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Abstract. We prove that given any two ergodic non-singular flows S, S,, the first
can be time changed to S, so that S, is a factor of S. A corresponding result for
transformations is that if T, T are any two ergodic non-singular transformations
then there is a tower over T that has T as a factor.

1. Introduction

We study the question of when the flow (X, S,) is the orbit factor of (X, S, in the
sense that there is a (possibly many to one) map ¢ from X onto X that maps each
orbit of S, diffeomorphically with positive derivative onto an orbit of S, If we add
the requirement that the derivative of ¢ be integrable then entropy theory says
that there are three kinds of flows, namely those with zero, positive or infinite
entropy, and the entropy cannot increase when passing to an orbit factor. The more
refined equivalence theory (see [5]) gives in this case the further information that
on the one hand any such orbit factor of a loosely Bernoulli (LB) flow is again LB,
and on the other hand the LB flows are universal orbit factors in the sense that if
S, is LB and S, is arbitrary (consistent with the entropy restriction) then S, is an
orbit factor of S, (The LB flows are those that are obtained by time changing the
Kronecker flow.)

The point of this paper is to show that if we drop the requirement of integrability
of the derivative then any flow can map onto any other flow. Indeed the result is
more general in that we do not even need to restrict to the class of finite measure
preserving (f.m.p.) flows, but can encompass all ergodic non-singular flows.

Another way to describe orbit factors is as follows: S, is an orbit factor of S, if
S, can be time changed to §, so that S, is a factor of S. Here, by a time change S,
we mean that S, and §, have the same orbits, and S, is a factor of S, means that
there is a map ¢ from X onto X so that Sy = ¢S, Now the condition on the
integrability of the derivative is equivalent to the requirement *hat S, the time
changed S, also preserves a finite measure. In this set up the above results from
the equivalence theory can be formulated as follows.

1. Factors of LB flows are LB.

2. Any flow S, can be time changed to a flow having LB factors.

Our main result is that we can take any flow S,, time change it (to a flow that, in
general, will not preserve a finite measure) and get as a factor an arbitrarily
pre-assigned flow S, Borrowing terminology from Ya. G. Sinai we get as a corollary
that any two flows are weakly orbit equivalent, since each is an orbit factor of the
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other. In his basic paper [3], S. Kakutani raised the possibility that any two flows
are orbit equivalent. Although this is now known not to be the case, our result
shows that such speculations were not entirely vacuous. The result should also be
viewed in the light of D. Rudolph’s theorem [6] that for R%-flows, d =2, any two
ergodic f.m.p. flows are orbit equivalent. Here we have in the R’ case an inkling of
the higher dimensional phenomena.

The results described above are equivalent to results concerning transformations
where ‘time changes’ are replaced by Kakutani equivalence. Here we actually prove
a stronger result — it turns out that one has only to build towers. Since we will carry
out the proof in the language of transformations we formulate now our main result
in that language and then indicate how to deduce the flow results.

MAIN THEOREM. If (X, B, u, T), (Y, €, v, S) are two ergodic non-singular invertible
transformations then there is a tower over T, T, that has S as a factor.

Given the main theorem if S, S, are a pair of ergodic non-singular flows we proceed
as follows: let S be a cross section map for S, and T a cross section map for S,
with return time bounded away from zero. By the main theorem find a tower T
over T that has S as a factor. Realize T" as a cross section map for S, and then time
change S, to S so that the return time over T is constant, say equal to one. Now
time change S, to S; so that for S; the return time over S is also a constant equal
to one. The fact that T has S as a factor translates now to the fact that the flow S
is a factor of S’. Now change S| back to S, pull this change through the factor map
to get a time change of S, §,, that has S, as a factor. We obtain as a corollary the
result advertised in the title:

COROLLARY. Any ergodic flow S, is the orbit factor of any other ergodic flow.

