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Distribution Algebras on
p-Adic Groups and Lie Algebras

Allen Moy

Abstract. When F is a p-adic field, and G = G(F) is the group of F-rational points of a connected alge-

braic F-group, the complex vector space H(G) of compactly supported locally constant distributions

on G has a natural convolution product that makes it into a C-algebra (without an identity) called the

Hecke algebra. The Hecke algebra is a partial analogue for p-adic groups of the enveloping algebra of

a Lie group. However, H(G) has drawbacks such as the lack of an identity element, and the process

G 7→ H(G) is not a functor. Bernstein introduced an enlargement H (̂G) of H(G). The algebra H (̂G)

consists of the distributions that are left essentially compact. We show that the process G 7→ H (̂G)

is a functor. If τ : G → H is a morphism of p-adic groups, let F(τ ) : H (̂G) → H (̂H) be the mor-

phism of C-algebras. We identify the kernel of F(τ ) in terms of Ker(τ ). In the setting of p-adic Lie

algebras, with g a reductive Lie algebra, m a Levi, and τ : g → m the natural projection, we show that

F(τ ) maps G-invariant distributions on G to NG(m)-invariant distributions on m. Finally, we exhibit

a natural family of G-invariant essentially compact distributions on g associated with a G-invariant

non-degenerate symmetric bilinear form on g and in the case of SL(2) show how certain members of

the family can be moved to the group.

1 Introduction

Suppose that G is a connected Lie group. Let Lie(G) denote the Lie algebra of G,

and g = LieC(G) := Lie(G) ⊗R C the complexification of Lie(G). An indispensable

tool in the representation theory of G is the complex universal enveloping algebra

U(g). Under suitable conditions, a complex representation π : G → GL(V ) of G can

be differentiated to yield a representation of U(g) into EndC(V ). Furthermore, the

process G 7→ U(Lie(G) ⊗R C) is a functor from the category of connected Lie groups

to the category of algebras over C.

Suppose that F is a non-archimedean local field of characteristic zero, i.e., a p-

adic field, and G = G(F) is the group of F-rational points of an algebraic group

G. The discovery of constructions in the theory of complex representations of G

which are reasonable analogues of the Lie group enveloping algebra and its center

have taken a long time to emerge. A straightforward generalization of passing from

a representation π of G to a representation of its Lie algebra is not possible. The

best initial substitute is to replace the enveloping algebra of a Lie group, which arises

from differential operators, by the Hecke algebra H(G), which is the space of locally
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constant compactly supported distributions on G. Two drawbacks to H(G) are the

following:

(i) The process G 7→ H(G) is not functorial. If τ : G → H is a homomorphism of

algebraic groups, there is no natural candidate for a map F(τ ) : H(G) → H(H).

(ii) In the situation of Lie groups, for a suitable abelian category C of representa-

tions of a Lie group G, the center of the category C is isomorphic to the center

Z(U(Lie⊗RC)) of the enveloping algebra U(Lie⊗RC). In the p-adic situation,

the natural abelian category C to take is that of smooth representations. Unfor-

tunately, the center of the Hecke algebra H(G) is often the zero function, for

example, when G is a simple, and so not equal to the center of the category C.

In seminal work in the 1980’s (see [BD]), Bernstein introduced an analogue of the

center of the universal enveloping algebra and the enveloping algebra itself. Bern-

stein’s center has several realizations. In category terms, it is the center of the cate-

gory of smooth representations of G = G(F). More concretely, it is the algebra of

G-invariant distributions on G that have the property of essential compactness, i.e.,

for any f ∈ C∞
c (G), the convolution D ⋆ f has compact support, i.e., belongs to

C∞
c (G). Note the G-invariance hypothesis on D means D ⋆ f equals f ⋆ D. The real-

ization of the Bernstein center as G-invariant essentially compact distributions is its

geometrical realization. A simple argument to show the categorical and geometric

definitions of the Bernstein center are equivalent is in [MT]. Under the additional

hypothesis that G is reductive, a characterization of G-invariant essentially compact

distribution D can be given spectrally. Let (Ĝ)
temp

denote the tempered dual of G and

Θ(G) the space of infinitesimal characters, i.e., cuspidal data. Recall that

(i) the space Θ(G) is a countable disjoint union of irreducible, complex, affine,

algebraic varieties;

(ii) there is a canonical map κ : (Ĝ)
temp

→ Θ(G).

Then D is essentially compact if and only if there is a regular function r on Θ(G) such

that the Fourier transform of D equals Plancherel measure multiplied by r ◦ κ.

Bernstein (see [BD, §1.4]) also gave a ring theoretical realization of the Bernstein

center. One defines a left completion H (̂G) of the Hecke algebra H(G) as follows: A

distribution D on G is left essentially compact if for all f ∈ C∞
c (G), the convolution

D ⋆ f has compact support, and so belongs to C∞
c (G). Then H (̂G) is defined as the

space of all left essentially compact distributions. Two left essentially compact distri-

butions can be convoluted to produce another left essentially compact distribution,

and this product makes H (̂G) into a C-algebra. The distribution on G that is the

delta function δ1G
at the identity of G is the identity element of H (̂G). The center

of H (̂G) is the Bernstein center. One can also define a C-algebra of right essentially

compact distributions. A more consistent notation might be to denote the algebra of

left (resp. right) essentially compact distributions as ˆH(G) (resp. H (̂G)), but here

we follow the pre-existing notation in [BD, § 1.4].

The algebra H (̂G) is a good analogue for p-adic groups of the universal envelop-

ing algebra for Lie groups. It contains the Hecke algebra H(G) as a two-sided ideal. A

smooth representation of the p-adic group G yields a non-degenerate representation

of H(G) that can then be naturally extended to H (̂G). See [MT] for an exposition of
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the latter. In analogy with the enveloping algebra associated with a Lie group being

a functor, our first result here, Theorem 3.1, is to show that the process G 7→ H (̂G)

is a functor. Let F denote this functor. So, if τ : G → H is a morphism of p-adic

algebraic groups, then F(τ ) : H (̂G) → H (̂H) is a morphism of C-algebras. Our

second result, Theorem 4.3, gives a geometric interpretation of the algebra homo-

morphism F(τ ). Roughly speaking, a left essentially compact distribution D on G

can be integrated along the cosets of the kernel Ker(τ ) of τ to produce a left essen-

tially compact distribution on H. Here, one must do a weighted integration based

on the modular functions of G and the quotient (G/K). In particular, the kernel of

the algebra homomorphism F(τ ) : H (̂G) → H (̂H) is the space of left essentially

compact distributions whose weighted integral along any coset of Ker(τ ) is zero.

The functor G 7→ H (̂G) can be applied in the context of p-adic Lie algebras. Take

g = Lie(G)(F) to be the F-rational points of the Lie algebra Lie(G) of an F-group

G. The group structure on g is its additive vector space structure. Convolution of

two functions in C∞
c (g) is commutative, as is the convolution of a function f and a

distribution D, as well as the convolution of two essentially compact distributions.

We use the notation D(g) to denote the commutative algebra of essentially compact

distributions on g. It seems fruitful to view D(g) as a p-adic analogue of the algebra

of constant coefficient differential operators on the Lie algebra of a Lie group, and,

in particular, to consider the subalgebra of Ad(G)-invariant distributions D(g)G. In

this context, suppose that g is reductive, and m is a Levi subalgebra of g. There is a

canonical vector space map τ : g → m. Let NG(m) denote the normalizer of m in

G. In Theorem 6.2 we show the algebra map F(τ ) : D(g) → D(m) takes the space of

G-invariant distributions D(g)G to the space D(m)NG(m) of NG(m)-invariant essen-

tially compact distributions on m. The analogue with the Harish-Chandra homo-

morphism for complex Lie algebras is obvious. Suppose that B is an Ad(G)-invariant,

non-degenerate, symmetric, bilinear form on g, and ψ : F → C is a non-trivial ad-

ditive character. In Theorem 6.3, we show the Ad(G)-invariant distribution on g

associated to the Ad(G)-invariant function x 7→ ψ(B(x, x)) is essentially compact.

