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Abstract

Lin introduced the partition function PDOt(n), which counts the total number of tagged parts over all the
partitions of n with designated summands in which all parts are odd. Lin also proved some congruences
modulo 3 and 9 for PDOt(n), and conjectured certain congruences modulo 3k+2 for k ≥ 0. He proved
the conjecture for k = 0 and k = 1 [‘The number of tagged parts over the partitions with designated
summands’, J. Number Theory 184 (2018), 216–234]. We prove the conjecture for k = 2. We also study the
lacunarity of PDOt(n) modulo arbitrary powers of 2 and 3. Using nilpotency of Hecke operators, we prove
that there exists an infinite family of congruences modulo any power of 2 satisfied by PDOt(n).
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Keywords and phrases: partitions with designated summands, tagged parts, eta-quotients, modular forms,
lacunarity.

1. Introduction and statement of results

A partition of a positive integer n is a nonincreasing sequence of positive integers,
called parts, whose sum is n. In [1], Andrews, Lewis and Lovejoy investigated the
partition function PD(n) which counts the number of partitions of n with designated
summands. A partition of n with designated summands is obtained from an ordinary
partition of n by tagging exactly one of each part size. For example, PD(4) = 10 with
the relevant partitions being 4′, 3′ + 1′, 2′ + 2, 2 + 2′, 2′ + 1′ + 1, 2′ + 1 + 1′, 1′ + 1 +
1 + 1, 1 + 1′ + 1 + 1, 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′. They also studied another partition
function PDO(n) which counts the number of partitions of n with designated sum-
mands in which all parts are odd. From the above example, PDO(4) = 5. Later, many
authors have studied these two partition functions (see for example [2–4, 17]).

Recently, Lin [9] introduced two new partition functions PDt(n) and PDOt(n)
related to partitions with designated summands. The partition function PDt(n) counts
the total number of tagged parts over all the partitions of n with designated summands.
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[2] Divisibility of the partition function PDOt(n) 15

For instance, PDt(4) = 13. The other partition function PDOt(n) counts the total
number of tagged parts over all the partitions of n with designated summands in which
all parts are odd. For example, PDOt(4) = 6. Lin found the generating functions of
PDt(n) and PDOt(n). The generating function of PDOt(n) is given by

G(q) :=
∞∑

n=0

PDOt(n)qn =
q f2 f 2

3 f 2
12

f 2
1 f6

, (1.1)

where fk = (qk; qk)∞ and (a; q)∞ :=
∏∞

j=0(1 − aqj).
Lin also established many congruences modulo small powers of 3 satisfied by

PDt(n) and PDOt(n). For example, he proved the following Ramanujan-type congru-
ences modulo 9 and 27 satisfied by PDOt(n): for n ≥ 0,

PDOt(8n) ≡ PDOt(12n) ≡ PDOt(12n + 8) ≡ 0 (mod 9),
PDOt(24n) ≡ PDOt(36n) ≡ PDOt(36n + 24) ≡ 0 (mod 27).

He further conjectured the following congruences.

CONJECTURE 1.1 [9, Conjecture 6.1]. For k, n ≥ 0,

PDOt(8 · 3kn) ≡ 0 (mod 3k+2),

PDOt(12 · 3kn) ≡ 0 (mod 3k+2).

Lin proved Conjecture 1.1 for k = 0, 1 using basic q-series techniques. We prove the
following theorem which establishes Conjecture 1.1 for k = 2.

THEOREM 1.2. For all n ≥ 0,

PDOt(72n) ≡ 0 (mod 81), (1.2)

PDOt(108n) ≡ 0 (mod 81). (1.3)

In addition to the study of Ramanujan-type congruences, it is an interesting problem
to study the distribution of the partition function modulo positive integers M. To be
precise, given an integral power series F(q) :=

∑∞
n=0 a(n)qn and 0 ≤ r < M, we define

δr(F, M; X) :=
#{n ≤ X : a(n) ≡ r (mod M)}

X
.

