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Abstract

Usutu virus (USUV) is an emerging arbovirus that was first isolated in South Africa in 1959.
This Flavivirus is maintained in the environment through a typical enzootic cycle involving
mosquitoes and birds. USUV has spread to a large part of the European continent over the
two decades mainly leading to substantial avian mortalities with a significant recrudescence
of bird infections recorded throughout Europe within the few last years. USUV infection in
humans is considered to be most often asymptomatic or to cause mild clinical signs.
Nonetheless, a few cases of neurological complications such as encephalitis or meningo-
encephalitis have been reported. USUV and West Nile virus (WNV) share many features,
like a close phylogenetic relatedness and a similar ecology, with co-circulation frequently
observed in nature. However, USUV has been much less studied and in-depth comparisons
of the biology of these viruses are yet rare. In this review, we discuss the main body of knowl-
edge regarding USUV and compare it with the literature on WNV, addressing in particular
virological and clinical aspects, and pointing data gaps.

Usutu virus: a flavivirus of African origin

Among emerging viruses, Usutu virus (USUV) has recently attracted the attention of the
scientific community due to its extensive spread in Europe. USUV is an arbovirus of the
Flaviviridae family and of the Flavivirus genus, comprising more than 70 members.
Flaviviruses include some of the most pathogenic arboviruses for humans, such as West
Nile virus (WNYV), dengue virus, yellow fever virus, Zika virus as well as Japanese enceph-
alitis virus (JEV) [1]. USUV is a member of the Japanese encephalitis serocomplex and is
phylogenetically close to JEV and WNV [2, 3]. Its name derives from the Usutu River in
Swaziland, in Southern Africa. USUV was first identified in 1959 by McIntosh as part of
a study on the prevalence of viruses in arthropods in South Africa during which USUV
was isolated from field-caught Culex neavei mosquitoes through intracerebral inoculation
of newborn mice [4, 5]. Then, it was also isolated from the bird-biting mosquito
Mansonia aurites in Uganda [4]. USUV is an enveloped virus of approximately 40-60 nm
in diameter, with a single-stranded RNA of positive polarity comprised of 11 064 nucleotides
harbouring a 5" N7-methylguanosine-triphosphate cap but lacking a polyA tail at the 3’ end
[6]. The genome of USUV comprises a single open reading frame coding for a polyprotein of
3434 amino acids that, after cleavage, generates to three structural proteins (capsid C, pre-
membrane prM and envelope E) and eight non-structural proteins (NS1/NSI’, NS2a,
NS2b, NS3, NS4a, 2K, NS4b and NS5) [2]. The capsid protein (C) forms the central body
of the virion and is associated with the viral RNA. The prM protein is required for virion
assembly and maturation of virions through the folding of the envelope glycoprotein (E)
that participates in various aspects of the viral cycle such as attachment and fusion to the
cell membrane [7]. The non-structural proteins (NS) of flaviviruses is associated with the
endoplasmic reticulum to form replication complexes in which NS5 ensures viral RNA rep-
lication by its RNA-dependent RNA polymerase activity [6]. Similarly to other flaviviruses,
viral replication takes place in the cytoplasm of infected cells. The NS5 protein, which is
highly conserved among USUV strains, has a methyltransferase domain required for the
addition of the cap element at the 5" end of the viral genomic RNA [7]. Phylogenetic studies
based on the nucleic acid sequence of the NS5 gene have shown that USUV strains isolated
in different regions of the world can be divided into eight lineages: three African and five
European [8], and that the level of genetic relatedness depends on their geographical origin
and on the host from which they have been isolated. A comparative analysis of USUV gen-
omes reveals specific amino acid mutations linked with the geographical origin of the isolate
and the hosts involved. These mutations are found particularly in C (A120V), NS4B (M16I),
prM (Y120N), as well as E (G195R) [9-11].
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Tropism and pathogenesis

USUV has been shown to infect a large number of cell lines or
primary cells from different species (e.g. human (dendritic and
Hela cells), equine (ED), bovine (MDBK), porcine (PK-15), rabbit
(RK-13), canine (MDCK, DK), feline (CR), hamster (BHK-21,
BF), rat (C6), turtle (TH1), birds (GEF), monkey (LLC-MK2,
Vero cells)) [12, 13]. Cytopathic effects have been observed in
Vero, GEF, CRFK, DNL.Tr, E, EA.hy.926, FoLu, OHH1.K, OK,
PK(15), St 1 Ep, A549, Hep-2, KB and Mv 1 Lu cell lines [12,
14, 15]. USUYV, like for other flaviviruses, can also infect murine
mature neurons and microglial cells in vitro, as well as human
neuronal precursors and astrocytes, leading to death by apoptosis
or arrest of proliferation, respectively [16].

