
J. Fluid Mech. (2024), vol. 981, A29, doi:10.1017/jfm.2024.76

Bi-global stability of supersonic backward-facing
step flow

Kaikai Yu1,2, Jiaao Hao1,†, Chih-Yung Wen1 and Jinglei Xu2

1Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University,
Kowloon, Hong Kong
2College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, PR China

(Received 26 February 2023; revised 6 November 2023; accepted 15 January 2024)

Supersonic backward-facing step (BFS) flow is numerically studied using direct numerical
simulation (DNS) and global stability analysis (GSA) with a free stream Mach number
of 2.16 and a Reynolds number of 7.938 × 105 based on the flat-plate length L and free
stream conditions. Two-dimensional BFS flow becomes unstable to three-dimensional
perturbations as the step height h exceeds a certain value, while no two-dimensionally
unstable mode is found. Global instability occurs with the fragmentation of the primary
separation vortex downstream of the step. Two stationary modes and one oscillatory
unstable mode are obtained at a supercritical ratio of L/h = 32.14, among which the two
stationary modes originate from the coalescence of a pair of conjugate modes. The most
unstable mode manifests itself as streamwise streaks in the reattached boundary layer,
which is similar to that in shock-induced separated flow, although the flow separation
mechanisms are different. Without introducing any external disturbances, the DNS
captures the preferred perturbations and produces a growth rate in agreement with the GSA
prediction in the linear growth stage. In the quasi-steady stage, the secondary separation
vortex breaks up into several small bubbles, and the number of streamwise streaks is
doubled. A low-frequency unsteadiness that may be associated with the oscillatory mode
is also present.

Key words: absolute/convective instability, separated flows, supersonic flow

1. Introduction

Nominally two-dimensional (2-D) surface irregularities in the form of backward-facing
steps (BFSs), forward-facing steps and gaps have been a long-standing topic of interest
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in both theoretical research and engineering fields. Supersonic BFS flow represents a
canonical case for the study of flow separation, which also occurs in many engineering
applications, such as flame stabilization and supersonic mixing. Although the geometry is
simple, the flow structure behind the step is not, particularly in the supersonic flow regime.
Such flow is usually characterized by expansion waves, lip and reattachment shock waves,
and a recirculation zone beneath a shear layer, which make supersonic BFS attractive for
fundamental research of various flow physics. However, many studies have focused on
incompressible BFS flow, leaving the complex flow physics in the supersonic flow regime
unclear. The main motivation of the present study is to establish a primary understanding
of global instability in supersonic BFS flow.

Numerous investigations have been carried out to understand subsonic BFS flow features
through computational and experimental methods, which provide a relatively abundant
understanding of various flow phenomena, including convective and intrinsic instabilities.
The Kelvin–Helmholtz (K–H) instability, which is introduced by the shear layer generated
by the separation region, is one of the most well-known convective instabilities in subsonic
BFS flow, and it has mostly been studied at rather large step heights. To date, there
have been considerable experimental and numerical studies that show evidence of K–H
instabilities in subsonic BFS flow (Hasan 1992; Rani & Sheu 2006; Rani, Sheu & Tsai
2007; Schäfer, Breuer & Durst 2009; Schröder et al. 2013; Bolgar, Scharnowski & Kähler
2018; Eppink 2022). Kaiktsis et al. (1991) found that the BFS flow with an expansion
ratio of Γ= 0.5 (i.e. the ratio of the step height to the channel height downstream) was
convectively unstable to the K–H instability at Re = 525 (Re is based on half of the
downstream channel height and the maximum incoming velocity on the centreline) in a
large portion of the flow domain using local stability analysis based on the parallel-flow
assumption. Note that their geometry is different from that in figure 4. Nowruzi, Salman
Nourazar & Ghassemi (2018) adopted an energy gradient method to study the convective
instability of subsonic BFS flow under different Reynolds numbers and expansion ratios,
and concluded that the onset of instability originated in the separated shear layer.
A prevailing viewpoint suggests that the dynamic processes observed in such subsonic
BFS flow, particularly the oscillations of separated shear layers, arise from the presence
of vortical structures known as K–H vortices. At higher Reynolds numbers, these K–H
vortices become increasingly prominent and influential in shaping the flow patterns
and dynamics within the shear layer. As these vortices are convected downstream, they
induce significant alterations to the overall flow structure. Another focus of research is
the step’s potential to destabilize Tollmien–Schlichting (T–S) waves. As the entering
T–S waves develop, especially in flows with higher Reynolds numbers, a combined
instability mechanism with K–H instability downstream of the step can occur (Wang &
Gaster 2005; Eppink et al. 2018; Crouch & Kosorygin 2020). Recently, Hildebrand et al.
(2022) performed a linear stability analysis of a BFS flow without the confinement of
the upper wall and found that the growth rate of the T–S wave significantly increased
in the separation region. K–H instabilities can also be distinguished in direct numerical
simulation (DNS) with a turbulent inflow in internal BFS flows (Le, Moin & Kim 1997a;
Barri et al. 2010; Pont-Vílchez et al. 2019). Moreover, temporal transient growth analysis
was performed by Blackburn, Barkley & Sherwin (2008) at a globally stable Reynolds
number. They found that the optimal initial disturbances were concentrated around the
step edge and the corresponding outcomes were periodic wavy structures.

