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Monodromy Groups and Self-Invariance

Isabel Hubard, Alen Orbanić, and Asia Ivić Weiss

Abstract. For every polytope P there is the universal regular polytope of the same rank as P corre-

sponding to the Coxeter group C = [∞, . . . ,∞]. For a given automorphism d of C, using mon-

odromy groups, we construct a combinatorial structure Pd . When Pd is a polytope isomorphic to

P we say that P is self-invariant with respect to d, or d-invariant. We develop algebraic tools for

investigating these operations on polytopes, and in particular give a criterion on the existence of a

d-automorphism of a given order. As an application, we analyze properties of self-dual edge-transitive

polyhedra and polyhedra with two flag-orbits. We investigate properties of medials of such polyhedra.

Furthermore, we give an example of a self-dual equivelar polyhedron which contains no polarity (du-

ality of order 2). We also extend the concept of Petrie dual to higher dimensions, and we show how it

can be dealt with using self-invariance.

1 Introduction

The concept of monodromy groups has been used recently in studying maps and hy-
permaps (see [2, 18–20, 25]). It was also used by Hartley in his work on quotients

of abstract polytopes [8, 9]. Monodromy groups of highly symmetrical structures,

such as regular or orientably regular maps and regular polytopes, are permutation
groups isomorphic to the automorphism groups of these structures. The true power

of monodromy groups is exhibited in dealing with structures having less symmetry,
for example, when working with edge-transitive rather than regular or chiral maps

[18]. In this paper we make use of this property of monodromy groups when gener-

alizing the concept of duality to d-invariance in Section 3. This generalized concept
can be applied to various other operations on polytopes, for example in studying

self-Petrie polyhedra, as we shall show. One can similarly deduce how to use it in

studying certain operations on maps and hypermaps.

This paper was motivated by some questions arising from the classical theory of

polytopes. The concept of duality for polyhedra is well known and has been dealt

with recently. In 1988 Grünbaum and Shephard [7] asked whether every self-dual
polyhedron is of degree 2, that is, if it possesses a polarity (an involutory duality).

In 1989 Jendrol [12] constructed a polyhedron giving a negative answer to this ques-

tion. A few years later more examples were found (for a brief survey of literature see
[1]). All these examples have very small symmetry groups and one naturally expects

a positive answer for highly symmetrical polyhedra and polytopes in general. The
concept of duality can be extended to abstract polytopes, but so far has been studied
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for regular and chiral polytopes only [10]. It is well known that all regular abstract
polytopes possess a polarity, and it was proved that chiral polytopes of odd rank also

do [10]. (In the same paper an example was given showing that for even rank this
need not be the case.)

The paper is organized as follows. In Section 2 we provide some basic defini-

tions on abstract polytopes and dualities. We also show that every self-dual polytope
belongs to one of two classes; that is, modifying the definition used with chiral poly-

topes, we can say that P is properly or improperly self-dual.

We develop algebraic tools, which we use in the analysis of dualities and existence
of polarities, in Section 3. Operations on abstract polytopes are defined using the

group of automorphisms Aut(C) of a Coxeter group C. In particular, duality turns
out to be one such operation. The concept of a duality is generalized to a bijection

called a d-automorphism, induced by d ∈ Aut(C). The concept of self-duality is gen-

eralized to that of self-invariance. Motivated by the problem of existance of polarity,
we extend it to the problem of existance of a d-automorphism of a prescribed order.

Using monodromy groups, we characterize self-invariance and d-automorphisms,

and provide a complete description of actions of d-automorphisms on the flag-orbits
(under the action of the automorphism group). In particular, we give necessary and

sufficient conditions on the monodromy group of a self-invariant polytope for exis-
tence of a d-automorphism of a given degree. This approach is especially useful in

dealing with non-regular polytopes having a small number of flag-orbits.

The results obtained in Section 3 are used in Section 4 to classify and analyze self-
dual polyhedra with two orbits. In Section 5 we then provide a negative answer to the

open problem on the existance of polarities for equivelar polyhedra [21] (Equivelar

polyhedra are easily described as polyhedra that can be assigned a Schläfli type.)
The last section deals with medials of polyhedra. We analyze the monodromy

groups of medials and characterize all two-orbit medial polyhedra.

2 Polytopes, Automorphisms and Dualities

We briefly introduce several basic definitions and concepts from the theory of ab-

stract polytopes. For more detailed account the reader is referred to [16].

A flagged poset of rank n is a partially ordered set P with order 6P (or simply
6, when it is clear from the context), unique minimal and maximal elements F−1

and Fn, respectively, and such that every maximal chain (called a flag) of P contains
exactly n+2 elements. The order induces the strictly monotone rank function having

range {−1, . . . , n}.

The elements of a flagged poset P are called faces. The faces of rank j, −1 6 j 6 n,
are called j-faces, and a typical j-face is denoted by F j . Rank 0, 1, and n − 1 faces

are usually called the vertices, edges and facets of P, respectively. Two faces F and G

are said to be incident if F 6 G or G 6 F. We denote the set of flags by F(P) and a
group of all bijections on flags by Sym(F(P)). Given two faces F and G of a flagged

poset P such that F 6 G, the section G/F of P is the set of faces {H | F 6 H 6 G}. If
F0 is a vertex, then the section Fn/F0 is called the vertex-figure of F0. A flagged poset

P is connected if its rank is 0 or 1, or the incidences in the poset without F−1 and Fn

induce a connected graph, and it is strongly connected if every section of P (including
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P itself) is connected.

An abstract polytope of rank n, or an n-polytope, is a strongly connected flagged

poset of rank n with the diamond condition: whenever F 6 G, with rank(F) = j − 1
and rank(G) = j + 1, there are exactly two faces H of rank j such that F 6 H 6 G.

The definition of an abstract polytope encapsulates many combinatorial properties

of classical polytopes.

If P is an n-polytope and Φ a flag of P, the diamond condition tells us that there is

exactly one flag that differs from Φ in the i-face. Such a flag is called the i-adjacent to
Φ and it is denoted Φ

i . Note that (Φi)i
= Φ. By Proposition 2A1 of [16], the strong

connectivity of a flagged poset P is equivalent to the strong flag connectivity, that is, for

any two flags Φ and Ψ of P there exists a sequence of flags Φ = Φ0, Φ1, . . . , Φk = Ψ

such that each two successive flags Φi−1 and Φi are adjacent, and Φ ∩ Ψ ⊆ Φi for

all i.

In this paper we shall often consider polytopes of rank 3, which we simply call

(abstract) polyhedra. Note that polyhedra are maps in the sense of [14, 23]. But not

every map is a polyhedron. For a map, the diamond condition need not be satisfied,
as can be seen in the example of the map given in Figure 1. The map has one vertex,

one face, but five edges, and therefore necessarily violates the diamond condition.

Figure 1: An example of a map which is not a polyhedron.

Let P and P ′ be posets. An isomorphism from P to P ′ is a bijection preserving

the partial order. An anti-isomorphism δ : P → P ′ is a bijection reversing the order,
in which case P and P ′ are said to be duals of each other. An anti-isomorphism

or isomorphism from P to P is called a duality of P (sometimes also self-duality)

or an automorphism of P, respectively, and P is said to be self-dual if there exists a
duality of P. The set of all automorphisms and dualities of a polytope P forms a

group, the extended group D(P) of P, which contains Aut(P), the subgroup of all

automorphisms of P, as a subgroup of index at most 2. Note that we can consider
the extended group of P as acting on the set of flags F(P) (as defined in Section 3.)

All the actions in this paper will be written as acting on an object on the right. On the
other hand, all the functions (excluding automorphisms and dualities) will be acting

on the left. The following lemma, which will be used repeatedly, can be easily proved.

Lemma 2.1 Let P be an n-polytope, φ ∈ Sym(F(P)) and Φ a flag of P.
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(i) If φ is an automorphism, then it preserves adjacencies, that is

Φ
jφ = (Φφ) j, j = 0, 1, . . . , n − 1.

(ii) If φ is a duality, then

Φ
jφ = (Φφ)n−1− j, j = 0, 1, . . . , n − 1.

