NONZERO SYMMETRY CLASSES OF SMALLEST DIMENSION

G. H. CHAN AND M. H. LIM

1. Introduction. Let U be a k-dimensional vector space over the complex numbers. Let $\bigotimes^m U$ denote the *m*th tensor power of U where $m \ge 2$. For each permutation σ in the symmetric group S_m , there exists a linear mapping $P(\sigma)$ on $\bigotimes^m U$ such that

$$P(\sigma)(x_1 \otimes \ldots \otimes x_m) = x_{\sigma^{-1}(1)} \otimes \ldots \otimes x_{\sigma^{-1}(m)}$$

for all x_1, \ldots, x_m in U.

Let G be a subgroup of S_m and λ an irreducible (complex) character on G. The symmetrizer

$$T(G, \lambda) = \frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma)$$

is a projection of $\bigotimes^m U$. Its range is denoted by $U_{\lambda}^m(G)$ or simply $U_{\lambda}(G)$ and is called the symmetry class of tensors corresponding to G and λ .

The problem of characterizing all groups G and irreducible characters λ and G for which $U_{\lambda}(G) = 0$ was considered in [10], [27] and [7, 8]. The main result of this paper characterizes those $U_{\lambda}(G)$ with dimension equal to $\lambda(1)$ when m = 2k (Theorem 13). Its proof relies on the results concerning (k)-groups studied by the first author [4, 5, 6]. It was proved in [9] that for $m \leq 2k - 2$, dim $U_{\lambda}(G) = 1$ if and only if m = k, $G = S_k$ and λ is the sign character ϵ .

2. Some preliminaries. Let $\Gamma_{m,k}$ be the set of all functions from $M = \{1, 2, ..., m\}$ into $K = \{1, 2, ..., k\}$. Let $e_1, ..., e_k$ be a basis of U. Then

 $\{e_{\alpha}^{\otimes} = e_{\alpha(1)} \otimes \ldots \otimes e_{\alpha(m)} : \alpha \in \Gamma_{m,k}\}$

is a basis of $\bigotimes^m U$. It follows that $\{e_{\alpha}^* = T(G, \lambda)e_{\alpha}^{\otimes} : \alpha \in \Gamma_{m,k}\}$ spans $U_{\lambda}(G)$.

We define an equivalence relation on $\Gamma_{m,k}$ as follows: For $\alpha, \beta \in \Gamma_{m,k}$, $\alpha \equiv \beta \pmod{G}$ if and only if there exists a $\sigma \in G$ such that $\alpha \sigma = \beta$. Let Δ be the system of distinct representatives for the equivalence relation formed by taking the element in each equivalence class which is first in lexi-

Received November 9, 1978 and in revised form October 13, 1979.

cographic order. For each $\alpha \in \Gamma_{m,k}$ let G_{α} be the stabilizer subgroup of α , i.e., $G_{\alpha} = \{\sigma \in G : \alpha\sigma = \alpha\}$. Then it is well-known that $e_{\alpha}^* = 0$ if and only if

$$\sum_{\sigma\in G_{\alpha}}\lambda(\sigma) = 0.$$

Let

$$\bar{\Delta} = \{ \alpha \in \Delta : e_{\alpha}^* \neq 0 \}.$$

Then it was proved in [24] that

(1)
$$U_{\lambda}(G) = \sum_{\alpha \in \overline{\Delta}} \langle e_{\alpha \sigma}^* : \sigma \in G \rangle$$

the sum being direct.

For each $\alpha \in \overline{\Delta}$, the subspace $\langle e_{\alpha\sigma}^* : \sigma \in G \rangle$ is called the *orbital subspace* of $U_{\lambda}(G)$ corresponding to α . In [13], Freese proved that

(2) dim
$$\langle e_{\alpha\sigma}^* : \sigma \in G \rangle = \frac{\lambda(1)}{|G_{\alpha}|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma)$$

Thus if $U_{\lambda}(G) \neq 0$ then dim $U_{\lambda}(G) \geq \lambda(1)$. It is known [17, p. 79] that

(3) dim
$$U_{\lambda}(G) = \frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) k^{c(\sigma)}$$

where dim U = k and $c(\sigma)$ denotes the number of cycles in the disjoint cycle decomposition of σ (including cycles of length 1).

A character χ of G is called a (k)-character of G if, for each $\alpha \in \Gamma_{m,k}$, we have

$$\sum_{\sigma\in G_{\alpha}}\chi(\sigma) = 0.$$

If χ is a (k)-character of G then $G_{\alpha} \neq \{1\}$ for all $\alpha \in \Gamma_{m,k}$ and this is precisely another version of the definition of (k)-group [6]. Clearly $U_{\lambda}(G) = 0$ if and only if λ is a (k)-character where dim U = k.