The analogue of this with a second order Ad(G)-invariant differential operator on

a complex semisimple Lie algebra is clear. In Theorem 7.1, for the case of SL(2), we

show how certain of these G-invariant essentially compact distributions on the Lie al-

gebra can be truncated to the set of topologically nilpotent elements and then moved

to the group by the Cayley transform. In (7.2) we calculate the scalars by which these

distributions on the group act on irreducible cuspidal representations.

In Section 2, we introduce notation and recall some results about the algebra

H (̂G). In particular, we recall the equivalence of a left (resp. right) essentially com-

pact distribution with a compatible system of elements f J ∈ H(G) ⋆ e J (resp. f J ∈
e J ⋆ H(G)) for a (countable) fundamental system J of open compact subgroups of

the identity of G. In Section 3, for a group homomorphism τ : G → H, we recall

the module action of C∞
c (G) on C∞

c (H) and then show the process G 7→ H (̂G) is a

functor. In Section 4, we determine the kernel of the C-algebra map F(τ ) : H (̂G) →
H (̂H) in terms of the kernel Ker(τ ). Section 5 has results on the essential compact-

ness of distributions on a vector space, in particular, associated with a non-degenerate

symmetric bilinear form. In Section 6, we apply the results of section 5 to the case of

a p-adic Lie algebra. In Section 7, we consider the case of the group SL(2).
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2 Notation, Setup, and Review

Suppose that F is a non-archimedean local field of characteristics zero, i.e., a p-adic

field. Let AlgGF denote the category of F-groups. Our assumption that F is p-adic

means an F-group G is completely determined by the group G = G(F) of its F-

rational points. In all that follows we use this correspondence and sometimes do not

distinguish between G and G. Suppose that N is normal F-group of G. Recall from

[S, §12.3] that the quotient group G(F)/N(F) is the F-rational points of a F-group

inside the F-group (G/N). The topology on G = G(F) coming from the local field F

is locally compact and totally disconnected. In particular, every neighborhood of the

identity element of G contains an open compact subgroup, and there is a countable

fundamental system of open compact subgroups. Denote by C∞
c (G) the complex

vector space of locally constant compactly supported functions on G.

Let dℓy be a left Haar measure on G. Recall the modular function ∆G is defined as

∫

G

f (y)dℓy = ∆G(g)

∫

G

f (yg)dℓy,

and dr y = ∆G(y)−1dℓy is a right Haar measure. There is natural convolution struc-

ture on C∞
c (G) that can be written symmetrically in dℓy and dr y as follows. For

φ, ψ ∈ C∞
c (G),

φ ⋆ ψ := x 7→

∫

G

φ(y)ψ(y−1x)dℓy =

∫

G

φ(y)ψ(y−1x)∆G(y)dr y

= x 7→

∫

G

φ(xh−1)ψ(h)drh =

∫

G

φ(xh−1)ψ(h)∆G(h)−1 dℓh.

(2.1)

The convolution product makes C∞
c (G) into a ring. If G is not discrete, then C∞

c (G)

does not have an identity. Set C( f ) := x 7→ f (x−1). For φ ∈ C∞
c (G) and f ∈

C∞
c (G), the distributions

D{ℓ,φ}( f ) :=

∫

G

φ(y) f (y)dℓy and D{r,φ}( f ) :=

∫

G

φ(y) f (y)dr y

can be expressed in terms of convolution products as:

(2.2) D{ℓ,φ}( f ) =
(
φ ⋆ C( f )

)
(1) and D{r,φ}( f ) =

(
C( f ) ⋆ φ

)
(1).

In the reverse direction, if f is a function on G and x ∈ G, define λx( f ) := y 7→
f (x−1 y) (resp. ρx( f ) := f (yx)) to be the left (resp. right) translation of f by x. Then

the convolutions φ ⋆ f and f ⋆ φ can be recovered from the distributions D{ℓ,φ} and

D{r,φ} by the formulae

(2.3) φ ⋆ f = x 7→ D{ℓ,φ}

(
λx(C( f ))

)
and f ⋆ φ = x 7→ D{r,φ}

(
ρx−1 (C( f ))

)
.

For an arbitrary distribution D on G and f ∈ C∞
c (G), we use the obvious extrapola-

tion of formulae (2.3) to define the convolutions D ⋆ f and f ⋆ D.
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Definition 2.1 (see [BD, §1.4]) A distribution D on G is respectively left or right

essentially compact if for all f ∈ C∞
c (G), the convolutions D ⋆ f or f ⋆ D belong

to C∞
c (G). A distribution D on G is essentially compact if it is both left and right

essentially compact.

Define complex vector spaces:

H (̂G) : = {distribution D | for all f ∈ C∞
c (G),

the convolution (D ⋆ f ) belongs to C∞
c (G)},

ˆH(G) : = {distribution D | for all f ∈ C∞
c (G),

the convolution ( f ⋆ D) belongs to C∞
c (G)},

U(G) : = {distribution D | for all f ∈ C∞
c (G),

both (D ⋆ f ) and ( f ⋆ D) belong to C∞
c (G)}.

Suppose that D1, D2 ∈ H (̂G). Then for any f ∈ C∞
c (G), the convolution D1 ⋆

(D2 ⋆ f ) is a well-defined function in C∞
c (G). The distribution D1 ⋆ D2 is defined as

the distribution on G, such that for all f ∈ C∞
c (G),

(D1 ⋆ D2) ⋆ f = D1 ⋆ (D2 ⋆ f ), so (D1 ⋆ D2)( f ) :=
(

D1 ⋆ (D2 ⋆ C( f ))
)

(1).

Similarly, if D1, D2 ∈ H (̂G), the distribution D1 ⋆ D2 ∈ H (̂G) is defined as

f ⋆ (D1 ⋆ D2) = ( f ⋆ D1) ⋆ D2, so(D1 ⋆ D2)( f ) :=
(

(C( f ) ⋆ D1) ⋆ D2

)
(1).

We remark that when G is unimodular, for all D1, D2 ∈ U(G), the convolution of D1

and D2 as elements in H (̂G) and as elements inˆH(G) are equal.

In order to provide a better feel for the algebras H (̂G) and ˆH(G), we review

[BD, Lemma 1.2.2]. For D ∈ H (̂G) consider the linear map LD : C∞
c (G) → C∞

c (G)

defined as LD( f ) := D ⋆ f . Clearly, LD( f ⋆ h) = LD( f ) ⋆ h for all f , h ∈ C∞
c (G).

Consider the endomorphism algebra

End(−,C∞
c (G))(C

∞
c (G)) := {linear T : C∞

c (G) → C∞
c (G) |

T( f ⋆ h) = T( f ) ⋆ h ∀ f , h ∈ C∞
c (G)}.

Obviously, LD ∈ End(−,C∞
c (G))(C

∞
c (G)), and furthermore, the map

L : H (̂G) → End(−,C∞
c (G))(C

∞
c (G))

D 7→ LD

(2.4)

is an algebra homomorphism.

Proposition 2.2 ([BD, Lemma 1.2.2]) If T ∈ End(−,C∞
c (G))(C

∞
c (G)), the distribu-

tion DT defined as DT( f ) := T(C( f ))(1) is left essentially compact and

(2.5) T 7→ DT
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is the inverse of (2.4). In particular, (2.5) provides an identification of the algebras

H (̂G) and End(−,C∞
c (G))(C

∞
c (G)).

Proof For T ∈ End(−,C∞
c (G))(C

∞
c (G)) and f ∈ C∞

c (G), we have

DT ⋆ f := x 7→ DT

(
λx(C( f ))

)
= T

(
C(λx(C( f )))

)
(1)

The function C(λx(C( f ))) is

y 7→ λx(C( f ))(y−1) = C( f )(x−1 y−1) = f (yx)

7→ f ⋆ δx−1 .

∀ f ∈ C∞
c (G)

So, C(λx(C( f ))) = f ⋆ δx−1 . Thus,

DT ⋆ f = x 7→ T( f ⋆ δx−1 )(1) = x 7→ T( f )(x).

In particular, since DT ⋆ f equals T( f ), it follows that

(i) DT is essentially compact, and

(ii) LDT
( f ) = DT ⋆ f = T( f ),

so the maps (2.4) and (2.5) are inverses of each other.

Obviously, we also have

ˆH(G) = End(C∞
c (G),−)(C

∞
c (G))

=
{

linear T : C∞
c (G) → C∞

c (G)
∣∣

T(h ⋆ f ) = h ⋆ T( f ) ∀ f , h ∈ C∞
c (G)

}
.