The degree of a duality is its order. The degree of a self-dual polytope P is defined
as the smallest integer d such that P has a duality of degree d. If the degree of P is

finite, it must be a power of 2. This is clear, since if d is the degree of P, r an odd

divisor of d, and δ a duality of degree d, then δr is a duality of P of degree at most
d/r ≤ d. A duality of order 2 is called a polarity. Regular self-dual polytopes of any

rank have degree 2 [16, p. 37], as do all chiral polytopes of odd rank [10].
Let Orb(P) denote the set of all flag-orbits of P under the action of Aut(P). We

now consider the action of the dualities on Orb(P) and the consequences of such

action on the degree of P.

Lemma 2.2 Let P be a self-dual polytope, δ a duality of P, and O1, O2 ∈ Orb(P). If

δ maps a flag in O1 to a flag in O2, then all dualities map flags in O1 to flags in O2.

Proof Let Φ, Ψ ∈ O1 and Φδ ∈ O2. Then for some β ∈ Aut(P),

Ψδ = Φβδ = Φ(δδ−1)βδ = (Φδ)δ−1βδ,

and since δ−1βδ ∈ Aut(P), Ψδ ∈ O2. If δ ′ is any other duality of P, Φδ ′
= Φδδ−1δ ′,

but δ−1δ ′ ∈ Aut(P) and Φδ ′ ∈ O2.

The following definition was motivated by the corresponding situation for chiral
polytopes. (Chiral polytopes, which are formally defined in Section 4, have two dis-

tinct flag-orbits.) Polytope P is said to be properly self-dual if its dualities preserve

all flag-orbits of P. Otherwise, we say that P is improperly self-dual. The reader can
easily verify the following.

Proposition 2.3 If P has a duality fixing one flag-orbit, then there exists a duality δ
fixing a flag of P and therefore δ is a polarity. In particular, properly self-dual polytopes

are of degree 2.

3 d-Automorphisms and d-Invariant Polytopes

In this section we give some general results on operations on abstract polytopes of

rank n. One can easily extend these results to apply to other structures like maps,

hypermaps, and similar combinatorial objects.
The action of a group G on a set Z is an operation · : Z × G → Z, such that

z · 1 = z and (z · g) · h = z · (gh), for every z ∈ Z and g, h ∈ G. We denote it
by the triple (Z, G, · ), and when the action is clear from the context, we abbreviate

it with (Z, G). Let (Z, G, · ) and (Z ′, G ′, ∗) be two actions. A pair (p, q) consisting

of a surjective mapping p : Z → Z ′ and a group epimorphism q : G → G ′ is called
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an action epimorphism if for every z ∈ Z and every g ∈ G it follows that p(z · g) =

p(z) ∗ q(g). If both p and q are one-to-one, we refer to it as an action isomorphism.

In what follows we shall require the following two elementary lemmas dealing
with action epimorphisms, as well as the well-known fourth isomorphism theorem

for groups together with some straightforward consequences, stated as Theorem 3.3.

We denote by [G :H] the index of a subgroup H in the group G.

Lemma 3.1 Let (Z, G) be a transitive action z ∈ Z and N = StabG(z). Then (Z, G)

is isomorphic to the natural action of G on the cosets of N, namely (G/N, G). The

action isomorphism is (p, Id), where Id : G → G is the identity automorphism and

p : Z → G/N is defined by p : z · g 7→ Ng, for every g ∈ G.

Lemma 3.2 Let G be a group, N 6 G, q ∈ Aut(G), and w ∈ G. Then there exists a

permutation p on the right cosets in G/N taking N to Nw, such that

(p, q) : (G/N, G) → (G/N, G)

is an action isomorphism if and only if q(N) = w−1Nw. Furthermore, p is defined by

p : Ng 7→ Nwq(g), for every g ∈ G.

Theorem 3.3 Let G and G ′ be groups, f : G → G ′ an epimorphism,

A = {K : ker f 6 K 6 G} and B = {K ′ : K ′
6 G ′}.

The mapping F : A → B defined by F : K 7→ f (K) is a bijection. Under this bijection

normal subgroups correspond to normal subgroups. If K ∈ A, K ′ ∈ B, and F(K) = K ′,

then for any w ∈ G, F(w−1Kw) = f (w)−1K ′ f (w), and for any v ∈ G ′ and any

z ∈ f −1(v), F−1(v−1K ′v) = z−1Kz. Furthermore, if [G :K] is finite, [G :K] =

[G ′ :K ′] and for any two groups K, H ∈ A, if K 6 H, then F(K) 6 F(H).

For a polytope P of rank n we define the involutions si ∈ Sym(F(P)), i =

0, . . . , n − 1, where for each Φ ∈ F(P), si : Φ 7→ Φ
i . The involutions si generate

a subgroup M(P) of Sym(F(P)) which we call the monodromy group of P. As al-

ready noted by Hartley [8], the monodromy group is a quotient of the Coxeter group

C = [∞, . . . ,∞] generated by involutions s0, . . . , sn−1 (note that here we use the
labels si as words in C). The quotient epimorphism fP : C → M(P) maps the gener-

ating word si to the generator labelled as si in M(P). The epimorphism defines the

action of C on F(P) by Φ · w := Φ
fP(w), and (Id, fP) : (F(P), C) → (F(P), M(P))

an action epimorphism (where Id denotes the identity mapping). It follows from

Lemma 2.1 that

(Φ · w)φ = Φ
fP(w)φ = (Φφ) fP(w)

= (Φφ) · w,

for any φ ∈ Aut(P), Φ ∈ F(P), and w ∈ C.

We now fix a flag Φ ∈ F(P) and henceforth call it a base flag of P. The strong
flag connectivity of P implies the transitivity of M(P) on flags. From this and the

equation above we see that an automorphism is completely determined by the image

of the base flag. For w ∈ C, we use αw to denote the automorphism taking Φ to Φ ·w,
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whenever such an automorphism exists. Let StabH(Φ) denote the stabilizer of Φ in H,
and let NormH(K) denote the normalizer of K in H. In a sequence of theorems in [9]

(Theorem 3.4, Lemma 3.6, Theorem 3.6), Hartley essentially proved the following
result. Similar claims in different contexts were also proved in [2, 20].

Proposition 3.4 An automorphism αw taking a base flag Φ to Φ·w exists if and only if

w ∈ NormC(StabC(Φ)). Furthermore, since αw = αv if and only if w−1v ∈ StabC(Φ),

the mapping w 7→ αw induces the isomorphism

NormC(StabC(Φ))/ StabC(Φ) ∼= Aut(P).

In what follows we shall be dealing with more than one polytope at a time, and

hence it is convenient to define CP,Φ := StabC(Φ) (or simply CΦ, when P is clear from
the context). Note that since for different polytopes the group C acts on different sets

of flags, the notation introduced above denotes stabilizers of different actions of the

same group. Since fP is an epimorphism, it follows that CΦ = f −1
P

(StabM(P)(Φ)).
Hartley [8] showed that the polytope P is isomorphic to the quotient U/CΦ, where

U is the universal regular polytope corresponding to the (universal string) Coxeter
group C = [∞, . . . ,∞] of the same rank. On the other hand, McMullen and Schulte

[15, 16] proved that by taking a subgroup N 6 C which admits certain conditions,

the quotient U/N yields a polytope. The construction of the poset from the action of
the monodromy group can be found in [8, 15, 16].

We shall be making use of the following proposition proved by Hartley [8].

Proposition 3.5 Two polytopes P and Q, both of which are quotients of C, with base

flags Φ and Ψ, respectively, are isomorphic if and only if CP,Φ and CQ,Ψ are conjugate

in C.

Proposition 3.4 naturally extends to the following.

Proposition 3.6 Let P be a polytope with finite number of flag-orbits under the ac-

tion of its automorphism group, and let Φ be its base flag. Let N = StabC(Φ) and

N = NormC(N). Then |Orb(P)| = [C :N]. Furthermore, all orbits are of the same

cardinality. In particular, if the polytope is finite, the size of each orbit equals |Aut(P)|
and

|Orb(P)| =
|F(P)|

|Aut(P)|
= [M(P) : NormM(P)(StabM(P)(Φ))].

