Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:30:24.084Z Has data issue: false hasContentIssue false

1 - DIAGNOSIS AND GENETIC CLASSIFICATION OF MULTIPLE MYELOMA

Published online by Cambridge University Press:  11 July 2009

S. Vincent Rajkumar
Affiliation:
Mayo Clinic, Minnesota
Robert A. Kyle
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

INTRODUCTION

In the past decade we have seen great advances in our understanding of the genetic abnormalities present in multiple myeloma (MM) cells, which is believed to be the culprit in the pathogenesis of this disease. This progress has been, in great part, facilitated by the advent of novel molecular genetic and cytogenetic techniques, as well as the unparalleled power available through the genomic revolution. Furthermore, the continued testing for many of these genetic aberrations in large cohorts of patients has allowed for an increasingly accurate description of oncogenomics using primary patient samples. The translation and testing of this basic knowledge in these patient cohorts has provided clinical relevance that truly spans from the bench to the bedside. While much progress has been made in the understanding of the disease, many questions remain, particularly those capable of addressing progression events from the benign stages and unraveling complex interactions supporting clonal survival and evolution. In this chapter we discuss the knowledge regarding a global overview of genetic aberrations of MM cells, primary genetic lesions, secondary genetic events, and, lastly, their clinical implications.

GLOBAL OVERVIEW OF MM GENETICS

At the top hierarchical level, human MM can be divided into two diseases: hyperdiploid MM (H-MM) and nonhyperdiploid MM (NH-MM). The dichotomy separation of MM into these two entities is appealing from the didactic perspective and is clearly substantiated by an extensive body of literature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fonseca, R, Barlogie, B, Bataille, R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64(4):1546–58.CrossRefGoogle ScholarPubMed
Smadja, NV, Fruchart, C, Isnard, F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 1998;12(6):960–9.CrossRefGoogle ScholarPubMed
Debes-Marun, C, Dewald, G, Bryant, S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003;17(2):427–36.CrossRefGoogle Scholar
Fonseca, R, Debes-Marun, CS, Picken, EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003;102(7):2562–7.CrossRefGoogle ScholarPubMed
Smadja, NV, Leroux, D, Soulier, J, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 2003;38(3):234–9.CrossRefGoogle ScholarPubMed
Noel, P, Kyle, RA.Plasma cell leukemia: an evaluation of response to therapy. Am J Med 1987;83(6):1062–8.CrossRefGoogle ScholarPubMed
Chng, WJ, Ketterling, RP, Fonseca, R.Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer 2006;45(12):1111–20.CrossRefGoogle ScholarPubMed
Chng, WJ, Santana-Davila, R, Wier, SA, et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006;20(5):807–13.CrossRefGoogle ScholarPubMed
Chng, WJ, Kumar, S, Vanwier, S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007;67(7):2982–9.CrossRefGoogle ScholarPubMed
Greipp, PR, Trendle, MC, Leong, T, et al. Is flow cytometric DNA content hypodiploidy prognostic in multiple myeloma?Leuk Lymphoma 1999;35(1–2):83–9.CrossRefGoogle ScholarPubMed
Chng, WJ, Wier, SA, Ahmann, GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 2005;106(6):2156–61.CrossRefGoogle ScholarPubMed
Chng, WJ, Winkler, JM, Greipp, PR, et al. Ploidy status rarely changes in myeloma patients at disease progression. Leuk Res 2006;30(3):266–71.CrossRefGoogle ScholarPubMed
Kwong, YL, Lie, AK, Chan, LC.Translocation (11;14)(q13;q32) and partial trisomy 1q in a case of multiple myeloma [letter]. Am J Hematol 1993;44(3):212–13.CrossRefGoogle Scholar
Sawyer, JR, Waldron, JA, Jagannath, S, Barlogie, B.Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995;82(1):41–9.CrossRefGoogle ScholarPubMed
Dewald, GW, Kyle, RA, Hicks, GA, Greipp, PR.The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985;66(2):380–90.Google ScholarPubMed
Fonseca, R, Witzig, TE, Gertz, MA, et al. Multiple myeloma and the translocation t(11;14)(q13;q32) – a report on 13 cases. Br J Haematol 1998;101(2):296–301.CrossRefGoogle Scholar
Nishida, K, Taniwaki, M, Misawa, S, Abe, T.Nonrandom rearrangement of chromosome 14 at band q32.33 in human lymphoid malignancies with mature B-cell phenotype. Cancer Res 1989;49(5):1275–81.Google ScholarPubMed
Bergsagel, PL, Chesi, M, Brents, , Kuehl, WM.Translocations into IgH switch regions – the genetic hallmark of multiple myeloma. Blood 1995;86(10):223–223.Google Scholar