For later use, we recall an equivalent formulation of an element D ∈ H (̂G). If J

is an open compact subgroup of G, let 1 J denote the characteristic function of J, and

set e J := 1
meas( J)

1 J . Take J to be a countable fundamental system of open compact

subgroups of G. For J ∈ J, set D J := D ⋆ e J , so D J belongs to C∞
c (G) ⋆ e J . The set

of functions {D J | J ∈ J}, have the following compatibility property. If L, J ∈ J

and L ⊂ J, then eL ⋆ e J = e J , and consequently DL ⋆ e J = D J . Conversely, given a

fundamental system of open compact subgroups J, suppose that we have a system of

functions {D J ∈ C∞
c (G) ⋆ e J | J ∈ J} with the property that

(2.6) DL ⋆ e J = D J for all L, J ∈ J satisfying L ⊂ J.

For any f ∈ C∞
c (G), take J ∈ J so that e J ⋆ C( f ) = C( f ) and consider the function

D J ⋆ C( f ). If L ∈ J satisfies L ⊂ J, then

(2.7) DL ⋆ C( f ) = DL ⋆ (e J ⋆ C( f )) = (DL ⋆ e J) ⋆ C( f ) = D J ⋆ C( f ).

It follows that if J ∈ J satisfies e J ⋆ C( f ) = C( f ), then (2.7) is independent of J. Set

D( f ) := (D J ⋆C( f ))(1). Then D is a well-defined element of H (̂G), and furthermore

D ⋆ e J = D J .
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3 Module Action and Functor

A group homomorphism τ : G → H yields natural left and right module actions of

C∞
c (G) on C∞

c (H). The formula for the action is found in Cartier’s article [C, p. 124,

display (29)]. For fG ∈ C∞
c (G) and fH ∈ C∞

c (H),

fG ⋆
{τ ,ℓ}

fH : = x 7→

∫

G

fG(y) fH(τ (y)−1x)∆H(τ (y))dr y

fH ⋆
{τ ,r}

fG : = x 7→

∫

G

fH(xτ (y)−1) fG(y)∆H(τ (y))−1dℓy.

(3.1)

Note that if H = G and τ is the identity map, then the formulae in (3.1) reduce to

those of (2.1).

These formulae can be reinterpreted in terms of distributions. For fG ∈ C∞
c (G)

and fH ∈ C∞
c (H), let D{ℓ, fG,τ} and D{r, fG,τ} be the essentially compact distributions

on H defined by

D{ℓ, fG,τ}( fH) : = fG ⋆
{τ ,ℓ}

C( fH)(1) =

∫

G

fG(y) fH(τ (y))∆H(τ (y))dr y

=

∫

G

fG(y) fH(τ (y))∆H(τ (y))∆G(y)−1dℓy

D{r, fG,τ}( fH) : = C( fH) ⋆
{τ ,r}

fG(1) =

∫

G

fH(τ (y)) fG(y) ∆H(τ (y))−1dℓy

=

∫

G

fH(τ (y)) fG(y)∆H(τ (y))−1
∆G(y)dr y.

Then we have the the following analogues of (2.2):

fG ⋆
{τ ,ℓ}

fH = x 7→ D{ℓ, fG,τ}(λx(C( fH)) and fH ⋆
{τ ,r}

fG = x 7→ D{r, fG,τ}(ρx−1 (C( fH)).

Now consider the distribution algebra H (̂G). Our goal is to obtain a left module

action of the distribution algebra H (̂G) on C∞
c (H) that then yields a ring homomor-

phism of H (̂G) into H (̂H). This is in fact rather easy because the action of C∞
c (G)

on C∞
c (H) is smooth.

Theorem 3.1 (i) Suppose that DG ∈ H (̂G) and fH ∈ C∞
c (H). Take J to be an

open compact subgroup of G such that

e J ⋆
{τ ,ℓ}

C( fH) = C( fH).

Then the rule (F(τ )(DG)) defined as

(3.2) (F(τ )(DG))( fH) :=
(

(DG ⋆ e J) ⋆
{τ ,ℓ}

C( fH)
)

(1)

is independent of J and so defines a distribution on H.
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(ii) F(τ )(DG) ∈ H (̂H).

(iii) The map DG 7→ F(τ )(DG) is an algebra homomorphism of H (̂G) to H (̂H).

(iv) The process G 7→ H (̂G) is a functor from the category AlgGF of F-groups and

F-homomorphisms to the category of rings.

Proof (i) Suppose that L ⊂ J is a smaller open compact subgroup, then eL ⋆ e J =

e J = e J ⋆ eL, so that

(DG ⋆ e J) ⋆
{τ ,ℓ}

C( fH) =
(

DG ⋆ (eL ⋆ e J)
)

⋆
{τ ,ℓ}

C( fH) = (DG ⋆ eL) ⋆
{τ ,ℓ}

(
e J ⋆

{τ ,ℓ}
C( fH)

)

= (DG ⋆ eL) ⋆
{τ ,ℓ}

C( fH)

and so

(DG ⋆ e J) ⋆
{τ ,ℓ}

C( fH)(1) = (DG ⋆ eL) ⋆
{τ ,ℓ}

C( fH)(1).

It is now easy to deduce that F(τ )(DG) is a well-defined distribution on H.

(ii) By definition, (F(τ )(DG)) ⋆ fH = x 7→ (F(τ )(DG))(λx(C( fH))), and

(F(τ )(DG))(λx(C( fH))) = (DG ⋆ e J) ⋆
{τ ,ℓ}

C(λx(C( fH)))(1),

where J ⊂ G is any open compact subgroup so that

e J ⋆
{τ ,ℓ}

C
(
λx(C( fH))

)
= C

(
λx(C( fH))

)
.

The function C(λx(C( fH))), is ρx−1 ( fH), so the requirement on J is that fH be left

τ ( J)-invariant. So,

(F(τ )(DG)) ⋆ fH = x 7→ (DG ⋆ e J) ⋆
{τ ,ℓ}

ρx−1 ( fH)(1) =
(

(DG ⋆ e J) ⋆
{τ ,ℓ}

fH

)
(x).

The function ((DG ⋆ e J) ⋆
{τ ,ℓ}

fH) is independent of J satisfying the requirement that

fH be left τ ( J)-invariant. But this function has compact support.

(iii) In order to distinguish convolutions on G and H, we write the former as

⋆
G

and the later as ⋆
H

. Suppose that D ′
G, DG ∈ H (̂G) and fH ∈ C∞

c (H). Select a

sufficiently small J ⊂ G so that fH is left τ -invariant and so

(
F(τ )(DG)

)
⋆

H
fH = (DG ⋆

G
e J) ⋆

{τ ,ℓ}
fH .

Also, select a sufficiently small L so that eL ⋆
G

(DG ⋆
G

e J) = (DG ⋆
G

e J). Then

https://doi.org/10.4153/CJM-2011-025-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-025-3


Distribution Algebras 1145

eL ⋆
{τ ,ℓ}

((DG ⋆
G

e J) ⋆
{τ ,ℓ}

fH) = (DG ⋆
G

e J) ⋆
{τ ,ℓ}

fH , and

(
F(τ )(D ′

G)
)

⋆
H

(
(F(τ )(DG)) ⋆

H
fH

)
=

(
F(τ )(D ′

G)
)

⋆
H

(
(DG ⋆

G
e J) ⋆

{τ ,ℓ}
fH

)

= (D ′
G ⋆

G
eL) ⋆

{τ ,ℓ}

(
(DG ⋆

G
e J) ⋆

{τ ,ℓ}
fH

)

=
(

D ′
G ⋆

G
(eL ⋆

G
(DG ⋆

G
e J))

)
⋆

{τ ,ℓ}
fH

=
(

D ′
G ⋆

G
(DG ⋆

G
e J)

)
⋆

{τ ,ℓ}
fH

=
(

(D ′
G ⋆

G
DG) ⋆

G
e J

)
⋆

{τ ,ℓ}
fH

=
(

F(τ )(D ′
G ⋆

G
DG)

)
⋆

H
fH .

We deduce from this that F(τ )(D ′
G ⋆

G
DG) = F(τ )(D ′

G) ⋆
H

F(τ )(DG).