Proof Let Ψ1, Ψ2 ∈ F(P). Then Ψ1 = Φ · w, Ψ2 = Φ · v, for some v, w ∈ C. By

Proposition 3.4, Ψ1 and Ψ2 are in the same orbit if and only if there exists m ∈ N

such that Ψ1αm = (Φ · w)αm = Φ · mw = Φ · v = Ψ2, or equivalently, mwv−1 ∈ N,
implying Nw = Nv. Conversely, if the latter is true, then wv−1 ∈ N and Ψ2αwv−1 =

Ψ1. We conclude that the orbits are in one-to-one correspondence with cosets in
C/N. Since the action of the automorphism group is regular (sharply transitive) on

the orbits, the cardinality of every orbit equals the cardinality of Aut(P). The last

equality follows by Theorem 3.3.

The structure of the automorphism group of the universal string Coxeter group

C of rank n was determined by James [11]. For a given d ∈ Aut(C) we now define
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a polytope operation induced by d. Let fPd := fP ◦ d and s′i := fPd (si). Changing
from fP to fPd , while keeping M(P) and its action on F(P), has an effect equivalent

to choosing a new set of labelled generators of the same permutation group acting
on the same set of flags. This procedure introduces different incidences between

flags yielding a new structure, which we denote by Pd. We will not be interested

in structures that with such induced incidences are not polytopes, and henceforth
assume Pd is a polytope.

If P ∼= Pd, we say that P is self-invariant with respect to d or d-invariant. In

Theorem 3.7(iv) we shall prove that this isomorphism induces a bijection δ on F(P)
such that (Ψ · a)δ = (Ψδ) · d(a), for each a ∈ C and each Ψ ∈ F(P). The bijection

δ is called a d-automorphism of P. Note that P and Pd are defined on the same set of
flags F(P). The change induced by d results in a new action of C on the same set of

flags. In addition to the previously defined action Φ · w = Φ
fP(w), we now also have

the following action Φ ∗ w = Φ
f
Pd (w)

= Φ
fP(d(w)).

The well-known dual operation on a polytope P can be represented by d ∈ Aut(C)

defined by the mapping d : si 7→ sn−1−i , i = 0, . . . , n − 1. By reversing the sequence

of generators, we essentially describe the incidences of the flags in the poset obtained
by reversing the poset representing P to get the poset Pd, which is isomorphic to

the dual of P. In this case, d-invariant polytopes are exactly self-dual ones and d-
automorphisms are dualities.

As another example, consider a rank 3 polytope (polyhedron) and the automor-

phism p ∈ Aut(C) defined by the mapping (see [13,24]) p : (s0, s1, s2) 7→ (s0s2, s1, s2).
The induced operation is precisely the Petrie dual (or Petrial) on polyhedra (or

maps). It can easily be seen that d, as defined above, and p generate a subgroup

of Aut(C) isomorphic to S3. All automorphisms in that subgroup induce operations.
In particular, the automorphism p ◦ d ◦ p = d ◦ p ◦ d induces the so-called op-

eration opposite (i.e., opp(P)) of a polyhedron P (or a map). We observe that if P

is d-invariant and p-invariant, then it is self-invariant for any element in the group

〈p, d〉.
For rank n greater than 3 (see [11]), one can generalize the above defined auto-

morphism to p ∈ Aut(C) given on the generators by

p : (s0, . . . , sn−4, sn−3, sn−2, sn−1) 7→ (s0, . . . , sn−4, sn−3sn−1, sn−2, sn−1),

that induces the operation on a poset representing a rank n polytope. We call this

operation the generalized Petrie dual of a polytope. Note that the operation on the
polytope induced by p, when restricted to a co-face of rank 3, is precisely the Pe-

trial operation on the co-face. It is easy to see that for n > 4 the automorphisms

p and d generate a subgroup of Aut(C) isomorphic to the dihedral group D4 =

〈d, p | d2, p2, (dp)4〉. Note that for n > 6, both operations induced by d ◦ p ◦ d

and (d ◦ p)2
= (p ◦ d)2, restricted to a face of rank 3, yield the same operation,

namely the opposite operation.
The following theorem, characterising d-automorphisms of a d-invariant poly-

tope, is a powerful tool in analysis of self-invariance.

Theorem 3.7 Assume P is a polytope and Φ its base flag. Let N = CΦ, G = fP(N) =

StabM(Φ), M = M(P), and d ∈ Aut(C). Then the following are equivalent.
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(i) P ∼= P
d.

(ii) d(N) = w−1Nw for some w ∈ C.

(iii) For some v ∈ M there exists d ′ ∈ Aut(M) such that d ′(G) = v−1Gv and fP◦d =

d ′ ◦ fP.

(iv) There exists a bijection δ ∈ Sym(F) such that for every flag Ψ ∈ F(P) and every

a ∈ C

(Ψ fP(a))δ = (Ψ · a)δ = (Ψδ) ∗ a = (Ψδ) fP(d(a)).

(v) There exists w ∈ C, such that ∆ : Aut(P) → Aut(P), αr 7→ αwd(r)w−1 , is a group

automorphism.

Proof Proposition 3.5 implies that P ∼= Pd if and only if there exists r ∈ C, such that

N = r−1CPd,Φr. Note that

CPd,Φ = f −1
Pd (G) = ( fP ◦ d)−1(G) = d−1( f −1

P
(G)) = d−1(N).

Therefore d(N) = d(r−1d−1(N)r) = d(r)−1Nd(r), and by taking w = d(r), (ii) is

equivalent to (i).
Now we show that (ii) is equivalent to (iii). By Theorem 3.3 we have a bijective

correspondence between subgroups of C containing ker fP and subgroups of M. The

correspondence between two subgroups H 6 M and K 6 C is denoted by H ↔ K ,
meaning that fP(K) = H and f −1

P
(H) = K . The definiton of the action of C on F(P)

through fP and M implies G = StabM(Φ) ↔ CP,Φ = N.

Assuming (iii), v−1Gv = d ′(G) = d ′( fP(N)) = fP(d(N)) ↔ d(N). By Theo-
rem 3.3, v−1Gv ↔ w−1Nw for any w ∈ f −1

P
(v), therefore d(N) = w−1Nw, and (ii)

follows.
Assuming (ii), it remains to show that d ′ exists. Since G is a stabilizer of a transi-

tive permutation group, it follows that CoreM(G) = {1} (i.e., the maximal normal

subgroup in M contained in G is trivial). By Theorem 3.3, ker fP = CoreC(N) =

CoreC(w−1Nw). Since d ∈ Aut(C) and d(N) = w−1Nw, it follows that

d(ker fP) = ker fP and ker fP = ker( fP ◦ d).

Let q : C → C/ ker fP be the natural epimorphism. By the first isomorphism theo-

rem on groups, it follows that there exist unique group isomorphisms i1, i2 : M →
C/ ker fP such that q = i1 ◦ fP and q = i2 ◦ ( fP ◦ d). Defining d ′ := i−1

2 ◦ i1, (iii)
follows. Note that for a ∈ M, d ′(a) = fP(d(b)) for any b ∈ f −1

P
(a).

Assume (ii) and (iii). Denote by (p, Id) the action isomorphism from Lemma 3.1
between (F(P), M) and (M/G, M). Then by Lemma 3.2 and the fact that d ′(G) =

v−1Gv there exists a bijection p ′ : M/G → M/G such that (p ′, d ′) is an action iso-

morphism. Define δ := p−1 ◦ p ′ ◦ p. Then (δ, d ′) is an action isomorphism from
(F(P), M) to (F(P), M) such that Ψ

rδ = (Ψδ)d ′(r) for any r ∈ M, and (iv) follows.

Statement (iv) says that (δ, Id) is an action isomorphism of the two actions

(F(M), C, · ) and (F(M), C, ∗), or equivalently, (δ, d) is an action isomorphism of
(F(M), C, · ) and (F(M), C, · ). Let Φδ = Φ

a for some a ∈ M. Note that since (δ, d)

is an action isomorphism, d(N) = CPd,Φa . But since fP(N) = G and

fP(CPd,Φa ) = StabM(Φa) = a−1Ga,
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then by Theorem 3.3, CPd,Φa = b−1Nb for any b ∈ f −1
P

(a). Therefore d(N) =

b−1Nb, implying (ii).