USUV infection has been shown to activate cellular stress
response such as autophagy in the Vero cell line, which promotes
its replication [17]. Infection of mammalian cells (human astro-
cytes and monocyte-derived dendritic cells, Vero and Hep-2
human cell lines) also activated innate immune responses and
induced a high level of type 1 interferon (IFN) production [13,
15, 16]. In monocyte-derived DCs, USUV induced more type I
IFN activity than both WNV lineages 1 and 2 [13]. Moreover,
USUV replication was found to be more sensitive to types I and
III TFNs than WNV replication [13]. These findings suggest
that USUV is less efficient at counteracting IFN production
than WNV and that USUV and WNV may interact differently
with innate IFN antiviral defences.

In 1-week-old Swiss or NMRI mice infected intraperitoneally,
USUV infection gives rise to clinical signs: disorientation, depres-
sion, paraplegia, paralysis and coma, and are associated with
neuronal death in the brains of infected animals as well as demye-
lination of the spinal cord [18, 19]. In these studies, all of the
suckling mice that survived to USUV infection were protected
against a lethal challenge with a highly virulent WNYV strain, sug-
gestive of WNV clinical cross-protection afforded by USUV infec-
tion. However, USUV immunity did not reduce WNV replication
upon subsequent WNV challenge. Unlike WNV, no mortality was
recorded in adult mice (8 weeks old) infected with USUV at any
of the doses tested, illustrating the limited pathogenicity of USUV
in immunocompetent mice as compared to WNV [19, 20].

In contrast to immunocompetent adult mice, mice lacking the
interferon a/p receptor (IFNAR-/-) were highly sensitive to USUV
neuroinvasive infection, with death induced approximately 6 days
after infection [21]. Moreover, high levels of USUV genomic RNA
was detected in mouse brain samples. USUV neuroinvasive infec-
tions are also described in avian reservoir species, as well as in
some human patients exposed to the virus (see below).

Epidemiology
Geographical distribution

Following its first identification in South Africa, USUV has been
detected in other African countries: Central African Republic,
Senegal, Ivory Coast, Nigeria, Uganda, Burkina Faso, Tunisia
and Morocco [22-25]. This virus was also detected in Israel in
Culex mosquitoes collected in 2014-2015 [26]. Phylogenetic ana-
lyses suggest that at least three USUV introductions have occurred
in Europe along the migratory routes from Africa. The virus is
thought to have been introduced in Spain on two occasions in
the 1950s and then in the 1990s along an eastern Atlantic migra-
tory route [10]. Furthermore, a unique introduction in central
Europe appears to have occurred in the 1980s along a Black
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Sea/Mediterranean migratory route [10, 27]. Up to 2015, USUV
infection had been reported from mosquitoes, birds or horses in
12 European countries (Germany, Austria, Belgium, Croatia,
Spain, France, Greece, Hungary, Italy, the Czech Republic,
Serbia and Switzerland) [28-32] (Fig. 1). During the summer of
2016, a major USUV epidemic affecting the avifauna was evi-
denced in Northern Europe, with extensive circulation in
Belgium, Germany, France and, for the first time, in the
Netherlands [8, 33, 34]. Furthermore, USUV infection has also
been serologically identified in Slovakia and in Poland in equine
and avian populations [35, 36]. In 2018, USUV spread rapidly
in Western Europe, also associated with a large WNV epidemic
that reached 1503 human cases, including 181 deaths in a
dozen European countries [37, 38]. These data not only suggest
a continuous geographical spread of the virus, but also the colon-
isation of new ecological niches. USUV endemicity in different
European countries, as assessed by repeated transmission reports
every summer and autumn, could be explained by residual enzo-
otic transmission in affected areas but without detectable and sig-
nificant clinical expression in bird populations. Moreover putative
mechanisms of USUV persistence between two epizootic events
involve USUV overwintering in infected mosquito females or in
natural reservoir hosts or by virus vertical transmission of infected
mosquito females to their offspring [39]. However, the mechan-
isms that allow the efficient overwintering and subsequent amplifi-
cation of USUV in Europe have not been elucidated. The USUV
strains identified in Europe display a broad genetic diversity, under-
scoring several introductions from Africa and the plasticity of the
strains circulating in Europe. USUV frequently co-circulates with
WNV in numerous European countries. WNV re-emerged in
2015 in Southeast France concomitantly with USUV, and enhanced
dual reporting of WNV and USUV outbreaks in 2018 was observed
in several European countries [40].

