NONZERO SYMMETRY CLASSES OF SMALLEST DIMENSION

G. H. CHAN AND M. H. LIM

1. Introduction. Let U be a k-dimensional vector space over the complex numbers. Let $\otimes^{m} U$ denote the m th tensor power of U where $m \geqq 2$. For each permutation σ in the symmetric group S_{m}, there exists a linear mapping $P(\sigma)$ on $\bigotimes^{m} U$ such that

$$
P(\sigma)\left(x_{1} \otimes \ldots \otimes x_{m}\right)=x_{\sigma^{-1}(1)} \otimes \ldots \otimes x_{\sigma^{-1}(m)}
$$

for all x_{1}, \ldots, x_{m} in U.
Let G be a subgroup of S_{m} and λ an irreducible (complex) character on G. The symmetrizer

$$
T(G, \lambda)=\frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma)
$$

is a projection of $\otimes^{m} U$. Its range is denoted by $U_{\lambda}^{m}(G)$ or simply $U_{\lambda}(G)$ and is called the symmetry class of tensors corresponding to G and λ.
The problem of characterizing all groups G and irreducible characters λ and G for which $U_{\lambda}(G)=0$ was considered in $[\mathbf{1 0}],[27]$ and $[7,8]$. The main result of this paper characterizes those $U_{\lambda}(G)$ with dimension equal to $\lambda(1)$ when $m=2 k$ (Theorem 13). Its proof relies on the results concerning (k)-groups studied by the first author $[\mathbf{4}, \mathbf{5}, \mathbf{6}]$. It was proved in [9] that for $m \leqq 2 k-2, \operatorname{dim} U_{\lambda}(G)=1$ if and only if $m=k, G=S_{k}$ and λ is the sign character ϵ.
2. Some preliminaries. Let $\Gamma_{m, k}$ be the set of all functions from $M=\{1,2, \ldots, m\}$ into $K=\{1,2, \ldots, k\}$. Let e_{1}, \ldots, e_{k} be a basis of U. Then

$$
\left\{e_{\alpha}^{\otimes}=e_{\alpha(1)} \otimes \ldots \otimes e_{\alpha(m)}: \alpha \in \Gamma_{m, k}\right\}
$$

is a basis of $\otimes^{m} U$. It follows that $\left\{e_{\alpha}^{*}=T(G, \lambda) e_{\alpha}{ }^{\otimes}: \alpha \in \Gamma_{m, k}\right\}$ spans $U_{\lambda}(G)$.
We define an equivalence relation on $\Gamma_{m, k}$ as follows: For $\alpha, \beta \in \Gamma_{m, k}$, $\alpha \equiv \beta(\bmod G)$ if and only if there exists a $\sigma \in G$ such that $\alpha \sigma=\beta$. Let Δ be the system of distinct representatives for the equivalence relation formed by taking the element in each equivalence class which is first in lexi-

[^0]cographic order. For each $\alpha \in \Gamma_{m, k}$ let G_{α} be the stabilizer subgroup of α, i.e., $G_{\alpha}=\{\sigma \in G: \alpha \sigma=\alpha\}$. Then it is well-known that $e_{\alpha}{ }^{*}=0$ if and only if
$$
\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=0 .
$$

Let

$$
\bar{\Delta}=\left\{\alpha \in \Delta: e_{\alpha}^{*} \neq 0\right\} .
$$

Then it was proved in [24] that

$$
\begin{equation*}
U_{\lambda}(G)=\sum_{\alpha \in \bar{\Delta}}\left\langle e_{\alpha \sigma}^{*}: \sigma \in G\right\rangle \tag{1}
\end{equation*}
$$

the sum being direct.
For each $\alpha \in \bar{\Delta}$, the subspace $\left\langle e_{\alpha \sigma}{ }^{*}: \sigma \in G\right\rangle$ is called the orbital subspace of $U_{\lambda}(G)$ corresponding to α. In [13], Freese proved that
(2) $\operatorname{dim}\left\langle e_{\alpha \sigma}{ }^{*}: \sigma \in G\right\rangle=\frac{\lambda(1)}{\left|G_{\alpha}\right|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma)$.

Thus if $U_{\lambda}(G) \neq 0$ then $\operatorname{dim} U_{\lambda}(G) \geqq \lambda(1)$. It is known [17, p. 79] that
(3) $\operatorname{dim} U_{\lambda}(G)=\frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) k^{c(\sigma)}$
where $\operatorname{dim} U=k$ and $c(\sigma)$ denotes the number of cycles in the disjoint cycle decomposition of σ (including cycles of length 1).

A character χ of G is called a (k)-character of G if, for each $\alpha \in \Gamma_{m, k}$, we have

$$
\sum_{\sigma \in G_{\alpha}} \chi(\sigma)=0 .
$$

If χ is a (k)-character of G then $G_{\alpha} \neq\{1\}$ for all $\alpha \in \Gamma_{m, k}$ and this is precisely another version of the definition of (k)-group [6]. Clearly $U_{\lambda}(G)=0$ if and only if λ is a (k)-character where $\operatorname{dim} U=k$.