Assuming (v), by Proposition 3.4, it follows that r ∈ N if and only wd(r)w−1 ∈ N,
implying that d(N) = w−1Nw and (ii).

Finally, assume (ii) to be true. Then wd(N)w−1
= N and d−1(w)Nd−1(w−1) =

d−1(N). Denote by N = NormC(N). For any r ∈ N it follows that

(wd(r)w−1)−1Nwd(r)w−1
= wd(r)−1w−1Nwd(r)w−1

= wd(r−1)d(N)d(r)w−1

= wd(r−1Nr)w−1
= wd(N)w−1

= N

and wd(r)w−1 ∈ N. Since also for any a, b ∈ N,

αa = αb ⇔ ab−1 ∈ N ⇔ d(ab−1) ∈ w−1Nw ⇔ wd(a)w−1(wd(b)w−1)−1 ∈ N,

it follows that the mapping ∆ is well defined and one-to-one. From Proposition 3.4,
it follows that αwv = αwαv, which implies that ∆ is a homomorphism. For x ∈ N,

there exists a ∈ C, such that x = wd(a)w−1, namely a = d−1(w−1xw). To show that

∆ is onto, it remains to prove that a ∈ N. But this is true, since

d−1(w−1xw)−1Nd−1(w−1xw) = d−1(w−1x−1)d−1(w)Nd−1(w−1)d−1(xw)

= d−1(w−1x−1)d−1(N)d−1(xw) = d−1(w−1x−1Nxw)

= d−1(w−1Nw) = d−1(d(N)) = N.

With N = CΦ as above, the next corollary follows immediately from the proof of

Theorem 3.7.

Corollary 3.8 Let P be a polytope and Φ its base flag. If any (and therefore all) of

the equivalent statements from Theorem 3.7 are satisfied, then for any w ∈ C with

d(N) = w−1Nw, there exists a d-automorphism δ, such that

Φδ = Φ · w = Φ ∗ d−1(w) and d ′(G) = fP(w)−1G fP(w).

Furthermore, this exactly describes all d-automorphisms.

As we have seen in the previous section, the action of dualities on flags induces a
permutation on the flag-orbits. A similar action occurs with other d-automorphisms.

When dealing with self-invariant polytopes, we shall find the following more general

theorem useful.

Theorem 3.9 Let d ∈ Aut(C) and P be a d-invariant polytope with a base flag Φ.

Let δ be a d-automorphism, N := CP,Φ, Conj(N) the set of all conjugates of N in C,

and Orb(P) the set of all orbits of flags under the action of Aut(P). Then there exists a

bijection Σ : Conj(N) → Orb(P) such that Σ(di(K)) = Σ(K)δi, for any integer i and

any K ∈ Conj(N).
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Proof Let w ∈ C be such that Φδ = Φ · w. By Theorem 3.7, d(N) = w−1Nw. Since
d ∈ Aut(C), di(K) ∈ Conj(N) for any i and any K ∈ Conj(N).

Let OΨ denote the orbit of a flag Ψ under the action of Aut(P). If Ψ, Ψ
′ are two

flags in the same orbit and γ ∈ Aut(P) such that Ψγ = Ψ
′, then for every r ∈ C it

follows that (Ψ · r)γ = (Ψγ) · r = Ψ
′ · r. Therefore, the action (F(P), C, · ) induces

an action on Orb(P) defined by OΨ · r = OΨ·r .
Define Σ : a−1Na 7→ OΦ · a. Then for a, b ∈ C,

b−1Nb = a−1Na ⇔ (ab−1)−1Nab−1
= N

⇔ ab−1 ∈ NormC(N) ⇔ αab−1 ∈ Aut(P).

The latter is equivalent to saying that Φ ·a is in the same orbit as Φ ·b, which in turn is

equivlant to OΦ · a = OΦ · b (note that we used Proposition 3.4). Therefore, Σ is well
defined and one-to-one. Obviously, it is onto. It suffices to prove Σ(d(K)) = Σ(K)δ
for every K ∈ Conj(N), as Σ(di(K)) = Σ(d(di−1(K))) = Σ(di−1(K))δ for i > 1.

Since d(N) = w−1Nw, then

d(a−1Na) = d(a−1)d(N)d(a) = d(a−1)w−1Nwd(a) = (wd(a))−1Nwd(a),

and therefore Σ(d(a−1Na)) = OΦ · wd(a). On the other hand,

(Φ · a)δ = Φδ · d(a) = Φ · wd(a)

(by Theorem 3.7 and Corollary 3.8). The claim of the theorem is implied by the

following simple observation: OΦδ = OΦδ, since αv ∈ Aut(P) exists if and only if

αd(v) ∈ Aut(P) exists, so that (Φαv)δ = (Φ · v)δ = (Φδ) · d(v) = (Φδ)αd(v).

The above theorem implies that the orbits in Orb(P) can be labelled by conjugates

in Conj(N), N := CP,Φ, in such a way that the action of an automorphism d ∈
Aut(C) on conjugates coincides with the action of any d-automorphism δ on the

orbits.

According to Theorem 3.7, a d-automorphism is determined by an image of the
base flag, similarly as it is the case with automorphisms. Denote by δw the d-automor-

phism taking a base flag Φ 7→ Φ · w, w ∈ C. Note that for N = StabC(Φ),

N = NormC(N), and a ∈ C, it follows that a−1Na = w−1Nw if and only if
Na = Nw. Theorem 3.7 and Corollary 3.8 now imply the following.

Corollary 3.10 Let P be a polytope and Φ a base flag. If δw, w ∈ C, is a d-automor-

phism, then all d-automorphisms are of the from δv, for v ∈ NormC(StabC(Φ))w.

Let d ∈ Aut(C) be the automorphism defining the dual operation. From The-

orem 3.9 we conclude that a self-dual polytope P is properly self-dual if d fixes all
conjugates of N = StabC(Φ), and improperly self-dual otherwise.

Let d ∈ Aut(C) be of a finite order m > 1 and δ a d-automorphism. Since for any
v ∈ C, (Φ·v)δ2

= ((Φδ)·d(v))δ = (Φδ2)·d2(v), by induction (Φ·v)δk
= (Φδk)·dk(v)

for any integer k. Hence δk is a dk-automorphism for any integer k; in particular δm is

an automorphism. A d-automorphism δ such that δm
= 1 is said to be of degree m.
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Note that when d defines the dual operation, the d-automorphism of degree 2 is
called a polarity.

The following theorem describes the existence of d-automorphisms of degree m

in terms of existence of certain elements in a monodromy group.

Theorem 3.11 Let d ∈ Aut(C) be of finite order m, P a d-invariant polytope with a

base flag Φ, δw a d-automorphism for some w ∈ C, N = StabC(Φ), N = NormC(N),

and M = M(P). Then P has a d-automorphism of degree m if and only if there

exists a ∈ Nw such that
∏m−1

i=0 di(a) ∈ N. This is true if and only if there exists

v ∈ NormM(StabM(Φ)) fP(w) such that
∏m−1

i=0 d ′i(v) ∈ StabM(Φ) for d ′ defined in

Theorem 3.7.

Proof According to Corollary 3.10, any d-automorphism can be denoted by δa for

some a ∈ Nw. By Theorem 3.7, Φδa = Φ · a, Φδ2
a = (Φ · a)δa = Φ · ad(a), and

by induction (Φ)δ
j
a = Φ ·

∏ j−1
i=0 di(a). Since dm

= 1, and therefore δm
a ∈ Aut(P), to

prove δm
a = 1 it suffices to show that Φδm

a = Φ, i.e., p :=
∏m−1

i=0 di(a) ∈ N. Therefore

δa is of degree m if and only if p ∈ N. By Theorems 3.7 and 3.3, this is true if and
only if

fP(p) =

m−1∏
i=0

fP(di(a)) =

m−1∏
i=0

d ′i( fP(a)) ∈ StabM(Φ).