Let G_1 and G_2 be permutation groups on $M = \{1, \ldots, m\}$ and $N = \{1, \ldots, n\}$ respectively. Each permutation of the wreath product $G = G_1 \wr G_2$ can be uniquely expressed in the form $(g_1, \ldots, g_n; h)$ where $g_i \in G_1$, $h \in G_2$. If λ_i is a linear character on G_i , i = 1, 2, the mapping λ defined by

$$\lambda(g_1,\ldots,g_n;h) = \lambda_1(g_1)\ldots\lambda_1(g_n)\lambda_2(h)$$

is a linear character on $G_1 \wr G_2$ and is denoted by $\lambda_1 \wr \lambda_2$. In [**28**, Theorem 2], Williamson proved that

(4) dim
$$U_{\lambda}(G_1 \wr G_2) = \dim [(U_{\lambda_1}(G_1))_{\lambda_2}(G_2)].$$

Let H be a normal subgroup of G of index 2. Let λ be an irreducible

character of G. Then the irreducible character λ' on G such that

$$\lambda'(\sigma) = \lambda(\sigma), \quad \sigma \in H$$

 $\lambda'(\sigma) = -\lambda(\sigma), \quad \sigma \notin H$

is called the associated character of λ . If $\lambda = \lambda'$, we say that λ is self-associated.

For each irreducible character χ of H and a $\pi \in G \setminus H$, we can define an irreducible character $\bar{\chi}$ of H as follows:

$$\bar{\chi}(\sigma) = \chi(\pi^{-1}\sigma\pi)$$

for all $\sigma \in H$. Note that $\bar{\chi}$ is independent of the choice of π and is called the conjugate character of χ . χ is called self-conjugate if $\bar{\chi} = \chi$. The relation between associated characters of G and the conjugate characters of H is given in the following theorem [1].

THEOREM 1. (a) If χ and χ' are associated irreducible characters of G and $\chi \neq \chi'$, then $\chi|_H = \chi'|_H$ is a self-conjugate irreducible character of H. Conversely, every self-conjugate irreducible of H is the restriction of a pair of associated irreducible characters of G.

(b) If χ is a self-associated irreducible character of G then $\chi|_H = \lambda + \bar{\lambda}$ where λ and $\bar{\lambda}$ are irreducible conjugate characters of H. Conversely, the sum of a pair of distinct conjugate irreducible characters of H is the restriction of a self-associated irreducible character of G.

The last line of the following theorem follows from Lemma 5 in [24], while the rest of the theorem is a special case of Theorems 3 and 4 in [20]. We remark that the theorem could also be proved easily by using formula (3).

THEOREM 2. Let G be a subgroup of S_m and H a normal subgroup of G of index 2.

(a) If λ is a self-conjugate irreducible character of H induced by the associated irreducible characters χ and χ' of G, then

 $U_{\lambda}(H) = U_{\chi}(G) \oplus U_{\chi'}(G).$

(b) If λ and $\bar{\lambda}$ is a pair of conjugate irreducible characters of H such that $\chi|_{H} = \lambda + \bar{\lambda}$ where χ is a self-associated irreducible character of G, then

 $U_{\chi}(G) = U_{\lambda}(H) \oplus U_{\overline{\lambda}}(H)$

and

$$\dim U_{\lambda}(H) = \dim U_{\bar{\lambda}}(H).$$

We now describe irreducible characters on the wreath product $G = S_n \wr S_2$. Consider G as a permutation group on $\{1, 2, \ldots, 2n\}$ with the complete block system $N_1 = \{1, \ldots, n\}, N_2 = \{n + 1, \ldots, 2n\}$. We

shall write every permutation in $S_n \wr S_2$ as $\sigma_1 \sigma_2 \pi$ where $\sigma_1 \in S_{N_1}$, $\sigma_2 \in S_{N_2}$ and $\pi \in S_2$. Let λ and ρ be two irreducible characters corresponding to irreducible representations D_{λ} and D_{ρ} of S_{N_1} and S_{N_2} respectively. Then the character $\lambda \# \rho$ corresponding to the outer tensor product $D_{\lambda} \# D_{\rho}$ defined by

$$(D_{\lambda} \# D_{\rho})(\sigma_{1}\sigma_{2}) = D_{\lambda}(\sigma_{1}) \otimes D_{\rho}(\sigma_{2})$$

where $\sigma_1 \in S_{N_1}$, $\sigma_2 \in S_{N_2}$ is an irreducible character of the product $S_{N_1} \cdot S_{N_2}$ (see [11], [15]). In fact