Needless to say, to avoid trivial exceptions we are dealing only with properly ergodic
flows. In our original proof of the main theorem we obtained a crucial special case
by means of a new method of constructing cocycles. F. Ledrappier pointed out to
us a way of avoiding the need for this construction, but because of its further
developments we will nonetheless include in a final section a sketch of the original
proof. We defer a more detailed description to that section. In § 2 we give the proof
of the main theorem for the case of f.m.p. transformations S. The proof for this
case is elementary in that no special tools are required. In § 3 we do the general
case — there some familiarity with Krieger’s classification of non-singular transforma-
tions appears to be necessary. The final § 4 we devote to the construction of cocycles.

A final remark concerns the general phenomenon of factors. If T preserves a
finite measure then so does any factor, thus a factor of a type II,; is of type II,.
However, already for type II, i.e. T with infinite invariant measure, a factor of T
may be of type III It is of course this possibility that underlies the proof of the
main theorem. H. Furstenberg pointed out to us another context where taking
factors can ‘complicate’ matters quite a bit. The context is that of hyperfiniteness,
and his example is one of a hyperfinite group action with a factor that is not
hyperfinite. Let SL(3, Z) act on the flag manifold of SL(3,R). Since the stability
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group is solvable the action is amenable and hence hyperfinite, [2]. This has a factor,
the same SL(3, Z) acting now on projective space. The stability group is no longer
amenable, and since SL(3, Z) has finite co-volume this means that the action is no
longer amenable and thus not hyperfinite.

Acknowledgements. This work was done during the ergodic theory workshop
(1980), sponsored by the Institute of Advanced Studies of the Hebrew University,
Jerusalem, and we benefited greatly from discussions with the participants especially
J. Feldman, H. Furstenberg, Y. Katznelson and D. Rudolph. To Y. Katznelson we
also owe a more specific debt for his help in what we describe in § 3, and conversations
with E. Lehrer led to an improvement in the exposition of § 4.

2. The invariant measure case

We begin by recalling the notation for a tower built over a transformation. If
T: X - X is a non-singular (n.s.) transformation of a probability space (X, &, u)
and h: X >N is a measurable mapping to the positive integers then

X"={(x,i):1=i=h(x)}
and T": X" > X" is defined by
(Tx, 1) if i=h(x)

T"(x, i)={ : .
(x,i+1) if i < h(x).

In a natural fashion one lifts the measurable structure from X to X" and converts
X" into a probability space so that T" is a non-singular mapping. Also, if T is
ergodic so is T" for any h. If S is a factor of T, then we write T - S. There are two
ways in which S can be recognized as a factor of T:
(1) if B, < B isa T-invariant sub o-algebra then T, which represents T restricted
to the probability space (X, B,, u) is a factor of T;
(2) if S is defined on (Y, 6, v) and there is a map 9: X - Y satisfying:
(a) 97'(6) = B;
(b) ¥ o pu is equivalent to v;
(c) S8 =49T;
then S is a factor of T.
We note some elementary facts about towers and factors:
(1) If T,» T, and T,~> T; then T, - T5.
(2) (Th)R=T", with hy(x) =X 11 hy(x, i).
(3) If T~ S, then for any tower built over S, say S%, there is a tower over 7, say
T? so that T¢- S%.
Indeed for § one simply takes the pull-back of g to the space of T.
If there exists some h so that T" > S then we will write T A, S. Our main theorem
will then state that for arbitrary ergodic T and S, T A, S.

LEMMA 1. If Tya, T, and T, A T; then Ty A Ts.

Proof. Let h and g be such that T}~ T, and T4~ T;. By properties (1)-(3) above
we see that (T?)¢ > T% - T, whence there exists some A with Tf > Tsie. Ty ns Ts.
0
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The next lemma is an observation of F. Ledrappier and will serve to simplify our
original proof.

LemMA 2. If T is ergodic, and r: X >N has the property that
def
Sx = T"(x)

defines an ergodic invertible transformation on X, then S a., T.
Proof. One forms X" and builds S, and defines 9: X" » X by
Hx, )=T""'x

It is straightforward to check that T- =13 S’, whence $"> T which gives the
lemma. O

It is a fact [1] that for any finite measure preserving transformations S, T there is
always some speedup of T(T ¥(x), as in the lemma) that is isomorphic to S. This,
in conjunction with lemma 2 gives the main theorem for f.m.p. transformations. It
is somewhat easier, however, to prove only a special case of this fact, namely when
S is the dyadic f.m.p. odometer, (see [7]) denoted henceforth by D, and then show
separately that for any T, T">D. Let’s begin with the second assertion and prove
it first for the f.m.p. case.