An integral power series F is called lacunary modulo M if

lim
X→∞
δ0(F, M; X) = 1,

that is, almost all of the coefficients of F are divisible by M.
It is a well-known fact that modular forms with integer Fourier coefficients are

lacunary modulo any positive integer. Recently, in [5, Theorem 1.1], Cotron et al.
extended this fact to integral weight eta-quotients modulo arbitrary powers of primes
under certain strong conditions. In [9], Lin remarked that the generating function of
PDOt(n) is a modular form. However, this observation is not quite correct because
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16 R. Barman, G. Singh and A. Singh [3]

PDOt(n) is not holomorphic at the cusp 1. Also, the generating function of PDOt(n)
does not satisfy the conditions of [5, Theorem 1.1]. Therefore, it is an interesting
problem to study the lacunarity of G(q) =

∑∞
n=0 PDOt(n)qn modulo arbitrary powers

of primes. In the following theorem, we prove that G(q) is lacunary modulo arbitrary
powers of 2 and 3.

THEOREM 1.3. For any positive integer k,

lim
X→∞
δ0(G, 2k; X) = 1, (1.4)

lim
X→∞
δ0(G, 3k; X) = 1. (1.5)

Serre observed and Tate proved that the action of Hecke algebras on spaces of
modular forms of level 1 modulo 2 is locally nilpotent (see for example [14–16]).
Ono and Taguchi [13] showed that this phenomenon generalises to higher levels. We
observe that, for any positive integer k, the generating function of PDOt(n) is congruent
to an eta-quotient modulo 2k, and the eta-quotient is a modular form whose level is in
Ono and Taguchi’s list. This allows us to use a result of Ono and Taguchi to prove the
following congruence for PDOt(n).

THEOREM 1.4. Let n be a nonnegative integer. Then there is an integer s ≥ 0 such that
for every u ≥ 1 and distinct primes p1, . . . , ps+u coprime to 6,

PDOt(p1 · · · ps+u · n) ≡ 0 (mod 2u)

whenever n is coprime to p1, . . . , ps+u.

The rest of this paper is organised as follows. In Section 2, we recall some basic
properties of modular forms and η-quotients. In Section 3, we prove Theorem 1.2 using
standard dissection of q-series. The proofs of Theorems 1.3 and 1.4 rely on properties
of modular forms and we prove these theorems in Sections 4 and 5, respectively.
Finding a proof of Conjecture 1.1 for k ≥ 3 using standard dissection of q-series looks
difficult. However, it might be possible to prove Conjecture 1.1 using modular forms.

2. Preliminaries

In this section, we recall some definitions and basic facts on modular forms and
eta-quotients. For more details, see for example [8, 12].

2.1. Spaces of modular forms. We first define the matrix groups

SL2(Z) :=
{[

a b
c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
,

Γ0(N) :=
{[

a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{[

a b
c d

]
∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}
,
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[4] Divisibility of the partition function PDOt(n) 17

and

Γ(N) :=
{[

a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N)

}
,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence subgroup
if Γ(N) ⊆ Γ for some N. The smallest N such that Γ(N) ⊆ Γ is called the level of Γ. For
example, Γ0(N) and Γ1(N) are congruence subgroups of level N.

Let H := {z ∈ C : Im(z) > 0} be the upper half of the complex plane. The group

GL+2 (R) =
{[

a b
c d

]
: a, b, c, d ∈ R and ad − bc > 0

}

acts on H by [
a b
c d

]
z =

az + b
cz + d

.

We identify∞ with 1/0 and define[
a b
c d

]
r
s
=

ar + bs
cr + ds

,

where r/s ∈ Q ∪ {∞}. This gives an action of GL+2 (R) on the extended upper half-plane
H∗ = H ∪ Q ∪ {∞}. Suppose that Γ is a congruence subgroup of SL2(Z). A cusp of Γ
is an equivalence class in P1 = Q ∪ {∞} under the action of Γ.