$$(\lambda \# \rho)(\sigma_1 \sigma_2) = \lambda(\sigma_1)\rho(\sigma_2).$$

If $\lambda \neq \rho$, then the induced character $(\lambda \# \rho)^G$ is an irreducible character of $G = S_n \wr S_2$. If $\lambda = \rho$, then we first extend $D_{\lambda} \# D_{\lambda}$ to an irreducible representation $D_{\lambda} \# D_{\lambda}$ of $S_n \wr S_2$ as follows: for each $\sigma_1 \sigma_2 \pi \in S_n \wr S_2$, if

$$D_{\lambda}(\sigma_{1}) = (a_{i_{1}j_{1}})$$

$$D_{\lambda}(\sigma_{2}) = (b_{i_{2}j_{2}})$$

$$D_{\lambda} \# D_{\lambda}(\sigma_{1}\sigma_{2}) = (a_{i_{1}j_{1}}b_{i_{2}j_{2}})$$

we put

$$\widetilde{D_{\lambda} \# D_{\lambda}}(\sigma_1 \sigma_2 \pi) = (a_{i_1 j_{\pi(1)}} b_{i_2 j_{\pi(2)}}).$$

Now for each irreducible character χ of S_2 corresponding to irreducible representation D_{χ} of S_2 we can define a representation \tilde{D}_{χ} of $S_n \wr S_2$ as follows:

$$\widetilde{D}_{\chi}(\sigma_1\sigma_2\pi) = D_{\chi}(\pi).$$

Then the inner tensor product $D_{\lambda} \# D_{\lambda} \otimes \tilde{D}_{\chi}$ is an irreducible representation of $S_n \wr S_n$ and its corresponding character is the character $\lambda \wr \chi$. We shall need the following result (see [15]) concerning the irreducible characters of wreath product $S_n \wr S_2$ in the next section.

THEOREM 3. Every irreducible character of the wreath product $G = S_n \wr S_2$ is either equal to $(\lambda \# \rho)^G$ or $\lambda \wr \chi$ where λ , ρ are distinct irreducible characters of S_n and χ is an irreducible character of S_2 .

THEOREM 4. Let G_1 and G_2 be permutation groups on $\{1, \ldots, m\}$ and $\{m + 1, \ldots, m + t\}$ respectively. Let λ_1 and λ_2 be irreducible characters of G_1 and G_2 respectively. If $\lambda = \lambda_1 \# \lambda_2$ is the irreducible character on the product $G_1 \cdot G_2$ corresponding to the outer tensor product representation, then

$$\dim U_{\lambda}^{m+t}(G_1 \cdot G_2) = \dim U_{\lambda_1}(G_1) \cdot \dim U_{\lambda_2}(G_2).$$

Proof. In view of (3),

$$\dim U_{\lambda}(G_1 \cdot G_2) = \frac{\lambda(1)}{|G_1 \cdot G_2|} \sum_{\sigma_i \in G_i} (\lambda_1 \# \lambda_2) (\sigma_1 \sigma_2) k^{c(\sigma_1 \sigma_2)}$$
$$= \frac{\lambda_1(1)}{|G_1|} \frac{\lambda_2(1)}{|G_2|} \sum_{\sigma_i \in G_i} \lambda_1(\sigma_1) \lambda_2(\sigma_2) k^{c(\sigma_1) + c(\sigma_2)}$$
$$= \left(\frac{\lambda_1(1)}{|G_1|} \sum_{\sigma_1 \in G_1} \lambda_1(\sigma_1) k^{c(\sigma_1)}\right) \left(\frac{\lambda_2(1)}{|G_2|} \sum_{\sigma_2 \in G_2} \lambda_2(\sigma_2) k^{c(\sigma_2)}\right)$$
$$= \dim U_{\lambda_1}(G_1) \cdot \dim U_{\lambda_2}(G_2).$$

When λ_1 , λ_2 are linear, Theorem 4 was proved in [26] by a different method.

THEOREM 5. Let λ and ρ be distinct irreducible characters on S_n . Let $G = S_n \wr S_2$ and $\chi = (\lambda \# \rho)^G$. Then

 $\dim U_{\chi}(G) = 2 \dim U_{\lambda}(S_{N_1}) \dim U_{\rho}(S_{N_2})$

where $N_1 = \{1, \ldots, n\}$ and $N_2 = \{n + 1, \ldots, 2n\}.$

Proof. Since $(\lambda \# \rho)^G$ is self-associated with respect to $S_{N_1} \cdot S_{N_2}$ and

 $\chi|_{S_{N_1}\cdot S_{N_2}} = \lambda \# \rho + \overline{\lambda \# \rho},$

it follows from Theorem 2 and Theorem 4 that

 $\dim U_{\chi}(G) = 2 \dim U_{\lambda \neq \rho}(S_{N_1} \cdot S_{N_2})$ $= 2 \dim U_{\lambda}(S_{N_1}) \dim U_{\rho}(S_{N_2}).$

COROLLARY 1 [8]. Let λ and ρ be distinct irreducible characters of S_n . Then $(\lambda \# \rho)^G$ is a (k)-character of $G = S_n \wr S_2$ if and only if either λ or ρ is a (k)-character of S_n .