The intrinsic instability in subsonic BFS flow has also been extensively studied. Armaly
et al. (1983) reported that the two-dimensionality would be lost for a Reynolds number of
approximately 400 and that the main flow instability occurs in the primary separation zone.
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The intrinsic instability of a 2-D flow with Γ = 0.5 was examined by Kaiktsis, Karniadakis
& Orszag (1996) using global stability analysis (GSA). The flow was shown to be
globally stable to 2-D perturbations up to Re = 1875, the highest Reynolds number under
consideration. Barkley, Gomes & Henderson (2002) found that the 2-D flow is unstable
to three-dimensional (3-D) perturbations beyond a critical Reynolds number of 748 with
Γ = 0.5. More recently, Lanzerstorfer & Kuhlmann (2012b) completed a systematic study
on the global stability of BFS flow with varying expansion ratios (from Γ = 0.25 to
Γ = 0.975) and concluded that the instability cannot be attributed to either a centrifugal
(Barkley et al. 2002) or a Taylor-Görtler instability mechanism (Kaiktsis et al. 1996). The
global stability problem with a symmetric expansion was also studied by Lanzerstorfer &
Kuhlmann (2012a).

In contrast, flow instability and the transition to turbulence induced by a BFS are much
less understood in the supersonic flow regime. Most studies have been conducted in fully
laminar and turbulent flow regimes (Rom & Seginer 1964; Gai et al. 1989; Le, Moin &
Kim 1997b; Soni, Arya & De 2017; Bolgar et al. 2018; Hu, Hickel & Van Oudheusden
2021). However, little attention has been given to the transition of supersonic BFS flow.
Ginoux (1960) conducted a series of wind-tunnel experiments of supersonic BFS flow at
Mach 2.16 with different flat-plate lengths and step heights while keeping the incoming
boundary layer laminar. Streak-like flow structures downstream of the step were observed
using a sublimation technique, which cannot be explained by upstream disturbances in the
boundary layer or model imperfections, as reported in the study. Chen et al. (2013) and Zhu
et al. (2015) used a nanoparticle-based planar laser scattering method to visualize the flow
structure in supersonic BFS flow. The incoming boundary layer was laminar. Streak-like
flow structures were also observed; however, an explanation for this phenomenon was
lacking.

Only a few studies have focused on the instability of supersonic BFSs, especially
the intrinsic instability. Hu, Hickel & Van Oudheusden (2019) and Hu et al. (2021)
numerically studied the interaction of the incoming first mode and the K–H instability
under four different inflow conditions. In the case of a laminar boundary layer with zero
amplitude of the first mode, K–H vortices were observed in the shear layer formed by
the separated zone downstream of the step. No streamwise streaks were found in the
reattached boundary layer. The dominant frequency for the near flow reattachment is close
to that captured by Schäfer et al. (2009) in the incompressible flow regime. Significantly,
the incoming flow was not perturbed, indicating that an intrinsic mechanism may be
responsible for the generation of vortex rolls. In fact, the separation zone caused by
the sudden geometry expansion has the potential to self-excite an intrinsic instability.
This has been well researched in 2-D separated flows using GSA (Theofilis, Hein &
Dallmann 2000; Rodriguez & Theofilis 2010; Theofilis 2011; Taira et al. 2017). GSA
is a linear stability analysis technique without making any assumptions on the spatial
variation of the base flow. This feature makes GSA suitable for studying the instability of
separated flows. GSA has been widely used to understand shock-induced flow separation,
including supersonic/hypersonic flow over compression ramps (Hao et al. 2021; Cao et al.
2021a,b, 2022), double wedges (Sidharth et al. 2017, 2018), double cones (Hao et al.
2022), hollow cylinders/flares (Cerulus, Quintanilha & Theofilis 2021; Hao & Li 2023)
and shock impingement on flat plates (Robinet 2007; Hildebrand et al. 2018; Song & Hao
2023). The abovementioned studies show that self-excited instability may occur in the
separated flow if the governing parameters exceed a specific threshold (e.g. the deflection
angle of the compression ramp and the strength of the incident shock wave). In addition,
DNS is also used to enhance the understanding of the formation and development of the
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three-dimensionality, as explored by Cao et al. (2021a) and Hao et al. (2022). Both the
GSA and DNS studies have revealed the existence of global instability in such separated
flows.