From fP ◦ d = d ′ ◦ fP, it can be easily verified by induction that fP ◦ di
= d ′i ◦ fP,

for i > 0. Note that by Theorem 3.3, a ∈ Nw if and only if

fP(a) ∈ NormM(StabM(Φ)) fP(w).

4 Two-Orbit and Edge-Transitive Polyhedra

The most symmetrical polytopes are those that have exactly one orbit of flags under
the action of the automorphism group. Such polytopes are said to be regular. A

polytope is said to be chiral if it has exactly two distinct flag-orbits with adjacent flags

in distinct orbits. Both regular and chiral polytopes are equivelar in the following
sense. A polytope P of rank n is said to be equivelar if, for each i = 1, . . . , n − 1

and each flag Φ = {F−1, F0, . . . , Fn} of P, the section Fi+1/Fi−2 is a pi -gon. Note

that a polytope P of rank 3 is equivelar if all of its 2-faces are p-gons and all of its
vertex-figures are q-gons, that is, P is of Schläfli type {p, q}. A polytope P is i-face-

transitive if Aut(P) is transitive on the set of its i-faces. If a polytope of rank n is
i-face-transitive for all i = 0, . . . , n − 1, then it is called fully-transitive. Clearly,

fully-transitive polytopes of rank 3 are equivelar.

Moving away from regular polytopes, we now consider polytopes with precisely
two flag-orbits and refer to them as two-orbit polytopes. The following lemma gives

an important property which cannot be extended to polytopes with more than two

orbits.

Lemma 4.1 Let P be a two-orbit polytope and Φ a flag of P. If for i ∈ {0, . . . , n−1},

Φ and Φ
i are in the same flag-orbit, then any flag Ψ and its i-adjacent flag Ψ

i are in the

same orbit.
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Proof Let O1 and O2 be the two orbits. Assume that Ψ ∈ F(P), such that Ψ and
Ψ

i are in different orbits. Since P is a two-orbit polytope, without loss of generality

we may assume Φ, Φ
i , Ψ ∈ O1, and Ψ

i ∈ O2. There exist α, ρi ∈ Aut(P) such that
Φα = Ψ and Φρi = Φ

i . Hence, Ψα−1ρiα = Φρiα = Φ
iα = (Φα)i

= Ψ
i , implying

that Ψ
i ∈ O1, which is a contradiction.

We note that if P is an improperly self-dual two-orbit polytope, then D(P) is
regular (sharply transitive) on flags. Furthermore, if Φ is a fixed flag and δ a duality,

then there is at least one i ∈ {0, . . . , n − 1}, such that Φ
i is in the same orbit as Φδ.

Then at least one of the dualities δsi
exists.

In the remainder of the paper we consider only rank 3 polytopes, that is, polyhe-
dra, but most of what we state will also apply to maps.

Let P be a two-orbit polyhedron. Lemma 4.1 enables us to divide polyhedra with

two distinct orbits into the following (disjoint) classes.

• P is in class 2 if no adjacent flags of P are in the same orbit. In this case P is chiral.
• P is in class 2i with i ∈ {0, 1, 2} if every flag of P and its i-adjacent are in the same

orbit, but every flag and its j-adjacent are in distinct orbits, for j 6= i. In these

classes polytopes are fully-transitive.
• P is in class 2i, j with i, j ∈ {0, 1, 2} and i 6= j if every flag of P and its i- and

j-adjacent are in the same orbit, but every flag and its k-adjacent, for k 6= i, j, are

in distinct orbits.

It follows from this classification and Lemmas 2.1 and 4.1 that the duals of polyhe-
dra in classes 2i , 2i, j belong to the classes 22−i , 22−i,2− j , respectively. Hence polyhedra

in the classes 20, 22, 20,1, and 21,2 cannot be self-dual.

Lemma 4.1 also implies that two-orbit polyhedra in all classes but 20,2 are edge-

transitive, i.e., 1-face-transitive). In [6, 22] edge-transitive maps were classified into
14 types according to possession of certain automorphisms. Edge-transitive maps

can have 1, 2, or 4 flag-orbits under the action of the automorphism group. In Table 1

we list the classes of two-orbit polyhedra and the corresponding types according to
Graver and Watkins [6] (G–W type), when the polyhedra in the classes are edge-

transitive. The ranks of the faces, on which polyhedra in a given class are transitive,

are listed in the second row of Table 1.

Class 2 20 21 22 20,2 20,1 21,2

Transitivity ranks 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 2 0, 1 1, 2

Dual classes 2 22 21 20 20,2 21,2 20,1

G–W type 2Pex 2∗ex 2P 2ex – 2∗ 2

Table 1: Classes of two-orbit polyhedra.

Recall the notation introduced in Section 3, where Φαw = Φ · w for w ∈ C and

Φ a base flag of a polytope P. Here w ∈ C is a word in the generators s0, s1, and s2.
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For convenience, in Tables 2 and 3, we shall abbreviate the notation replacing si in
subscripts of α and δ by i.

By Lemma 4.1, given a class of a two-orbit polyhedron P, the local arrangement
of flag-orbits in the neighbourhood of any flag is completely determined and extends

to the whole map in a unique way. Up to duality, all possible arrangements corre-

sponding to classes of two-orbit polyhedra are given in Figure 2.

For each polyhedron in class C, this arrangement of flag orbits in the neighbor-

hood of a base flag Φ can in turn be used to select generators for the automorphism
group of the polyhedron. Our selection of generators is listed in the second column

of Table 2, and we refer to them as the distinguished generators with respect to Φ for the

automorphism group of the polyhedron. The distinguished generators satisfy certain
relations which are common to all polyhedra in the class. These are listed in the third

column of Table 2.

Consider now the set SC of elements w ∈ C such that αw is a distinguished gener-

ator for the automorphism group of some polyhedron in class C. The universal group

for the class C is the group generated by SC and the presentation given in the third
column of Table 2. The automorphism groups of two-orbit polyhedra in each class

are quotients of the corresponding universal groups.

To improve readability of the presentations of the universal groups given in the

third column of the table, we label subsequent generators of the second column by

a, b, c, d, where unnecessary generators are simply omitted. Note that polyhedra in
classes 2, 2i , i = 0, 1, 2, and 20,2 have Schläfli type {p, q}. Polyhedra in class 20,1 have

two face orbits with p1- and p2-gons while its vertex-figures are all q-gons. Dually,
polyhedra in class 21,2 have p-gonal faces, while its vertex-figures are q1- and q2-gons.

As noted in the introduction, regular and chiral self-dual polyhedra possess polar-

ities, that is, are of degree 2. Chiral polyhedra can be properly or improperly self-dual
(see [10, §3]). We now discuss the degree of the remaining self-dual two-orbit poly-

hedra, that is, the polyhedra in the classes 21 and 20,2. As seen in Table 1, they are at

least vertex and face-transitive and hence are equivelar. As we shall see, such poly-
hedra are of degree 2 or 4. Using Theorem 3.11 we have conducted a brief survey

of known self-dual edge-transitive polyhedra and found out that, although most of

Class Generators a, b, c, d Presentation of the universal group

2 α01, α12 〈a, b | ap, bq, (ab)2〉

20 α0, α12 〈a, b | a2, bq, (bab−1a)p/2〉

21 α1, α010, α02 〈a, b, c | a2, b2, c2, (ab)p/2, (acbc)q/2〉

22 α2, α10 〈a, b | a2, bp, (bab−1a)q/2〉

20,2 α0, α2, α101, α121 〈a, b, c, d | a2, b2, c2, d2, (ac)2, (ac)p/2, (bd)q/2, (cd)2〉

20,1 α0, α1, α212 〈a, b, c | a2, b2, c2, (ab)p1 , (bc)q/2, (ac)p2〉

21,2 α1, α2, α010 〈a, b, c | a2, b2, c2, (ab)q1 , (ac)p/2, (bc)q2〉

Table 2: Generators and relations of the universal groups for two-orbit polyhedra.
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Figure 2: Edges of polyhedra in classes 2, 20, 21, 20,2 and 20,1, respectively.

them are of degree 2, some, such as the polyhedra described in Section 5, contain no

polarities, and therefore must be of degree 4.