LemMA 3. If T is f.m.p. then T">D where D is the f.m.p. odometer.

Proof. By Rohlin’s lemma, there is a set A,< X such that A,nTA, = and
u(B)<0.1 where B; =X\ (A,uTA,). To get a perfect tower of height 2, as is
required for D, add a single level above B, i.e. define h; to be 1 on A;u TA, and
2 on B. Next look at (T")? as an ergodic mapping of A, U B, and apply the Rohlin
lemma, to find a set A,< A, u B, such that

A, (Th)A, =0
and if
B,=(A,UB))\(Au (Th')zAz)

then the relative measure of B, in A;u B, is at most 0.01. In order to make the
tower of height 4 perfect we now add two levels over T™ B,, i.e. define h, to be 1
on all of X™ except for T" B, where h, = 3. For (T")" we now have a set, namely
A, u B, that is the base of a perfect tower of height 4. Furthermore, the new base
of the perfect tower of height 2, for (T")", namely

(A,UuBy)u ((Th')hz)z(Az U B,)

differs by less than 0.01 from A, u B,. This procedure can be continued indefinitely,
and the tower transformations T*™, (T"™)" will converge to a transformation T"
that has perfect towers of height 2* for all k, and thus T" has D as a factor. The
argument shows that | h du can be made to be as close to 1 as desired but we shall
not need this refinement. O
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Of course this lemma is a special case of the fact that T’ A, R where R is any loosely
Bernoulli transformation of zero entropy ([5]). However since we now have to
generalize the lemma to the case where T is merely non-singular we have spelled
out a proof.

ProposiTION 4. If T is ergodic and non-singular then T r, D.

We would like to imitate the proof of lemma 3. However, when T is merely n.s.,
in general the measures of the different levels of a Rohlin tower need not be equal,
so that if we follow the proof of lemma 3 without change we will get as a factor
the dyadic odometer with a measure which is far from the f.m.p. one. We need,
therefore a sharpening of the usual Rohlin lemma for n.s. transformations.

LeEmMA 5. If T is aperiodic and non-singular, and for some k=1, B is a set in X
such that B, TB, ... T*'B are disjoint and \J§™' T'B =X, then for any peN and
any € >0 there is a set A< B such that

(a) A, T*A,..., T'?"P*A are disjoint;

o 1 .
(b) |;1.(T’k+'A)—;,tL(T‘B)|<e for 0=i<k,0=j<p—1;
(©) w(UG ' T'A)>1~e

Proof. Consider first the case when k =1, and B = X. For a sufficiently large N find
a Rohlin tower {T’A}} ! of height N so that the first p levels and last p levels
have total measure <e/10, and such that the space is filled up to an extent 1 —¢/10.
Divide the base A into sets A, 1=1=<L, so that on each T’A, 0=j<N, 1=[=<N,
the Radon Nikodym derivative of T is within & of being a constant value. If 8 is
sufficiently small, if each A, is divided into p equal pieces A}, 1 =<i= p then for all
0=j<N-—1, the sets T'Al 1=<i=< p have nearly equal measure and

4 L
A=UU T A]

[N/p]-1
I=1i=1 j=0

will satisfy (a)-(c).
For the general case we work with T* on B, with the following modifications:
(1) the £/10 is replaced by some &, chosen so that if x(C)<¢g, then

wW(TIC)<——  for0=j<k;

10k
(2) the base A is divided into A,’s so that for all 0 =< J < Nk the Radon-Nikodym
derivatives of T on T’A, are within 8 of being constant. O

Proof of proposition 4. Begin by finding some A, so that A;, TA, are disjoint and
ln(A) =3 <ibo lu(TA,) =3l < 100.