Given that USUV and WNYV are genetically, antigenically and
epidemiologically closely related, one question is whether such
overlaps in transmission cycles can influence the spatiotemporal
dynamics of the circulation of the two viruses in Europe and
the associated risks for humans. Co-infections in humans would
therefore be possible and probable. They could complicate diag-
nosis and symptomatology. In addition, since these two viruses
are quite similar, ‘cross-immunity’ would be possible, which
would make epidemiological models more complex. USUV,
which appeared more than 20 years ago in Europe, has spread
over the last years to many European countries with significant
bird mortality in countries facing central European USUV strain
circulation for the first time.

Vertebrate hosts

USUV is maintained through an enzootic cycle between passerine
birds mainly blackbirds (Turdus merula) or magpies (Pica pica)
and Strigiformes, such as the Great Gray Owl (Strix nebulosa)
as amplifying hosts and ornithophilic mosquitoes as vectors.
USUV and WNV transmission cycles are therefore similar.
USUV has been shown to infect 58 bird species derived from
13 orders and 26 families [41]. USUV can infect different
European migratory bird species such as Falco tinnunculus (the
common kestrel), Sylvia curruca (the lesser whitethroat) or
Ficedula hypoleucas (the European pied flycatcher) [22] but also
resident species, such as P. pica (the Eurasian magpie), Passer
domesticus (the house sparrow) and Turdus merula (the common
blackbird) [41] (Table 1). The virus was first identified in dead
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Fig. 1. Worldwide USUV distribution. Concerned countries: Austria, Belgium, Burkina-Faso, Central African Republic, Croatia, Czech Republic, France, Germany,
Greece, Hungary, Israel, Italy, Ivory Coast, Kenya, Morocco, Nigeria, The Netherlands, Poland, Senegal, Serbia, Slovakia, South Africa, Spain, Switzerland,
Tunisia, Uganda. Symbols indicate in which species USUV has been detected (man, birds, mosquitoes or horses). Method of identification (molecular or serological)

is indicated for each species.

blackbirds in Austria in 2001 and in Italy in 1996 [42]. USUV was
also isolated in captive owls found dead or moribund in zoo-
logical gardens in Austria (2001), in Switzerland (2006) and in
France (2016-2018) [37, 43, 44]. Central nervous system disorders
have been reported in USUV-infected birds. The most reported
clinical signs are being prostration, disorientation, ataxia and
weight loss. Hepatomegaly and splenomegaly are the main macro-
scopic lesions. Necrotic areas and inflammatory infiltrates com-
posed of lymphoid and histiocytic cells have also been reported
in the heart, liver, kidneys, spleen and brains of infected birds
[45]. Glial nodules and neuronophagia have also been observed
in the brain [45]. USUV can therefore be highly pathogenic in
wild and captive birds, due to its wide tropism and virulence in
a variety of tissues and organs. USUV circulation has conse-
quently led to substantial avian death in different European coun-
tries although the consequences of USUV-associated mortality on
the dynamics of avian populations have not been clearly investi-
gated to date. The correlation between enhanced bird mortality
and speed of virus turnover within the natural reservoir with
the risk of USUV infection in incidental hosts such as humans
needs to be evaluated, as for WNV [46].

Beyond birds, USUV has also been detected in mammals.
USUV has been isolated from the brain of bats (Pipistrellus)
found dead in southwest Germany, questioning the role of these
animals in USUV amplification [58]. Other species can also be
infected with USUV although the consequences of USUV expos-
ure in these species have only been partially assessed.
USUV-specific antibodies have been detected in the serum of
horses in Italy, Serbia, Croatia, Poland and on the island of
Mallorca in Spain [36, 59]. Virus neutralisation tests carried out
on the sera of military horses and dogs in Morocco in 2012
also suggest exposure of these animals to USUV [24]. In 2014,
another study reported the presence of anti-USUV antibodies in
10 equines in the southwest of Tunisia [23]. USUV-specific neu-
tralizing antibodies have been detected in wild boars in Serbia
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[60]. Lastly, a retrospective serological survey, undertaken on
the sera of 4693 wild ruminants has reported a prevalence of
USUV-specific antibodies corresponding to 0.1-0.2% of the tested
animals [61]. This study involved samples from Red deer (Cervus
elaphus), Fallow deer (Dama dama), European mouflon (Ovis
aries musimon) and Roe deer (Capreolus capreolus), collected
between 2003 and 2014 in Spanish hunting parks. Serological
tests (ELISA and serum neutralisation) have shown the circulation
of USUV in hunting dogs in southern Italy (1.3% of the tested
animals) [62]. More recently USUV has been isolated from rodent
and shrew species in Senegal [63].