Although various studies on BFS flow have been conducted, many details remain
to be explored, particularly regarding the instability issues in supersonic flow. To the
best of the authors’ knowledge, it remains unclear whether global instability exists in
the separated supersonic BFS flow caused by a sudden expansion. The current research
aims to investigate the intrinsic instability in supersonic BFS flow and to gain a deeper
understanding of the development of the 3-D perturbations that lead to flow bifurcation
using GSA and DNS. The paper is organized as follows: § 2 provides details about the
numerical methodology, including DNS and GSA, the free stream flow conditions, and
the geometrical parameters of the BFS. Section 3 provides the results and discussions of
the base-flow, GSA and DNS. Concluding remarks are provided in § 4.

2. Numerical details

2.1. Numerical approach
The governing equations are the Navier–Stokes (N–S) equations in the following
conservation form. The equations expressed in the flux-vector form are given by the
equation:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂F v
∂x

+ ∂Gv

∂y
+ ∂Hv

∂z
, (2.1)

where U = (ρ, ρu, ρv, ρw, ρe)T is the vector of the conserved variables, ρ is the
density, u, v and w are the flow velocity components in the x, y and z directions,
respectively, e is the total energy per unit mass, and superscript T denotes the transpose
of a matrix. Vectors F and F v represent the inviscid and viscous fluxes in the x direction,
respectively:

F =

⎛
⎜⎜⎜⎝

ρu
ρu2 + p
ρuv
ρuw

(ρe + p)u

⎞
⎟⎟⎟⎠, F v =

⎛
⎜⎜⎜⎝

0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx

⎞
⎟⎟⎟⎠, (2.2a,b)

where p is the pressure, and τij and qi are the viscous shear stress tensor and heat flux
vector, respectively. Vectors G, H , Gv and Hv can be expressed analogously. The equation
of state for a calorically perfect gas is adopted to close the above equations. The viscosity
is calculated using Sutherland’s law. The specific heat ratio and Prandtl number are set to
1.4 and 0.72, respectively.

The 2-D base flow for GSA is obtained by solving the 2-D counterpart of (2.1)
with an in-house multiblock parallel finite-volume solver named PHAROS (Hao, Wen
& Wang 2019; Hao & Wen 2020; Hao et al. 2021). The inviscid fluxes are calculated
using the modified Steger–Warming scheme (MacCormack 2014), and a monotone
upstream-centred scheme for conservation laws (van Leer 1979) is implemented for
reconstruction. The viscous fluxes are computed using a second-order central difference
scheme. Time integration is performed by an implicit point relaxation method (Wright,
Candler & Bose 1998). Far-field boundary conditions are imposed on the left and
upper computational boundaries. Note that free stream conditions with no perturbations
are applied to the far-field boundary. An extrapolation method is applied to the outlet
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boundary. The wall is assumed to be isothermal and no-slip. The 2-D simulations are
initialized with the free stream conditions. The numerical solution can be considered to
converge when the Euclidean norm of the density residual is reduced by approximately
ten orders of magnitude. The validation of the PHAROS code for supersonic BFS flow
can be found in Appendix B.

The 3-D simulation is also performed using PHAROS. The initialization method of
extruding the 2-D base flow in the spanwise direction is adopted. Periodic boundary
conditions are applied to the spanwise boundaries. A second-order implicit scheme is used
for time discretization (Peterson 2011). The time step is set as 20 ns to ensure sufficient
temporal accuracy in 3-D simulations. The other numerical schemes and boundary
conditions for the DNS unsteady simulation are the same as those for the base-flow
simulations.

