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Abstract. The statistical properties of the temperature anisotropies and polarization of the
of cosmic microwave background (CMB) radiation offer a powerful probe of the physics of
the early universe. In recent works a statistical procedure based upon the calculation of the
kurtosis and skewness of the data in patches of CMB sky-sphere has been proposed and used
to investigate the large-angle deviation from Gaussianity in WMAP maps. Here we briefly
address the question as to how this analysis of Gaussianity is modified if the foreground-cleaned
Planck maps are considered. We show that although the foreground-cleaned Planck maps present
significant deviation from Gaussianity of different degrees when a less severe mask is used, they
become consistent with Gaussianity, as detected by our indicators, when masked with the union
mask U73.
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1. Introduction
The statistical properties of the temperature fluctuations and polarization of cosmic

microwave background (CMB) radiation offer a powerful probe of the physics of the early
universe (Komatsu 2010). In this way, a detection of a significant level of primordial non-
Gaussianity (NG) of local type (f local

NL � 1) would rule out, for example, the entire class
of single scalar field models (see, e.g., Creminelli & Zaldarriaga 2004 and Komatsu 2010).

It is conceivable, however, that no single statistical estimator can be sensitive and
suitable to capture all forms of non-Gaussianity that may be present in the observed
CMB data. Thus, it is important to test CMB data for non-Gaussianity by using different
statistical indicators.

In a recent paper (Bernui & Rebouças 2009) statistical procedure based upon the cal-
culation of the skewness and kurtosis by taking the values of the CMB temperatures fluc-
tuations assigned to the pixels inside patches of CMB sky-sphere has been proposed and
used to study deviation from Gaussianity in foreground-reduced WMAP maps (Bernui
& Rebouças 2010) as well as in simulated maps (Bernui & Rebouças 2012). A pertinent
question is how the analysis of Gaussianity made by using WMAP data is modified if
the foreground-cleaned maps released by the Planck are considered. We have addressed
this question and here we report partially the results of our analyses performed with the
skewness estimator. For a comprehensive statistical analysis we refer the readers to our
recent paper (Bernui & Rebouças 2014).
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2. Statistical procedure and main results
Perhaps the simplest test for Gaussianity of a CMB map can be made by computing

the skewness, S, and kurtosis, K from the whole set of CMB temperature fluctuations
values of a given CMB map. However, one can go a step further and, instead of calculate
two numbers, one can compute n values of the skewness as well as n values of the kurtosis,
and obtain with directional information on NG, by dividing the CMB sphere S

2 into a
number n of uniformly distributed spherical patches of equal area that cover S

2 , and by
calculating the skewness and the kurtosis

Sj =
1

Np σ3
j

Np∑
i=1

(
Ti − Tj

)3
, (2.1)

Kj =
1

Np σ4
j

Np∑
i=1

(
Ti − Tj

)4 − 3 , (2.2)

for each patch j = 1, . . . , n. Here Np is the number of pixels in the j th patch, Ti is the
temperature at the i th pixel, Tj is the CMB mean temperature in the j th patch, and
σ is the standard deviation. In this work, we have chosen these patches to be spherical
caps (calottes) with aperture γ = 90◦.

The two set of n values (each) {Sj} and {Kj} along with the spherical coordinates of
the center of the patches, θj , φj can then be employed to define two discrete functions on
S

2 , namely S(θi, φi) and K(θi, φi) in such way that S(θj , φj ) = Sj and K(θj , φj ) = Kj

for every j = 1, . . . , n. These functions give local measurements of NG as functions of
angular coordinates. The Mollweide projections of S(θj , φj ) and K(θj , φj ) are skewness
and kurtosis maps, whose power spectra S� and K� can be used to study large-angle
deviation from Gaussianity by determinig the goodness of fit of these power spectra
obtained from the Planck maps as compared to the mean power spectra calculated from
1 000 simulated Gaussian maps (S

G

� and K
G

� ) through a χ2 analysis. In this way, for S�

obtained from a given Planck map one has

χ2
S�

=
1
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(
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G

�

)2

(σG
� )2 , (2.3)

where S
G

� are the mean multipole values for each � mode, (σG
� )2 is the variance computed

from 1 000 Gaussian maps, and N is the highest multipole taken in the analysis of NG.
Clearly a similar expression and reasoning can be used for K� . In what follows, however,

for the sake of brevity we will only briefly report the results of our analysis related to
the skewness. For a comprehensive statistical analysis see our recent paper (Bernui &
Rebouças 2014).

Fig. 1 shows the power spectra S� calculated from smica and nilc maps masked with
inpmask (left panel). The right panel of this figure shows the power spectra S� computed
from smica, nilc and sevem maps with the U73 mask. This figure also contains the
points of the averaged power spectra S

G

� calculated from 1 000 Gaussian simulated CMB
maps and the 1σ error bars. To the extent that some of power spectra values S� fall off
the 1σ error bars centered at S

G

� value, the left panel of this figure indicates departure
from Gaussianity in both smica and nilc maps when masked with inpmask. However,
the right panel indicates that departure disappear when the more severe U73 mask is
used.
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Figure 1. Low � power spectra S� calculated from smica and nilc Planck maps equipped with
inpmask (left panel) and with U73 mask. We note that since there is no available inpmask for
the sevem map we have not included this map in the analysis with the inpmask. Tiny horizontal
shifts were used to avoid overlaps of symbols.

The above comparison of the power spectra by using Fig. 1 is useful as a qualitative
indication of NG of Planck maps with different masks. However, to have a quantitative
overall assessment of large-angle deviation from Gaussianity we have used the power
spectra S� (calculated from the Planck maps) to carry out the above-mentioned χ2 anal-
ysis to determine the goodness of fit of S� computed from the Planck maps as compared
to the mean power spectra S

G

� . Table 1 makes clear that although with different χ2–
probabilities the smica, nilc and sevem masked with inpmask exhibit small level of
NG, but when the union mask U73 is used these maps are consistent with Gaussianity
as detected by our indicator S, in agreement with the results found by the Planck team
(Ade et al. 2013).

Map & Mask χ2
S �
– probability

smica–inpmask 1.00×10−4

nilc–inpmask 1.80×10−3

smica–U73 8.43×10−1

nilc–U73 8.25×10−1

sevem–U73 7.29×10−1

Table 1. Results of the χ2 – probability test to determine the goodness of fit for S� multipole
values, calculated from the smica, nilc and sevem with inpmask and U73 masks, as compared
to the mean power spectra S

G
� obtained from 1 000 simulated Gaussian maps.
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