(iv) This is immediate from (i), (ii), and (iii).

When τ : G → H is an injection, it is a simple calculation to verify that

F(τ ) : H (̂G) → H (̂H) is also an injection. In the next two sections we describe

the kernel of the algebra map F(τ ) : H (̂G) → H (̂H) in terms of the group kernel

of τ : G → H. The kernel of F(τ ) is those distributions whose “weighted integration

over the cosets of the group kernel” is zero.

4 Kernel Formula

Suppose that τ : G → H is a (continuous) group homomorphism with kernel K. Let

q : G → (G/K) denote the quotient map. When convenient, we shall also use the

common notation g to denote q(g). Set ι : (G/K) → H so that

(4.1) τ = ι ◦ q.

We will need a formula for left Haar integration over G in terms of the left Haar

measures on K and (G/K), so we recall the following lemma, whose proof we leave

to the reader.

Lemma 4.1 For f ∈ C∞
c (G), the functional

f 7→

∫

(G/K)

∫

K

∀ f ∈ C∞
c (G) f (yk)dℓkdℓy

is a left Haar measure.

The module action of fG ∈ C∞
c (G) on fH ∈ C∞

c (H) is

fG ⋆
{τ ,ℓ}

fH := x 7→

∫

G

fG(y) fH(τ (y)−1x)∆H(τ (y))dr y

= x 7→

∫

G

fG(y) fH(τ (y)−1x)∆H(τ (y))∆G(y)−1dℓy.

(4.2)
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To integrate over G, we use Lemma 4.1. The last integral of (4.2) becomes

fG ⋆
{τ ,ℓ}

fH := x 7→

∫

G/K

{ ∫

K

fG(yk) fH(τ (yk)−1x)∆H(τ (yk))∆G(yk)−1dℓk
}

dℓy

= x 7→

∫

G/K

{ ∫

K

fG(yk) fH(τ (y)−1x)∆H(τ (y))∆G(yk)−1dℓk
}

dℓy

= x 7→

∫

G/K

{ ∫

K

fG(yk)
dℓk

∆G(yk)

}
fH(τ (y)−1x)∆H(τ (y))dℓy

= x 7→

∫

G/K

{
∆H(τ (y))

∫

K

fG(yk)
dℓk

∆G(yk)

}
fH(τ (y)−1x)dℓy.

(4.3)

Set

(4.4) I( fG) := y 7→ ∆(G/K)(y)

∫

K

fG(yk)
dℓk

∆G(yk)

a function on G.

Lemma 4.2 The function I( fG) is K-bi-invariant.

Proof Right K-invariance is obvious from (4.4). Left K-invariance is then a conse-

quence of K being a normal subgroup of G and right K-invariant.

When F is a bi-K-invariant function of G, let F denote F as a function of (G/K).

We rewrite (4.3) as:

fG ⋆
{τ ,ℓ}

fH = x 7→

∫

G/K

{
I( fG)(y)

}
fH(τ (y)−1x)∆H(τ (y))∆(G/K)(y)−1dℓy

= I( fG) ⋆
{ι,ℓ}

fH

(4.5)

So, the left module action of fG on C∞
c (H) is equal to integration of the function fG

along the cosets of K in G in the manner of (4.4) to obtain a bi-K-invariant function

I( fG), which we view as a function I( fG) on (G/K), and then using the left module

action of I( fG) on C∞
c (H). In terms of distributions, we have D{ℓ, fG,τ} = D{ℓ,I( fG),ι},

i.e.,

(4.6) F(τ )(D{ℓ, fG}) = F(ι)
(

D{ℓ,I( fG)}

)
.

We want to extrapolate (4.4) and (4.6) to an arbitrary left essentially compact

distribution D ∈ H (̂G). In particular, we wish to show that any left essentially

compact distribution D ∈ H (̂G) can be integrated over the cosets of K to obtain a

distribution I(D) on the quotient (G/K) such that I(D) ∈ H (̂(G/K)) and

(4.7) F(τ )(D) = F(ι)(I(D)).
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To accomplish this, we take a (countable) fundamental system of open compact

subgroup J of the identity in G. Observe that { J | J ∈ J} is a fundamental system

of open compact subgroups in (G/K). Recall from Section 2 that an element D ∈
H (̂G) is equivalent to a system of functions F J (recall F J = D ⋆ e J) satisfying the

compatibility condition (2.6). Apply the weighted integration operator (4.4) to each

F J to obtain bi-K-invariant functions I(F J). We shall show that I(F J) is a compatible

system of functions on (G/K) that defines an essentially compact distribution I(D)

satisfying (4.7). We summarize the process via the diagram

D // {F J := D ⋆ e J | J ∈ J}

²²

Φ {I(F J) | J ∈ J}.oo

Here, Φ is the left essentially compact distribution on (G/K) associated with the

compatible system of functions {I(F J) | J ∈ J}.

Theorem 4.3 Suppose that G = G(F), H = H(F) are p-adic algebraic groups, and

τ : G → H is a homomorphism with kernel K. Write τ = ι ◦ q as in (4.1) and

F(τ ) : H (̂G) → H (̂(G/K)) as in (3.2). Suppose that J is a fundamental system of

open compact subgroups of G. Given D ∈ H (̂G), consider the compatible system of

functions {D ⋆ e J | J ∈ J}. Then F(τ )(D) = F(ι)(Φ), where Φ ∈ H (̂(G/K)) is the

distribution associated with the compatible system of functions {I(D ⋆ e J) | J ∈ J}.

We prove Theorem (4.3) after we establish two lemmas.

Suppose that F ∈ C∞
c (G). Then the function I(F) defined in (4.4) is bi-K-

invariant. For any f ∈ C∞
c (G), we can form the convolution I(F) ⋆ f , in particular,

for f = e J , where J is an open compact subgroup of G.

Lemma 4.4 Suppose that J is an open compact subgroup of G and F ∈ C∞
c (G). Then

I(F) ⋆ e J = I(F ⋆ e J).

Proof We have I(F) ⋆ e J := x 7→
∫

G
I(F)(xh−1) e J(h) drh, and then

∫

G

I(F)(xh−1)e J(h)drh
1

meas ( J)

∫

J

I(F)(xh−1)drh

=
1

meas ( J)

∫

J

∆(G/K)(x)

∫

K

F(xh−1k)

∆G(xk)
dℓkdrh

=
1

meas ( J)

∫

J

∆(G/K)(x)

∫

K

F(x(h−1kh)h−1)

∆G(xk)
dℓk drh.
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(changing variables k ′ = h−1kh and using that h is in the compact group J)

=
1

meas ( J)

∫

J

∆(G/K)(x)

∫

K

F(xk ′h−1)

∆G(xk ′)
dℓk

′drh

=
1

meas ( J)

∫

K

∆(G/K)(x)

∫

J

F(xk ′h−1)

∆G(xk ′)
drhdℓk

′

= ∆(G/K)(x)

∫

K

(F ⋆ e J)(xk ′)

∆G(xk ′)
dk ′

=
(

I(F ⋆ e J)
)

(x).

Lemma 4.5 Suppose that K is a normal subgroup of G, J is an open compact subgroup

of G, and I is a locally constant function on G that is bi-K-invariant. (Recall that I means

I viewed as a function on the quotient (G/K).)

(i) The convolution I ⋆ e J is bi-K-invariant.

(ii) I ⋆ e J = I ⋆
(G/K)

e J .

Proof (i) We have I ⋆ e J = x 7→
∫

J
I(xh−1) drh

meas( J)
. So if k1, k2 ∈ K, then

(I ⋆ e J)(k1xk2) =

∫

J

I(k1xk2h−1)
drh

meas( J)
=

∫

J

I(k1xk2x−1xh−1)
drh

meas( J)
.

The product k1xk2x−1 belongs to K and I is left K-invariant, so I⋆e J is bi-K-invariant.

(ii) The hypothesis J is an open subgroup, so the group K J is open. The space

of bi-K-invariant, right J-invariant functions has basis the characteristics functions

1gK J of the cosets gK J of K J in G. We verify (ii) on these basis elements. We have

1gK J ⋆ e J = 1gK J and 1gK J = 1g J = 1g J ⋆
(G/K)

e J .