This is possible by lemma 5. As in the proof of lemma 3, define A, to be 1 on all

of X except for X\ (A, u TA,) where h;, is defined to be 2. Now T" has a perfect

tower of height 2, with the measures of the two levels very close to 1. It should
now be clear how to complete the proof using lemma 5, and noticing that if at each

https://doi.org/10.1017/50143385700002303 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002303

110 D. Ornstein and B. Weiss

stage the levels become more and more relatively equal, then the measure on D
will be equivalent to the f.m.p. one. O

We turn now to the problem of showing that for any T, D a_, T. According tolemma 2
what we have to do is find some r: X - Nso that Sx = T"*(x) is isomorphic to D. Once
again we begin with the f.m.p. case.

PROPOSITION 6. If Tis ergodic and f.m.p. then there is some r: X >N so that T"(x)
defines an invertible transformation which is isomorphic to D.

Proof. Recall that if E and F are any two sets in X with the same measure there
is some mapping f: E - N so that if S is defined on E by Sx = T/*(x) then S(E) =F.
This is seen by a standard exhaustion argument (c.f. [7]). Let ?, be an increasing
sequence of partitions of X so that |_J; %, generates the o-algebra 3. To start, let
Ao, A, be the sets of the partition %, and find f; so that T/(x) =8, maps A,
onto A,. Next find some partition of A, into 2% sets of equal measure, B, 1 =i=2",
so that the B;’s and S7'B;’s together approximate the sets of ?, to within 1/100.
Now define §2 on the B;’s for 1 =i=<2%—1 so that §2B,~ =S7'B;.,, and on each of
these B;’s S, is of the form T*)(x). The mapping S,= S, U S, is defined on all of
X except for B,k;, and we have now a perfect tower of height 2k*1 whose levels
approximate 2, to within 1/100, and a perfect tower of height 2 whose levels are
.. Now divide B,k, into 2% sets of equal measure, C, 1 =i=<2%, so that the sets
S3/C, 1=i=2%,0=j<2%*"" approximate the sets of ?; to within 1/1000. Define
S, on the C’s for 1=i=<2%—1 so that $,C,=5;%"""YC,,,, and so that on each
of these C,, §3 is of the form T%™(x). Continuing this procedure we define
f=fiufau--- on almost every point of X, and T*(x) is isomorphic to D, since
the levels of the perfect towers for it approximate %, better and better. O

Combining proposition 6 with lemma 2 and proposition 4 we have proved:

ProrosiTion 7. If T is ergodic and n.s. while S is ergodic and f.m.p. then T A, S.

3. The type III case

Since any ergodic infinite m.p. transformation $ can be obtained as a tower over a
finite m.p. S, (take for S, the transformation induced by S on a set of finite measure)
we can trivially extend this last proposition to S measure preserving —finite or
infinite. To show that any n.s. S can be allowed as the ‘target’ we are forced to use
some results from Krieger’s classification of n.s. transformations. Our strategy is to
show that any n.s. transformation is actually a factor of a measure preserving one.
We henceforth assume some familiarity with Krieger’s theory, for which the reader
may consult [7] and the references therein.

Begin by forming for any n.s. (Y, », S) the skew product

S(y, t)=(Sy, p(y)1), yeY, teR"=(0,+o).

where ¢(y) is the Radon-Nikodym derivative dv/d(S™'sv). Then S preserves the
measure v X A, where A is Lebesgue measure on R*. The transformation $ has S
as a factor. If S is of type III, then Sis ergodic, and thus we have already achieved
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our goal. If S is of type III,, 0 <A <1, then the ergodic components of S project
onto Y, and we can restrict $ to any such ergodic components and once again we
have S as a factor of an ergodic m.p. transformation. In the case where S is of type
III,, the ergodic components of § do not project onto Y and we have to make
use of a further construction. We benefited greatly from conversations with Y.
Katznelson in formulating the next few results. We first show that it suffices to work
with some element orbit equivalent to S.

LEMMA 8. If T—> S and S, is orbit equivalent to S then there is an element T, orbit
equivalent to T so that T, - S,.