Theorem 4.2 Let P be a two-orbit polyhedron in class 21, let Φ be a base flag of P,

and let ρ1 := αs1
, ρ := αs0s1s0

, τ := αs0s2
be the distinguished generators of Aut(P) with

respect to Φ.

(i) P is properly self-dual if and only if there exists a group automorphism

δ̃ : Aut(P) → Aut(P)

of order 2 such that

δ̃(ρ1) = ρ1, δ̃(ρ) = τρτ, δ̃(τ) = τ.

(ii) P is improperly self-dual if and only if there exists a group automorphism

δ̂ : Aut(P) → Aut(P)
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of order 4 such that

δ̂(ρ1) = ρ, δ̂(ρ) = τρ1τ, δ̂(τ) = τ.

Proof The orbits OΦ and OΦ · s0 are distinct. By Theorem 3.9, P is properly self-
dual, if d(N) = N and improperly self-dual if d(N) = s0Ns0, where d ∈ Aut(C) is

the automorphism that induces the dual operation. The proof follows from Theorem

3.7(v). For part (i) take δ̃ : αw 7→ αd(w) and for (ii) take δ̂ : αw 7→ αs0d(w)s0
.

We observe that if P is an improperly self-dual two-orbit polyhedron in class 21,

then its left and right Petrie polygons must have the same length. To see this, we

note that the right Petrie motion is given by, for example, ΠR = ρτ , and there-
fore the left Petrie motion by ΠL = ρ1τ . Since P is improperly self-dual, we can

apply the automorphism δ̂ ∈ Aut(Aut(P)) from Theorem 4.2(ii) on ΠL to obtain

δ̂(ΠL) = δ̂(ρ1τ) = ρτ = ΠR. Therefore the orders of ΠL and ΠR are equal. However,
note that if P is properly self-dual of type 21, then the left and right Petrie polygons

need not have the same length.

Theorem 4.3 Let P be a two-orbit polyhedron in class 20,2, Φ be a base flag and let

ρ0 := αs0
, ρ2 := αs2

, r0 := αs1s0s1
, and r2 := αs1s2s1

be the distinguished generators of

Aut(P) with respect to Φ. Then P is of degree 2.

(i) P is properly self-dual if and only if there exists a group automorphism

δ̃ : Aut(P) → Aut(P)

of order 2 such that

δ̃(ρ0) = ρ2, δ̃(r0) = r2.

(ii) P is improperly self-dual if and only if there exists a group automorphism

δ̂ : Aut(P) → Aut(P)

of order 2 such that

δ̂(ρ0) = r2, δ̂(ρ2) = r0.

Proof The orbits OΦ and OΦ · s1 are distinct. By Theorem 3.9, P is properly self-

dual, if d(N) = N and improperly self-dual if d(N) = s1Ns1, where d ∈ Aut(C) is
the automorphism that induces the dual operation. The proof follows from Theorem

3.7(v). For part (i) take δ̃ : αw 7→ αd(w) and for (ii) take δ̂ : αw 7→ αs1d(w)s1
.

We conclude the section by considering self-dual edge-transitive polyhedra with
four orbits and show that they must be of degree 2. According to [22], the orbits

are OΦ, OΦ · s0, OΦ · s2, OΦ · s0s2. By Theorem 3.9, the corresponding conjugates
are N, s0Ns0, s2Ns2, s0s2Ns2s0. Note that d ∈ Aut(C), inducing the dual operation,

has order 2, preserves s1, and interchanges s0 and s2. This implies that d(N) = N or

d(N) = s0s2Ns2s0, otherwise we have a contradiction. In the first case d(s0s2Ns2s0) =
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s0s2Ns2s0, since d(s0s2) = s0s2, but d interchanges s0Ns0 and s2Ns2. In the second
case,

d(s0Ns0) = d(s0)d(N)d(s0) = d(s0)s0s2Ns2s0d(s0) = s2s0s2Ns2s0s2 = s0Ns0

and similarly d(s2Ns2) = s2Ns2. By Theorem 3.9, any duality must fix two of the

orbits and interchange the other two. Therefore, by Proposition 2.3, self-dual edge-
transitive maps with 4 orbits are all of degree 2.

5 Examples of Two-Orbit Polyhedra of Degree 4

The smallest, in terms of number of flags, (non-degenerate) edge-transitive self-dual
map with two flag-orbits and no dualities of degree two, is the one-vertex map in

Figure 1. As mentioned in Section 2, the map is not a polyhedron; however, it is an

example of what is commonly referred to as a polyhedral map, that is, a map having
the property that the intersection of any two distinct faces is either empty, a vertex,

or an edge [3]. The map is embedded into a non-orientable surface of genus 5. It
is non-degenerate in the sense that the degrees of vertices, faces, and lengths of its

Petrie-polygons are at least 3 (see [18]). The map is of type 2P (according to Graver

and Watkins) and Schläfli type {10, 10}, its Petrie polygons are of length 5, and all of
its dualities of degree 4.

Figure 3: The smallest self-dual polyhedron in class 21 possesing no polarity.

By Theorems 4.2 and 4.3, a self-dual two-orbit polyhedron of degree 4 must be

improperly self-dual in the class 21. The smallest example of such a polyhedron,
again in terms of number of flags, is C3 given in Figure 3. It is an orientable map

on a surface of genus 10 with 9 vertices, 9 faces and 36 edges. The nine faces of
the polyhedron are the nine octagonal faces of the truncated toroidal map {4, 4}(3,0),

where the edges along the 4-gons are identified when connected by the dotted lines

(as, for example, edges labelled by X in Figure 3). The map is the smallest member
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of the infinite family of polyhedra Ca obtained from the truncated toroidal maps
{4, 4}(a,0), where the edges of the 4-gonal holes are identified according to the same

rule (where the dotted lines of Ca have the same slopes as the dotted lines of C3.) The
extended Schläfli symbols of the polyhedra Ca are {8, 8|4}, where the 2-holes are the

4-gons of the toroidal map (for the notation see, for example, [21]). The maps in the

family are all in the class 21.

In terms of the distinguished generators defined in Theorem 4.2, the automor-
phism group of the map Ca is

Aut(Ca) = 〈ρ1, ρ, τ | ρ2
1, ρ

2, τ 2, (ρ1ρ)4, (ρ1ρτ)4, (τρ1ρρ1ρ)a, (τρ1ρρ1)2〉, a > 3.

Using Theorem 4.2, one can easily check that C3 is improperly self-dual. Further-

more, Ca is self-dual only if a = 3. By using the software package Magma [4], one

can verify that there is no element u ∈ M(C3), u /∈ NormM(C3)(StabM(C3)(Φ)), such
that ud(u) is in a stabilizer of any chosen base flag Φ. Therefore, by Theorem 3.11, C3

does not contain a polarity.

The underlaying graph (1-skeleton) of the polyhedron C3 has pairs of parallel
edges (that is, edges sharing the same vertices). Furthermore, every two adjacent

faces have precisely two edges in common, and hence C3 is not a polyhedral map.

However, this does not violate the definition of an abstract polyhedron.

In Figure 4 we give an example of a self-dual abstract polyhedron D1 of degree
four that does not have parallel edges and which is a cover of C3. The faces of D1 are

octagons, which belong to two copies of truncated toroidal maps, each with 18 octag-
onal faces (see Figure 4). The edges along the 4-gonal 2-holes of P are identified again

as indicated by the dotted lines, but changing from one copy of a toroidal map to the

other (for example, see the identifications by X and Y in Figure 4). The polyhedron
also belongs to an infinite family of polyhedra Dk, all in class 21, consisting of two

copies of truncated toroidal maps each with 1
2
(4k + 2)2 faces and extended Schläfli

symbol {8, 8|4}. In terms of the distinguished generators defined in Theorem 4.2,
the automorphism group of Dk is

Aut(Dk) =
〈
ρ1, ρ, τ

∣∣ ρ2
1, ρ

2, τ 2, (ρ1ρ)4, (ρ1ρτ)4, (τρ1ρρ1ρ)4k+2, (τρ1ρρ1)4,

(ρ1τρτρ1ρ)2, (ρ1ρτρ1τρ)2, (τρ1τρ)4,

(ρρ1τρρ1)2k+1(ρ1ρρ1ρτ)2k+1
〉
, k > 1.