Vectors

Several mosquito species are involved in WNV and USUYV infection
of the wild or captive avifauna [43, 64]. These mosquitoes are
mainly ornithophilic species of the Culex genus. They are also
responsible for virus transmission to susceptible mammals in par-
ticular to humans (WNV, USUV) and horses (WNV), which are
viewed as incidental dead-end hosts, with short-lasting and low-
level viraemia. USUV has been isolated from many species of mos-
quitoes throughout the African continent, primarily in countries
where entomological surveillance programmes have been imple-
mented, such as Senegal, Kenya and Uganda [22, 65] as well as
more recently in southern and central Europe as in Italy or
Austria [66]. The mosquito species in which USUV has been
detected most often belong to the Culex genus like Cx. modestus,
Cx. neavei, Cx. perexiguus, Cx. perfuscus, Cx. pipiens, Cx. quinque-
fasciatus, Cx. univittatus but also to other genera such as Ae. albo-
pictus, Ae. japonicus, Ae. minutus, Anopheles maculipennis, Culiseta
annulata, Mansonia africana, Ma. aurites (recently renamed
Coquilletidia aurites), Ochlerotatus caspius and Oc. detritus (both
formerly named Ae. caspius and Ae. detritus) (Tables 2 and 3).
Culex pipiens, an ornithophilic species, but which can also feed
on humans, is considered to be the main vector in Europe [47].
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Table 1. List of birds with USUV clinical infections

M. Clé et al.

Countries with USUV
RT-PCR positive

Order Common name Scientific name Migration pattern animals Ref
Passeriformes Blackbird Turdus merula R,P AT, CZ,FR,DE,HU,IT,NL, [32, 33, 44, 47-55]
BE, CH
Common Starling Sturnus vulgaris R,P, DE, IT [47, 49, 53, 55]
S
Song Trush Turdus philomelos M AT, DE, SP [50, 55, 56]
Canary Serinus canaria Captive DE [49, 55]
domestica
House sparrow Passer domesticus R AT, DE, CH [44, 48, 49, 53, 55]
Blue (great) tit Parus caeruleus R,P, AT, CH [44, 48]
(major) M
European greenfinch Chloris chloris P CH [44]
European robin Erithacus rubecula P AT, CH [44, 48]
Bullfinch Pyrrhula pyrrhula Captive BE [57]
Nuthatch Sitta europaea R AT [48]
Eurasian Jay Garrulus glandarius R, P HU,IT [47, 53, 54]
Magpie Pica pica R IT [52, 53]
Barn Swallows Hirundo rustica M AT [42]
Strigiformes Great Grey owl Strix nebulosa Captive AT, DE, CH, FR, IT, NL [33, 44, 48, 49, 55]
Long-eared owl Asio otus Captive DE,IT [47, 55]
Snowy owl Bubo scandiacus Captive CH [44]
Tengmaml’s owl Aegolius funereus Captive CH, IT [44]
Hawk owl Surnia ulala Captive CH, DE [48, 55]
Pygmy owl Glaucidium Captive CH [44]
passerinum
Coraciiformes Common Kingfisher Alcedo atthis R,P, DE [49, 55]
M
European Bee-eater Merops apiaster M IT [53]
Piciformes Great spotted Dendrocopos major R BE [14, 53]
woodpecker
European Green Picus viridis R DE, IT [55]
Woodpecker
Charadriiformes Inca Tern Larosterna inca Captive DE [55]
Yellow-legged gull Larus michahellis R IT [53]
Accipitriformes Greater Spotted Eagle Aquila clanga M IT [53]
Caprimulgiformes Nightjar Caprimulgus M IT [47]
europaeus
Pelecaniformes Grey Heron Ardea cinerea R, P IT [53]
Columbiformes Collared Dove Streptopelia decaocto R IT [47, 53]
Galliformes Red-legged Partridge Alectoris rufa R IT [47]

R, resident; P, partial; M, migratory; S, short distance.
Bird orders, common and scientific names and their behaviour (resident or migrating birds), as well as the countries having reported USUV positive RT-PCR animals are indicated.