Bergsagel, PL, Chesi, M, Nardini, E, Brents, , Kirby, SL, Kuehl, WM.Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996;93(24):13931–6.CrossRefGoogle ScholarPubMed
Chesi, M, Nardini, E, Brents, , et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nature Genet 1997;16(3):260–4.CrossRefGoogle Scholar
Chesi, M, Bergsagel, PL, Shonukan, OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998;91(12):4457–63.Google Scholar
Chesi, M, Nardini, E, Lim, R, Smith, K, Kuehl, W, Bergsagel, P.The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92:3025–34.Google Scholar
Nishida, K, Tamura, A, Nakazawa, N, et al. The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 1997;90(2):526–34.Google ScholarPubMed
Avet-Loiseau, H, Attal, M, Moreau, P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109(8):3489–95.CrossRefGoogle ScholarPubMed
Fonseca, R, Harrington, D, Oken, M, et al. Myeloma and the t(11;14)(q13;q32) represents a uniquely defined biological subset of patients. Blood 2002;99(10):3735–41.CrossRefGoogle Scholar
Chesi, M, Bergsagel, PL, Brents, , Smith, CM, Gerhard, DS, Kuehl, WM.Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996;88(2):674–81.Google ScholarPubMed
Janssen, JW, Vaandrager, JW, Heuser, T, et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood 2000;95(8):2691–8.Google Scholar
Avet-Loiseau, H, Facon, T, Daviet, A, et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 1999;59(18):4546–50.Google ScholarPubMed
Fonseca, R, Bailey, RJ, Ahmann, GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance.[see comment]. Blood 2002;100(4):1417–24.Google Scholar
Sawyer, JR, Lukacs, JL, Thomas, EL, et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 2001;112(1):167–74.CrossRefGoogle Scholar
Garand, R, Avet-Loiseau, H, Accard, F, Moreau, P, Harousseau, J, Bataille, R.t(11;14) and t(4;14) translocations correlated with mature lymphoplasmocytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003;this issue.CrossRefGoogle Scholar
Zhan, F, Huang, Y, Colla, S, et al. The molecular classification of multiple myeloma. Blood 2006;108(6):2020–8.CrossRefGoogle ScholarPubMed
Shaughnessy, J Jr., Gabrea, A, Qi, Y, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001;98(1):217–23.CrossRefGoogle ScholarPubMed
Bergsagel, PL, Kuehl, WM, Zhan, F, Sawyer, J, Barlogie, B, Shaughnessy, J Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005;106(1):296–303.CrossRefGoogle ScholarPubMed
Keats, JJ, Reiman, T, Maxwell, CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101(4):1520–9.CrossRefGoogle Scholar
Perfetti, V, Coluccia, A, Intini, D, et al. Translocation t(4;14)(p16.3;q32) Is a Recurrent Genetic Lesion in Primary Amyloidosis. Leukemia 2001;158:1599–603.Google Scholar
Stewart, JP, Thompson, A, Santra, M, Barlogie, B, Lappin, TR, Shaughnessy, J Jr. Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 2004;126(1):72–6.CrossRefGoogle Scholar
Stewart, AK, Chang, H, Trudel, S, et al. Diagnostic evaluation of t(4;14) in multiple myeloma and evidence for clonal evolution. Leukemia 2007;21(11):2358–9.CrossRefGoogle Scholar
Fonseca, R, Blood, E, Rue, M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101(11):4569–75.CrossRefGoogle Scholar
Chang, H, Sloan, S, Li, D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004;125(1):64–8.CrossRefGoogle Scholar
Chang, H, Qi, XY, Samiee, S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 2005;36(9):793–6.CrossRefGoogle Scholar
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and −17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106(8):2837–40.CrossRefGoogle Scholar
Mateos, MV, Hernandez, JM, Hernandez, MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase I/II study. Blood 2006;108(7):2165–72.CrossRefGoogle Scholar
Jagannath, S, Richardson, PG, Sonneveld, P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007;21(1):151–7.CrossRefGoogle ScholarPubMed
Chang, H, Trieu, Y, Qi, X, Xu, W, Stewart, KA, Reece, D.Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 2007;31(6):779–82.CrossRefGoogle ScholarPubMed
Trudel, S, Ely, S, Farooqi, Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004;103(9):3521–8.CrossRefGoogle Scholar
Trudel, S, Li, ZH, Wei, E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005;105(7):2941–8.CrossRefGoogle Scholar
Avet-Loiseau, H, Facon, T, Grosbois, B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002;99(6):2185–91.CrossRefGoogle Scholar
Fonseca, R, Oken, MM, Greipp, PR.The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001;98(4):1271–2.CrossRefGoogle Scholar
Shaughnessy, JD Jr., Zhan, F, Burington, BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007;109(6):2276–84.CrossRefGoogle ScholarPubMed
