 \quad \bmod k_{* \Delta} F
$$

It follows that $l\left(-b_{1}\right) l\left(-c_{2}\right) \ldots l\left(-c_{n}\right) \equiv l\left(-b_{1}\right) \ldots l\left(-b_{n}\right)$ modulo $k_{* \Delta} F$ so by transitivity of \equiv, we have the required result.

Corollary. If Δ is 2 -stable, then Conjectures 1 and 2 hold.
Proof. First look at the second conjecture. We may assume $i>2$. For any $a_{1}, \ldots, a_{i} \in F^{\times}$we have, by 2 -stability, elements $a, b \in F^{\times}$such that $\Delta\left(a_{1}\right.$, $\left.\ldots, a_{i}\right)=\Delta(a, b, 1, \ldots, 1)$ (with $i-2$ ones). It follows by the previous theorem that $\left\langle\left\langle a_{1}, \ldots, a_{i}\right\rangle\right\rangle \equiv 2^{i-2}\langle\langle a, b\rangle\rangle$ modulo $M^{i-1} W_{\Delta}$. Thus $M^{i}=$ $2^{i-2} M^{2}+M^{i-1} W_{\Delta}$, so

$$
\begin{aligned}
M^{i} \cap W_{\Delta}=2^{i-2}\left(M^{2} \cap W_{\Delta}\right)+M^{i-1} W_{\Delta}=2^{i-2} M W_{\Delta}+ & M^{i-1} W_{\Delta} \\
& =\mathrm{M}^{i-1} W_{\Delta}
\end{aligned}
$$

Now look at Conjecture 1. If $i>2$, then by the previous theorem $k_{i} F=$ $l(-1)^{i-2} k_{2} F+k_{i \Delta} F$. Thus we are reduced to the case $i=2$ (since $l(-1)$ is not a divisor of zero locally). But $s_{2}: k_{2} F \cong M^{2} / M^{3}$. Assume $f \in k_{2} F$ is zero
in $k_{2} F_{P}$ for all $P \in X_{\Delta}$. Write $s_{2}(f)=g+M^{3}, g \in M^{2}$, Then $\operatorname{sgn}_{P} g \equiv 0 \bmod 8$ for all $P \in X_{\Delta}$, so by the alternate characterization of k-stability mentioned, $g=2 h+h_{1}$ with $h \in M^{2}, h^{\prime} \in W_{\Delta}$. Thus $h_{1} \in M^{2} \cap W_{\Delta}=M W_{\Delta}$, and $s_{2}(f)=h_{1}+M^{3}$. Since the isomorphism s_{2} carries $k_{2 \Delta} F$ onto $\left(M W_{\Delta}+M^{3}\right) / M^{3}$ this completes the proof.

Note. Certain of the consequences of Conjecture 1 are valid if Δ is k-stable, $k \geqq 3$. For example, Corollary 1 of Theorem 3 holds if Δ is k-stable. In particular if Δ is 3 -stable, then this corollary holds for all $k \geqq 1$ (since it holds trivially for $k=1,2)$. Also, the Corollary of Theorem 4 holds if Δ is 3 -stable.

References

1. J. K. Arason, Primideale im graduierten Wittring und im mod 2-Cohomologiering, Math. Zeit. 145 (1975), 139-143.
2. J. Arason and A. Pfister, Beweis des Krullschen Durchschnittsatzes fur den Wittring, Invent. Math. 12 (1971), 173-176.
3. E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Hamb. Abh. 5 (1927), 100-115.
4. E. Becker und Eberhard Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, to appear, Abh. Math. Sem. Univ. Hamburg 46 .
5. L. Bröcker, Zur theorie der quadratischen formen über formal reellen körper, Math. Annalen 210 (1974), 233-256.
6. R. Elman and T. Y. Lam, Pfister forms and K-theory of fields, J. of Algebra 23 (1972), 181-213.
7. ———uadratic forms over formally real fields and pythagorian fields, Amer. J. Math. 94 (1972), 1155-1194.
8. Quadratic forms and the u-invariant I, Math. Zeit. 131 (1972), 283-304.
9. - Classification theorems for quadratic forms over fields, Commentarii Math. Helvetici, 49 (1974), 373-381.
10. M. Marshall, A reduced theory of quadratic forms, unpublished notes.
11. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344.
12. A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
13. W. Scharlau, Quadratic forms, Queen's papers on pure and applied mathematics, 22, Queen's University, Kingston, Ont. (1969).
14. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. reine angew. Math. 176 (1937), 31-44.

University of Saskatchewan, Saskatoon, Saskatchewan

[^0]: Received June 30, 1976 and in revised form, October 19, 1976.

[^1]: \dagger Thomas C. Craven (University of Hawaii, Honolulu) has recently classified the Witt ring structure of pythagorian fields with only a finite number of places into the reals (preprint, Characterizing reduced Witt rings of fields). It can be shown that all such fields satisfy D.C.C.