In addition, the vector competence of Cx. pipiens, Cx. neavei
and Cx. quinquefasciatus for USUV has been demonstrated
under laboratory conditions [86-88] (Tables 2 and 3). The vector
competence of Cx. pipiens has been shown to be greater for
USUV than for WNYV, under conditions of elevated temperature
(at 28 °C) [87]. In a recent study, two UK strains of Cx. pipiens
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challenged with an African strain of USUV showed a very low
vector competence [89]. These contradictory results with previous
experimental infections could be explained by the genetic vari-
ability of the USUV strains and the differences in susceptibility
between different populations of the same mosquito species for
the same virus [90]. The selective pressures associated with the
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Table 2. Mosquito species found infected by USUV in the field and bridge vectors
Species (bridge vector) Country (site) Year Reference
Aedes albopictus (S) Israel (Haifa) 2015 [26]
Italy (Emilia-Romagna) 2009, 2010, 2011, 2012 [47, 53, 67-69]
Aedes japonicus Austria (Graz) 2018 [66]
Aedes minutus (N) Senegal (Kedegou) 1998 CRORA (unpublished)
Anopheles maculipennis sl (S) Italy (Emilia-Romagna) 2010, 2011 [53, 69]
Culex antennatus (S) Senegal (Barkedji) 2012, 2013 [70]
Culex modestus (P) Czech Republic (South-Moravia) 2013 [71]
Italy (Emilia-Romagna) 2013 [72]
Culex neavei (S) Senegal (Barkedji) 2003 CRORA (unpublished)
Senegal (Barkedji) 2012, 2013 [70, 73]
South Africa (Natal) 1959 [74]
Culex perexiguus (S) Israel (Sdeh Eliahu, Midrach) 2015 [26]
Spain (Guadalquivir Delta) 2009 [75]
Culex perfuscus (S) Central African Republic 1969, 1980 Institut Pasteur de
Bangui (unpublished)
Senegal (Kedegou) 1974, 1998 CRORA (unpublished)
Culex pipiens (P) Austria (Linz, Graz) 2018 [66]
France (Camargue Delta) 2015 [31]
Germany (Emsdetten) 2016 [30]
Germany (Freiburg) 2014 [30]
Germany (Leipzig) 2015 [76]
Germany (Weinheim) 2010 [77]
Israel (Kityat Ata) 2014 [26]
Israel (Yeftachel) 2015 [26]
Italy (Emilia-Romagna) 2009, 2010, 2011, 2012, [47, 53, 67-69, 78]
2013, 2014, 2015, 2016
Italy (Friuli-Venezia-Giulia) 2012 [69]
Italy (Lombardy) 2009, 2011, 2013, 2014 [69]
Italy (Lazio) 2018 [79]
Italy (Liguria) 2014 [69]
Italy (Marche) 2011 [69]
Italy (Molise) 2011 [69]
Italy (Piedmont) 2009, 2010, 2011, 2014 [69, 80, 81]
Italy (Sardinia) 2011, 2013 [69]
Italy (Tuscany) 2009, 2010 [52, 69]
Italy (Veneto) 2009, 2010, 2011, [69, 82, 83]
2012, 2013
Serbia (Titel, Zrejanin) 2014 [29]
Spain (Ebre Delta) 2006 [84]
Switzerland (Ticino, Geneva) 2011, 2012 [85]
Culex quinquefasciatus (P) Ivory Coast 2004 CRORA (unpublished)
Kenya (Kisumu) 2007-2012 [65]
Culex univittatus (group) (S) Senegal (Barkedji) 1993 CRORA (unpublished)
Uganda (Jinja) 2012 [25]
(Continued)
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Table 2. (Continued.)

M. Clé et al.

Species (bridge vector) Country (site) Year Reference
Culiseta annulata (P) Italy (Molise) 2011 [69]
Mansonia africana (S) Central African Republic 1969, 1980 Institut Pasteur de
Bangui (unpublished)

Mansonia aurites® (S) Uganda (Entebbe) 1962 [4]
Ochlerotatus caspius® (S) Italy (Emilia-Romagna) 2011, 2012, 2013 [53, 69, 72]

Italy (Veneto) 2010 [69]
Ochlerotatus detritus® (P) Italy (Molise) 2011 [69]

P, potential; S, small probability; N, no probability.

Mosquito species and then countries are ordered alphabetically. Bridge vectors. P: refer to potential bridge vectors, i.e. mosquito species that readily bite birds and humans. S: refers to
species with a lower probability of being bridge vectors and encompass opportunistic species that rarely bite both humans and birds, or have a low vector competence for WNV. N: refers to
species that have very low or no probability of being a competent bridge vector. For Africa, USUV has been isolated only in countries in which entomological surveillance programmes have
been undertaken particularly Senegal and Uganda, suggesting that its geographic distribution may be much wider than the reported detection.

?Recently renamed Coquilletidia aurites.
Formerly named Aedes caspius.
“Formerly named Aedes detritus.