Let G_{1} and G_{2} be permutation groups on $M=\{1, \ldots, m\}$ and $N=\{1, \ldots, n\}$ respectively. Each permutation of the wreath product $G=G_{1}$ 久 G_{2} can be uniquely expressed in the form $\left(g_{1}, \ldots, g_{n}: h\right)$ where $g_{i} \in G_{1}, h \in G_{2}$. If λ_{i} is a linear character on $G_{i}, i=1,2$, the mapping λ defined by

$$
\lambda\left(g_{1}, \ldots, g_{n} ; h\right)=\lambda_{1}\left(g_{1}\right) \ldots \lambda_{1}\left(g_{n}\right) \lambda_{2}(h)
$$

is a linear character on G_{1} 〕 G_{2} and is denoted by $\left.\lambda_{1}\right\rceil \lambda_{2}$. In [28, Theorem 2], Williamson proved that
(4) $\operatorname{dim} U_{\lambda}\left(G_{1} \chi G_{2}\right)=\operatorname{dim}\left[\left(U_{\lambda_{1}}\left(G_{1}\right)\right)_{\lambda_{2}}\left(G_{2}\right)\right]$.

Let H be a normal subgroup of G of index 2 . Let λ be an irreducible
character of G. Then the irreducible character λ^{\prime} on G such that

$$
\begin{array}{ll}
\lambda^{\prime}(\sigma)=\lambda(\sigma), & \sigma \in H \\
\lambda^{\prime}(\sigma)=-\lambda(\sigma), & \sigma \notin H
\end{array}
$$

is called the associated character of λ. If $\lambda=\lambda^{\prime}$, we say that λ is selfassociated.

For each irreducible character χ of H and a $\pi \in G \backslash H$, we can define an irreducible character $\bar{\chi}$ of H as follows:

$$
\bar{\chi}(\sigma)=\chi\left(\pi^{-1} \sigma \pi\right)
$$

for all $\sigma \in H$. Note that $\bar{\chi}$ is independent of the choice of π and is called the conjugate character of $\chi . \chi$ is called self-conjugate if $\bar{\chi}=\chi$. The relation between associated characters of G and the conjugate characters of H is given in the following theorem [1].

Theorem 1. (a) If χ and χ^{\prime} are associated irreducible characters of G and $\chi \neq \chi^{\prime}$, then $\left.\chi\right|_{H}=\left.\chi^{\prime}\right|_{H}$ is a self-conjugate irreducible character of H. Conversely, every self-conjugate irreducible of H is the restriction of a pair of associated irreducible characters of G.
(b) If χ is a self-associated irreducible character of G then $\left.\chi\right|_{H}=\lambda+\bar{\lambda}$ where λ and $\bar{\lambda}$ are irreducible conjugate characters of H. Conversely, the sum of a pair of distinct conjugate irreducible characters of H is the restriction of a self-associated irreducible character of G.

The last line of the following theorem follows from Lemma 5 in [24], while the rest of the theorem is a special case of Theorems 3 and 4 in [20]. We remark that the theorem could also be proved easily by using formula (3).

Theorem 2. Let G be a subgroup of S_{m} and H a normal subgroup of G of index 2 .
(a) If λ is a self-conjugate irreducible character of H induced by the associated irreducible characters χ and χ^{\prime} of G, then

$$
U_{\lambda}(H)=U_{\chi}(G) \oplus U_{\chi^{\prime}}(G)
$$

(b) If λ and $\bar{\lambda}$ is a pair of conjugate irreducible characters of H such that $\left.\chi\right|_{H}=\lambda+\bar{\lambda}$ where χ is a self-associated irreducible character of G, then

$$
U_{\chi}(G)=U_{\lambda}(H) \oplus U_{\bar{\lambda}}(H)
$$

and
$\operatorname{dim} U_{\lambda}(H)=\operatorname{dim} U_{\bar{\lambda}}(H)$.
We now describe irreducible characters on the wreath product $\left.G=S_{n}\right\rangle S_{2}$. Consider G as a permutation group on $\{1,2, \ldots, 2 n\}$ with the complete block system $N_{1}=\{1, \ldots, n\}, N_{2}=\{n+1, \ldots, 2 n\}$. We
shall write every permutation in $S_{n} \ S_{2}$ as $\sigma_{1} \sigma_{2} \pi$ where $\sigma_{1} \in S_{N_{1}}$, $\sigma_{2} \in S_{N_{2}}$ and $\pi \in S_{2}$. Let λ and ρ be two irreducible characters corresponding to irreducible representations D_{λ} and D_{ρ} of $S_{N_{1}}$ and $S_{N_{2}}$ respectively. Then the character $\lambda \# \rho$ corresponding to the outer tensor product $D_{\lambda} \# D_{\rho}$ defined by

$$
\left(D_{\lambda} \# D_{\rho}\right)\left(\sigma_{1} \sigma_{2}\right)=D_{\lambda}\left(\sigma_{1}\right) \otimes D_{\rho}\left(\sigma_{2}\right)
$$

where $\sigma_{1} \in S_{N_{1}}, \sigma_{2} \in S_{N 2}$ is an irreducible character of the product $S_{N_{1}} \cdot S_{N_{2}}($ see [11], [15]). In fact

$$
(\lambda \# \rho)\left(\sigma_{1} \sigma_{2}\right)=\lambda\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) .
$$