Bergsagel, PL, Kuehl, WM.Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003;194:96–104.CrossRefGoogle ScholarPubMed
Shaughnessy, JD Jr. Global gene expression profiling in the study of multiple myeloma. [Review] [94 refs]. Int J Hematol 2003;77(3):213–25.CrossRefGoogle Scholar
Carrasco, DR, Tonon, G, Huang, Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006;9(4):313–25.CrossRefGoogle ScholarPubMed
Tricot, G, Barlogie, B, Jagannath, S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995;86(11):4250–6.Google Scholar
Tricot, G, Sawyer, JR, Jagannath, S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol 1997;15(7):2659–66.CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Daviet, A, Saunier, S, Bataille, R.Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol 2000;111(4):1116–7.CrossRefGoogle Scholar
Fonseca, R, Oken, M, Harrington, D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q-arm or monosomy. Leukemia 2001;15:981–6.CrossRefGoogle ScholarPubMed
Königsberg, R, Zojer, N, Ackermann, J, et al. Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol 2000;18(4):804–12.CrossRefGoogle ScholarPubMed
Zojer, N, Konigsberg, R, Ackermann, J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000;95(6):1925–30.Google ScholarPubMed
Avet-Loiseau, H, Li, JY, Morineau, N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood 1999;94(8):2583–9.Google ScholarPubMed
Fonseca, R, Bailey, RJ, Ahmann, GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100(4):1417–24.Google ScholarPubMed
Konigsberg, R, Ackermann, J, Kaufmann, H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia 2000;14(11):1975–9.CrossRefGoogle ScholarPubMed
Walker, BA, Leone, PE, Jenner, MW, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 2006;108(5):1733–43.CrossRefGoogle ScholarPubMed
Elnenaei, MO, Hamoudi, RA, Swansbury, J, et al. Delineation of the minimal region of loss at 13q14 in multiple myeloma. Genes Chromosomes Cancer 2003;36(1):99–106.CrossRefGoogle ScholarPubMed
Liu, P, Leong, T, Quam, L, et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood 1996;88(7):2699–706.Google ScholarPubMed
Bezieau, S, Devilder, MC, Avet-Loiseau, H, et al. High incidence of N- and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001;18(3):212–24.CrossRefGoogle ScholarPubMed
Neri, A, Murphy, JP, Cro, L, et al. Ras oncogene mutation in multiple myeloma. J Exp Med 1989;170(5):1715–25.CrossRefGoogle ScholarPubMed
Paquette, RL, Berenson, J, Lichtenstein, A, Mccormick, F, Koeffler, HP.Oncogenes in multiple myeloma: point mutation of N-ras. Oncogene 1990;5(11):1659–63.Google ScholarPubMed
Rasmussen, T, Kuehl, M, Lodahl, M, Johnsen, HE, Dahl, IM.Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition some plasma cell tumors. Blood 2005;105(1):317–23.CrossRefGoogle Scholar
Drach, J, Ackermann, J, Kromer, E, et al. Short survival of patients with multiple myeloma and p53 gene deletion: A study by Interphase FISH. Blood 1997;90:244a.Google Scholar
Drach, J, Ackermann, J, Fritz, E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92(3):802–9.Google ScholarPubMed
Chang, H, Sloan, S, Li, D, Keith Stewart, A.Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004;127(3):280–4.CrossRefGoogle ScholarPubMed
Chang, H, Qi, C, Yi, QL, Reece, D, Stewart, AK.p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105(1):358–60.CrossRefGoogle ScholarPubMed
Chng, WJ, Price-Troska, T, Gonzalez-Paz, N, et al. Clinical significance of TP53 mutation in myeloma. Leukemia 2007;21(3):582–4.CrossRefGoogle Scholar
Tiedemann, RE, Gonzalez-Paz, N, Kyle, RA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008;22(5):1044–52.CrossRefGoogle ScholarPubMed
Keats, JJ, Fonseca, R, Chesi, M, et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 2007;12(2):131–44.CrossRefGoogle ScholarPubMed
Richardson, PG.A review of the proteasome inhibitor bortezomib in multiple myeloma. Expert Opin Pharmacother 2004;5(6):1321–31.CrossRefGoogle ScholarPubMed
Mulligan, G, Mitsiades, C, Bryant, B, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007;109(8):3177–88.CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Gerson, F, Magrangeas, F, Minvielle, S, Harousseau, JL, Bataille, R.Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001;98(10):3082–6.CrossRefGoogle ScholarPubMed
Kuehl, WM, Bergsagel, PL.Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2(3):175–87.CrossRefGoogle ScholarPubMed
Shou, Y, Martelli, ML, Gabrea, A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000;97(1):228–33.CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Daviet, A, Brigaudeau, C, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001;97(3):822–5.CrossRefGoogle Scholar
Avet-Loiseau, H, Attal, M, Moreau, P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109:3489–95.CrossRefGoogle ScholarPubMed