The group GL+2 (R) also acts on functions f : H→ C. In particular, suppose that
γ = [ a b

c d ] ∈ GL+2 (R). If f (z) is a meromorphic function on H and � is an integer, then
define the slash operator |� by

( f |�γ)(z) := (det γ)�/2(cz + d)−� f (γz).

DEFINITION 2.1. Let Γ be a congruence subgroup of level N. A holomorphic function
f : H→ C is called a modular form with integer weight � on Γ if it satisfies the
following conditions:

(1) f ((az + b)/(cz + d)) = (cz + d)� f (z) for all z ∈ H and all [ a b
c d ] ∈ Γ;

(2) if γ ∈ SL2(Z), then ( f |�γ)(z) has a Fourier expansion of the form

( f |�γ)(z) =
∑
n≥0

aγ(n)qn
N ,

where qN := e2πiz/N .

For a positive integer �, the complex vector space of modular forms of weight � with
respect to a congruence subgroup Γ is denoted by M�(Γ).

DEFINITION 2.2 [12, Definition 1.15]. If χ is a Dirichlet character modulo N, then we
say that a modular form f ∈ M�(Γ1(N)) has Nebentypus character χ if

f

(
az + b
cz + d

)
= χ(d)(cz + d)� f (z)
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for all z ∈ H and all [ a b
c d ] ∈ Γ0(N). The space of such modular forms is denoted by

M�(Γ0(N), χ).

2.2. Modularity of eta-quotients. The relevant modular forms in this paper are
those that arise from eta-quotients. Recall that the Dedekind eta-function η(z) is
defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏

n=1

(1 − qn),

where q := e2πiz and z ∈ H. A function f (z) is called an eta-quotient if it is of the form

f (z) =
∏
δ|N
η(δz)rδ ,

where N is a positive integer and rδ is an integer.
We now recall two theorems from [12, page 18] on modularity of eta-quotients. We

will use these two results to verify modularity of certain eta-quotients appearing in the
proofs of our main results.

THEOREM 2.3 [12, Theorem 1.64]. If f (z) =
∏
δ|N η(δz)rδ is an eta-quotient such that

� = 1
2
∑
δ|N rδ ∈ Z, ∑

δ|N
δrδ ≡ 0 (mod 24)

and ∑
δ|N

N
δ

rδ ≡ 0 (mod 24),

then f (z) satisfies

f

(
az + b
cz + d

)
= χ(d)(cz + d)� f (z)

for every [ a b
c d ] ∈ Γ0(N). Here, the character χ is defined by χ(d) :=

( (−1)�s
d

)
, where

s :=
∏
δ|N δ

rδ .

Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3 and that
the associated weight � is a positive integer. If f (z) is holomorphic at all of the cusps of
Γ0(N), then f (z) ∈ M�(Γ0(N), χ). The following theorem gives the necessary criterion
for determining orders of an eta-quotient at cusps.

THEOREM 2.4 [12, Theorem 1.65]. Let c, d and N be positive integers with d | N and
gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 2.3 for N, then
the order of vanishing of f (z) at the cusp c/d is

N
24

∑
δ|N

gcd(d, δ)2rδ
gcd(d, N/d)dδ

.
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[6] Divisibility of the partition function PDOt(n) 19

Finally, we recall the definition of Hecke operators. Let m be a positive integer and
f (z) =

∑∞
n=0 a(n)qn ∈ M�(Γ0(N), χ). Then, the action of the Hecke operator Tm on f (z)

is defined by

f (z)|Tm :=
∞∑

n=0

( ∑
d|gcd(n,m)

χ(d)d�−1a
(nm

d2

))
qn.

In particular, if m = p is prime,

f (z)|Tp :=
∞∑

n=0

(
a(pn) + χ(p)p�−1a

( n
p

))
qn.

We adopt the convention that a(n) = 0 unless n is a nonnegative integer.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma.