Proof. This follows immediately from Theorem 5.

3. Nonzero symmetry classes of smallest dimension. In this section we shall determine those subgroups G of S_m and those irreducible characters λ on G such that dim $U_{\lambda}(G) = \lambda(1)$ when m = 2k where $k = \dim U$.

Throughout the rest of the paper we assume that dim U = k, $M = \{1, 2, \ldots, m\}$ and $K = \{1, 2, \ldots, k\}$.

THEOREM 6. Let $0 \neq \dim U_{\lambda}(G) < k\lambda(1)$. If $\alpha \in \overline{\Delta}$ then $|\alpha(M)| = k$ and $|\alpha^{-1}(i)| = m/k$ for i = 1, 2, ..., k.

Proof. If k > m, let Q be the set of all mappings β in $\Gamma_{m,k}$ such that

 $\alpha(1) < \alpha(2) < \ldots < \alpha(m).$

Then $Q \subseteq \overline{\Delta}$ and hence from (1) and (2) we have

dim $U_{\lambda}(G) \ge |Q|\lambda(1) = {}_{m}C_{k}\lambda(1) \ge k\lambda(1)$

a contradiction. Hence $k \leq m$.

Suppose now $|\alpha(M)| = s \neq k$. Then for each $i \in \alpha(M)$ and $j \notin \alpha(M)$, $1 \leq j \leq k$, let $\sigma_{ij} = (ij)$ be the transposition in S_k . Then

 $\{e^*_{\sigma_ij\alpha}: i \in \alpha(M), j \notin \alpha(M), 1 \leq j \leq k\} \cup \{e_{\alpha}^*\}$

is a set with s(k - s) + 1 elements and different elements of the set belong to different orbital subspaces of $U_{\lambda}(G)$. Hence

dim $U_{\lambda}(G) \ge [s(k-s)+1]\lambda(1) \ge k\lambda(1),$

a contradiction. Hence $|\alpha(M)| = k$.

Let $D = \{j: |\alpha^{-1}(j)| = |\alpha^{-1}(1)|\}$. Suppose that $|D| = t \neq k$. Then for each $i \in D$ and $j \in K \setminus D$, let τ_{ij} be the transposition (*ij*) in S_k . Then

 $\{e^*_{\tau_ij\alpha}: i \in D, j \in K \setminus D\} \cup \{e_{\alpha}^*\}$

is a set with t(k - t) + 1 elements and different elements of the set belong to different orbital subspaces of $U_{\lambda}(G)$. Hence

dim $U_{\lambda}(G) \ge [t(k-t)+1]\lambda(1) \ge k\lambda(1),$

a contradiction. Hence $|\alpha^{-1}(1)| = |\alpha^{-1}(i)|$ for i = 1, ..., k. This completes the proof.

COROLLARY 2. If dim $U_{\lambda}(G) = \lambda(1)$, then k is a divisor of m.

The following result was proved in [2, Corollary 1].

THEOREM 7. Let λ be the irreducible character of S_m corresponding to a Young diagram $(\lambda_1, \ldots, \lambda_t)$. Then dim $U_{\lambda}(S_m) = 0$ if and only if t > k.

The following result follows from the Proposition in [12, p. 20] and Theorem 1 in [25].

THEOREM 8. Let λ be the irreducible character of S_m corresponding to a Young diagram $(\lambda_1, \ldots, \lambda_t)$. Then dim $U_{\lambda}(S_m) = \lambda(1)$ if and only if t = k and $\lambda_1 = \lambda_2 = \ldots = \lambda_k$.

We remark that the necessity of the above theorem also follows easily from the Theorem in [21] and Theorem 6.

Let A_m denote the alternating group of degree m.

THEOREM 9. Let λ be an irreducible character of A_m . Let m = ks and $k \ge s$. Then dim $U_{\lambda}(A_m) = \lambda(1)$ if and only if s = k and λ is the restriction of the self-associated irreducible character of S_m corresponding to the Young diagram $(\lambda_1, \ldots, \lambda_s)$ where $\lambda_1 = \ldots = \lambda_s = k$.