2.2. Global stability analysis
Global stability analysis is conducted to reveal the instability of the 2-D base flow. The
vector of primitive variables q = [u, v, w, T, p]T (T and p represent the temperature and
pressure, respectively) is decomposed into two parts: a base state q̄ and a small perturbation
q′,

q(x, y, z, t) = q̄(x, y)+ q′(x, y, z, t), (2.3)

where q̄ is assumed to be homogenous in the z direction and independent of time. The
linearized N–S equations can be obtained by substituting (2.3) into the original governing
equations (2.1). The perturbations are assumed to consist of infinitesimal sinusoidal
disturbances:

q′(x, y, z, t) = q̂(x, y)exp[i(βz − ωt)], (2.4)

where q̂ is the eigenfunction, β represents the user-specified spanwise wavenumber,
and ω=ωr + iωi contains both the growth rate ωi (ωi> 0, growth; ωi< 0, decay) and
the angular frequency ωr. Here, ωr = 0 represents a stationary mode, whereas ωr /= 0
indicates an oscillatory mode. The corresponding frequency and spanwise wavelength are
defined by

f = ωr

2π
, λ = 2π

β
. (2.5a,b)

Upon the substitution of q′ into the linearized N–S equations, a generalized eigenvalue
problem is formed to uncover the flow instability:

A(q̄;β)q̂ = ωBq̂, (2.6)

where A and B are matrices associated with the spatial discretisation of the linearized
N–S equations (Theofilis 2011). The generalized eigenvalue problem is solved using the
implicit restarted Arnoldi method (Lehoucq, Sorensen & Yang 1998; Stewart 2002). The
discretized equation (2.6) in this study is generated using an in-house GSA solver with
a centred fourth-order finite-difference method. A third-order finite-difference scheme
is adopted near the boundaries. Specifically, the solver adds a semi-artificial viscosity
to stabilize the numerical scheme when shock waves are involved in the base flow
(Hildebrand 2019). The strength of the artificial viscosity needs to be picked carefully
so that it does not affect the overall physical properties of the stability problem and
selectively ensures numerical accuracy. The value is of the order of 10−2 in the present
study after thorough testing and sensitivity analyses. Because the computational domain
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L Ld

h
y

x

Domain 1 for GSA Domain 2 for GSA

Domain 3 for GSA

 Sponge layers

H

Figure 1. Geometric configuration of the backward-facing step (not to scale). The origin of the coordinate
system is located at the step edge. Here h and L represent the step height and the flat plate length, respectively.
Three coloured domains are used for GSA.

of BFS flow cannot be regarded as a combined domain, a multidomain strategy is applied
in the solver according to de Vicente et al. (2006), as schematically illustrated in figure 1.
The multidomain strategy extends the eigenvalue problem of the class of (2.6) to include
multiple domains. In this approach, the linearized N–S equations of the disturbances are
written in each of the domains connected by the interior faces. All the perturbations
are assumed to be zero on the inflow boundary. The following boundary conditions are
imposed on the wall surface:

û = v̂ = ŵ = T̂ = 0, n · ∇p̂ = 0, (2.7a,b)

where vector n represents the normal direction of the wall surface. The density can be
deduced from the equation of state. On the outflow boundary, a linear extrapolation is
enforced. To avoid any reflection of perturbations, sponge layers are imposed near the
far-field and outflow boundaries (Mani 2012). Two validation cases for the GSA code can
be found in Appendix A.

2.3. Geometric configuration and flow conditions
The geometrical configuration and flow conditions of the numerically studied
backward-facing step in the present study are taken from the experiments conducted in
the TCEA S-1 supersonic wind tunnel by Ginoux (1960). The BFS comprises a flat plate
followed by a step. The length of the flat plate is 225 mm. Five different step heights
are considered, i.e. h = 5, 6, 7, 8 and 15 mm, and the case of h = 15 mm is identical to
model S-1 in the experiments. The corresponding L/h ratios are 45.00, 37.50, 32.14, 28.13
and 15.00. Because the length of the flat plate is fixed, the geometrical parameters of the
cases are characterized by the step height h in the following sections. The free stream has
a Mach number of 2.16. The total pressure and total temperature are 29330.92 Pa and
288.15 K, respectively. The Reynolds number based on the free stream properties and
flat-plate length is approximately 7.938 × 105. The temperature of the wall is specified
as 293 K.

