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SOME LOCAL-GLOBAL PRINCIPLES 
FOR FORMALLY REAL FIELDS 

M. MARSHALL 

1. I n t r o d u c t i o n . Let F be a formally real field, and let A be a preordering 
of F\ t h a t is, a subset of F satisfying A + A = A, AA = A, F2 C A. Denote 
by XA the set of all orderings P of F satisfying P 2 A. T h u s A = C\pexA P> 
This result is well known. I t was first proved by Art in [3, Satz 1] in the case 
A = E F\ 

For P an ordering of F, denote by FPl the real closure of F a t P. Denote 
by W = W(F) the W i t t ring of F [14], and by M = M (F) the augmenta t ion 
ideal of W, t h a t is, the ideal of even dimensional forms. W& = WA(F) will 
denote the ideal of W generated by all forms of the type (1, —s), s £ Ax . 
(Thus, WA = M, if A = F.) 

T H E O R E M 1. Suppose A is a (proper) preordering of F. Then the kernel of 
the natural ring homomorphism from W(F) into YlPeXA W(FP) is WA(F). 

This theorem was originally proved by Pfister [12] in the case A = J2 F2. 
T h e general case follows, for example from the theory developed in [4]. For 
completeness, a proof is given here following the proof of Theorem 2. 

Denote by k*F the graded ring 0 ? = o ktF as defined by Milnor in [11]. Let 
k*&F denote the ideal of k*F generated by the elements l(s), s G Ax . (Thus 
k*AF = ©?=o k^F where k^F is generated by all elements of the form 
l(ai) . . . l(at), ax 6 Ax , a2 . . . at G ^ x . ) 

In this paper we examine the following conjectures. 

C O N J E C T U R E 1. T h e kernel of the natura l ring homomorphism from k*F 

into n PÇXA k*FP is k*&F. 

C O N J E C T U R E 2. For each positive integer i, Ml C\ WA = M1-1WA. 

Conjecture 1 is the main conjecture. I t s connection with Conjecture 2 is 
described in Corollaries 2 and 3, Section 2. 

Both of these conjectures are shown to be t rue if either 
(i) A satisfies the descending chain condition, or 

(ii) A is 2-stable. 
These results are proved in Sections 4 and 5 respectively. T h e major result is 
Theorem 7. Sections 2 and 3 are devoted to pointing out various consequences 
of Conjecture 1. 
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FORMALLY REAL FIELDS 607 

Although the conjectures are stated for A an arbi t rary (proper) preordering, 
there is special interest in the case A = J^ F2. At the present time we know 
about as much in this case as we do in the more general situation. 

Conjecture 1 amounts to the s ta tement tha t , for each non-negative integer i, 
ki&F is the kernel of the natural mapping from kiF into I 1 P € X A k,: FP. I t is 
trivially t rue for i = 0 (since we assume A 7e F). Also, the natural isomor
phism Fx/Fx2 ~ kiF carries Ax/Fx2 onto ki^F. Thus , the Artin formula, 
OPÇXA F = A, implies the conjecture is valid for i = 1. The question is open 
for i ^ 2. 

The second conjecture is trivially true for i = 1. I t is also t rue for i = 2. 
The proof is a simple modification of tha t given in [7, Theorem 2.8] for the case 
A = ]T F2. The question is open for i ^ 3. However, for A = ^ F2, E lman 
and Lam have shown in [9, Theorem 3], tha t M2W& = 0 implies AP C\ WA = 
0. I t follows tha t Conjecture 2 is true in case A = X) ̂ 2> M2WA = 0. 

I t is worthwhile pointing out tha t a weak version of the two conjectures is 
known to hold in general, namely: 

T H E O R E M 2. Let A be any preordering of F. 

(i) Let f G k*F. Then f is zero in k*FP for all P G X& if and only if l( — l)v - f 
G k*^F holds for some integer v ^ 0. 

(ii) Let f G Mi (^\ W&. Then there exists an integer v ^ 0 such that 2V X / G 
Ml+V~l WA. 

(Thus, if it were always possible to choose v = 0, we would have the conjec
tures.) 

I t should be noted tha t , in case A = ]T F2, each element of k*&F is an
nihilated by some power of /( —1). Thus the equation l( — l)vf G k*&F can be 
replaced by l(—l)vf = 0 in this case. Also note tha t , in this same case, (ii) is a 
triviality, since the elements of WA are two-power torsion. 