Proof. If λ is the self-conjugate irreducible character induced by the associated characters χ and χ' on S_m , then by Theorem 2,

$$U_{\lambda}(A_m) = U_{\chi}(S_m) \bigoplus U_{\chi'}(S_m).$$

If dim $U_{\lambda}(A_m) = \lambda(1)$ then we may assume without loss of generality that dim $U_{\chi}(S_m) = \lambda(1)$ and dim $U_{\chi'}(S_m) = 0$. Hence by Theorem 8, χ corresponds to the Young diagram $(\lambda_1, \ldots, \lambda_t)$ where t = k, $\lambda_1 = \lambda_2$ $= \ldots = \lambda_t = s$. Hence χ' corresponds to a Young diagram with *s* rows. However Theorem 7 implies that s > k, a contradiction.

If λ is not self-conjugate then, by Theorem 1, $\lambda + \overline{\lambda} = \chi|_{A_m}$ for some self-associated irreducible character χ of S_m where $\overline{\lambda}$ is the conjugate of λ . In view of Theorem 2,

$$\dim U_{\lambda}(A_m) = \lambda(1) \Leftrightarrow \dim U_{\overline{\lambda}}(A_m) = \lambda(1)$$
$$\Leftrightarrow \dim U_{\chi}(S_m) = \chi(1)$$

 $\Leftrightarrow \chi$ corresponds to the Young diagram $(\lambda_1, \ldots, \lambda_t)$ with t = k and $\lambda_1 = \ldots = \lambda_t = s$.

Since χ is self-associated, we must have s = k. This completes the proof.

Two permutation groups H_1 and H_2 on N_1 and N_2 respectively are said to be of the same *type* if there exists an injection $\phi: N_1 \to N_2$ and an isomorphism $f: H_1 \to H_2$ such that

$$\boldsymbol{\phi}(\boldsymbol{\sigma}(i)) = f(\boldsymbol{\sigma})(\boldsymbol{\phi}(i))$$
 for all $i \in N_1, \, \boldsymbol{\sigma} \in H_1$.

The following result is useful in the sequel.

THEOREM 10 [8]. Suppose $m \leq 2k = 2 \dim U$. Then $U_{\lambda}(G)$ is trivial if and only if one of the following holds:

1. G contains a subgroup of type S_n with n > k and $\lambda|_{S_n}$ is a multiple of an irreducible character of S_n corresponding to a Young diagram $(\lambda_1, \ldots, \lambda_t)$ where t > k.

2. G contains a subgroup of type $S_k \wr S_2$ and

 $\lambda|_{S_k}|_{S_2} = \lambda(1)\rho \langle \chi$

where ρ is the sign character of S_k and χ is the sign character of S_2 .

THEOREM 11. If G has t orbits $O_1, O_2, \ldots O_t$ such that $|O_1| = \ldots = |O_t| = k$, then dim $U_{\lambda}(G) = \lambda(1)$ if and only if $G = S_{0_1} \ldots S_{0_t}$ and $\lambda = \epsilon$.

Proof. The sufficiency follow from Theorem 4. To prove the necessity, let $1 \leq i \leq t$. Given distinct elements $s, j \in O_i$, let $\alpha \in \Gamma_{m,k}$ such that

$$|\alpha(O_n)| = k$$
 for $n \neq i$,
 $|\alpha(O_i)| = k - 1$ and $\alpha(s) = \alpha(j)$.

By Theorem 6, $e_{\alpha}^* = 0$. Hence $G_{\alpha} \neq \{1\}$ and therefore $(sj) \in G$. Hence $S_{0i} \subseteq G$. This shows that $G = S_{01} \dots S_{0i}$. Hence $\lambda = \lambda_1 \# \dots \# \lambda_i$ for some irreducible characters λ_i of S_i , $i = 1, 2, \dots, i$. By Theorem 4,

$$\dim U_{\lambda}(G) = \prod_{i=1}^{t} \dim U_{\lambda_{i}}(S_{0_{i}}) = \lambda(1).$$

Hence dim $U_{\lambda_i}(S_{0_i}) = \lambda_i(1)$ for all $i = 1, \ldots, t$. Since $|O_i| = k$ and dim U = k it follows from Theorem 8 that $\lambda_i = \epsilon$. This completes the proof.

LEMMA 1. Let G be a subgroup of S_6 containing neither 2-cycles nor 3-cycles. If dim U = k = 3, then dim $U_{\lambda}(G) > \lambda(1)$ for any irreducible character λ of G.