Chesi, M, Robbiani, DF, Sebag, M, et al. AID-dependent MYC activation induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 2008;(in press).CrossRefGoogle Scholar
Chang, H, Qi, X, Trieu, Y, et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol 2006;135(4):486–91.CrossRefGoogle ScholarPubMed
Fonseca, R, Wier, SA, Chng, WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 2006;20(11):2034–40.CrossRefGoogle Scholar
Hanamura, I, Stewart, JP, Huang, Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem cell transplantation. Blood 2006;108(5):1724–32.CrossRefGoogle ScholarPubMed
Zhan, F, Colla, S, Wu, X, et al. CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and independent mechanisms. Blood 2007;109(11):4995–5001.CrossRefGoogle Scholar
Wu, KL, Beverloo, B, Lokhorst, HM, et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol 2007;136(4):615–23.CrossRefGoogle Scholar
Chang, H, Ning, Y, Qi, X, Yeung, J, Xu, W.Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 2007;139(1):51–4.CrossRefGoogle ScholarPubMed
Mateos, MV, Garcia-Sanz, R, Lopez-Perez, R, et al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol 2002;118(4):1034–40.CrossRefGoogle ScholarPubMed
Ribas, C, Colleoni, GW, Felix, RS, et al. p16 gene methylation lacks correlation with angiogenesis and prognosis in multiple myeloma. Cancer Lett 2005;222(2):247–54.CrossRefGoogle ScholarPubMed
Gonzalez-Paz, N, Chng, WJ, Mcclure, RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 2007;109:1228–32.CrossRefGoogle ScholarPubMed
Ng, MH, Chung, YF, Lo, KW, Wickham, NW, Lee, JC, Huang, DP.Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 1997;89(7):2500–6.Google ScholarPubMed
Dib, A, Barlogie, B, Shaughnessy, JD Jr., Kuehl, WM.Methylation and expression of the p16INK4A tumor suppressor gene in multiple myeloma. Blood 2007;109(3):1337–8.CrossRefGoogle ScholarPubMed
Gonzalez-Paz, N, Chng, WJ, Mcclure, RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 2007;109(3):1228–32.CrossRefGoogle ScholarPubMed
Dilworth, D, Liu, L, Stewart, AK, Berenson, JR, Lassam, N, Hogg, D.Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000;95(5):1869–71.Google ScholarPubMed
Tasaka, T, Berenson, J, Vescio, R, et al. Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma. Br J Haematol 1997;96(1):98–102.CrossRefGoogle ScholarPubMed
Dib, A, Peterson, TR, Raducha-Grace, L, et al. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: biallelic deletion vs increased expression. Cell Div 2006;1:23.Google Scholar
Drexler, HG.Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998;12(6):845–59.CrossRefGoogle ScholarPubMed
Kulkarni, MS, Daggett, JL, Bender, TP, Kuehl, WM, Bergsagel, PL, Williams, ME.Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis. Leukemia 2002;16(1):127–34.CrossRefGoogle ScholarPubMed
Chng, WJ, Kuehl, WM, Bergsagel, PL, Fonseca, R.Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature. Leukemia 2008;22(2):459–61.CrossRefGoogle Scholar
Chng, WJ, Ahmann, GJ, Henderson, K, et al. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 2006;107(9):3669–75.CrossRefGoogle ScholarPubMed
Stewart, AK, Bergsagel, PL, Greipp, PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia 2007;21(3):529–34.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Rajkumar, SV, Gertz, MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007;82(3):323–41.CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Daviet, A, Brigaudeau, C, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001;97(3):822–5.CrossRefGoogle Scholar
Hayman, SR, Bailey, RJ, Jalal, SM, et al. Translocations involving heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 2001;98:2266–8.CrossRefGoogle ScholarPubMed
Harrison, CJ, Mazzullo, H, Ross, FM, et al. Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis. Br J Haematol 2002;117(2):427–35.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Dispenzieri, A.Amyloidosis: Recognition, confirmation, prognosis, and therapy [Review]. Mayo Clin Proc 1999;74(5):490–4.CrossRefGoogle Scholar
Avet-Loiseau, H, Garand, R, Lode, L, Harousseau, JL, Bataille, R.Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood 2003;101(4):1570–1.CrossRefGoogle Scholar
Schop, RF, Kuehl, WM, Wier, SA, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002;100(8):2996–3001.CrossRefGoogle ScholarPubMed
Smadja, NV, Bastard, C, Brigaudeau, C, Leroux, D, Fruchart, C.Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98(7):2229–38.CrossRefGoogle ScholarPubMed
Rajkumar, SV, Fonseca, R, Dewald, GW, et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet 1999;113(1):73–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×