We have not been able to produce an example of a self-dual equivelar polyhedral

map without a polarity. Existence of such a map is still an open problem.

6 Medials of Polyhedra and Self-Duality

Starting from the standard combinatorial and topological definition of the medial of
a map, we reinterpret it as an operation on the poset of an abstract polytope. We show

that the medial of a polyhedron is a polyhedron. It will be clear from the definition

that the medial of a polyhedron and the medial of its dual are isomorphic. In the
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Figure 4: A polyhedron in class 21 without parallel edges possesing no polarity.

classical theory, the medial of a regular convex polyhedron with Schläfli type {p, q}
is a quasi-regular polyhedron of type

{p
q

}
(see [5]), when the polyhedron is not self-

dual, and it is regular otherwise. In the remaider of the section, using monodromy

groups, we investigate the connection between the self-duality of a polyhedron and

symmetries of its medial.

For a polyhedron P, we denote by Fi(P) the set of all i-faces, for i = 0, 1, 2.

Furthermore, for a given flag Φ ∈ F(P) we denote by (Φ)i its i-face. It is convenient

to omit the improper faces (that is, the unique minimal and maximal faces) of the
poset, when specifying a flag. Hence, without loss of generality, we denote a flag Φ as

{(Φ)0, (Φ)1, (Φ2)}.

The medial polytope MP of P is a poset with i-faces Fi(MP) defined as follows:

F0(MP) = F1(P),

F1(MP) = {{(Φ)0, (Φ)2} | Φ ∈ F(P)},

F2(MP) = F0(P) ∪ F2(P).
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{(!)0, (!)2}=(")1

(!)2=("
2)2

"

"2

(!)0=(")2 (!)1=(")0

Figure 5: A flag of P “divided” into two flags of MP

The partial order on the faces Gi ∈ Fi(MP) is given by

G0 6MP
G1 ⇔ {G0} ∪ G1 ∈ F(P),

G1 6MP
G2 ⇔ G2 ∈ G1.

Any flag Φ of P induces in a natural way (see Figure 5) exactly two (adjacent) flags of

MP related to Φ, namely,

Ψ := {(Φ)1, {(Φ)0, (Φ)2}, (Φ)0} and Ψ
2
= {(Φ)1, {(Φ)0, (Φ)2}, (Φ)2}.

Conversely, if Ψ is a flag of MP, then {(Ψ)0} ∪ (Ψ)1 is a flag of P. Denoting it by Φ,
we have that (Ψ)0 = (Φ)1, (Ψ)1 = {(Φ)0, (Φ)2} , and (Ψ)2 = (Φ)0 or (Φ)2.

Proposition 6.1 The poset MP is a polyhedron.

Proof Verifying the diamond condition is straightforward. To see that MP is
strongly connected, we have to show that each section of MP is connected. Clearly,

MP is connected, since P is. Since 1-sections are diamonds, they are connected. The

2-sections of MP are its facets and its vertex-figures. Since the facets of MP corre-
spond to the facets and vertex-figures of P, and since P is strongly connected, the

facets of MP are connected. Furthermore, the vertices of MP are the edges of P.
Given an edge F1 of P, the set {H ∈ P | H 6 F1 or F1 6 H} corresponds to a

4-gon (vertex-figure) in MP (see Figure 6). Hence, the vertex-figures of MP are con-

nected.

Let s0, s1, s2 be the generators of the C-group C of rank 3 as in Section 3. Recall

that the semi-direct product N ⋊θ Q of two groups N and Q by the homomorphism
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{F2 , G0}{G2 , G0}{G2 , F0}{F2 , F0}

MP

F2 G2

F1

F0 G0

!!

G0F0

F1

G2F2

P

Figure 6: Faces adjacent to an edge of P and the corresponding 4-gonal vertex-figure in MP .

θ : Q → Aut(N) is defined as follows. The group elements are the elements of the
Cartesian product N × Q and the operation is defined by

(n, q)(n′, q ′) = (nθ(q)(n′), qq ′).

When the homomorphism θ is clear from the context, we write N ⋊ Q. Let d be

the automorphism of C that induces the dual operation. Take Q = 〈d〉, N = C and
θ : 〈d〉 → Aut(C), the inclusion homomorphism. Let D = C ⋊ 〈d〉, r0 = (s1, id),

r1 = (s0, id), and r2 = (1, d), where 1 and id denote the identity elements in the

corresponding groups. Clearly, D is generated by r0, r1, and r2 and in terms of a finite
presentation, it can be given by D = 〈r0, r1, r2 | r2

0, r2
1 , r2

2, (r0r2)2, (r1r2)4〉. Therefore,

the mapping Ω : C → D, taking si to ri , i = 0, 1, 2, is a group epimorphism. We

define the actions of r0, r1, r2 on the flags of MP as follows:

{(Φ)1, {(Φ)0, (Φ)2}, (Φ)i} ⋄ r0 = {(Φ)1 · s1, {(Φ)0, (Φ)2}, (Φ)i}, i = 0, 2;

{(Φ)1, {(Φ)0, (Φ)2}, (Φ)0} ⋄ r1 = {(Φ)1, {(Φ)0, (Φ)2 · s2}, (Φ)0};

{(Φ)1, {(Φ)0, (Φ)2}, (Φ)2} ⋄ r1 = {(Φ)1, {(Φ)0 · s0, (Φ)2}, (Φ)2};

{(Φ)1, {(Φ)0, (Φ)2}, (Φ)0} ⋄ r2 = {(Φ)1, {(Φ)0, (Φ)2}, (Φ)2};

{(Φ)1, {(Φ)0, (Φ)2}, (Φ)2} ⋄ r2 = {(Φ)1, {(Φ)0, (Φ)2}, (Φ)0}.

We show that the definition extends to an action of D on the set of flags of MP. Let

φ : F(MP) → F(P) × 〈d〉 be defined by {(Φ)1, {(Φ)0, (Φ)2}, (Φ)i} 7→ (Φ, d(2−i)/2).
Clearly, φ is a bijection. Define the action of the group D = C ⋊ 〈d〉 on the set

F(P) × 〈d〉 by (Φ, q) • (w, p) = (Φ · q(w), q ◦ p), for any Φ ∈ F(P), q, p ∈ 〈d〉, and

w ∈ C. To see that the action is well defined, notice that (1, id) ∈ D is the identity
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element and (Φ, q) • (1, id) = (Φ · id(1), q ◦ id) = (Φ, q). Furthermore,

((Φ, q) • (w, f )) • (v, h) = (Φ · q(w), q ◦ f ) • (v, h) = (Φ · q(w)(q ◦ f )(v), q ◦ f ◦ h),

(Φ, q) •

(
(w, f )(v, h)

)
= (Φ, q) • (w f (v), f ◦ h) = (Φ · q(w f (v)), q ◦ f ◦ h)

= (Φ · q(w)(q ◦ f )(v)), q ◦ f ◦ h).

Using the bijection φ : F(MP) → F(P) × 〈d〉 defined above, we transfer the ac-
tion of D from the set F(P) × 〈d〉 to the set F(MP), where φ−1((Φ, q) • (w, f )) =

φ−1((Φ, q)) ⋄ (w, f ), making (φ−1, Id) : (F(P) × 〈d〉, D) → (F(MP), D) an action
isomorphism. It can be easily verified that this is exactly the required extension of the

action ⋄.

Given a base flag Φ of P, we choose (Φ, id) as a base flag of MP. Let (w, f ) ∈ D be
in the stabilizer of (Φ, id) under the action (F(P) × 〈d〉, D). Then (Φ, id) • (w, f ) =

(Φ · id(w), f ) = (Φ · w, f ), implying that f = id and w ∈ StabC(Φ) =: N. Hence,

StabD((Φ, id)) = (N, id) is the embedding of N in D. Likewise (C, id) is the em-
bedding of C in D. Therefore, the monodromy group M(MP) of the medial MP

is isomorphic to the group D/ CoreD(N). Clearly, CoreD(N) 6 (CoreC(N), id),
with equality if and only if (1, d)(CoreC(N), id)(1, d) = (CoreC(N), id). That is,

d(CoreC(N)) = CoreC(N). By Theorem 3.7, this always happens when the poly-

hedron is self-dual, but it might also happen in some other cases. Defining d ′ ∈
Aut(M(P)) as in Theorem 3.7(iii), we now have the following proposition.