Proof. Suppose that dim $U_{\lambda}(G) \leq \lambda(1)$. Let $\alpha \in \Gamma_{6,3}$ such that

$$\alpha^{-1}(1) = \{1, 2\}, \alpha^{-1}(2) = \{3, 4, 5\}, \alpha^{-1}(3) = \{6\}$$

By Theorem 6, $e_{\alpha}^* = 0$ and hence $G_{\alpha} \neq \{1\}$. Suppose $|G_{\alpha}| > 2$. Then *G* contains a 2-cycle or a 3-cycle, a contradiction. Hence $|G_{\alpha}| = 2$. We may assume that $(12)(34) \in G_{\alpha}$. Then

$$\sum_{\sigma \in G_{\alpha}} \lambda(\sigma) = \lambda(1) + \lambda((12)(34)) = 0$$

and hence $\lambda((12)(34)) = -\lambda(1)$. Similarly, we can show that for $\beta_1, \beta_2 \in \Gamma_{6,3}$ defined by

$$\beta_1^{-1}(1) = \{3, 4\}, \beta_1^{-1}(2) = \{1, 5, 6\}, \beta_1^{-1}(3) = \{2\}$$

$$\beta_2^{-1}(1) = \{1, 2\}, \beta_2^{-1}(2) = \{4, 5, 6\}, \beta_2^{-1}(3) = \{3\},$$

$$G_{\beta_1} = \{1, (34)(56)\}, G_{\beta_2} = \{1, (12)(56)\} \text{ and}$$

$$\lambda((34)(56)) = \lambda((12)(56)) = -\lambda(1).$$

Now for $\gamma \in \Gamma_{6,3}$ defined by

$$\gamma^{-1}(1) = \{1, 2\}, \gamma^{-1}(2) = \{3, 4\}, \gamma^{-1}(3) = \{5, 6\},\$$

we have $G_{\gamma} = \{1, (12)(34), (12)(56), (34)(56)\}$. It follows that

$$\sum_{\sigma \in G_{\alpha}} \lambda(\sigma) = \lambda(1) - 3\lambda(1) = -2\lambda(1),$$

which contradicts the fact that $|G_{\gamma}|^{-1} \sum_{\sigma \in G_{\gamma}} \lambda(\sigma)$ is a non-negative integer. Hence dim $U_{\lambda}(G) > \lambda(1)$.

LEMMA 2. If dim $U_{\lambda}(G) = \lambda(1)$ then for any (k - 1)-dimensional subspace W of U, $W_{\lambda}(G) = 0$.

Proof. This follows immediately from Theorem 6.

THEOREM 12. If dim $U_{\lambda}(G) = \lambda(1)$ and λ is not linear, then G is a (k)-group.

Proof. Since dim $U_{\lambda}(G) = \lambda(1)$, $\overline{\Delta} = \{\alpha\}$ for some $\alpha \in \Delta$ and by (2) we have

$$1 = \frac{1}{|G_{\alpha}|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma).$$

If $G_{\alpha} = \{1\}$ then $1 = \lambda(1)$, a contradiction. Hence $G_{\alpha} \neq \{1\}$. This implies that G is a (k)-group.

THEOREM 13. For $m = 2k = 2 \dim U$, dim $U_{\chi}(G) = \chi(1)$ if and only if one of the following holds:

(a) $G = S_{0_1} \cdot S_{0_2}$ where $|O_1| = |O_2| = k, \chi = \epsilon$.

(b) $G = S_m$ and χ corresponds to the Young diagram (χ_1, \ldots, χ_k) where $\chi_1 = \ldots = \chi_k$.

(c) G is of type $S_k \wr S_2$, $\chi = \epsilon \wr 1$.

(d) G is of type $S_2 \wr S_3$, $\chi = \epsilon \wr \epsilon$, k = 3.

(e) $G = A_4$, $\chi \neq 1$, χ is linear, k = 2.

Proof. The sufficiency follows from Theorems 11, 8 and 9 and formula (4). The proof of the necessity is divided into three cases:

Case 1. *G* is intransitive. Suppose *G* has an orbit *O* such that |O| < k. Let $\alpha \in \overline{\Delta}$ and $\pi = (12 \dots k) \in S_k$. Then $\alpha \not\equiv \pi \alpha \pmod{G}$, $e_{\pi \alpha}^* \not\equiv 0$. Hence dim $U_{\chi}(G) \geq 2\chi(1)$, a contradiction. Hence *G* has only two orbits O_1 and O_2 with $|O_1| = |O_2| = k$. By Theorem 11, we obtain (a).

Case 2. G is primitive.

(1) If k = 1, then $G = S_2$, $\chi \equiv 1$ and we obtain (b).

(2) If k = 2, then $G = A_4$ or S_4 . In the first case, by Theorem 9, we have (e). In the second case, by Theorem 8, we have (b).

(3) If k = 3, then G is of the type A_6 , S_6 , $\langle (126)(354)$, (12345), $(2345) \rangle$ or $\langle (126)(354)$, (12345), $(25)(34) \rangle$ (see [3]). The first case cannot occur by Theorem 9. The second case implies (b) by Theorem 8. The third and fourth cases cannot happen by Lemma 1.