If $\lambda \neq \rho$, then the induced character $(\lambda \# \rho)^{G}$ is an irreducible character of $\left.G=S_{n}\right\rangle S_{2}$. If $\lambda=\rho$, then we first extend $D_{\lambda} \# D_{\lambda}$ to an irreducible representation $\widetilde{D_{\lambda} \# D_{\lambda}}$ of $S_{n}\left\langle S_{2}\right.$ as follows: for each $\left.\sigma_{1} \sigma_{2} \pi \in S_{n}\right\rangle S_{2}$, if

$$
\begin{aligned}
& D_{\lambda}\left(\sigma_{1}\right)=\left(a_{i_{1} j_{1}}\right) \\
& D_{\lambda}\left(\sigma_{2}\right)=\left(b_{i_{2} j_{2}}\right) \\
& D_{\lambda} \# D_{\lambda}\left(\sigma_{1} \sigma_{2}\right)=\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right)
\end{aligned}
$$

we put

$$
\widetilde{D_{\lambda} \# D_{\lambda}}\left(\sigma_{1} \sigma_{2} \pi\right)=\left(a_{i_{11} j_{\pi(1)}} b_{i_{2} j_{\pi(2)}}\right)
$$

Now for each irreducible character χ of S_{2} corresponding to irreducible representation D_{χ} of S_{2} we can define a representation \tilde{D}_{χ} of $S_{n} \ S_{2}$ as follows:

$$
\widetilde{D}_{\chi}\left(\sigma_{1} \sigma_{2} \pi\right)=D_{\chi}(\pi) .
$$

Then the inner tensor product $D_{\lambda} \# D_{\lambda} \otimes \widetilde{D}_{\chi}$ is an irreducible representation of $S_{n} \ S_{n}$ and its corresponding character is the character $\lambda \ \chi$. We shall need the following result (see [15]) concerning the irreducible characters of wreath product S_{n} 〉 S_{2} in the next section.

Theorem 3. Every irreducible character of the wreath product $G=$ $S_{n} \ S_{2}$ is either equal to $(\lambda \# \rho)^{G}$ or $\lambda \geqslant \chi$ where λ, ρ are distinct irreducible characters of S_{n} and χ is an irreducible character of S_{2}.

Theorem 4. Let G_{1} and G_{2} be permutation groups on $\{1, \ldots, m\}$ and $\{m+1, \ldots, m+t\}$ respectively. Let λ_{1} and λ_{2} be irreducible characters of G_{1} and G_{2} respectively. If $\lambda=\lambda_{1} \# \lambda_{2}$ is the irreducible character on the product $G_{1} \cdot G_{2}$ corresponding to the outer tensor product representation, then

$$
\operatorname{dim} U_{\lambda}^{m+t}\left(G_{1} \cdot G_{2}\right)=\operatorname{dim} U_{\lambda_{1}}\left(G_{1}\right) \cdot \operatorname{dim} U_{\lambda_{2}}\left(G_{2}\right)
$$

Proof. In view of (3),

$$
\begin{aligned}
\operatorname{dim} U_{\lambda}\left(G_{1} \cdot G_{2}\right)= & \frac{\lambda(1)}{\left|G_{1} \cdot G_{2}\right|} \sum_{\sigma \in G_{i}}\left(\lambda_{1} \# \lambda_{2}\right)\left(\sigma_{1} \sigma_{2}\right) k^{c\left(\sigma_{1} \sigma_{2}\right)} \\
= & \frac{\lambda_{1}(1)}{\left|G_{1}\right|} \frac{\lambda_{2}(1)}{\left|G_{2}\right|} \sum_{\sigma i \in G_{i}} \lambda_{1}\left(\sigma_{1}\right) \lambda_{2}\left(\sigma_{2}\right) k^{c\left(\sigma_{1}\right)+c\left(\sigma_{2}\right)} \\
= & \left(\frac{\lambda_{1}(1)}{\left|G_{1}\right|} \sum_{\sigma_{1} \in G_{1}} \lambda_{1}\left(\sigma_{1}\right) k^{c\left(\sigma_{1}\right)}\right)\left(\frac{\lambda_{2}(1)}{\left|G_{2}\right|} \sum_{\sigma_{2} \in G_{2}} \lambda_{2}\left(\sigma_{2}\right) k^{c\left(\sigma_{2}\right)}\right) \\
& =\operatorname{dim} U_{\lambda_{1}}\left(G_{1}\right) \cdot \operatorname{dim} U_{\lambda_{2}}\left(G_{2}\right) .
\end{aligned}
$$

When λ_{1}, λ_{2} are linear, Theorem 4 was proved in [26] by a different method.

Theorem 5. Let λ and ρ be distinct irreducible characters on S_{n}. Let $\left.G=S_{n}\right\rangle S_{2}$ and $\chi=(\lambda \# \rho)^{G}$. Then

$$
\operatorname{dim} U_{\chi}(G)=2 \operatorname{dim} U_{\lambda}\left(S_{N_{1}}\right) \operatorname{dim} U_{\rho}\left(S_{N_{2}}\right)
$$

where $N_{1}=\{1, \ldots, n\}$ and $N_{2}=\{n+1, \ldots, 2 n\}$.
Proof. Since $(\lambda \# \rho)^{G}$ is self-associated with respect to $S_{N_{1}} \cdot S_{N_{2}}$ and

$$
\left.\chi\right|_{s_{N 1} \cdot s_{N 2}}=\lambda \# \rho+\overline{\lambda \# \rho},
$$

it follows from Theorem 2 and Theorem 4 that

$$
\begin{aligned}
\operatorname{dim} U_{\chi}(G) & =2 \operatorname{dim} U_{\lambda \not \#_{\rho}}\left(S_{N_{1}} \cdot S_{N_{2}}\right) \\
& =2 \operatorname{dim} U_{\lambda}\left(S_{N_{1}}\right) \operatorname{dim} U_{\rho}\left(S_{N_{2}}\right)
\end{aligned}
$$