A grid independence study is conducted to obtain an accurate base flow for GSA. The
height of the computational inlet in front of the step is denoted by H, and the origin
of the coordinate system is located at the lower edge of the step. The computational
domain has an extension downstream of the step, denoted by Ld, as shown in figure 1.
To demonstrate mesh convergence, three meshes are constructed with details reported in
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Grid for base flow simulations Grid for GSA

Nx (L, Ld) Ny (H, h) N Nx (L, Ld) Ny (H, h) N

Coarse (150, 300) (150, 150) 112 500 (70, 250) (150, 150) 85 500
Medium (250, 500) (300, 200) 325 000 (80, 400) (200, 200) 176 000
Fine (300, 600) (500, 250) 600 000 (100, 500) (300, 300) 330 000

Table 1. Computational grid details for base flow simulations and GSA.
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Figure 2. Distributions of the (a) skin friction coefficient and (b) surface pressure coefficient obtained from
three different meshes for h = 7 mm.

table 1. The streamwise cell numbers (Nx) are given both upstream and downstream of the
step. Similarly, the wall-normal cell numbers (Ny) are shown for the computational inlet
and step. Moreover, the total cell numbers are labelled by the symbol N. The computational
mesh has a cluster of cells near the walls, the step, the reattachment point and the
shear layer downstream of the step. The thickness of the first layer normal to the wall
is approximately 1 × 10−6 m to ensure that the grid Reynolds number has an order of
magnitude of one.

Figure 2 shows the distribution of the skin friction coefficient and surface pressure
coefficient on the surface downstream of the step, which are obtained from three different
meshes for h = 7 mm. The skin friction coefficient Cf and surface pressure coefficient Cp
are defined by

Cf = τw

0.5ρ∞u2∞
, Cp = pw

0.5ρ∞u2∞
, (2.8a,b)

where τw and pw are the wall shear stress and pressure, respectively. The results from
the medium and fine meshes show good agreement with each other. The flow region
behind the step usually contains a primary vortex and a series of Moffatt vortices (Moffatt
1964). Theoretically, there are many Moffatt vortices near the corner behind the step if
the grid resolution is sufficient. Herein, the length of the separation region is defined
as the axial distance between the step and the reattachment point, which is the location
Cf = 0 downstream of the primary vortex. In figure 2, the reattachment point is located
at approximately x/h = 12.1. Quantitatively, the length of the separation zone shows a
considerable difference between the results. The length on the coarse mesh is found to
be approximately 6.2 % smaller than that on the fine and medium mesh. The pressure
coefficient shows the same tendency. The results obtained from the medium and fine
meshes almost overlap. Thus, a medium mesh resolution is adopted in the present study,
which can ensure an accurate result and save computational resources.
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0

–0.03
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ωrh/u∞

ω
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/u
∞

0.05 0.10 0.15

Fine

Medium

Coarse

Figure 3. Comparison of eigenvalue spectra obtained on different meshes for the case h = 7 mm
corresponding to the most unstable wavenumber β = 4.5. Square, fine mesh; diamond, medium; triangle, coarse
mesh.

Free stream

Leading-edge shock wave

Expansion fan

Recirculation zone
Boundary layer

Primary vortex

Primary-secondary interface

Secondary vortex Secondary separation point

Lip shock
Shear layer

Reattachment point

Recompression shock

h
y

x

Figure 4. Schematic of the flow structure over a backward-facing step.

A grid independence study for GSA is also conducted using a fine mesh (330 000 cells),
a medium mesh (176 000 cells) and a coarse mesh (85 500 cells). Note that the grid for
computing the base flow is different from that for GSA; the flow information should be
reliably interpolated on the latter grid using a proper interpolation method, which is a
common procedure in processing the base flow for GSA (Theofilis, Duck & Owen 2004;
Kitsios et al. 2009). Figure 3 shows the eigenvalue spectra obtained on different meshes
for the case h = 7 mm corresponding to the most unstable wavenumber β = 4.5 (discussed
in § 3.2). Two stationary modes and one oscillatory unstable mode are well captured by
the medium and fine mesh. The relative error of the growth rate of the most unstable mode
between fine and medium mesh is approximately 0.84 %. As a result, the medium mesh is
sufficient for GSA.