A proof of (i) in the case A = J2 F2 *s found in [1]. However, for complete
ness, a full proof is presented here. 

Proof of Theorem 2. For a = (ax, . . . , an) a tuple of elements of Fx, A (a) = 
A(ai, . . . , an) will denote the preordering of ^ g e n e r a t e d by a\, . . . , an over A. 
Use the notat ions of [13, p . 42], i.e. \[/a = (ax, . . . , an), TT(1 = ((&i, . • . , an)). 
Let \f/a G Mi and suppose its signatures satisfy sgn P \f/a = 0 for all P G XA 

(respectively, sgn P \pa = 0 mod 2 m for all P G X&). By [13, Lemma 2.1.6] 
we have 

2U X ta = ®e te ® 7T€a i n W, 

the sum running through all ^-tuples e = (ei, . . . , en) of =bl. There are two 
cases to consider: 

(i) A(ea) ^ F. In this case there exists P G XA satisfying sgn P at = sgn P ef, 
i = 1, . . . , n, so \f/e = 0 in W (respectively, \j/e = 2i+lv in IT, v some integer). 
T h u s ^e ® 7Tea = 0 in W (respectively, i//€ ® 7r€a G M*+ w + 1). 
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(ii) A(ea) = F. This implies t h a t for a sufficiently large set of elements 

Si, . . . , sv Ç Ax , we have t ha t TS ® ir€a is isotropic and hence zero in W. 

Thus , by picking si, . . . , sv to be a sufficiently large set of elements of Ax 

[for example including n ones, and all elements required by the terms of type 

(ii)] we have TTS ® \pa = 0 in W (respectively, TTS ® ypa € Mv+i+1). 

Now write (1, s) = 2 — (1, — s) and expand what we have jus t obtained 

to get 2V X ta e Mi+V~l WA (respectively, 2C X ft, G M ^ " 1 WA + Mi+V+1). 

This proves the second s ta tement . 

T o prove the first l e t / Ç &jF be zero over ^ p for all P Ç X A , and let s<(/) 

denote the image o f / in ili"V-Mï+1 under the natura l map [11]. Say s{(f) = 

\pa + Mi+l. Then ^ a satisfies sgn P \//a = 0 mod 2 2 + 1 for all P Ç X A , so by our 

previous considerations, there is a non-negative integer v such t h a t 2V X ^ a G 

j | f ' + ' - i fl7A + M*+ p + 1 . T h u s we can write l{-l)v f = g + h, g € ^ ^ . A ^ fc in 

the kernel of the mapping s<+!, : ife<+t, F - > Af i+VAf*+r+1. Thus , by [11, p. 332] 

l{ — l)lh = 0 for some non-negative integer /, so l(—l)v+tf G k*&F. 

Using the proof of Theorem 2 given above, there is now a very easy proof 
of Theorem 1. 

Proof of Theorem 1. Suppose \pa is zero over FP for all P 6 XA. Then by the 
proof of Theorem 2, TTS ® ^ a = 0 in W F for some ^-tuple 5 = (si, . . . , sv) of 
elements of Ax . By the dis tr ibut ive proper ty , this yields a,\ irs © . . . © anirs = 
0 so there exist t\, . . . , tn represented by 7rs (and hence in A) not all zero, such 
t h a t a,\t\ + . . . + antn = 0. Let a' = ( a / , . . . , an') be defined by a / = au if 
ti = 0; a / = diti, if /* ^ 0. Then i/v is isotropic and i/v - f c f I^A- Also, 
since /j7r5 = 7r5 if ti• ̂  0, we have ws ® i/v = 7r6 ® ^ a = 0 in W. Thus , by 
induction on the dimension, we have \[/a> (and hence \l/a) is in WA. 

I t is not clear how this proof could be modified to yield a proof of the 
conjectures. 

2. S o m e c o n s e q u e n c e s of C o n j e c t u r e 1. Denote by gr W(F) the graded 
ring ©?=o MyMi+\ and by grAW(F) the ideal of gr W(F) generated by the 
elements (1, —s) + M2, s £ Ax . 

T H E O R E M 3. / / Conjecture 1 holds for A, then the kernel of the ring homomor-
phismfrom gr W(F) into I l p € X A gr W(FP) is grAW(F). 