Proof of Theorem 4.3 As in Section 2, set D J := D ⋆ e J . By Lemmas 4.4 and 4.5:

I(D J) ⋆
(G/K)

e J = I(D J) ⋆ e J = I(D J) ⋆ e J = I(D J ⋆ e J).

Set

(4.8) Φ J := I(D J ⋆ e J).

If L, J ∈ J with L ⊂ J, then

(4.9) ΦL ⋆
(G/K)

e J = I(DL ⋆ e J) ⋆
(G/K)

e J = I(DL) ⋆ e J = I(DL ⋆ e J) = I(D J) = Φ J.

We conclude that the system {Φ J | J ∈ J} satisfies (2.6) and thus defines an element

Φ ∈ H (̂(G/K)).

Suppose that fH ∈ C∞
c (H). Take J ∈ J so that e J ⋆

{τ ,ℓ}
C( fH) = C( fH). Recall

F(τ )(D)( fH) : =
(

(D ⋆ e J) ⋆
{τ ,ℓ}

C( fH)
)

(1), and

F(ι)(Φ)( fH) : =
(

(Φ ⋆
(G/K)

e J) ⋆
{ι,ℓ}

C( fH)
)

(1).
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We have set D J = D ⋆ e J , and we have by (4.8) and (4.9) that Φ J := I(D J ⋆ e J) =

Φ J ⋆
(G/K)

e J . By (4.5), we have

D J ⋆
{τ ,ℓ}

C( fH) = I(D J) ⋆
{ι,ℓ}

C( fH).

Hence, F(τ )(D)( fH) = F(ι)(Φ)( fH). As this is true for all fH , we conclude F(τ )(D) =

F(ι)(Φ).

We consider a special case when G and K are taken to be a finite dimensional vector

space V over F and a subspace W ⊂ V . The group operation in this situation is the

vector space addition. In particular, the commutative addition means all the various

modular functions are identically one. Let τ : V → (V/W ) denote the quotient map

and consider the algebra map F(τ ) : H (̂V ) → H (̂(V/W )). For f ∈ C∞
c (V ), the

operator (4.4), simplifies to

I( f ) := y 7→

∫

W

f (y + w)dw

i.e., integration along the coset y + W .

Remark 4.6 Suppose that F is a p-adic field, V is a finite dimensional F vector

space, W ⊂ V is a subspace, and τ : V → V/W is the quotient map. Then the

algebra map F(τ ) : H (̂V ) → H (̂(V/W )) has kernel consisting of those essentially

compact distributions D on V with the property that for any sufficiently small open

compact subgroup J, the integration of D ⋆ e J along any coset y + W is zero.

5 Some Essentially Compact Distributions on a p-adic Vector Space

Suppose that F is a p-adic field with ring of integers RF and prime ideal ℘ . Let

valF : F → Z be the valuation map. The following proposition provides an interesting

essentially compact distribution on a p-adic field.

Proposition 5.1 Suppose that ψ : F → C is a non-trivial additive character with

conductor ℘ c, i.e., trivial on ℘ c, but non-trivial on ℘ c−1. Set B : F → F to be B(x) :=

x2.

(i) Suppose that J = ℘ t is an ideal of RF with 2t ≥ c. Then

(ψ ◦ B) ⋆ e J(y) =

{
(ψ ◦ B)(y) if valF(y) ≥ c − valF(2) − t

0 if valF(y) < c − valF(2) − t.

In particular, (ψ ◦ B) ⋆ e J is compactly supported.

(ii) The distribution Dψ◦B( f ) :=
∫

F
ψ(x2) f (x)dx is essentially compact.
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Proof (i) For the convolution (ψ ◦ B) ⋆ e J , we have

(ψ ◦ B) ⋆ e J = y 7→

∫

F

(ψ ◦ B)(y + x)e J(−x)dx

= y 7→

∫

℘ t

(ψ ◦ B)(y + x)
1

meas(℘ t )
dx

= y 7→
1

meas(℘ t )

∫

℘ t

ψ(y2 + 2yx + x2)dx

= y 7→
ψ(y2)

meas(℘ t )

∫

℘ t

ψ(2yx)dx, since x2 ∈ ℘ c.

The function x 7→ ψ(2yx) is a character on ℘ t . The integral over ℘ t equals meas(℘ t )

or vanishes depending on whether this character is non-trivial or trivial, i.e., accord-

ing to whether valF(2) + valF(y) + t is greater than, equal to, or less than c.

(ii) For any f ∈ C∞
c (F), if t is sufficiently large and J = ℘ t , then f = e J ⋆ f .

Assume t is large enough so that the condition 2t ≥ c is also satisfied. Then (ψ◦B)⋆e J

is compactly supported, but (ψ ◦ B) ⋆ f = (ψ ◦ B) ⋆ (e J ⋆ f ) = ((ψ ◦ B) ⋆ e J) ⋆ f , the

convolution of two compactly supported functions. Hence, (ψ ◦ B) ⋆ e J is compactly

supported as required.

Corollary 5.2 Suppose that V is a finite dimensional F vector space, ψ : F → C is

non-trivial additive character and B : V × V → F is a symmetric non-degenerate bi-

linear form on V . Then the distribution Dψ◦B( f ) :=
∫

V
ψ(B(x, x)) f (x)dx is essentially

compact.

Proof Let {v1, . . . , vm} be an orthogonal basis for B, so that for x = x1v1 +· · ·+xmvm

we have

ψ(B(x, x)) = ψ(a1x2
1 + · · · + amx2

m) = ψ(a1x2
1) · · ·ψ(amx2

m),

i.e., (ψ ◦ B) has a factorization into the direct product of single variable functions

xi 7→ ψ(aix
2
i ). The hypothesis B is non-degenerate, so all the ai ’s are non-zero, so

each single variable function is essentially compact. It follows that (ψ◦B) is essentially

compact.

Remark 5.3 For the orthogonal basis {v1, . . . , vm}, it follows from Proposition

5.1(i) that if we take J = {x1v1 + · · · + xmvm | xi ∈ ℘ t} with t sufficiently large,

then the support of the convolution (ψ ◦ B) ⋆ e J(y) will vanish outside a cartesian

product {y1v1 + · · · + ymvm | yi ∈ ℘ si}, for some si ’s, and inside the cartesian prod-

uct equals (ψ ◦ B)(y). In particular, it follows that

PV

(∫

V

ψ
(

B(x, x)
)

dx

)
:= the principal value of the integral

exists.
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Proposition 5.4 Suppose that V is a finite dimensional F vector space, ψ : F → C

is non-trivial additive character, and B : V × V → F is a symmetric non-degenerate

bilinear form on V . Suppose also that W ⊂ V is a subspace of V so that the restriction of

B to W is non-degenerate. Let W⊥ denote the perpendicular subspace to W with respect

to B, let BW (resp. BW⊥) be the restriction of B to W (resp. W⊥), and let τ : V → W be

orthogonal projection. Then

F(τ )(D(ψ◦B)) = D(ψ◦BW ) · PV

(∫

W⊥

ψ(BW⊥(x, x))dx

)
.

Proof Apply Remark 5.3 and Theorem 4.3.

The following theorem is a generalization of Proposition 5.1 to polynomials of

degree at least 2 with a less precise formulation of the support of the convolution.

Theorem 5.5 Suppose that ψ : F → C is a non-trivial additive character, and x 7→
p(x) is a polynomial of degree at least 2. Define a distribution D{ψ,p} by

D{ψ,p}( f ) :=

∫

F

ψ(p(x)) f (x)dx.

Then D{ψ,p} is essentially compact.

Proof Suppose that p(x) =
∑0

i=k aix
i with ak 6= 0. It is convenient for us to replace

x 7→ ψ(x) by x 7→ ψ(akx) and change p suitably to thereby assume p is monic. If p

is quadratic monic, we complete the square to reduce to the case when p(x) = x2 + b

with b constant. Then x 7→ ψ(x2 + b) = ψ(b)ψ(x2) is a non-zero scalar multiple of

x 7→ ψ(x2), an immediate reduction to Proposition (5.1). So, we assume k ≥ 3. Take

J = ℘ L with L ≥ 0. We have

D{ψ,p} ⋆ 1 J = y 7→

∫

F

ψ
(

p(y + x)
)

1 J(−x)dx =

∫

℘ L

ψ
(

p(y + x)
)

dx.