Proof. Suppose 3: X > Y implements T— S. If n: Y >Z defines Sy, i.e. S;(y)=
$"P(y) then T,(x)= T"®®(x) is clearly in the full group of T,and & T; =S, - 9,
thus T, > S;. Furthermore since we can go back from S, to S (recall that we assume
S, orbit equivalent to T;) we can go back in the same way from T to T and thus
T, is orbit equivalent to T. In particular, if T is ergodic so is T. O

Our strategy is as follows: if S; is an arbitrary type III, transformation take S,,
orbit equivalent to it, with S, a triadic odometer. Take for D, the dyadic odometer
of type III,,,, given by the product measure [[; (3,3%). Finally we shall show how
to modify S, to an equivalent S so that §$ X D), is both ergodic and not of type III,.
Since obviously SX D,,,~ S this will complete the proof of the main theorem.

To obtain S from S, we will add measure preserving digits. Explicitly if S, is the
odometer on HT E; =Y, with each E; = {0, 1, 2} we will add to Y, further digits as
follows:

Y=E1XFIX' * 'anlesznl+1X' M 'ansz:;xF"z_,_IX' . 'anng;;X' M

where n; <n,=<---and if n; = n;,, it means that no digits were added between E;,,
and E,,,, and each F; is also {0, 1, 2}. As far as the measure on Y goes it is simply
the old measure of S, on Y,, with all the new digits, the F;’s, being independent
of each other and of the old digits and identically distributed with distribution (3, , ).

No matter how the n;’s are chosen, S so defined is orbit equivalent to S,. This
is proved in [7] for the case that S, is of product type. It is also true in general,
and may be seen by looking at the Krieger flow associated with a type III, transforma-
tion (c.f. [4]). Our claim is that if the n;’s grow sufficiently rapidly then $ X D, is
ergodic and contains 3 in its ratio set and hence is not of type III,. To see this let’s
begin with a lemma.

LEMMA 9. For any odd integer N, (D, ,,)"™ = T is ergodic and of type III, ,.

Proof. (1) Suppose that T were not ergodic, and let E c ]'Iio {0, 1} be a set with
positive measure invariant under T. Since E is measurable, it can be approximated
by finite cylinder sets, and in particular, if [w] for we[]] {0, 1} denotes the set of
points whose first n coordinates are w, then for n sufficiently large, almost all of
each such [w] are contained either in E or in E°. Furthermore, if we number these
[W]’s in the natural order from 0, 1,...,2"—1 then T maps the i’th set onto the
i+ N’th set with a constant Radon-Nikodym derivative for all i < 2" —1— N. Thus,
with relatively few exceptions, the sets [w] can be marked as belonging to E or E°¢
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and this occurs with a period of N. The next odometer digit divides each such [w]
into two sets whose measures differ by a factor of 2. Furthermore, considering the
sets [w0] and [w1] and seeing how T maps them we again get constant Radon-
Nikodym derivatives. But since N is odd the periodicity in belonging to E or not
belonging to E will be violated as we continue past 2" —1 to 2"*' — N, unless almost
everything belongs to E. This proves that T is ergodic.

(2) To see that 3 is in the ratio set of T, observe first that for any integer N there
is some a € Z such that the number of 1’s in the binary expansion of N+a is one
less than the number of 1’s in the binary expansion of a. Indeed if N =Z,Zl 2%,
with k,<k,<k;<-:--<ky then a= Z;‘;‘,:MM will serve since N+a=
(M 2%+ 2M*M*1) hag M 1’s in its binary expansion while a has M +1 1’s. Now
given any set F <[] {0, 1} find some atom [w], we[]} {0, 1}, so that the relative
measure of F in [w]is at least 1 — . Let w’ = w0*»1™*10, then T2"[w']=[w"], where
w"=wo and v is the binary representation of N +a. It follows that T?" maps [w']
onto [w"] with Radon-Nikodym derivative 3. If ¢ is small enough, the relative
measure of F in both [w'] and [w"] is at least 9/10 so that there is a set of positive
measure in F that returns to F under T?" with Radon-Nikodym derivative 3, hence
1 is in the ratio set of T. Since clearly all Radon-Nikodym derivatives of T are
powers of 2 this shows that T is of type 1II,,,. O

The point of adding the measure preserving digits to form Y is to give S the property
that S’ acts as a measure preserving transformation on a large part of the space for
j equal to many multiples of 3**"«. We formalize the property as an easy lemma
whose proof is left to the reader.