Table 3. Oral infection experiments. Infection, dissemination and transmission rates for mosquitoes 14 days after oral exposure to USUV

USUV Strain Blood meal titer Dissemination Transmission
Species/(populations) used (PFU/ml) (TCID50/ml) Infection rate® rate® rate® Reference
Culex neavei (Barkedji, Senegal) SAAR 1776 2x107 33.3% (1/3) 0% (0/1) - [86]
2x107 22.2% (2/9) 0% (0/2) =
2x107 0% (0/1) - -
1.8x10° 90.9% (40/44)  40.0% (16/40) 81.3% (13/16)
Culex pipiens (Brummen, The Netherlands) usuy, 4x10" 80% Not studied 69% [87]
Bologna ’09
Culex pipiens (Mercer County, NJ, USA) SAAR 1776 1x107° 58.6% (17/29)  92.3% (12/13) 23.5% (4/17) [88]
Culex quinquefasciatus (Vero Beach, FL, USA)  SAAR 1776 1x10%%° 70.0% (21/30)  35.7% (5/14) 19.0% (4/21) [88]
Aedes albopictus (Mercer County, NJ, USA) SAAR 1776 1x10>%° 0% (0/27) = = [88]
Culex pipiens form pipiens (Caldbeck, UK) SAAR 1776 1x10° (25°) 5% (1/20) 5% (1/20) 100% (1/1) [89]
Culex pipiens hybrid form (Brookwood, UK) I 1x10° (25°) 0% (0/18) _ _
Aedes albopictus (Emilia-Romagna, Italy) Usuvi 0.66x10"° 0% (0/20) = = [78]
usuv2 0.66x10"° 0% (0/20)
usuv3 0.66x10"° 0% (0/19)

PFU, plaque-forming unit; TCID50, tissue culture infectious dose 50%.

After 14 days incubation at 27-28 °C and 80% relative humidity (except for Hernandez-Triana et al., 2018 for which both UK lines of Culex pipiens were tested for their vector competence for
the SAAR-1776 strain of USUV at 25 °C), fed mosquitoes were analysed for USUV infection of their bodies (infection), of their legs and wings (dissemination), and the presence of virus in the

saliva (transmission).

“No. infected mosquito bodies/no. mosquitoes tested.

PNo. mosquitoes with infected wings and legs/no. infected mosquitoes.
“Formerly named Aedes detritus

laboratory colonisation process of mosquito populations can
modify susceptibility to infection; moreover, experimental condi-
tions, such as virus titres in the blood meal during oral infection
and incubation temperature and length can also influence mos-
quito competence.

In contrast, North American and European populations of Ae.
albopictus appear to be resistant to USUV infection even though
this species has been repeatedly found infected in the
Emilia-Romagna region, Northern Italy [78, 88, 91]. Isolation of
infectious viruses or detection of viral RNA from Ae. albopictus
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may be a consequence of recent engorgement from viraemic
avian species as some Ae. albopictus populations have been
demonstrated to have opportunistic feeding behaviours and utilise
avian species as a source of blood meals. Nevertheless, experimen-
tal infection studies of Ae. albopictus by USUV should be
repeated, possibly using other vector populations, virus strains
and dosages. Additional research should be carried out in the
laboratory (vector competence) and in the field (vector capacity)
to clarify its role in USUV (and also WNV) transmission and the
associated risk for humans [78].
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Clinical manifestations in humans

The zoonotic potential associated with USUV infection was ini-
tially described in Africa. The first case of human infection by
USUV was reported in the Central African Republic in the
1980s and a second case was diagnosed in Burkina Faso in
2004 [22]. For these two cases, mild clinical signs were reported:
fever and skin rash. In Europe, the recent epizootics were also
accompanied by descriptions of neuroinvasive infections in
humans. In 2009 in Italy, two cases of meningoencephalitis asso-
ciated with USUV infection were described in immunosuppressed
patients [92, 93]. Shortly after this first description, three
additional cases of USUV meningoencephalitis which occurred
in 2008 and 2009 were retrospectively detected [94]. Again in
Italy and during the same period, a retrospective study carried
out recently in Emilia-Romagna region has allowed the documen-
tation of eight other patients with encephalitis or meningo-
encephalitis, with USUV infection associated with other
comorbidities in half of these cases, and two patients with
asymptomatic infection [95]. Six other symptomatic cases were
reported in Croatia in 2013 and in 2018 [96, 97]. These acute
infections however do not reflect the full spectrum of human
USUV infections, as the studies were carried out on cohorts exhi-
biting signs of neurological infections of varying severity. Our
team recently described an acute USUV infection associated
with a probable atypical presentation of a frigore facial paralysis
in France [98]. The full clinical presentation of USUV infection
needs thus to be better defined.

Recent studies performed on sera from blood donors have con-
firmed the existence of asymptomatic USUV infections [79]. This
was the case in Germany for an asymptomatic blood donor who
was found to be positive for USUV by PCR [99], and in Austria,
for six donors who were positive for USUV [100]. In these two
studies, primary screening of the blood donations for WNV,
resulting positive in WNV screening tests allowed the identifica-
tion of USUV infections by sequencing. Thus, out of the seven
positive signals obtained by WNV RT-PCR in the Austrian
study, six were identified as USUV after sequencing [100].