We wish to find a positive integer K so that if valF(y) = −M ≤ −K, then D{ψ,p} ⋆

1 J(y) = 0. We shall pick K with the requirement that K ≥ L, so ℘ (k−2)M ⊂ ℘ L.

Then the integral over J is a sum of integrals over the cosets x0 + ℘ (k−2)M of ℘ (k−2)M

in ℘ L. The latter can be written as
∫

x0+℘ (k−2)M

ψ
(

p(y + (x0 + v))
)

dx

=

∫

℘ (k−2)M

ψ
(

(y + (x0 + v)
) k

+

0∑

i=(k−1)

ai(y + (x0 + v))i)dx

=

∫

℘ (k−2)M

ψ
(

nk(y, x0)v0 + nk−1(y, x0)v1 + · · ·

· · · + n1(y, x0)vk−1 + n0(y, x0)vk
)

dx

(5.1)

Here, ni(y, x0) is a polynomial in y and x0 that is a sum of homogeneous polynomials

of degrees i, (i − 1), . . . 2, 1, 0 in the two variables. Furthermore:
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(i) The degree k homogeneous part of nk(y, x0) equals yk + · · ·
(ii) The degree (k − 1) homogeneous part of nk−1(y, x0) equals ky(k−1) + · · ·

In particular, the highest power of y that occurs in ni(y, x0) is at most i. Thus, for K

(with a dependence on L) sufficiently large, if valF(y) = −M ≤ −K, then for any

x0 ∈ ℘ L we have

valF
(

nk− j(y, x0)
)
≥ −(k − j)M.

Since v ∈ ℘ (k−2)M , we conclude that

valF
(

nk− j(y, x0)v j
)
≥ −(k − j)M + (k − 2)M j =

(
− j + ( j − 1)k

)
M.

The latter is greater than c, and so ψ(nk− j(y, x0)v j) = 1 under the assumption j ≥ 2,

k ≥ 3, and M ≥ c. The coset integral (5.1) becomes

∫

x0+℘ (k−2)M

ψ
(

p(y + (x0 + v))
)

dx = ψ
(

nk(y, x0)
) ∫

℘ (k−2)M

ψ
(

nk−1(y, x0)v
)

dx.

Since the degree (k−1) homogeneous part of nk−1(y, x0) is kyk−1 +· · · , it follows that

for K sufficiently large we can arrange valF(nk−1(y, x0)) equal to valF(k) − (k − 1)M,

and so for v ∈ ℘ (k−2)M we have valF(nk−1(y, x0)v) ≥ valF(k) − M. Equality occurs

when valF(v) = (k − 2)M. Clearly, we can make the valF(k) − M strictly less than

c, and therefore the function v 7→ ψ(nk−1(y, x0)v), which is a character on ℘ (k−2)M ,

is a non-trivial character. In particular, the integral over the coset x0 + ℘ (k−2)M is

zero. It follows that D{ψ,p} ⋆ 1 J(y) vanishes for y sufficiently large, and so D{ψ,p} is

essentially compact.

Remark 5.6 If p is a linear or constant polynomial, the distribution

f 7→ D{ψ,p}( f ) :=

∫

F

ψ
(

p(x)
)

f (x)dx

is easily seen to be not essentially compact.

6 Invariant Essentially Compact Distributions on a p-adic
Lie Algebra

If G is a connected F-group, then its Lie algebra Lie(G) is an F-variety. Set g =

Lie(G)(F) to be the Lie algebra of F-rational points. The commutative addition of the

F vector space g means the notions of left and right essentially compact distributions

are the same, i.e., H (̂g) = ˆH(g). For such a distribution D, we have D ⋆ f = f ⋆ D

for all f ∈ C∞
c (g), and if D1, D2 are essentially compact distributions on g, their

convolutions products in Hˆg) and ˆH(g) are equal and commutative. We use the

notation D(g) for this distribution algebra. We view it as an analogue of the algebra

of constant coefficient differential operators on the Lie algebra of a Lie group.

Let Ad: G → Aut(g) denote the Adjoint map, so the adjoint action of G on C∞
c (g)

is g. f := x 7→ f (Ad(g−1)(x). Define the adjoint action of G on the space of distribu-

tions on g by (g.D)( f ) := D(g−1. f ). We have (g.D ⋆ g. f ) = g.(D ⋆ f ).
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Definition 6.1 A distribution D on g := Lie(G)(F) is G-invariant if (g.D) = D for

all g ∈ G, i.e., D( f ) = D(g−1. f ) for all f ∈ C∞
c (g) and g ∈ G. Let D(g)G denote the

space of G-invariant essentially compact distributions on g.

Let dy be a Haar measure on g. We have

∀ f ∈ C∞
c (g),

∫

g

f (y)dy = ∆G(g)−1

∫

g

f (Ad(g)(y))dy.

In particular, if G is unimodular, then
∫

g
f (y)dy =

∫
g

f (Ad(g)(y))dy.

Suppose that G is a connected reductive F-group and g × g
B

−→F is a symmet-

ric non-degenerate Ad-invariant (i.e., B(Ad(g)x, Ad(g)y) = B(x, y)) bilinear form

on g. Suppose that M is an F-subgroup of G with the property that the restriction of

B( · , · ) to m := Lie(M)(F) is non-degenerate. A typical example is when M is a Levi

subgroup. That B is non-degenerate on m means M = M(F) is unimodular. Set

m⊥ := {x ∈ g | B(x, m) = 0} so that g = m ⊕ m⊥,

and for the latter direct sum let τ : g → m be the projection. The map τ gives an

algebra homomorphism F(τ ) : D(g) → D(m). Both m and m⊥ are Ad-invariant

under the group

NG(M) := normalizer in G of M,

so there are Adjoint actions of NG(M) on C∞
c (m) and D(m).

Theorem 6.2 Suppose that G is a connected reductive F-group and B is a symmetric

non-degenerate Ad-invariant (i.e., B(Ad(g)x, Ad(g)y) = B(x, y)) bilinear form on g.

Suppose that further that M is a connected F-subgroup of G so that the restriction of B to

m := Lie(M)(F) is non-degenerate. Then the map F(τ ) : D(g) → D(m) takes D(g)G

to D(m)NG(M).

Proof Suppose that D ∈ D(g)G and n ∈ NG(M). Fix a fundamental system of

open compact subgroups J of g, and consider the system of compatible functions

{D ⋆ e J | J ∈ J}. Obviously, {Ad(n) J | J ∈ J} is also a fundamental system of

open compact subgroups of g, and the distribution D can be fully recovered from the

compatible systems of functions {D ⋆ eAd(n) J | J ∈ J}. The function I(D ⋆ e J) equals

x 7→

∫

m⊥

(D ⋆ e J)(x + v)dv.

Viewed as functions on m = (gm⊥), the functions I(D ⋆ e J) are a compatible sys-

tem of functions for the fundamental system of open compact subgroups { J | J ∈ J}
of m. The essentially compact distribution Φ that they determine is by definition

I(D). The functions n.I(D ⋆ e J) become a fundamental system of functions for the
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distribution n.I(D) with respect to the fundamental system of open compact sub-

groups {n. J | J ∈ J} of m. Now, for x ∈ m ⊂ g, we have

n.I(D ⋆ e J)(x) = I(D ⋆ e J)(Ad(n−1)x)

=

∫

m⊥

(D ⋆ e J)(Ad(n−1)x + v)dv

=

∫

m⊥

(D ⋆ e J)(Ad(n−1) (x + v))dv

= I(n.(D ⋆ e J))(x).

Key in this is that Haar measure on m⊥ is Ad(NG(M))-invariant. Since I(n.(D⋆e J)) =

I(n.D ⋆ n.e J), and by hypothesis, D is Ad(G)-invariant, we have I(n.(D ⋆ e J)) =

I(D⋆n.e J). We interpret the functions I(D⋆n.e J) as a compatible system of functions

for I(D) with respect to the the fundamental system {n. J | J ∈ J} of open compact

subgroups of m. Whence, n.I(D) = I(D).

Theorem 6.3 Suppose that ψ : F → C is a non-trivial additive character, G is a

connected reductive F-group, g = Lie(G)(F), and B is a symmetric non-degenerate

bilinear form on g, Ad-invariant (i.e., B(Ad(g)x, Ad(g)y) = B(x, y)).