LeEmMMA 10. If S is the odometer transformation on ([I7 G, A) where each G, =
{0, 1, 2}, and the measure A has the property that the coordinates G,.+1, Gpia, - - - 5 Guck
are independent of all the remaining coordinates, and of each other, and on each G,
n<j=n+k, A is the measure {3,1,1}, then on each atom of [[} G, S, which fixes
this atom, is measure preserving in the complement of a set whose relative measure
is at most |j|37.

Now we can explain how to choose ng. i, given ny, ..., n, so that our S will have
the desired properties. One looks at (D;,,)™ = T with N =3""**! (corresponding
to E; X Fy X« X F, X E¥*1) and at the partition {A,,. .., A"} corresponding to
the first k+1 digits of the D,,, odometer. By lemma 9, and the fact that if T is an
ergodic transformation of type III,,, all of whose R—N derivatives are powers of
2, and A and B are any two sets the ratio of whose measures is a power of 2, then
there is a mapping in the groupoid of T sending A to B with constant R—N
derivatives, we can find elements T; in the groupoid of T so that T;(A;)=A;
1=i<j<2*"! where the T,’s have constant R—N derivatives. Furthermore, we
can divide each A, into two sets A} and A} with

u(AlA) =3, w(AllA)=3

and find elements in the groupoid of T, T, so that T;(A])= A} with T; having a
constant R —N derivative.
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Having found the T;’s, and the T;’s one finds an M so that these mappings can
be defined using powers of T, between —M and M on all but sets with relative
measure at most 10~ This is possible simply because each T; and T; is defined by
some measurable map u;, u; as T, T*. Now, having found M, one chooses n.,
so that M- 377" < 107%, This completes the definition of S, and all that remains
is to check that S X D, is ergodic and contains 3 in its ratio set.

We begin with the ergodicity. Suppose B is an invariant set for S X D, of positive
measure. If B, is the section of B over ye€ Y, then since S is ergodic, the measure
of B, is constant. Since B is measurable if £ > 0, for some large enough k, we have
some atom C corresponding to E; X F; X - -XE, ,; and some A corresponding to
the first k digits of D,,, so that B C X A has relative measure at least 1 —~&. For
any other A, using the appropriate T}’s, and lemma 10 one sees that BAC X A
also has relative measure at least 1—2¢ (if 107* < %e¢), and thus the sections of B
over most y’s in C is at least 1-+2e. Since ¢ is arbitrary we conclude that B has
measure 1.

To see that 3 is in the ratio set, let B be any subset for $x D,,, with positive
measure. As before find some A X C which is almost filled up by B, and then use
the appropriate T; observing that if B almost fills up A X C it does the same for
A’XC and A"X C. Once again lemma 10 and the choice of the n,’s complete the
proof.

4. Cocycles
Our original proof of the main theorem was based on a result that is interesting in
its own right which we proceed to describe. If a: X > Z is a measurable function
then the random walk, or the cocycle, defined by « is:

e

a(x,.k)= Zla(fo), k=1

a(x, —k) =§ a(T7x), k=1

1

a(x,0)=0.
The skew product T, is defined by
T.(x,n)=(Tx, n+a(x))
and thus is a mapping of X X Z onto X X Z. The cocycle a(x, k) enters by the formula
(T.)*(x, n) =(T*x, n+a(x, k)),

and thus the properties of the iterates of T,, depend on the properties of the cocycle.
If T, is conservative then T, induces a transformation on X X {0}, explicitly:

r(x)=min{k=1: a(x, k) =0}
T*=T"®(x).

If in addition, T, is ergodic then T, can be viewed as a tower built over T%. Since
T is manifestly a factor of T, we have that for all a such that T, is ergodic: T*a,, T.
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It is natural then to ask what kind of transformation can T% be for an ergodic
T,. The following theorem holds:

THEOREM. If T is ergodic and f.m.p., there is an a so that T, is ergodic and T% is
an LB transformation of zero entropy and even of rank 1.
(For definition and properties of rank 1 see [5].)