LEMMA 3.1. The following identities hold:

f3
f 3
1

=
f 6
4 f 3

6

f 9
2 f 2

12

+ 3q
f 2
4 f6 f 2

12

f 7
2

,

1
f 4
1

=
f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

,

f2
f 2
1

=
f 4
6 f 6

9

f 8
3 f 3

18

+ 2q
f 3
6 f 3

9

f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

,

f1 f2 =
f6 f 4

9

f3 f 2
18

− q f9 f18 − 2q2 f3 f 4
18

f6 f 2
9

,

f 3
1 =

f6 f 6
9

f3 f 3
18

− 3q f 3
9 + 4q3 f 2

3 f 6
18

f 2
6 f 3

9

.

PROOF. For the proof of first identity, see [10]. The second identity is proved in [6].
The remaining three identities of the lemma are proved in [7]. �

PROOF OF THEOREM 1.2. By (1.1), we have
∞∑

n=0

PDOt(n)qn = q
f2 f 2

3 f 2
12

f 2
1 f6

.

Substituting the 3-dissection formula for f2/ f 2
1 from Lemma 3.1,

∞∑
n=0

PDOt(n)qn = q
f 2
3 f 2

12

f6

( f 4
6 f 6

9

f 8
3 f 3

18

+ 2q
f 3
6 f 3

9

f 7
3

+ 4q2 f 2
6 f 3

18

f 6
3

)
.
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Extracting those terms of the form q3n on both sides of this equation and replacing q3

by q, we find that
∞∑

n=0

PDOt(3n)qn = 4q
f2 f 2

4 f 3
6

f 4
1

.

Substituting the 2-dissection formula for 1/ f 4
1 from Lemma 3.1 yields

∞∑
n=0

PDOt(3n)qn = 4q f2 f 2
4 f 3

6

( f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

)
.

Extracting those terms of the form q2n on both sides of this equation and replacing q2

by q,
∞∑

n=0

PDOt(6n)qn = 16q f 4
2 f 4

4

( f3
f 3
1

)3
.

Substituting the 2-dissection formula for f3/ f 3
1 from Lemma 3.1 yields

∞∑
n=0

PDOt(6n)qn = 16q
f 22
4 f 9

6

f 23
2 f 6

12

+ 16 · 9q2 f 18
4 f 7

6

f 21
2 f 2

12

+ 16 · 27q3 f 14
4 f 5

6 f 2
12

f 19
2

+ 16 · 27q4 f 10
4 f 3

6 f 6
12

f 17
2

.

Extracting those terms of the form q2n on both sides of this equation and replacing q2

by q,
∞∑

n=0

PDOt(12n)qn = 16 · 9q
f 18
2 f 7

3

f 21
1 f 2

6

+ 16 · 27q2 f 10
2 f 3

3 f 6
6

f 17
1

. (3.1)

By the binomial theorem,

f 10
2

f 17
1

≡
f 9
2

f 18
1

f1 f2 ≡
f 3
6

f 6
3

f1 f2 (mod 3).

Substituting the 3-dissection formula for f1 f2 from Lemma 3.1,

f 10
2

f 17
1

≡
f 4
6 f 4

9

f 7
3 f 2

18

− q
f 3
6 f9 f18

f 6
3

− 2q2 f 2
6 f 4

18

f 5
3 f 2

9

(mod 3). (3.2)

Again, using the binomial theorem,

f 18
2

f 21
1

≡
f 18
2

f 27
1

f 6
1 ≡

f 6
6

f 9
3

( f 3
1 )2 (mod 9).
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Substituting the 3-dissection formula for f 3
1 from Lemma 3.1,

f 18
2

f 21
1

≡
f 8
6 f 12

9

f 11
3 f 6

18

− 6q
f 7
6 f 9

9

f 10
3 f 3

18

+ 9q2 f 6
6 f 6

9

f 9
3

+ 8q3 f 5
6 f 3

9 f 3
18

f 8
3

− 24q4 f 4
6 f 6

18

f 7
3

+ 16q6 f 2
6 f 12

18

f 5
3 f 6

9

(mod 9). (3.3)

Substituting (3.2) and (3.3) in (3.1), and then extracting the terms of the form q3n on
both sides, we find that

∞∑
n=0

PDOt(36n)q3n ≡ 16 · 81q3 f 4
6 f 6

9

f 2
3

− 16 · 27q3 f 9
6 f9 f18

f 3
3

(mod 81).