Proof. The natura l ring homomorphism s : k*F—» gr W(F) is surjective, 
carries IZ*AF onto grAW(F), and is an isomorphism if F is real closed. 

Note t h a t if the assumption t h a t Conjecture 1 holds is dropped, then one 
still has the following weaker result: / G gr W(F) is zero in gr W(FP) for all 
P e XA if and only if (2 + M2)v. f G grAW(F) holds for some integer v^0. 
This is implicit in the proof of Theorem 2. 
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COROLLARY 1. Assume Conjecture 1 holds for A. Let k be a positive integer, 

and let f £ W. Then sgnP / = 0 mod 2K holds for all P £ XA if and only if 

f e wA + M*. 

Proof. This is immediate from the previous theorem, using induction on k. 

If / G MiC\ WA, then / 6 M*/Mi+1 is zero locally for all P G Z A . I t 
follows by Theorem 3 tha t if Conjecture 1 holds for A, t h e n / Ç A P - 1 VTA + 
Mi+1. Thus AT P WA = AT"1 WA + Mi+l P WA. Repeating this process we 
get: 

COROLLARY 2. Suppose Conjecture 1 holds for A. Then for all integers i, k ^ 1, 

AT* Pi WA = M^WA + AP+* P "^A, 

This is "a lmos t" Conjecture 2. In particular we have the following: 

COROLLARY 3. Suppose that Conjecture 1 holds for A, and that Mk P WA = 0 
holds for some positive integer k. Then Conjecture 2 holds for A. 

Note t ha t the assumption AP P WA = 0 implies 2*-1 (1, - 5 ) = 0 in W for 

all s G A x ; i.e. t ha t A = XI ^2- Thus Corollary 3 is really a result only about 

A = Z P2 . 
Denote by GF the Galois group of P / P ; P being the algebraic closure of P. 

Denote by H*(GF, Z / 2 Z ) the graded ring of cohomology groups H*(GF, 
Z / 2 Z ) = ®°LoHi(GF, Z / 2 Z ) , and by A : k*F-> H*(GF, Z/2Z) the canonical 
ring homomorphism. Thus h(k*F) is the subring of H*(GF, Z / 2 Z ) generated 
by the elements 5(a), a £ P x . 

T H E O R E M 4. Assume Conjecture 1 holds for A. PAew /fee kernel of the natural 
ring homomorphism from h(k*F) into r i P € X A H*(GFp, Z / 2 Z ) is /fee ideal of 
h(k*F) generated by the elements ô (s), s £ Ax . 

Proof, h : k*F —> H*(GF, Z / 2 Z ) is an isomorphism if P is real closed. 

Since h(k2F) can be identified with the subgroup of the Brauer group BF 

generated by the quaternion algebras (a, b/F), a, b £ P x , we have the following 
result: 

COROLLARY. Suppose that Conjecture 1 holds for A. Suppose x £ BF is a 
product of quaternion algebras, and that x splits over all real closures FP, P £ X&. 
Then x is of the form 

r r lo>t, s A 
U \ F J ' 

with af £ P x , Si £ Ax, i = 1, . . . , n. 

3. The injectivity of the homomorphisms s, h. It has been conjectured 
in [11] that the mappings s : k*F-^gr W(F), h : k*F-*H*(FF, Z/2Z) are 
injective. In case Conjecture 1 holds for A = J2 F2> o n e c a n get some partial 
results in this direction. 

https://doi.org/10.4153/CJM-1977-061-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-061-3


610 M. MARSHALL 

The first result holds without the assumption of Conjecture 1, and is an 
immediate consequence of [2] and [6, Theorem 3.2]. 

THEOREM 5. Let i be any positive integer, and let A = J^ F2- Then the following 
statements are equivalent: 

(i) k*F = 0 
(ii) M*-1 WA = 0 

(iii) M1'1 WA = Ml WA. 

Define the v-invariant of F to be the greatest integer (or oo if no such integer 
exists) satisfying kv>AF ^ 0, (with A = ]T F2). In view of the previous 
theorem, this invariant can be characterized as the greatest integer for which 
there is a ^-fold Pfister form over F which is both anisotropic and torsion. 

If u denotes the generalized ^-invariant of F as defined in [8], then it is 
clear that 2V ^ u. In fact 2* = u,iîu ^ 4. 

For the rest of this section, assume that Conjecture 1 holds for A = X) F2-

THEOREM 6. st : ktF -> Ml/Mi+l and ht : ktF -» Hi (GF, Z/2Z) are infective 
if and only if they are infective on k IAF. (A = J2 F2). 