Since any zero entropy LB is a tower over the dyadic odometer (see [5]) this theorem
can replace lemma 2 and proposition 6, and that is how the original proof went. It
seems plausible that the theorem can be sharpened to the assertion that T can be
already the dyadic odometer, or indeed any pre-assigned transformation, but we
leave these questions for future investigations. The method that we developed for
proving this theorem proved to be useful in answering other kinds of questions
about cocycles. Recall that a is a recurrent value for the cocycle a(x, k) if for a.e.
x and all £>0, |a(x, k) — ka|< ¢ for infinitely many values of k. In particular, we
could construct a cocyle such that 0 is the unique recurrent value but nonetheless
along most n’s, (1/n)a(x, n) tends to o in probability. On the other hand we could
also construct examples where (1/n)a(x, n) >0 in probability, but nonetheless all
values are recurrent.

Now for a sketch of the proof of the theorem. Fix first some sequence of finite
partitions ;< P,< - - - so that /] ;= B, the full o-algebra of (X, T). In order
to see that T% is LB we shall construct a so that for all j, (T%, %)) is a zero entropy
LB process, and this suffices — since the inverse limit of LB processes is LB. In order
to simplify the description we shall restrict attention to a single 2. The definition
of a will be carried out in a series of steps using a nested sequence of Rohlin towers
{A,, h,}, where

T'A,nA,=0 forl=j<h,

and

h —1 § h,, ,—1 .
e TVf&nC: LJ 7‘/4n+lc.'

k=0 k=0

with
h,—1
lim ,u.< U TkA,.) =1.
n—>o0 0

At the end of the n’th stage, a will have been defined on all levels of the n’th
tower — with the exception of the roof —~T"'A,. With this in mind we’ll now
describe the first step. Using the ergodic theorem and the strong Rohlin lemma,
we can find A, and h; so that when (A4, h,) is partitioned into pure columns with
respect to P, most of the columns have a very regular distribution of the atoms of
2. For simplicity suppose that ? has two atoms Py, P, of equal measure. Then we
can guarantee that h, is of the form k;M,, and that for most of the pure columns,
each block from jk, to j+ k,~ 1, for 0 < j < M|, has about half zeros and about half
ones. If we denote a typical such name by a,a, - - - ax m,, a;€{0, 1}, then on that
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pure column a will be defined in such a way, that for the most part, T¥ will encounter
the name 010101 - - - or 101010 - - - . We illustrate how this is done with a simple
example: k, =8, M, =35, and consider the diagram:

1001101001011 10110100H1Y0HO0O001101100001 11

FIGURE 1

The diagram is meant to give the graph of a(x, j) for a point x in the base of the
tower. As one can see, the T name, which is what one reads when looking across
horizontal rows is for most of the rows the periodic sequence 0101 - - - or 1010 - - - .

On those pure columns where the distribution is not right « is defined in an
arbitrary fashion. At the second stage, we operate in the same way, but the individual
symbols are now replaced by whole blocks of length k, M,. The ergodic theorem
is now applied so that for a large enough h, of the form k,M,, each of the M,
blocks of length k, has the distribution of h;-names being very close to their true
distribution. Then once again a diagram similar to figure 1 shows how to cycle
through in a periodic fashion so that horizontal lines look pretty much the same.
The only slightly subtle point is the following: since we don’t wish to modify the
definition of & on the part of the space where it was defined in stage 1, we move
whole h, -blocks up and down the diagram. However, a single such block has different
distribution across each of its k, lines. To smooth out, blocks are, repeated according
to the following pattern:

B
)

FIGURE 2
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where L is large compared to k;, so that on most of the L lines, when the block is
encountered by T%, it sees in succession the first, second, - - - k, level of the same
block. This simply means that in addition to other choices, M, must be large
compared to L.

It should be clear by now how to force greater and greater periodicity in the
names that T# will encounter, and thus T¥ will be of rank 1. It will thus automatically
be ergodic, and then it is not hard to check that T, will also be ergodic (naturally
we must be careful not to choose all values of a divisible by some fixed integer).
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