Replacing q3 by q, and then substituting the 2-dissection formula for f3/ f 3
1 from

Lemma 3.1,

∞∑
n=0

PDOt(36n)qn ≡ −16 · 27q
f 9
2 f3 f6

f 3
1

(mod 81) (3.4)

≡ −16 · 27q f 9
2 f6

f3
f 3
1

(mod 81)

≡ −16 · 27q
f 6
4 f 4

6

f 2
12

− 16 · 81q2 f 2
2 f 2

4 f 2
6 f 2

12 (mod 81)

≡ −16 · 27q
f 6
4 f 4

6

f 2
12

(mod 81). (3.5)

Extracting the terms of the form q2n on both sides of (3.5),

∞∑
n=0

PDOt(72n)q2n ≡ 0 (mod 81).

This completes the proof of (1.2).
We next prove (1.3). By the binomial theorem,

f 9
2

f 3
1

≡
f 3
6

f3
(mod 3). (3.6)

Combining (3.6) and (3.4),

∞∑
n=0

PDOt(36n)qn ≡ −16 · 27q f 4
6 (mod 81).
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Extracting the terms of the form q3n on both sides yields
∞∑

n=0

PDOt(108n)q3n ≡ 0 (mod 81).

This completes the proof of (1.3). �

4. Proof of Theorem 1.3

Given a prime p, let

Ap(z) =
∞∏

n=1

(1 − qn)p

(1 − qpn)
=
ηp(z)
η(pz)

.

Then, using the binomial theorem,

Apk

p (z) =
ηpk+1

(z)
ηpk (pz)

≡ 1 (mod pk+1).

Define Bp,k(z) by

Bp,k(z) =
(
η(2z)η(3z)2η(12z)2

η(z)2η(6z)

)
Apk

p (z). (4.1)

Modulo pk+1,

Bp,k(z) ≡ η(2z)η(3z)2η(12z)2

η(z)2η(6z)
=

q f2 f 2
3 f 2

12

f 2
1 f6

. (4.2)

Combining (1.1) and (4.2),

Bp,k(z) ≡
∞∑

n=0

PDOt(n)qn (mod pk+1). (4.3)

PROOF OF THEOREM 1.3. We put p = 2 in (4.1) to obtain

B2,k(z) =
(
η(2z)η(3z)2η(12z)2

η(z)2η(6z)

)
A2k

2 (z) =
η(2z)1−2k

η(3z)2η(12z)2η(z)2k+1−2

η(6z)
.

Now, B2,k is an eta-quotient with level N = 144. The cusps of Γ0(144) are represented
by fractions c/d, where d | 144 and gcd(c, d) = 1 (see for example [11, page 5]). By
Theorem 2.4, B2,k(z) is holomorphic at a cusp c/d if and only if

S := 12
gcd(d, 1)2

gcd(d, 12)2 (2k+1 − 2) + 6
gcd(d, 2)2

gcd(d, 12)2 (1 − 2k) + 8
gcd(d, 3)2

gcd(d, 12)2

− 2
gcd(d, 6)2

gcd(d, 12)2 + 2 ≥ 0.