(4) k = 4. If χ is not linear then by Theorem 12 G is a (4)-group. Since G is primitive, by Theorem 3.6 in [6], $G \supseteq A_8$. If χ is linear then by Lemma 2, $W_{\chi}(G) = 0$ for some 3-dimensional subspace W of U. Hence by the theorem in [7], $G \supseteq A_8$ since G is primitive. Thus by Theorems 8 and 9 we obtain (b).

(5) k > 4. Since dim $U_{\chi}(G) = \chi(1)$, by Lemma 2, G is (k - 1)-group. Hence by Theorem 6.3 in [6], G contains A_m . Appealing to Theorems 8 and 9 we obtain (b).

Case 3. *G* is imprimitive transitive. Let $\{N_1, \ldots, N_t\}$ be a complete block system of *G*. Suppose t = 2. For each function β_1 from N_1 to $\{1, 2, \ldots, k - 1\}$, let $\beta \in \Gamma_{m,k}$ be defined by

$$eta(i)=eta_1(i) ext{ for } i\in N_1, \ |eta^{-1}(j)\cap N_2|=1 ext{ for } j=1,\ldots,k.$$

Since $|\beta^{-1}(j)| \neq 2$ for some j, by Theorem 6, $e_{\beta}^* = 0$ and hence

$$\sum_{\sigma\in G_{\beta}}\chi(\sigma) = 0.$$

Hence $G_{N_2} = \{g \in G : g(i) = i, i \in N_2\}$ is a (k-1)-group and $\chi|_{G_{N_2}}$ is a (k-1)-character. By Theorem 10,

$$G_{N_2} = S_{N_1}$$
 and $\chi|_{G_{N_2}} = \chi(1)\epsilon$.

Similarly, we can show that

 $G_{N_1} = S_{N_2} \text{ and } \chi|_{G_{N_2}} = \chi(1)\epsilon.$

Hence $G = S_k \wr S_2$. By Theorem 3, χ is of the form $(\lambda \# \rho)^G$, $\lambda \wr 1$ or $\lambda \wr \epsilon$ where λ and ρ are distinct irreducible characters of S_k .

If $\chi = (\lambda \# \rho)^{G}$, then Theorem 5 implies that

dim
$$U_{\lambda}(S_{N_1}) = \lambda(1)$$
, dim $U_{\rho}(S_{N_2}) = \rho(1)$.

By Theorem 4, $\lambda = \epsilon$ and $\rho = \epsilon$, a contradiction. If $\chi = \lambda \wr 1$ or $\lambda \wr \epsilon$, we have

$$\chi|_{S_{N_i}} = \lambda(1)\lambda = \chi(1)\epsilon, i = 1, 2.$$

Hence $\lambda = \lambda(1)\epsilon$. By the irreducibility of λ we have $\lambda(1) = 1$. Hence $\chi(1) = 1$. Using formula (4), we have $\chi = \epsilon \wr 1$. This gives (c).

We now consider individual values of k.

For k = 2, we have t = 2 and this implies that we have (c).

For k = 3, we have t = 2 or 3. We need only to consider t = 3. Let $N_1 = \{x_1, x_2\}, N_2 = \{y_1, y_2\}$ and $N_3 = \{z_1, z_2\}$. Let $\alpha \in \Gamma_{6,3}$ be defined by

$$\alpha^{-1}(1) = \{x_1, y_1\}, \, \alpha^{-1}(2) = \{y_2, z_2\}, \, \alpha^{-1}(3) = \{z_1, x_2\}.$$

Then $G_{\alpha} = \{1\}$ and hence G is not a (3)-group. By Theorem 12, χ is linear. Now let $\beta \in \Gamma_{6,3}$ be defined as follows:

$$\beta^{-1}(1) = \{x_1, x_2, y_1\}, \beta^{-1}(2) = \{y_2, z_2\}, \beta^{-1}(3) = \{z_1\}, \beta^{-1}(3) = \{z_$$

Since dim $U_{\chi}(G) = \chi(1)$, by Theorem 6 we have $e_{\beta}^* = 0$. Hence $(x_1x_2) \in G$ and

$$0 = \sum_{\sigma \in G_{\beta}} \chi(\sigma) = 1 + \chi((x_1 x_2)).$$

Hence $\chi((x_1x_2)) = -1$. Similarly we can show that (y_1y_2) , $(z_1z_2) \in G$ and

 $\chi((y_1y_2)) = \chi((z_1z_2)) = -1.$

It follows that $S_{N_1} \cdot S_{N_2} \cdot S_{N_3} \subseteq G$ and $\chi|_{S_{N_i}} = \epsilon$, i = 1, 2, 3. Next, let $\gamma \in \Gamma_{6,3}$ be defined by

$$\gamma^{-1}(1) = \{x_1, y_1, z_1\}, \gamma^{-1}(2) = \{x_2, y_2\}, \gamma^{-1}(3) = \{z_2\}.$$

In view of Theorem 6, $e_{\gamma}^* = 0$. Hence

$$(x_1y_1)(x_2y_2) \in G \text{ and } \chi((x_1y_1)(x_2y_2)) = -1.$$

Similarly we can show that

$$(x_1z_1)(x_2z_2) \in G \text{ and } \chi((x_1z_1)(x_2z_2)) = -1;$$

 $(y_1z_1)(y_2z_2) \in G \text{ and } \chi((y_1z_1)(y_2z_2)) = -1.$

Hence $G = S_2 \wr S_3$ and $\chi = \epsilon \wr \epsilon$.