To date, in Europe, there have been 46 documented cases of
acute USUV infection in humans, most of them were accidentally
identified in donated blood samples. (Table 4). It is impossible to
know whether these cases of infection represent the tip of the ice-
berg and whether the incidence of acute infections by USUV
could, in fact, be more substantial. Reporting of USUV bird epi-
zootics probably implies a higher exposure level of humans to the
zoonotic risk. Indeed, the human cases detected in Italy coincided
with USUV outbreaks, and interestingly some authors suggest
that USUV exposure may be higher than for WNV [101]. The
recent infections detected in blood donors in Germany and in
Austria coincided with the most substantial epizootics that have
been observed in recent times in central Europe, particularly in
2016 and 2018 [99, 100, 102]. Phylogenetic analysis of the viral
strains detected in humans in these two countries identified at dif-
ferent period times strains of the Europe 2, Europe 3 and Africa 3
lineages corresponding to the same strains isolated in the popula-
tions of blackbirds and passerines from Germany and Austria.
The strain derived from the Africa 2 lineage, implicated in the
human case detected in the South of France [98], was also iden-
tified in mosquito populations of the Cx. pipens species captured
nearby in the same region 1 year earlier [31]. Substantial circula-
tion of USUV in avian reservoirs as well as in vectors appears to
increase the probability of human infections.
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Seroprevalence studies seem to indicate non-negligible expos-
ure of humans to USUV infection risk (Table 4). These studies
carried out in Italy, in Germany and in Serbia reported
USUV-antibody prevalences between 0.02% and 1.1% among
healthy blood donors [101, 103-107]. Several of these studies
show that USUV circulates more actively than WNV in Europe.
Studies on the prevalence of USUV infection in mosquito vectors
in Europe have revealed higher infection rates for USUV than for
WNV. In Northern Italy (Emilia-Romagna), the Maximum
Likelihood Estimates (MLE) value calculated as a regional sea-
sonal average for Cx. pipiens was quite stable showing a continu-
ous circulation at similar levels from 2009 to 2016 in the range
0.23-0.54 [78]. In contrast, WNV infection rates in the same mos-
quito species and in the same region were 2-5 times lower [53],
with different strains circulating discontinuously and in different
locations over the years [108]. This situation potentially reflects
higher levels of circulation of USUV relative to WNV at least in
some European regions like Northern Italy. Nonetheless, the
data remain tenuous for accurately assessing USUV incidence in
humans and the serological diagnostic tools available need to be
improved to allow for large-scale screening.

Diagnosis and surveillance of USUV infection

Diagnosing USUV infection in humans relies on several techni-
ques: (i) the detection of viral RNA in blood and in cerebrospinal
fluid (CSF), (ii) the isolation of the virus in cell culture and/or (iii)
indirect assay detecting anti-USUV antibodies (IgM and G) in the
serum and the CSF of patients.

To date, no commercial diagnostic test is available. USUV
serological assays are based on ELISA tests or immunofluores-
cence tests that have been developed by reference laboratories,
performed with viral antigens or virus isolates. These tests suffer
from a lack of specificity. They need to be systematically con-
firmed by seroneutralisation assays to reduce the risk of sero-
logical cross-reactions described with infections by closely
related flaviviruses, such as WNV. The kinetics of USUV antibody
response in humans is not known and interpretations are usually
drawn from data gained from WNV descriptions. Thus, in our
recent experience, there was no detectable antibody response 3
days during an acute USUV infection, in contrast to the kinetics
usually observed with other flaviviruses. Direct diagnosis of
USUV infection can be obtained by isolating the virus in cell cul-
tures and visualizing cytopathic effects. Numerous cells are per-
missive to the virus, and the most used are mosquito C6/36 or
mammalian Vero cells [14].

The techniques used for the amplification of WNV RNA, from
donated blood (such as the cobas® WNYV test (Roche Diagnostics,
Germany)), also present a lack of specificity, allowing as well the
detection of USUV genome [8, 100]. Numerous RT-PCR techni-
ques have been described and some PCR methods have been
developed to be specific for USUV sequences [94, 109] and others
amplify USUV as several other flaviviruses by screening for a con-
served region in the NS5 polymerase gene that is common to
these viruses [110-112]; virus typing can then be performed sec-
ondarily by sequencing or hybridisation [111]. This ‘pan-
flavivirus’ approach is certainly more cumbersome but it provides
a double advantage. First, it offers a wider range of detection,
which may be useful for the integrated surveillance of different
arboviruses with very similar epidemiology, such as USUV and
WNV. Second, the sequencing step, necessary for the identifica-
tion of the viral aetiology, also allows for a phylogenetic analysis
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Table 4. Chronological description of human cases worldwide

Acute infections (n=49)