To find all the possible values of S, we prepared Table 1 using MATLAB. Using
Table 1, we find that S ≥ 0 for all d | 144. Hence, B2,k(z) is holomorphic at every
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[10] Divisibility of the partition function PDOt(n) 23

TABLE 1. Data to find the values of S.

d | 144
gcd(d, 1)2

gcd(d, 12)2

gcd(d, 2)2

gcd(d, 12)2

gcd(d, 6)2

gcd(d, 12)2

gcd(d, 3)2

gcd(d, 12)2

1 1 1 1 1
2 0.2500 1 1 0.2500
3, 9 0.1111 0.1111 1 1
4, 8, 16 0.0625 0.2500 0.2500 0.0625
6, 18 0.0278 0.1111 1 0.2500
12, 24, 36, 48, 72, 144 0.0069 0.0278 0.2500 0.0625

cusp c/d. From Theorem 2.3, the weight of B2,k(z) is � = 2k−1 + 1. Also, the associated
character for B2,k(z) is given by

χ1 =

( (−1)2k−1+124−2k
33

•

)
.

Finally, by Theorem 2.3, B2,k(z) ∈ M2k−1+1(Γ0(144), χ1) for k ≥ 1. Given any positive
integer m, by a deep theorem of Serre [12, page 43], if f (z) ∈ M�(Γ0(N), χ) has the
Fourier expansion

f (z) =
∞∑

n=0

c(n)qn ∈ Z[[q]],

then there is a constant α > 0 such that

#{n ≤ X : c(n) � 0 (mod m)} = O
( X
(log X)α

)
.

This yields

lim
X→∞
δ0( f , m; X) = lim

X→∞

#{n ≤ X : c(n) ≡ 0 (mod m)}
X

= 1.

Since B2,k(z) ∈ M2k−1+1(Γ0(144), χ1), the Fourier coefficients of B2,k(z) are almost
always divisible by m = 2k. Now, using (4.3) completes the proof of (1.4).

We next prove (1.5). We put p = 3 in (4.1) to obtain

B3,k(z) =
(
η(2z)η(3z)2η(12z)2

η(z)2η(6z)

)
A3k

3 (z) =
η(2z)η(3z)2−3k

η(12z)2η(z)3k+1−2

η(6z)
.

Now, B3,k is an eta-quotient with N = 144. As before, the cusps of Γ0(144) are
represented by fractions c/d, where d | 144 and gcd(c, d) = 1. By Theorem 2.4, B3,k(z)
is holomorphic at a cusp c/d if and only if
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L := 12
gcd(d, 1)2

gcd(d, 12)2 (3k+1 − 2) + 4
gcd(d, 3)2

gcd(d, 12)2 (2 − 3k) + 6
gcd(d, 2)2

gcd(d, 12)2

− 2
gcd(d, 6)2

gcd(d, 12)2 + 2 ≥ 0.

From Table 1, L ≥ 0 for all d | 144. By Theorem 2.3, B3,k(z) ∈ M3k+1(Γ0(144), χ2),
where χ2 is the associated Nebentypus character. Using the same reasoning and (4.3),
we find that PDOt(n) is divisible by 3k for almost all n ≥ 0. This completes the proof
of (1.5). �

5. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using nilpotency of Hecke operators. We
apply a result of Ono and Taguchi [13] to the modular form B2,k(z) to deduce the
infinite family of congruences.

PROOF OF THEOREM 1.4. Taking p = 2 in (4.3), we have

B2,k(z) ≡
∞∑

n=0

PDOt(n)qn (mod 2k+1).

Note that B2,k(z) ∈ M2k−1+1(Γ0(144), χ1). By [13, Theorem 1.3(3)], there is an integer
s ≥ 0 such that for any u ≥ 1,

B2,k(z)|Tp1 |Tp2 | · · · |Tps+u ≡ 0 (mod 2u)

whenever p1, . . . , ps+u are coprime to 6. It follows from the definition of the Hecke
operators that if p1, . . . , ps+u are distinct primes and if n is coprime to p1 · · · ps+u, then

PDOt(p1 · · · ps+u · n) ≡ 0 (mod 2u).

This completes the proof of the theorem. �
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