(i) The distribution Dψ◦B( f ) :=
∫

g
ψ(B(x, x)) f (x)dx belongs to D(g)Ad(G).

(ii) Suppose that m is a subalgebra of g such that the restriction Bm of B to m is non-

degenerate. Write g as g = m ⊕ m⊥, and let τ : g → m be the orthogonal

projection to m. Then

F(τ )(Dψ◦B) = Dψ◦Bm
· PV

(∫

m⊥

ψ(B(x, x))dx

)
.

Proof Apply Proposition 5.4.

7 The Group SL(2)

In this section we consider G = SL(2)(F) and show under a mild condition that the

essentially compact distribution Dψ◦B on the lie algebra g = sl(2)(F), when restricted

to the set of topologically nilpotent elements, transfers by the Cayley transform to a

G-invariant essentially compact distribution on G. We first review some facts. Recall

that if B( · , · ) is the Killing form on sl(2)(F), then B(x, x) = −8 det(x). By (6.3), for

any non-trivial additive character ψ of F, the G-invariant distribution Dψ◦det( f ) :=∫
g

f (x)ψ(det(x))dx is essentially compact. Let I denote the identity matrix in G. If

x ∈ g and I − x is invertible, the Cayley transform C(x) ∈ G is defined as

(7.1) C(x) :=
I + x

I − x
.

The relation between the determinant d = det(x) of x and the trace s = trace(C(x))

of C(x) is

d =
2 − s

2 + s
, s = 2

1 − d

1 + d
.
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The set of topologically nilpotent elements Enil of gl(2)(F) (resp. Tnil of g) and the

set of topologically unipotent elements E
uni

of GL(2)(F) (resp. T
uni

of G) is defined as

Enil : = {x ∈ gl(2)(F) | xpr

→ 0asr → ∞}

= {x =
[

a b
c d

]
∈ gl(2)(F) | trace(x), and det(x) ∈ ℘}

Tnil : = g ∩ Enil

and

E
uni

: = {y ∈ GL(2)(F) | y pr

→ I as r → ∞}

= {y =
[

a b
c d

]
∈ GL(2)(F) | trace(y) − 2, and det(y) − 1 ∈ ℘}

T
uni

: = G ∩ E
uni

.

For x ∈ Tnil, the Cayley transform C(x) has the convergent series:

C(x) = I + 2x + 2x2 + · · · .

Moreover, C maps Tnil bijectively with the set
(

G ∩ (I + 2Enil)
)

. Let C−1 denote the

inverse function. For
(

G∩ (I + 2Enil)
)

, the inverse C−1(y) is given by the convergent

series:

C−1(y) =

( y − I

2

)
−

( y − I

2

) 2

+
( y − I

2

) 3

− · · · .

We recall that when ψ is a non-trivial additive character of F, the conductoral

exponent f (ψ) is defined as the smallest integer so that ψ is trivial on ℘ f (ψ).

Theorem 7.1 Suppose that the conductoral exponent f (ψ) of ψ : F → C satisfies

f (ψ) ≥ 2. Then the following hold:

(i) The restriction of the G-invariant essentially compact distribution Dψ◦det to the

topologically nilpotent set Tnil remains a G-invariant essentially compact distribu-

tion.

(ii) Suppose that the residue characteristic p is odd (so that 2Enil = Enil). Let D =

Dψ◦det ◦C−1 be the G-invariant distribution with support (G ∩ (I + 2Enil)), given

as integration against the G-invariant function

y 7→ ψ(det(C−1(y))) = ψ
( 2 − trace(y)

2 + trace(y)

)
.

Then D is essentially compact.

Proof (i) For a positive integer r, let Kr ⊂ g denote the open compact congruence

lattice consisting of those matrices whose entries belong to ℘ r. Then

(7.2)
((

ψ ◦ det
) ∣∣

Tnil

)
⋆ eKr

= x 7→
1

meas(Kr)

∫

Kr

ψ(det(x + k))1Tnil
(x + k)dk

=
[

A B
C −A

]
7→

1

meas(Kr)

∫

(℘ r×℘ r×℘ r) ′
ψ

(
− (A + a)2 − (B + b)(C + c)

)
dadbdc.
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The integral is over the set (℘ r × ℘ r × ℘ r) ′ of (a, b, c) ∈ (℘ r × ℘ r × ℘ r) satisfying

((A + a)2 + (B + b)(C + c)) ∈ ℘ . We need to show the integral in (7.2) vanishes

when A, B,C is sufficiently large. Clearly, we need only show this vanishing under

the condition 2r ≥ f (ψ).

We observe that the function ((ψ◦det)|Tnil
)⋆eKr

is Kr-spherical. This observation

and the fact that the support of ((ψ ◦ det)|Tnil
) is in the topologically nilpotent set

allows us to deduce the convolution is completely determined by its restriction to the

topologically nilpotent set. So, we may assume A2 + BC ∈ ℘ and at least one of A,

B, or C is large. Under this assumption, for (a, b, c) ∈ (℘ r × ℘ r × ℘ r) the condition

((A + a)2 + (B + b)(C + c)) ∈ ℘ becomes the linear condition 2Aa + Bc + Cb ∈ ℘ .

This linear condition specifies a RF-submodule L of (℘ r × ℘ r × ℘ r). Furthermore,

((A + a)2 + (B + b)(C + c))− (A2 + BC) = (2Aa + Bc + Cb) + (a2 + bc), and therefore,

since 2r ≥ f (ψ), we have

ψ
(
− (A + a)2 − (B + b)(C + c)

)
= ψ

(
− (A2 + BC)

)
ψ(−(2Aa + Bc + Cb)).

Provided one of A, B, or C is sufficiently large, the function

(a, b, c) 7→ ψ(−(2Aa + Bc + Cb))

is a non-trivial character on the lattice L. Thus the integral (7.2) is zero.

(ii) For a positive integer r, let Kr ⊂ G denote the r-th congruence subgroup. The

proof is similar to the proof of part (i), e.g., the convolution D ⋆ eKr
is Kr-spherical

and determined by its values on the topologically unipotent set. Write the variables

y ∈ G and k ∈ Kr as y =
[

A B
C D

]
and k = I +

[
xa xb
xc xd

]
, where xa, xb, xc, xd ∈ ℘ r. We

have

trace(yk) = (A + D) + (Axa + Bxc + Cxb + Dxd).

So, if y is topologically unipotent, i.e., (A + D) − 2 ∈ ℘ , then yk is topologically

unipotent precisely when (Axa + Bxc + Cxb + Dxd) ∈ ℘ . Set

(Kr)
′
= {k ∈ Kr | (Axa + Bxc + Cxb + Dxd) ∈ ℘}.

We remark that if we replace xa by xα + (1 + xα)xbxc and we replace 1 + xd by 1
1+xα

,

i.e., xd = −xα + x2
α − x3

α + · · · , then any k ∈ Kr is parametrized by a unique triple

xα, xb, xc ∈ ℘ r. Denote the inverse of the Cayley transform (7.1) as γ. Then

D ⋆ eKr

= y 7→
1

meas(Kr)

∫

Kr

ψ
(

det(γ(yk))
)

1Tnil

(
γ(yk)

)
dk

= y 7→
1

meas(Kr)

∫

Kr

ψ
( 2 − trace(yk)

2 + trace(yk)

)
1T

uni
(yk)dk

=
[

A B
C D

]
7→

1

meas(Kr)

∫

(Kr) ′
ψ

( 2 − (A + D) + (Axa + Bxc + Cxb + Dxd)

2 + (A + D) + (Axa + Bxc + Cxb + Dxd)

)
dk.

(7.3)
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The assumptions trace(y), trace(yk) ∈ 2 + ℘ , and p 6= 2 mean the denominator

in the last line of (7.3) is a unit. The assumption that y is topologically unipotent,

i.e., A + D − 2 ∈ ℘ also means that when y is sufficiently large, that either B or C

has the maximal absolute value among A, B,C, D. By symmetry we assume B has

maximal absolute value. Let U ⊂ Kr be the root subgroup satisfying the conditions

xα = xb = 0, and Bxc ∈ ℘ f (ψ)−1. Then (Kr)
′ is right U -invariant. When B is

sufficiently large, the restriction of the integrand in the final line of (7.3) to a coset

kU inside (Kr)
′ transforms by a nontrivial character of U . Whence the integral over

kKr is zero and so the integral in (7.3) vanishes. So D is essentially compact.