Country Year Number Sample Clinic Studied population Diagnostic method ref
CAR 1981 1 Blood Eruptive fever Clinical case Culture [22]
Burkina 2004 1 Blood Fever and jaundice Clinical case Culture [22]
Italy 2009 1 CSF Meningoencephalitis Clinical case Panflavi RT-PCR +sequence [92]
2009 1 Blood Encephalitis Clinical case Procleix-WNV + panflavi RT-PCR + [93]
sequence
2008-9 3/44 CSF Meningoencephalitis Meningoencephalitis patients Specific RT-PCR [94]
2008- 8/306 +2/ CSF + blood Meningoencephalitis Meningoencephalitis patients (CSF) + Specific RT-PCR + seroneutralisation [95]
11 609 /healthy various healthy and sick subjects (serum)
Croatia 2013 3/95 Blood Meningoencephalitis Meningoencephalitis patients ELISA + seroneutralisation [96]
2018 3/178 Blood + Neuroinvasive disease Neuroinvasive cohort Specific RT-PCR + seroneutralisation [97]
Urine
Germany 2016 1 Blood Healthy Blood donors (n ?) Cobas WNV + sequence [99]
France 2016 1/666 CSF Idiopathic facial paralysis Patients with infectious and/or neurological RT-PCR panflavi + sequence [98]
signs
Austria 2017 6/12 047 Blood Healthy Blood donors Cobas WNV + sequence [100]
2018 18/31 598 Blood Healthy Blood donors Cobas WNV + specific RT-PCR +sequence [102]
Seroprevalence (n=98)
Country Year Number Prevalence (%) Studied population Diagnostic method ref
Italy 2009 4/359 1.1 Blood donors ELISA + seroneutralisation [101]
2008-11 40/609 6.5 Healthy patients and various sick subjects Seroneutralisation [95]
2010-11 14/6000 0.23 Blood donors ELISA + seroneutralisation [103]
2012 24/3069 0.78 Blood donors ELISA + seroneutralisation [104]
2014-15 6/33 18.1 Healthy forestry worker Seroneutralisation [105]
2014-15 2/200 1 Blood donors Seroneutralisation [103]
Serbia 2015 7/93 7.5 Healthy exposed subjects ELISA + seroneutralisation [106]
Germany 2012 1/4200 0.02 Blood donors ELISA, IF + seroneutralisation [107]

CAR, Central African Republic.

039310
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of the strains. Parts of the NS5 gene that are targeted by pan-
flavivirus RT-PCR have proven to be sufficiently selective for
the characterisation of viral lineages [8, 10]. Since 2010,
Mediterranean regions as Italy and southern France have been
monitored for the risk of WNV. This monitoring now includes
a veterinary component and a human component with awareness
among clinicians of the presumptions for aseptic meningitis. The
risk of the emergence of USUV, which shares many genetic, anti-
genic and epidemiological features with WNV, should lead to the
inclusion of USUV in monitoring programmes. Clearly, there is a
need to organise standard surveillance measures and early warn-
ing systems to detect WNV and USUYV activity, and to assess the
risk for public health, both at the national and European level.
The information gathered through these surveillance programmes
could be used to develop actions to prevent virus transmission,
such as vector prevention and control, information campaigns
to improve personal protection as well as screening tests for
blood donations, tissue and organs. The inclusion of USUV
together with WNV in surveillance plans is of primary import-
ance and has been implemented mainly in Italy. The lack of spe-
cificity of USUV/WNV diagnostic tools, whether serological or
molecular, could be an advantage in this situation, provided
that there is a full characterisation of the positive cases by con-
firmatory serological assays (virus neutralisation tests) and by
sequencing or by virus-specific RT-PCR.

Conclusion

Responsible for recurrent epizootics since 1996 in the European
avifauna, USUV is now recognised as being responsible for poten-
tially severe neurological affections in humans. Its recent spread to
a large number of European countries and co-circulation of differ-
ent genetic strains deserve increased awareness and characterisa-
tion. Furthermore, USUV has been shown to co-circulate with
WNYV in different areas raising epidemiological and diagnostic
issues. Serological cross-reactions can hamper rapid identification
of circulating viruses in the absence of material allowing for direct
diagnosis and can offer partial cross-protection against the other
flaviviruses, possibly influencing its amplification and transmis-
sion patterns. As for any emerging arbovirus, a multidisciplinary
approach involving virologists, clinicians, ornithologists, entomol-
ogists as well as closer intersectoral collaborations between opera-
tions (health, agriculture, environment) and stakeholders
(involving environment, veterinary and human sectors) following
the One Health approach should be established. This would help
bridging the data gaps in USUV epidemiology and identifying the
main risk factors, with the aim of implementing appropriate
monitoring and prevention methods.

Author ORCIDs. Y. Simonin, 0000-0002-3475-1369
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