Proof. This is clear, since su h{ are locally isomorphisms. 

COROLLARY l.Ifi > v, then suht are infective. 

Proof. This follows from Theorems 5 and 6. 

COROLLARY 2. Suppose v S. 2. Then s, h are infective. 

Proof. Since s0, Si, s2, ho, and hi are injective, and since st, hf are injective 
for i ^ 3 by the previous corollary, all that is required is to show that h2 is 
injective. The mapping c = h2 o s2^ : M2/M* -> H2 (GF, Z/2Z) is the Clifford 
mapping. By [9, Theorem 3], this mapping is injective on (MWA + AP)/M3. 
Thus h2 is injective on k2AF and hence (by Corollary 1) on k2F also. 

4. The descending chain condition. For A a preordering of F, and au 

i (z I elements of ^ x , A(at\i G / ) will denote the preordering of F generated 
by ci-i, i G / over A. 

We will say that A satisfies the descending chain condition (abbreviated 
D.C.C.) if every descending chain Ai 3 A2 3 A3 3 . . . of preorderings, each 
of which is finitely generated over A, terminates. This is equivalent to the 
condition that every non-empty set consisting of preorderings of F which are 
finitely generated over A has minimal elements. 

Examples, (i) If the group index (7^x : Ax) is finite, then A satisfies D.C.C. 
Such preorderings are obtained by taking the intersection of a finite set of 
orderings of F. 

(ii) Let F = U?=i R((#i)) . . . ((xn)). Then F is superpythagorian, so the 
proper preorderings of F are just the sets of the form A = Ax \J {0} where Ax 
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is a subgroup of Fx which does not contain —1 [7, Theorem 4.3]. Thus all 
preorderings of F satisfy D.C.C. This provides an example of a field F and a 
preordering À C ^satisfying D.C.C. for which the index (Fx : Ax) is infinite. 
Other such examples can be found where F is not superpythagorian.f 

(iii) Let F be an algebraic number field (possibly infinite dimensional over 
0 ) . Every preordering finitely generated over A = J^ F2 is oî the form A (a) 
for some a £ Fx. Suppose A satisfies D.C.C. Let P be any ordering of F. 
Pick A (a) minimal such tha t a Q P\ Then, among all preorderings in P 
finitely generated over A, A ( — a) is maximal. I t follows tha t A ( — a) = P. 
Thus XA is discrete. Since XA is also compact, this implies X A is finite. Thus , 
if we pick an algebraic number field F in such a way tha t it has infinitely 
many orderings (for example, pick F = Q(^/p\p a prime integer) then 
A = 2Z F2 does not satisfy D.C.C. (However Conjectures 1 and 2 still hold for 
such a field since it is a direct limit of fields for which the conjectures hold!) 

T H E O R E M 7. Suppose that A0 is a preordering of F satisfying D.C.C. Then 
Conjectures 1 and 2 hold for all preorderings A of F satisfying A0 £ A. 

Proof. (1) Let i > 1, and l e t / Ç ktF be such tha t it is zero in kxFP for all 
P £ XA- We wish to show t h a t / £ kitAF. Using Theorem 2, for example, we 
may assume tha t A is finitely generated over A0, and hence t ha t A itself 
satisfies D.C.C. There exists a preordering Ai finitely generated over A such 
t h a t / Ç kf^F. (For example, take Ax = A(—1) = F.) By D.C.C. we may 
suppose tha t Ai is chosen minimal such tha t this is so. Suppose A2 is any pre
ordering over A (but not necessarily finitely generated over A) such t h a t 
/ G kiA2F, A2 Q Ai, A2 ?̂  Ai. Then evidently there exists A3 finitely generated 
over A such tha t A3 Ç A2, / 6 kitAZF. This contradicts the minimality of Ai. 
T h u s Ai is minimal among all preorderings A2 over A satisfying / Ç kitA2F. 

If Ai = A we are finished. Otherwise there exists P £ XA, P £ XAl. Let 
A2 = Ai H P. Then 

A ^ / A . x = A i x / A i x H P * 9É A^PX/Px = Fx/pxy 

so the group index (Aix : A2
X) is two, and if a is a group generator of Ai x over 

A2
X, then Ai = A2 V) A2 a. If we show / £ kitA2F, we will have the desired 

contradiction. 
From Ai = A2 U A2 a it follows tha t 

k*AlF = k*A2F + l(a)k*F. 