Corollary $1[8]$. Let λ and ρ be distinct irreducible characters of S_{n}. Then $(\lambda \# \rho)^{G}$ is a (k)-character of $\left.G=S_{n}\right\rangle S_{2}$ if and only if either λ or ρ is a (k)-character of S_{n}.

Proof. This follows immediately from Theorem 5.
3. Nonzero symmetry classes of smallest dimension. In this section we shall determine those subgroups G of S_{m} and those irreducible characters λ on G such that $\operatorname{dim} U_{\lambda}(G)=\lambda(1)$ when $m=2 k$ where $k=\operatorname{dim} U$.

Throughout the rest of the paper we assume that $\operatorname{dim} U=k$, $M=\{1,2, \ldots, m\}$ and $K=\{1,2, \ldots, k\}$.

Theorem 6. Let $0 \neq \operatorname{dim} U_{\lambda}(G)<k \lambda(1)$. If $\alpha \in \bar{\Delta}$ then $|\alpha(M)|=k$ and $\left|\alpha^{-1}(i)\right|=m / k$ for $i=1,2, \ldots, k$.

Proof. If $k>m$, let Q be the set of all mappings β in $\Gamma_{m, k}$ such that

$$
\alpha(1)<\alpha(2)<\ldots<\alpha(m)
$$

Then $Q \subseteq \bar{\Delta}$ and hence from (1) and (2) we have

$$
\operatorname{dim} U_{\lambda}(G) \geqq|Q| \lambda(1)={ }_{m} C_{k} \lambda(1) \geqq k \lambda(1)
$$

a contradiction. Hence $k \leqq m$.
Suppose now $|\alpha(M)|=s \neq k$. Then for each $i \in \alpha(M)$ and $j \notin \alpha(M)$, $1 \leqq j \leqq k$, let $\sigma_{i j}=(i j)$ be the transposition in S_{k}. Then

$$
\left\{e_{\sigma_{i, \alpha}}^{*}: i \in \alpha(M), j \notin \alpha(M), 1 \leqq j \leqq k\right\} \cup\left\{e_{\alpha}^{*}\right\}
$$

is a set with $s(k-s)+1$ elements and different elements of the set belong to different orbital subspaces of $U_{\lambda}(G)$. Hence

$$
\operatorname{dim} U_{\lambda}(G) \geqq[s(k-s)+1] \lambda(1) \geqq k \lambda(1),
$$

a contradiction. Hence $|\alpha(M)|=k$.
Let $D=\left\{j:\left|\alpha^{-1}(j)\right|=\left|\alpha^{-1}(1)\right|\right\}$. Suppose that $|D|=t \neq k$. Then for each $i \in D$ and $j \in K \backslash D$, let $\tau_{i j}$ be the transposition (ij) in S_{k}. Then

$$
\left\{e_{\tau i, \alpha}^{*}: i \in D, j \in K \backslash D\right\} \cup\left\{e_{\alpha}^{*}\right\}
$$

is a set with $t(k-t)+1$ elements and different elements of the set belong to different orbital subspaces of $U_{\lambda}(G)$. Hence

$$
\operatorname{dim} U_{\lambda}(G) \geqq[t(k-t)+1] \lambda(1) \geqq k \lambda(1),
$$

a contradiction. Hence $\left|\alpha^{-1}(1)\right|=\left|\alpha^{-1}(i)\right|$ for $i=1, \ldots, k$. This completes the proof.

Corollary 2. If $\operatorname{dim} U_{\lambda}(G)=\lambda(1)$, then k is a divisor of m.
The following result was proved in [2, Corollary 1].
Theorem 7. Let λ be the irreducible character of S_{m} corresponding to " Young diagram $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$. Then $\operatorname{dim} U_{\lambda}\left(S_{m}\right)=0$ if and only if $t>k$.

The following result follows from the Proposition in [12, p. 20] and Theorem 1 in [25].

Theorem 8. Let λ be the irreducible character of S_{m} corresponding to " Young diagram $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$. Then $\operatorname{dim} U_{\lambda}\left(S_{m}\right)=\lambda(1)$ if und only if $t=k$ and $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{k}$.

We remark that the necessity of the above theorem also follows easily from the Theorem in $[\mathbf{2 1}]$ and Theorem 6.

Let A_{m} denote the alternating group of degree m.
Theorem 9. Let λ be an irreducible character of A_{m}. Let $m=k s$ and $k \geqq s$. Then $\operatorname{dim} U_{\lambda}\left(A_{m}\right)=\lambda(1)$ if and only if $s=k$ and λ is the restriction of the self-associated irreducible character of S_{m} corresponding to the Young diagram $\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ where $\lambda_{1}=\ldots=\lambda_{s}=k$.