Proposition 6.2 Let P be a self-dual polyhedron. The monodromy group M(MP) is

isomorphic to M(P) ⋊θ 〈d
′〉, where θ : 〈d ′〉 → Aut(M(P)) is the inclusion homomor-

phism.

Proof As above, denote by N := StabC(Φ), where Φ is a base flag of P. Both

d ∈ Aut(C) and d ′ ∈ Aut(M(P)) are of order 2. Denoting by λ the isomor-
phism λ : 〈d〉 → 〈d ′〉, the mapping ( fP, λ) : D → M(P) ⋊θ 〈d

′〉, ( fP, λ)(w, h) =

( fP(w), λ(h)) is surjective. By Theorem 3.7, for any h ∈ 〈d〉 it follows that fP ◦ h =

λ(h) ◦ fP. Hence, for every w, v ∈ C and h, k ∈ 〈d〉,

(
( fP,λ)((w, h))

)(
( fP, λ)((v, k))

)
=

(
fP(w), λ(h)

)(
fP(v), λ(k)

)

=
(

fP(w)λ(h)( fP(v)), λ(h) ◦ λ(k)
)

=
(

fP(w)( fP ◦ h)(v), λ(h ◦ k)
)

= ( fP(wh(v)), λ(h ◦ k)) = ( fP, λ)(wh(v), h ◦ k) = ( fP, λ)((w, h)(v, k)).

Then ( fP, λ) is an epimorphism with the kernel (CoreC(N), id), which is, as dis-
cussed above, exactly CoreD(N). Therefore, by the first isomorphism theorem for

groups, it follows that

M(MP) ∼= D/ CoreD(N) ∼= D/ ker( fP, λ) ∼= ( fP, λ)(D) = M(P) ⋊θ 〈d
′〉.

The proposition implies that the monodromy group of the medial of a finite self-
dual polyhedron is twice as big as the monodromy group of the polyhedron.

In what follows, we will show that any two-orbit medial must be induced by either

a regular or a two orbit polyhedron.
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Theorem 6.3 Let P be a two-orbit polyhedron. Then MP has two or four orbits.

Furthermore, MP is a two-orbit polyhedron if and only if P is self-dual.

Proof Let N = StabC(Φ) and N = NormC(N). Clearly, (N, id) 6 NormD((N, id)).
If P is a two-orbit polyhedron, then [C :N] = 2 by Proposition 3.6. Since

[D : (C, id)] = 2, it follows that [D : (N, id)] = 4. The index [D : NormD((N, id))] is

either 4 or 2, since no element (w, id) ∈ D, w /∈ N normalizes (N, id). The index is
2 if and only if there exists an element of the form (v, d), v ∈ C, normalizing (N, id).

But for any n ∈ N

(v, d)−1(n, id)(v, d) = (d(v−1), d)(n, id)(v, d) = (d(v−1)d(n)d(v), id),

implying that (v, d) ∈ NormD((N, id)) if and only if d(v−1)d(N)d(v) = N or
d(N) = d(v)Nd(v)−1. But, by Theorem 3.7, the latter is equivalent to P being self-

dual.

We observe that the medial of a polyhedron can be regular. For example, the me-
dial of the regular toroidal map {4, 4}(b,0) with b2 faces and b2 vertices is the regular

toroidal map {4, 4}(b,b) with 2b2 and the same number of vertices. Its medial in turn,
is the regular toroidal map {4, 4}(2b,0) with 4b2 faces (and the same number of ver-

tices).

Similarly, arguments used in the proof of Theorem 6.3 can be used to prove the
following.

Theorem 6.4 Let P be a regular polyhedron and MP its medial. Then MP is either in

class 201 or regular. Furthermore, MP is regular if and only if P is self-dual.

Each automorphism and each duality of a polyhedron induces in a natural way

an automorphism of its medial. The correspondence is given in Table 3. To see how
the automorphisms of MP induced by P with a base flag Φ are found, one can take a

geometric approach. For example, Figure 7 shows how the automorphisms ρ1 and ρ2

of P correspond to the automorphisms αs0
and αs2s1s2

of MP, respectively. Figure 8
shows how the dualities δ and δs0

of P induce the automorphisms αs2
and αs1s2

of

MP, respectively (Recall that δsi
and δ are the unique dualities such that Φδsi

= Φ
i

and Φδ = Φ, respectively.)

Automorphisms and dualities of P ρ1 ρ0 δ ρ0ρ1 δ1

Induced automorphisms of MP α0 α1 α2 α01 α02

Automorphisms and dualities of P δ0 ρ1ρ0ρ1 ρ0ρ1ρ0 δ0ρ2 ρ2

Induced automorphisms of MP α12 α010 α101 α121 α212

Table 3: Automorphisms of MP induced by automorphisms and dualities of P.

Alternatively, using a purely algebraic approach, the correspondences are found as

follows. For convenience, denote by NC = NormC(N) and ND = NormD((N, id)),
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Figure 7: Automorphisms of P and the corresponding automorphisms of MP .
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Figure 8: Dualitites of P and the corresponding automorphisms of MP .

where N = StabC(Φ) and (N, id) = StabD(Φ). Then r0(N, id)r0 = (s1Ns1, id),

implying that r0 ∈ ND if and only if s1 ∈ NC. Conjugating (N, id) by r2, we see that
r2 ∈ ND if and only if d(N) = N. When P is self-dual, we define

I(P) = {u ∈ C | d(N) = u−1Nu}.

Therefore r2 ∈ ND if and only if I(P) ⊆ NC. Similarly, the conjugation of (N, id)
by r2r1r0 yields (d(s0s1Ns1s0), id). Hence, r2r1r0 ∈ ND if and only if d(s0s1Ns1s0) =

s2s1d(N)s1s2 = N. But this is equivalent to the claim that w ∈ I(P) implies ws1s2 ∈
NC. Using this approach, on certain other elements of D, we obtain the following set
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of correspondences

r0 ↔ s1, r1 ↔ s0, r2 ↔ w, r0r1 ↔ s0s1,

r0r2 ↔ ws1, r1r2 ↔ ws0, r0r1r0 ↔ s1s0s1, r1r0r1 ↔ s0s1s0,

r1r2r1 ↔ ws2s0, r2r1r2 ↔ s0,

where w is any element of I(P) and a ↔ b stands for “a ∈ ND if and only if b ∈ NC”.

By Proposition 3.4, these correspondences give us the correspondences between

automorphisms in Aut(MP) and elements of the extended group of P. For example,

the first correspondence tells us that αs0
∈ Aut(MP) if and only if ρ1 ∈ Aut(P), where

Φρ1 = Φ · s1. Denoting by 1 the class of regular polyhedra and using Theorems 6.3

and 6.4, we obtain Table 4 (where P and I in the second row stand for proper and

improper self-duality respectively and “–” denotes the case when a polyhedron is not
self-dual). By Theorem 6.3, when P is a two-orbit polyhedron which is not self-dual,

MP must have 4 flag-orbits.

Class of P 1 2 21 20,2

Type of duality P – P I P I P I

Class of MP 1 20,1 22 2 22,0 20 22,1 21

Table 4: Characterization of regular and two-orbit medial polyhedra.

In particular, the polyhedron in Figure 3, which is in class 21 and improperly self-

dual, induces a medial in class 20. Note that there is an error in [22, Lemma 2.2],

where it is claimed that the medial of a polyhedron in class 21 (i.e., type 2P) cannot
be edge-transitive. But polyhedra in class 20 (i.e., type 2∗ex) are edge-transitive.

In conclusion, we observe that every automorphism of the medial MP of a poly-

hedron P is induced by an automorphism or a duality of P.
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[18] A. Orbanić, Edge-transitive maps, Doctoral Dissertation, Univ. of Ljubljana, Ljubljana, 2006.
[19] , F-actions and parallel-product decomposition of reflexible maps. J. Algebraic Combin.

26(2007), no. 4, 507–527.
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