T h u s / = / i + l(a)g, w i t h / i G ktA2F} g Ç kt-iF. Evidently, we have /(— l )g = 
0 in kfFp for all P G ZA 2 ( -O)- But /(— 1) is not a divisor of zero in k*FPf so 
g = 0 locally for all such P. I t follows by induction on i t ha t g G fei_ifA2(-a)^r-

f Thomas C. Craven (University of Hawaii, Honolulu) has recently classified the Witt ring 
structure of pythagorian fields with only a finite number of places into the reals (preprint, 
Characterizing reduced Witt rings of fields). It can be shown that all such fields satisfy D.C.C. 
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However, if s Ç A2( —a), then 5 = a — fia, a, fi Ç A2. It follows that 1(a) l(s) 
= 0 modulo k*A2F. (For if a, fi ^ 0, then s/a + /fo/a = 1, and /(a) /(s) = 
I(fia/a) l(s/a) = 0 mod k*A2F. The proof is even simpler if either a or fi is zero.) 
It follows that 1(a) k*A2i-a)F C k*A2F, s o / = /1 + /(a) g G k*A2F. 

(2) The proof of the second conjecture is completely similar. We may 
assume i ^ 3. Let / £ M1 C\ WA. We wish to show / G M2'"1 WA. We may 
assume A satisfies D.C.C. Using D.C.C. pick AX|A minimal such t h a t / G Mi~1 

WAl. If Ai ^ A, then define A2 as above. If 5 G A2, then (1, —5a) = (1, — s) + 
5(1, —a). It follows that 

WAl = WA2 + (1, -a)W, and M*-WA l = Ml~lWA2 + (1, - a ) M i ~ 1 . 

Proceeding as in (1) this y ie lds / G Mi~1WA2, contradicting the minimality 
of Ai. 

Remark. In this proof one would like to replace D.C.C. by Zorn's Lemma but 
it is not clear how this can be done. 

5. Stabi l i ty. The preorder A is said to be k-stable if every preorder which is 
finitely generated over A is of the form A(ai, . . . , ak) for some ai, . . . , ak Ç Fx. 
Several conditions are known which are equivalent to ^-stability [5]. For 
example, A is ^-stable if and only if the image of Mk in Cont (XA, Z) is Cont 
(XA,2*Z). 

In this section, some general theory is developed, and as a corollary of this 
it follows that Conjectures 1 and 2 hold if A is 2-stable. 

We will say that the quadratic form / = (bi, . . . , bn) over F represents 
x G F modulo WA, if there exist elements Si, . . . , sn G A satisfying x = sj)i + 
. . . + snbn. There is a well developed theory of forms modulo WA, which may 
be found in [4] or (more generally) in [10]. A basic result is the following: 

LEMMA 1. A form f = {ai, . . . , an) represents x £ Fx modulo WA if and only 
if there exist x2, . . . , xn £ ^ x such thatf = (x, x2, . . . , xn) mod WA. 

LEMMA 2. Let f = /( — ci\) . . . l( — an), let fx = ((aly . . . , an)), and let / / 

denote the form derived from /1 via /1 = / / © (1). Suppose / / represents b 
modulo WA, b ^ 0. Then there exist b2, . . . , bn £ Fx such thatfi = ((b, b2. . . . , 
bn)) modulo Mn~l WA and f = l( — b) l( — b2) . . . l( — bn) modulo k*AF. 

Proof. The proof is only given for / . The result concerning /1 is obtained in 
an analogous way. To simplify notations in the proof, congruences will denote 
congruences modulo k*AF. 

The proof is by induction on n. If n = 1, then b = sai, s £ Ax, so /( — b) = 
l( — ai) + l(s) = l( — ai). Assume n > 1. Let g = l( — a2) . . . l( — an), gi = 
<(a2, . • • , a»)). Then f1^g1® aigu so / / ^ g/ © axgi. Thus b = c + axd. 
with c and d represented (modulo WA) by g/ and gi respectively. Also d = 
5 + d', s G A, d' represented by g/ modulo A. Thus by induction, g decom
poses as g = l(-df) . . . , so l(d)g = 1(d) l(-df) Now 1(d) l(-d') = 
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l{d/s) l(-d'/s) = 0, since <> Ç A, and (d/s) - {d'/s) = 1. (If either s = 0 or 
d' = 0, the proof is even simpler.) Thus l{ — a\)g — l( — aid)g = —lid)g = 0. 
Also, by induction g decomposes as g = l( — c) . . . , so / = /( —&i)g = 
l( — aid)g = l( — aid) l( — c) . . . . But b = c + aid, so l{ — a\d) l( — c) = 
l{-b)l{-a1dc). 