We now compute the action of the distribution D = Dψ◦det ◦γ on an irreducible

cuspidal representation (π,V ). We formulate the initial aspects in the more general

context of an invariant essentially compact distribution D on a p-adic group H and an

irreducible smooth representation (τ ,W ) of H. By Schur’s Lemma, τ (D) is a scalar

operator on (τ ,W ). For convenience we also let τ (D) denote the scalar by which

τ (D) acts on W . Suppose that J is an open compact subgroup of H and w ∈ W

generates a J-irreducible representation σ inside W . Let χσ denote the character of

σ, and let eσ the idempotent in C∞
c (H) equal

deg(σ)
meas( J)

χσ on J and zero off J. The

convolution D ⋆ eσ belongs to the center of the algebra eσ ⋆ C∞
c (H) ⋆ eσ .

We recall that when H is a semisimple p-adic group, an irreducible cuspidal repre-

sentation (τ ,W ) of H is induced from an open compact subgroup J if there is a w ∈
W that generates a J-irreducible representation σ satisfying eσ ⋆ C∞

c (H) ⋆ eσ = Ceσ .

In particular, since D⋆eσ is always in eσ ⋆C∞
c (H)⋆eσ , the convolution D⋆eσ is a scalar

multiple of eσ . The scalar multiple is precisely the scalar τ (D), i.e., D ⋆ eσ = τ (D)eσ .

In other words, the idempotent eσ , under convolution against elements of the Bern-

stein center, is an eigenfunction. Suppose now that the invariant essentially compact

distribution D is represented as integration against the function φ. We have

(7.4) φ ⋆ eσ(1) =

∫

H

φ(1h) eσ(h−1)dh =
deg(σ)

meas( J)

∫

J

φ(k)χσ(k−1)dk.

We now specialize to the case when H = SL(2)(F) and D = Dψ◦det ◦γ . In particu-

lar, D is represented on the set of topologically unipotent elements by the function

φ := g 7→ ψ
( 2 − trace(g)

2 + trace(g)

)
.

Depending on the parity of f (ψ), write f (ψ) as 2t or 2t + 1 with t ≥ 1. Set s

to be t (resp. t + 1) when f (ψ) is even (resp. odd). Let ρ(π) denote the depth of an

irreducible cuspidal representation (π,V ) of G. We recall ρ(π) ∈ 1
2

N. We consider

the three cases: (i) ρ(π) = 0, (ii) ρ(π) is a positive integer, and (iii) ρ(π) has the form
1
2

+ n, with n ∈ N.

(i) Case ρ(π) = 0.

Let Fq denote the finite field RF/℘ . The two conjugacy classes of maximal com-

pact subgroups of G become one orbit when we allow conjugation by elements of

GL(2)(F). This means it suffices to consider the situation when (π,V ) is induced
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from a cuspidal representation σ of SL(2)(Fq) inflated to K = SL(2)(RF). Let Ki de-

note the i-th congruence subgroup of K. The integral (7.4) is then a sum of integrals

over cosets kKs ⊂ K of Ks so that the element kK1 ∈ K/K1 is unipotent. The charac-

ter χσ is constant on the cosets of K1 and hence on those of Ks. The restriction of φ
to Kt factors to a function on Kt/Ks. The integral over a coset kKs is

∫

kKs

φ(x)χσ(x−1)dx =

∫

Ks

φ(kv)χσ(kv)dv = χσ(k)

∫

Ks

φ(kv) dv

=

{
0 if k /∈ Kt

deg(σ)φ(k) meas(Ks) if k ∈ Kt .

(7.5)

The vanishing when k /∈ Kt is because at least one entry of the matrix k − I is not in

℘ t . Let Us be the intersection of Ks with the opposite root space group to this entry.

The function v 7→ φ(kv) transforms by a non-trivial character of Us, from which

we immediately deduce vanishing of the integral. In regards to the assertion when

k ∈ Kt , we note that in this situation, the function v 7→ φ(kv) is constant on Ks, and

so the integral is as stated. Set

(7.6) G(ψ) :=






1 if f (ψ) = 2t
∑

kKs∈Kt /Ks

φ(k) if f (ψ) = 2t + 1 (a Gauss sum).

Then

(7.7) φ ⋆ eσ = deg(σ)G(ψ) meas(Ks)eσ.

(ii) Case r = ρ(π) positive integral.

As in case (i), we can assume π is induced from an irreducible representation of

SL(2)(RF). We choose a non-zero v ∈ V
Kρ(π)+1
π so that v transforms by a character χ

of Kρ(π)/Kρ(π)+1.

(a) Subcase s ≥ (r + 1). As in case (i), the integral (7.4) is a sum over cosets of Ks. We

again have (7.5), (7.6), and (7.7).

(b) Subcase s < (r + 1). We note that T := max(0, f (ψ) − (r + 1)) ≤ r. We write the

integral (7.4) as a sum over cosets of Kr+1. As in (7.5), we have

∫

kKr+1

φ(x)χσ(x−1)dx =

∫

Kr+1

φ(kv)χσ(kv)dv = χσ(k)

∫

Kr+1

φ(kv)dv

=

{
0 if k /∈ KT

deg(σ)χσ(k) meas(Kr+1) if k ∈ KT .

(7.8)

The coset integrals (7.8) need to be summed over k ∈ KT/Kr+1. Since χσ is a

non-trivial character of KT/Kr+1, we see φ ⋆ eσ = 0 eσ .
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(iii) Case r = ρ(π) =
1
2

+ m half-integral.

Let B ⊂ K denote the Iwahori subgroup, which modulo K1 is the Borel subgroup

of upper triangular matrices. for i ∈ 1
2

N, let Bi denote the standard i-th filtration

subgroup of B. We have ρ(π) + 1
2

= m + 1. We choose a non-zero v ∈ V Bm+1
π so that

v transforms by a character χ of Kρ(π)/Kρ(π)+ 1
2
.

(a) Subcase t ≥ m + 1. We decompose the integral (7.4) into a sum of integrals over

the cosets of Bt ⊂ Bm+1. In particular, σ is trivial on Bt , and so the integral over

a coset kBt becomes
∫

kBt

φ(x)χσ(x−1)dx =

∫

Bt

φ(kv)χσ(kv)dv = χσ(k)

∫

Bt

φ(kv)dv

=

{
0 if k /∈ Bt

deg(σ)
∫

Bt
φ(v) dv if k ∈ Bt .

The integral
∫

Bt
φ(v) dv can easily be written as meas(Bt+ 1

2
) times a Gauss sum

over the group Bt/Bt+ 1
2

of order q. Let G(ψ) denote this Gauss sum. Then

φ ⋆ eσ = deg(σ)G(ψ) meas(Bt+ 1
2
)eσ.

(b) Subcase t < m + 1. We decompose the integral (7.4) into a sum of integrals over

the cosets of Bm+1. In particular, σ is trivial on Bm+1, and so the integral over a

coset kBm+1 becomes
∫

kBm+1

φ(x)χσ(x−1)dx =

∫

Bm+1

φ(kv)χσ(kv)dv

= χσ(k)

∫

Bm+1

φ(kv)dv.

We then argue as in case(ii)(b) to find φ ⋆ eσ = 0 eσ .

We summarize the above in the following theorem.

Theorem 7.2 Suppose that p is odd and H = SL(2)(F). Suppose that ψ is an additive

character of F with conductoral exponent f (ψ) ≥ 2. Write f (ψ) as f (ψ) = t + s with

s = t or s = t + 1. The scalar by which the distribution D = Dψ◦det ◦C−1 acts on an

irreducible cuspidal representation (π,Vπ) is given by the following:

(i) If ρ(π) = 0, then the scalar is deg(σ)G(ψ) meas(Ks).

(ii) If ρ(π) = r is integral, then the scalar is deg(σ)G(ψ) meas(Ks) for s ≥ ρ(π) + 1

and zero if s < ρ(π) + 1.

(iii) If ρ(π) = m + 1
2

is half-integral, then the scalar is deg(σ)G(ψ) meas(Bt+ 1
2
) for

t ≥ ρ(π) + 1
2

and zero if t < ρ(π) + 1
2
.
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