Proof. If λ is the self-conjugate irreducible character induced by the associated characters χ and χ^{\prime} on S_{m}, then by Theorem 2 ,

$$
U_{\lambda}\left(A_{m}\right)=U_{\chi}\left(S_{m}\right) \bigoplus U_{\chi^{\prime}}\left(S_{m}\right)
$$

If $\operatorname{dim} U_{\lambda}\left(A_{m}\right)=\lambda(1)$ then we may assume without loss of generality that $\operatorname{dim} U_{\chi}\left(S_{m}\right)=\lambda(1)$ and $\operatorname{dim} U_{\chi^{\prime}}\left(S_{m}\right)=0$. Hence by Theorem $8, \chi$ corresponds to the Young diagram $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ where $t=k, \lambda_{1}=\lambda_{2}$ $=\ldots=\lambda_{t}=s$. Hence χ^{\prime} corresponds to a Young diagram with s rows. However Theorem 7 implies that $s>k$, a contradiction.

If λ is not self-conjugate then, by Theorem $1, \lambda+\bar{\lambda}=\left.\chi\right|_{A m}$ for some self-associated irreducible character χ of S_{m} where $\bar{\lambda}$ is the conjugate of λ. In view of Theorem 2,

$$
\begin{aligned}
\operatorname{dim} U_{\lambda}\left(A_{m}\right)=\lambda(1) & \Leftrightarrow \operatorname{dim} U_{\bar{\lambda}}\left(A_{m}\right)=\lambda(1) \\
& \Leftrightarrow \operatorname{dim} U_{\chi}\left(S_{m}\right)=\chi(1)
\end{aligned}
$$

$\Leftrightarrow \chi$ corresponds to the Young diagram $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ with $t=k$ and $\lambda_{1}=\ldots=\lambda_{t}=s$.

Since χ is self-associated, we must have $s=k$. This completes the proof.

Two permutation groups H_{1} and H_{2} on N_{1} and N_{2} respectively are said to be of the same type if there exists an injection $\phi: N_{1} \rightarrow N_{2}$ and an isomorphism $f: H_{1} \rightarrow H_{2}$ such that

$$
\phi(\sigma(i))=f(\sigma)(\phi(i)) \text { for all } i \in N_{1}, \sigma \in H_{1}
$$

The following result is useful in the sequel.
Theorem 10 [8]. Suppose $m \leqq 2 k=2 \operatorname{dim} U$. Then $U_{\lambda}(G)$ is trivial if and only if one of the following holds:

1. G contains a subgroup of type S_{n} with $n>k$ and $\left.\lambda\right|_{S_{n}}$ is a multiple of an irreducible character of S_{n} corresponding to a Young diagram $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ where $t>k$.
2. G contains a subgroup of type $S_{k} \ S_{2}$ and

$$
\left.\left.\lambda\right|_{s_{k} \backslash s_{2}}=\lambda(1) \rho\right\rangle \chi
$$

where ρ is the sign character of S_{k} and χ is the sign character of S_{2}.
Theorem 11. If G has t orbits $O_{1}, O_{2}, \ldots O_{t}$ such that $\left|O_{1}\right|=\ldots=$ $\left|O_{t}\right|=k$, then $\operatorname{dim} U_{\lambda}(G)=\lambda(1)$ if and only if $G=S_{0_{1}} \ldots S_{0_{t}}$ and $\lambda=\epsilon$.

Proof. The sufficiency follow from Theorem 4. To prove the necessity, let $1 \leqq i \leqq t$. Given distinct elements $s, j \in O_{i}$, let $\alpha \in \Gamma_{m, k}$ such that

$$
\begin{array}{ll}
\left|\alpha\left(O_{n}\right)\right|=k & \text { for } n \neq i, \\
\left|\alpha\left(O_{i}\right)\right|=k-1 & \text { and } \alpha(s)=\alpha(j)
\end{array}
$$

By Theorem 6, $e_{\alpha}^{*}=0$. Hence $G_{\alpha} \neq\{1\}$ and therefore $(s j) \in G$. Hence $S_{0 i} \subseteq G$. This shows that $G=S_{0_{1}} \ldots S_{0 \iota}$. Hence $\lambda=\lambda_{1} \# \ldots \# \lambda_{t}$ for some irreducible characters λ_{i} of $S_{i}, i=1,2, \ldots, t$. By Theorem 4,

$$
\operatorname{dim} U_{\lambda}(G)=\prod_{i=1}^{t} \operatorname{dım} U_{\lambda_{i}}\left(S_{0_{i}}\right)=\lambda(1)
$$

Hence $\operatorname{dim} U_{\lambda_{i}}\left(S_{0_{i}}\right)=\lambda_{i}(1)$ for all $i=1, \ldots, t$. Since $\left|O_{i}\right|=k$ and $\operatorname{dim} U=k$ it follows from Theorem 8 that $\lambda_{i}=\epsilon$. This completes the proof.

Lemma 1. Let G be a subgroup of S_{6} containing neither 2-cycles nor 3 -cycles. If $\operatorname{dim} U=k=3$, then $\operatorname{dim} U_{\lambda}(G)>\lambda(1)$ for any irreducible character λ of G.