Note. T h e idea in the proof of this lemma is not new. I t may be found in 
[13, Lemma 2.4.4), for example. 

One should compare the next theorem to the "Main Theorem" in [6]. 

T H E O R E M 8. Let au . . . , an, bi, . . . , bn £ F*. Then the following statements 
are equivalent: 

(i) A(ai, . . . ,an) = A(6i, . . . , & „ ) 
(ii) ((au • • • , a»)} = ((h, . . . , bn)) mod WA 

(hi) « a l f . . . , a n » = «6 i , . . . , 6 n » mod M ^ 1 WA 

(iv) l( — a,i) . . . l{ — an) E= l( — bi) . . . l( — bn) mod &*A.F. 

Proof. I t is clear tha t (i) <=> (ii) and tha t (iii) => (ii) and (iv) => (ii). 
For example, jus t compare signatures of ((ai , . . . , aw)} and ((fri, . . . , &n)) a t 
all P G XA . A proof is given here t ha t (ii) =» (iv). The proof t ha t (ii) => (iii) 
is similar and will not be included. 

The proof is by induction on n, the result being clear if n = 1. By the 
lemmas we have c2, . . . , cn £ F x such t h a t / ( — ai) . . .l( — an) = /( —^i ) / ( —c2) 
. . . /( — cn) modulo ^ * A ^ . Thus A(&i, c2, . . . , cn) = A(ai, . . . , an) = A(&i, . . . , 
6W) so by induction /( — c2) . . . l( — cn) = /( —62) . . . l( — bn) modulo k*A(bl)F. 
Now if 5 G A(&i)x, 5 = a + 061, a, /3 G A, so 

Z(-6i)Z(j) ^ ^ ( - Z f ^ ) M-^-j = 0 mod£* A F. 

I t follows tha t l( — bi) /( — c2) . . . l{ — cn) = l( — b\) . . . l( — bn) modulo &*A^ 
so by transi t ivi ty of = , we have the required result. 

COROLLARY. / / A is 2-stable, then Conjectures 1 and 2 hold. 

Proof. First look a t the second conjecture. We may assume i > 2. For any 
ai, . . . , at £ Fx we have, by 2-stability, elements a, b £ Fx such t ha t A(au 

. . . , at) = A (a, 6, 1, . . . , 1) (with i — 2 ones). I t follows by the previous 
theorem tha t ((au . . . , at)) = 2*~2 ((a, b)) modulo Ml~Y WA. Thus Mi = 
2*-2 ^ 2 + Mz-i W A I S O 

j | f * H PTA = 2i~2(M2 H ITA) + M1-1 WA = 2*~2 H f A + M*"1 J^A 

Now look a t Conjecture 1. If i > 2, then by the previous theorem ktF = 
/(—1)*~2 &2^ + ^ZA/7. Thus we are reduced to the case i = 2 (since /( — l ) i s 
not a divisor of zero locally). But s2 : k2F ~ M2/Ms. A s s u m e / Ç k%F is zero 

https://doi.org/10.4153/CJM-1977-061-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-061-3


614 M. MARSHALL 

in k2FP for ail P G XA. Write s2(f) = g + M\ g Ç M\ Then sgnP g = 0 mod 8 
for ail P G XA, SO by the alternate characterization of ^-stability mentioned, 
g = 2h + fa with A G M2, A' G ^ A . Thus Ax Ç M2 r\ WA = M A , and 
^2(/) = ^i + Mz. Since the isomorphism s2 carries k2AFonto (ATPTA + M*)/Mz 

this completes the proof. 

Note. Certain of the consequences of Conjecture 1 are valid if A is ^-stable, 
k ^ 3. For example, Corollary 1 of Theorem 3 holds if A is ^-stable. In par
ticular if A is 3-stable, then this corollary holds for all k §; 1 (since it holds 
trivially for k = 1,2). Also, the Corollary of Theorem 4 holds if A is 3-stable. 
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