For $k \ge 4$ we have 2k < 3(k-1). Since G is a (k-1)-group, G is of type $S_2 \wr S_4$ where k = 4 or t = 2 (see Lemma 8.7 and Corollary 6.2 in [6]). The second case implies (c). Suppose that G is of the type $S_2 \wr S_4$. Let $\delta \in \Gamma_{8,4}$ be defined by

$$\begin{split} |\delta^{-1}(1) \cap N_i| &= 1, \quad i = 1, 2, 3, \\ |\delta^{-1}(2) \cap N_i| &= 1, \quad i = 1, 4, \\ |\delta^{-1}(3) \cap N_i| &= 1, \quad i = 2, 4, \\ |\delta^{-1}(4) \cap N_i| &= 1, \quad i = 3. \end{split}$$

Then $G_{\delta} = \{1\}$ and hence $e_{\delta}^* \neq 0$. By Theorem 6, we obtain a contradiction. This completes the proof.

References

- 1. H. Boerner, *Representations of groups* (North Holland/American Elsevier, Amsterdam-London/New York, 1970).
- 2. R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941), 926-985.
- 3. W. Burnside, Theory of groups of finite order (Reprinted by Dover, New York, 1955).
- 4. G. H. Chan, On a class of permutation groups, Nanta Math. 6 (1973), 100-105.
- 5. —— Construction of minimal (k)-groups, Nanta Math. 7 (1974), 30-35.
- **6.** A characterization of minimal (k)-groups of degree $n \leq 3k$, Linear and Multilinear Algebra 4 (1977), 285-305.
- 7. ——— On the triviality of symmetry class of tensors, Linear and Multilinear Algebra 6 (1978), 73-82.
- 8. (k)-character and the triviality of symmetry classes, Linear Algebra Appl. (to appear).
- 9. A note on symmetrizers of rank one, Nanta Math. 11 (1979), 130-133.
- 10. S. C. Chang, On the vanishing of a (G,σ) space, Chinese J. Math. 4 (1976), 1-7.
- 11. C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience, New York-London, 1962).
- J. Dieudonné and J. B. Carrell, Invariant theory, old and new (Academic Press, New York, 1971).
- 13. R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl. 7 (1973), 337-345.
- R. Grone, A note on the dimension of an orbital subspace, Linear Algebra Appl. 17 (1977), 283-286.
- 15. A. Kerber, *Representations of permutation groups I*, Lecture Notes in Mathematics 240 (Springer-Verlag, New York, 1971).
- 15. M. H. Lim, Regular symmetry classes of tensors, Nanta Math. 8 (1975), 42-46.

- M. Marcus, Finite dimensional multilinear algebra, Part 1 (Marcel Dekker, New York, 1973).
- Finite dimensional multilinear algebra, Part II (Marcel Dekker, New York, 1975).
- R. Merris, The dimensions of certain symmetry classes of tensors II, Linear and Multilinear Algebra 4 (1976), 205–207.
- 20. —— Relations among generalized matrix functions, Pacific J. Math. 62 (1976), 153–161.
- Nonzero decomposable symmetrized tensors, Linear Algebra Appl. 17 (1977), 287-292.
- On vanishing decomposable symmetrized tensors, Linear and Multilinear Algebra 5 (1977), 79-86.
- 23. ——— Recent advances in symmetry classes of tensors, preprint.
- 24. R. Merris and S. Pierce, Elementary divisors of higher degree associated transformations, Linear and Multilinear Algebra 1 (1973), 241–250.
- 25. R. Merris and M. A. Rashid, *The dimensions of certain symmetry classes of tensors*, Linear and Multilinear Algebra 2 (1974), 245-248.
- **26.** K. Singh, On the vanishing of a pure product in a (G,σ) space, Ph.D. Thesis, University of British Columbia (1967).
- 27. R. Westwick, A note on symmetry classes of tensors, J. Algebra, 15 (1970), 309-311.
- 28. S. G. Williamson, Symmetry operators of Kranz products, J. Comb. Theory 11 (1971), 122–138.

Nanyang University, Singapore; University of Malaya, Kuala Lumpur, Malaysia