Proof. Suppose that $\operatorname{dim} U_{\lambda}(G) \leqq \lambda(1)$. Let $\alpha \in \Gamma_{6,3}$ such that

$$
\alpha^{-1}(1)=\{1,2\}, \alpha^{-1}(2)=\{3,4,5\}, \alpha^{-1}(3)=\{6\} .
$$

By Theorem 6, $e_{\alpha}^{*}=0$ and hence $G_{\alpha} \neq\{1\}$. Suppose $\left|G_{\alpha}\right|>2$. Then G contains a 2-cycle or a 3-cycle, a contradiction. Hence $\left|G_{\alpha}\right|=2$. We may assume that (12) (34) $\in G_{\alpha}$. Then

$$
\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=\lambda(1)+\lambda((12)(34))=0
$$

and hence $\lambda((12)(34))=-\lambda(1)$. Similarly, we can show that for $\beta_{1}, \beta_{2} \in \Gamma_{6,3}$ defined by

$$
\begin{aligned}
& \beta_{1}^{-1}(1)=\{3,4\}, \beta_{1}^{-1}(2)=\{1,5,6\}, \beta_{1}^{-1}(3)=\{2\} \\
& \beta_{2}^{-1}(1)=\{1,2\}, \beta_{2}^{-1}(2)=\{4,5,6\}, \beta_{2}^{-1}(3)=\{3\}, \\
& G_{\beta_{1}}=\{1,(34)(56)\}, G_{\beta_{2}}=\{1,(12)(56)\} \text { and } \\
& \lambda((34)(56))=\lambda((12)(56))=-\lambda(1) .
\end{aligned}
$$

Now for $\gamma \in \Gamma_{6,3}$ defined by

$$
\gamma^{-1}(1)=\{1,2\}, \gamma^{-1}(2)=\{3,4\}, \gamma^{-1}(3)=\{5,6\},
$$

we have $G_{\gamma}=\{1,(12)(34),(12)(56),(34)(56)\}$. It follows that

$$
\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=\lambda(1)-3 \lambda(1)=-2 \lambda(1)
$$

which contradicts the fact that $\left|G_{\gamma}\right|^{-1} \sum_{\sigma \in G_{\gamma}} \lambda(\sigma)$ is a non-negative integer. Hence $\operatorname{dim} U_{\lambda}(G)>\lambda(1)$.

Lemma 2. If $\operatorname{dim} U_{\lambda}(G)=\lambda(1)$ then for any $(k-1)$-dimensional sub)space W of $U, W_{\lambda}(G)=0$.

Proof. This follows immediately from Theorem 6.
Theorem 12. If $\operatorname{dim} U_{\lambda}(G)=\lambda(1)$ and λ is not linear, then G is " (k)-group.

Proof. Since $\operatorname{dim} U_{\lambda}(G)=\lambda(1), \bar{\Delta}=\{\alpha\}$ for some $\alpha \in \Delta$ and by (2) we have

$$
1=\frac{1}{\left|G_{\alpha}\right|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) .
$$

If $G_{\alpha}=\{1\}$ then $1=\lambda(1)$, a contradiction. Hence $G_{\alpha} \neq\{1\}$. This implies that G is a (k)-group.

Theorem 13. For $m=2 k=2 \operatorname{dim} U, \operatorname{dim} U_{\chi}(G)=\chi(1)$ if and only if one of the following holds:
(a) $G=S_{0_{1}} \cdot S_{0,}$ where $\left|O_{1}\right|=\left|O_{2}\right|=k, \chi=\epsilon$.
(b) $G=S_{m}$ and χ corresponds to the Young diagram $\left(\chi_{1}, \ldots, \chi_{k}\right)$ where $\chi_{1}=\ldots=\chi_{k}$.
(c) G is of type S_{k} \ $S_{2}, \chi=\epsilon$ \1.
(d) G is of type S_{2} \ $S_{3}, \chi=\epsilon \backslash \epsilon, k=3$.
(e) $G=A_{4}, \chi \neq 1, \chi$ is linear, $k=2$.

Proof. The sufficiency follows from Theorems 11, 8 and 9 and formula (4). The proof of the necessity is divided into three cases:

Case 1. G is intransitive. Suppose G has an orbit O such that $|O|<k$. Let $\alpha \in \bar{\Delta}$ and $\pi=(12 \ldots k) \in S_{k}$. Then $\alpha \not \equiv \pi \alpha(\bmod G), e_{\pi \alpha}^{*} \neq 0$. Hence $\operatorname{dim} U_{\chi}(G) \geqq 2 \chi(1)$, a contradiction. Hence G has only two orbits O_{1} and O_{2} with $\left|O_{1}\right|=\left|O_{2}\right|=k$. By Theorem 11, we obtain (a).

Case 2. G is primitive.
(1) If $k=1$, then $G=S_{2}, \chi \equiv 1$ and we obtain (b).
(2) If $k=2$, then $G=A_{4}$ or S_{4}. In the first case, by Theorem 9 , we have (e). In the second case, by Theorem 8 , we have (b).
(3) If $k=3$, then G is of the type $A_{6}, S_{6},\langle(126)(354)$, (12345), (2345) \rangle or $\langle(126)(354)$, (12345), (25)(34) \rangle (see [3]). The first case cannot occur by Theorem 9 . The second case implies (b) by Theorem 8. The third and fourth cases cannot happen by Lemma 1 .
(4) $k=4$. If χ is not linear then by Theorem $12 G$ is a (4)-group. Since G is primitive, by Theorem 3.6 in [6], $G \supseteq A_{8}$. If χ is linear then by Lemma $2, W_{\chi}(G)=0$ for some 3 -dimensional subspace W of U. Hence by the theorem in [7], $G \supseteq A_{8}$ since G is primitive. Thus by Theorems 8 and 9 we obtain (b).
(5) $k>4$. Since $\operatorname{dim} U_{\chi}(G)=\chi(1)$, by Lemma $2, G$ is $(k-1)$ group. Hence by Theorem 6.3 in [6], G contains A_{m}. Appealing to Theorems 8 and 9 we obtain (b).