3. Results

3.1. Base flow features
In this section, the base flow fields obtained from different cases are discussed. The overall
flow structure of the supersonic BFS flow can be observed in figure 4. A leading-edge
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shock wave is generated at the lip of the flat plate owing to the viscous interaction
(Anderson 2000). Afterwards, the supersonic flow encounters the step and an expansion
fan is generated at the corner, resulting in a pressure drop behind the step. The flow
separates behind the step, forming a recirculation zone and a lip shock. In the recirculation
zone, there is a primary vortex located upstream of the reattachment point and a secondary
vortex near the origin, rotating in opposite directions. The two vortices are separated by the
secondary separation point on the wall, which is the position at which the primary vortex
separates from the surface downstream of the step. Additionally, the flow velocity in the
recirculation zone is relatively smaller than that of the main flow. A shear layer develops
between the free stream and the recirculation zone. As the shear layer approaches the
downstream wall, the flow is compressed to generate the recompression shock wave. After
the reattachment point, the shear layer promotes the redeveloped boundary layer. Overall,
the behaviour of the flow in BFS can be described as follows: the external flow changes
direction by turning downward at a right angle due to the expansion waves. This leads to
the formation of a recirculation zone with several vortices inside. Then, the flow almost
returns to its original direction parallel to the free stream flow due to the recompression
shock wave.

Contours of the Mach number and pressure near the primary vortex superimposed
with the streamlines inside the recirculation zone and the isoline of u = 0 are shown
in figure 5 for different cases. The isoline of u = 0 denoted by the black dashed line is
adopted to characterize the recirculating zone. Notably, the range of the pressure contour
in figure 5( f ) differs from the others to clearly show the pressure variations. The incoming
flow expands at the step corner due to the sudden geometry expansion. For all cases, the
expansion angles are approximately identical; thus, there are slight differences in the Mach
number contours. There are two vortices inside the recirculation zone. A sequence of
Moffatt vortices can be found if sufficient grid cells are placed near the concave corner of
the step. In the present study, more than one Moffatt vortex can be distinguished under the
adopted grid resolution. Based on Theofilis et al. (2004) and the validation case presented
in Appendix A, it has been established that the presence of small Moffat vortices in the
lid-driven flow does not significantly impact the flow stability. Consequently, we will
not discuss the behaviour of these small vortices in the following sections, apart from
the primary and secondary vortices. Exploring the detailed behaviour of these additional
vortices is beyond the scope of this paper.

Generally, the non-dimensional length of the recirculation zone based on h decreases
with increasing step height. As the secondary vortex grows, the primary vortex becomes
slenderer and has a more preferential orientation along the shear layer. The primary vortex
exhibits a smooth oval shape in the case of h = 5 mm, which then becomes distorted
with increasing step height. At the step height of h = 6 mm, the core of the primary
vortex cannot maintain a typical oval shape. One side of the core in the longitudinal
direction becomes accentuated and constricts. As the step height reaches h = 7 mm,
the core distorts completely, and by h = 8 mm, it fragments into two distinct vortices.
Furthermore, under certain conditions, three vortices emerge within the primary vortex
core. This fragmentation behaviour of the primary vortex is commonly observed in
supersonic compression corner flows as ramp angles increase, as documented in several
studies (Shvedchenko 2009; Egorov, Neiland & Shredchenko 2011; Gai & Khraibut 2019;
Hao et al. 2021). Within the range of cases considered, specifically from the step height
of h = 5 to 15 mm, it is essential to note that the flow remains two-dimensionally stable,
with no indications of self-induced unsteadiness. However, if the step height continues
to increase, it is anticipated that the flow in 2-D laminar simulations for supersonic BFS
will become unstable. Additionally, when examining the streamlines close to the wall,
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Figure 5. Contours of the Mach number and pressure for supersonic BFS flow with step heights ranging from
h = 5 to 15 mm. The left column represents Mach number contours superimposed with the u = 0 isoline (black
dashed line) in the recirculation zone with streamlines (green solid line), and the pressure contour near the
primary vortex with streamlines (green solid line) is shown in the right column.

especially near the x/h = 6 region, a slight bump can be detected at h = 7–8 mm. This
bump indicates the potential formation of a minor vortex in that zone. As for the secondary
vortex, its occupied space expands as the step height increases. Unlike the primary vortex,
the secondary-vortex fragmentation only occurs at a greater step height, specifically at
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Figure 6. (a) Distributions of the surface skin coefficient for different step heights. (b) Enlarged view at
x/h ≈ 6. Open circle, reattachment points. The horizontal dashed dotted line indicates zero skin friction.

h = 15 mm in the present case. Additionally, this fragmentation behaviour tends to occur
along the vortex side, rather than only within the vortex core.