Case 3. G is imprimitive transitive. Let $\left\{N_{1}, \ldots, N_{t}\right\}$ be a complete block system of G. Suppose $t=2$. For each function β_{1} from N_{1} to $\{1,2, \ldots, k-1\}$, let $\beta \in \Gamma_{m, k}$ be defined by

$$
\begin{aligned}
& \beta(i)=\beta_{1}(i) \text { for } i \in N_{1} \\
& \left|\beta^{-1}(j) \cap N_{2}\right|=1 \text { for } j=1, \ldots, k
\end{aligned}
$$

Since $\left|\beta^{-1}(j)\right| \neq 2$ for some j, by Theorem $6, e_{\beta}{ }^{*}=0$ and hence

$$
\sum_{\sigma \in G_{\beta}} \chi(\sigma)=0
$$

Hence $G_{N 2}=\left\{g \in G: g(i)=i, i \in N_{2}\right\}$ is a $(k-1)$-group and $\left.\chi\right|_{G_{N 2}}$ is $\mathrm{a}(k-1)$-character. By Theorem 10,

$$
G_{N_{2}}=S_{N_{1}} \text { and }\left.\chi\right|_{G_{N 2}}=\chi(1) \epsilon .
$$

Similarly, we can show that

$$
G_{N_{1}}=S_{N_{2}} \text { and }\left.\chi\right|_{G_{N 2}}=\chi(1) \epsilon
$$

Hence $G=S_{k} \ S_{2}$. By Theorem 3, χ is of the form $\left.(\lambda \# \rho)^{G}, \lambda\right\rangle 1$ or $\left.\lambda\right\rangle \epsilon$ where λ and ρ are distinct irreducible characters of S_{k}.

If $\chi=(\lambda \# \rho)^{G}$, then Theorem 5 implies that

$$
\operatorname{dim} U_{\lambda}\left(S_{N_{1}}\right)=\lambda(1), \operatorname{dim} U_{\rho}\left(S_{N_{2}}\right)=\rho(1)
$$

By Theorem 4, $\lambda=\epsilon$ and $\rho=\epsilon$, a contradiction. If $\chi=\lambda \geqslant 1$ or $\lambda\rangle \epsilon$, we have

$$
\left.\chi\right|_{s_{N_{i}}}=\lambda(1) \lambda=\chi(1) \epsilon, i=1,2 .
$$

Hence $\lambda=\lambda(1) \epsilon$. By the irreducibility of λ we have $\lambda(1)=1$. Hence $\chi(1)=1$. Using formula (4), we have $\chi=\epsilon\} 1$. This gives (c).

We now consider individual values of k.
For $k=2$, we have $t=2$ and this implies that we have (c).
For $k=3$, we have $t=2$ or 3 . We need only to consider $t=3$. Let $N_{1}=\left\{x_{1}, x_{2}\right\}, N_{2}=\left\{y_{1}, y_{2}\right\}$ and $N_{3}=\left\{z_{1}, z_{2}\right\}$. Let $\alpha \in \Gamma_{6,3}$ be defined by

$$
\alpha^{-1}(1)=\left\{x_{1}, y_{1}\right\}, \alpha^{-1}(2)=\left\{y_{2}, z_{2}\right\}, \alpha^{-1}(3)=\left\{z_{1}, x_{2}\right\}
$$

Then $G_{\alpha}=\{1\}$ and hence G is not a (3)-group. By Theorem 12, χ is linear. Now let $\beta \in \Gamma_{6,3}$ be defined as follows:

$$
\beta^{-1}(1)=\left\{x_{1}, x_{2}, y_{1}\right\}, \beta^{-1}(2)=\left\{y_{2}, z_{2}\right\}, \beta^{-1}(3)=\left\{z_{1}\right\}
$$

Since $\operatorname{dim} U_{\chi}(G)=\chi(1)$, by Theorem 6 we have $e_{\beta}^{*}=0$. Hence $\left(x_{1} x_{2}\right) \in G$ and

$$
0=\sum_{\sigma \in G_{\beta}} \chi(\sigma)=1+\chi\left(\left(x_{1} x_{2}\right)\right)
$$

Hence $\chi\left(\left(x_{1} x_{2}\right)\right)=-1$. Similarly we can show that $\left(y_{1} y_{2}\right),\left(z_{1} z_{2}\right) \in G$ and

$$
\chi\left(\left(y_{1} y_{2}\right)\right)=\chi\left(\left(z_{1} z_{2}\right)\right)=-1
$$

It follows that $S_{N_{1}} \cdot S_{N_{2}} \cdot S_{N_{3}} \subseteq G$ and $\left.\chi\right|_{N_{N_{i}}}=\epsilon, i=1,2,3$. Next, let $\gamma \in \Gamma_{6,3}$ be defined by

$$
\gamma^{-1}(1)=\left\{x_{1}, y_{1}, z_{1}\right\}, \gamma^{-1}(2)=\left\{x_{2}, y_{2}\right\}, \gamma^{-1}(3)=\left\{z_{2}\right\}
$$

In view of Theorem $6, e_{\gamma}{ }^{*}=0$. Hence

$$
\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \in G \text { and } \chi\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=-1 .
$$

Similarly we can show that

$$
\begin{aligned}
& \left(x_{1} z_{1}\right)\left(x_{2} z_{2}\right) \in G \text { and } \chi\left(\left(x_{1} z_{1}\right)\left(x_{2} z_{2}\right)\right)=-1 \\
& \left(y_{1} z_{1}\right)\left(y_{2} z_{2}\right) \in G \text { and } \chi\left(\left(y_{1} z_{1}\right)\left(y_{2} z_{2}\right)\right)=-1 .
\end{aligned}
$$

Hence $G=S_{2} \ S_{3}$ and $\chi=\epsilon \ell \epsilon$.
For $k \geqq 4$ we have $2 k<3(k-1)$. Since G is a $(k-1)$-group, G is of type $S_{2} \ S_{4}$ where $k=4$ or $t=2$ (see Lemma 8.7 and Corollary 6.2 in [6]). The second case implies (c). Suppose that G is of the type $S_{2} \ S_{4}$. Let $\delta \in \Gamma_{8,4}$ be defined by

$$
\begin{array}{ll}
\left|\delta^{-1}(1) \cap N_{i}\right|=1, & i=1,2,3 . \\
\left|\delta^{-1}(2) \cap N_{i}\right|=1, & i=1,4 . \\
\left|\delta^{-1}(3) \cap N_{i}\right|=1, & i=2,4 . \\
\left|\delta^{-1}(4) \cap N_{i}\right|=1, & i=3 .
\end{array}
$$

Then $G_{\delta}=\{1\}$ and hence $e_{\delta}^{*} \neq 0$. By Theorem 6 , we obtain a contradiction. This completes the proof.

References

1. H. Boerner, Representations of groups (North Holland/American Elsevier, Amster-dam-London/New York, 1970).
2. R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941), 926-985.
3. W. Burnside, Theory of groups of finite order (Reprinted by Dover, New York, 1955).
4. G. H. Chan, On a class of permutation groups, Nanta Math. 6 (1973), 100-105.
5. Construction of minimal (k)-groups, Nanta Math. 7 (1974), 30-35.
6. —_A characterization of minimal (k)-groups of degree $n \leqq 3 k$, Linear and Multilinear Algebra 4 (1977), 285-305.
7. - On the triviality of symmetry class of tensors, Linear and Multilinear Algebra 6 (1978), 73-82.
8. - (k)-character and the triviality of symmetry classes, Linear Algebra Appl. (to appear).
9. - A note on symmetrizers of rank one, Nanta Math. 11 (1979), 130-133.
10. S. C. Chang, On the vanishing of $a(G, \sigma)$ space, Chinese J. Math. \& (1976), 1-7.
11. C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience, New York-London, 1962).
12. J. Dieudonné and J. B. Carrell, Invariant theory, old and new (Academic Press, New York, 1971).
13. R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl. 7 (1973), 337-345.
14. R. Grone, A note on the dimension of an orbital subspace, Linear Algebra Appl. 17 (1977), 283-286.
15. A. Kerber, Representations of permutation groups I, Lecture Notes in Mathematics 240 (Springer-Verlag, New York, 1971).
16. M. H. Lim, Regular symmetry classes of tensors, Nanta Math. 8 (1975), 42-46.
17. M. Marcus, Finite dimensional multilinear algebra, Part I (Marcel Dekker, New York, 1973).
18. -— Finite dimensional multilinear algebra, Part II (Marcel Dekker, New York, 1975).
19. R. Merris, The dimensions of certain symmetry classes of tensors II, Linear and Multilinear Algebra 4 (1976), 205-207.
20. - Relations among generalized matrix functions, Pacific J. Math. 62 (1976), 153-161.
21. - Nonzero decomposable symmetrized tensors, Linear Algebra Appl. 17 (1977), 287-292.
22. - On vanishing decomposable symmetrized tensors, Linear and Multilinear Algebra 5 (1977), 79-86.
23. —— Recent advances in symmetry classes of tensors, preprint.
24. R. Merris and S. Pierce, Elementary divisors of higher degree associated transformations, Linear and Multilinear Algebra 1 (1973), 241-250.
25. R. Merris and M. A. Rashid, The dimensions of certain symmetry classes of tensors, Linear and Multilinear Algebra 2 (1974), 245-248.
26. K. Singh, On the vanishing of a pure product in a (G, σ) space, Ph.D. Thesis, University of British Columbia (1967).
27. R. Westwick, A note on symmetry classes of tensors, J. Algebra, 15 (1970), 309-311.
28. S. G. Williamson, Symmetry operators of Kranz products, J. Comb. Theory 11 (1971), 122-138.

Nanyang University,
Singapore;
University of Malaya,
Kuala Lumpur, Malaysia

[^0]: Received November 9, 1978 and in revised form October 13, 1979.