Furthermore, examining the pressure distribution near the primary vortex reveals how
small vortices are generated. At h = 6 mm, the pressure distribution is approximately
uniform around the core of the primary vortex, which indicates that the intensity of
the vortex is relatively low under the influence of the centrifugal force balanced by the
pressure. An elongated low-pressure region perpendicular to the streamwise direction
forms and crosses the core of the primary vortex at h = 6 and 7 mm. This low-pressure
region also extends beyond the separation region, manifesting as a weak expansion wave.
As h is further increased, an additional low-pressure area forms upstream of the core,
leading to the observation of three distinct low-pressure regions when the step height h
equals 15 mm. This observation suggests that the pressure differential creates an internal
force that influences the evolution of the primary vortex’s core, enhancing its development.
This phenomenon is strengthened with increasing step height. Although not shown here,
the pressure difference also exists in the core of the secondary vortex with a much lower
intensity. As seen later, the occurrence of global instability is linked with the evolution of
the primary separation vortex with increasing step height.

Figure 6 shows the distributions of the surface skin coefficient for different step heights.
The open circles in figure 6 represent the reattachment points. The enlarged view near
x/h = 6 is shown in figure 6(b). For all cases, the overall tendency of the skin friction
coefficient is to decrease towards a global minimum value at x/h ≈ 8 first, followed by a
continuous increase. Downstream of the reattachment point, the skin friction coefficient
achieves the global maximum value and then remains almost unchanged at Cf = 5 × 10−4.
At x/h ≈ 7, Cf fluctuates if the step height is larger than 6 mm, which corresponds to the
observation in figure 5 where the streamlines in this region become humped, indicating
that a near-wall vortex will be generated. In particular, the near-wall vortex can be seen
at h = 15 mm. Figure 7 shows the distribution of the length of the recirculation zone with
the step height. It is confirmed that the non-dimensional length of the recirculation region
decreases with increasing step height. However, the dimensional length increases linearly
with the step height, as shown by the black dash-dotted line in figure 7.

Figure 8 shows the distributions of the surface pressure coefficient for different step
heights. Figure 8(b) is the enlarged view near x/h = 6. The pressure in the plateau region
located at x/h ≤ 6 decreases with increasing step height. At h = 5 mm, the plateau region
is immediately followed by a pressure rise that reaches a constant value of Cp = 0.31
at x/h> 13. This is slightly larger than the free stream pressure under the influence of
the weak recompression shock. However, for h ≥ 6 mm, the pressure first decreases to
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Figure 7. Distributions of the length of the recirculation zone with step height h. Red solid line,
nondimensional length; blue solid line, dimensional length; black dash-dotted line, linear curve fitting.
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Figure 8. (a) Distributions of surface pressure coefficients at different step heights. (b) Enlarged view at
x/h ≈ 6. Open circles, reattachment points.

its global minimum and then increases to its constant value, which can be confirmed by
figure 8(b). In fact, the global minimum of surface pressure corresponds to the footprint
of the low-pressure region observed in figure 5. Thus, the pressure tendency for h ≥ 6 mm
poses a local adverse pressure gradient to the reverse flow, which promotes the separation
of the bottom flow and the generation of the near-wall vortex.

3.2. Occurrence of global instability
Based on the analysis in § 3.1, the flow structure of the primary vortex at h = 6 mm
becomes distorted according to the streamline around the core of the primary vortex. Thus,
GSA is performed for the base flows at h = 5, 6 and 7 mm over a wide range of spanwise
wavelengths to determine the global stability of supersonic BFS flow. The determination
of the critical step height that leads to marginal instability can be found in Appendix C.

Figure 9 shows the growth rates of the two most unstable modes labelled modes 1 and 2
as a function of spanwise wavelength at different step heights. The right column of figure 9
is the enlarged view between λ/h = 0 and 2. The square and triangle symbols represent
the stationary (ωr = 0) and oscillatory modes (ωr /= 0), respectively. At h = 5 mm, every
eigenvalue has a negative growth rate, which means that the system is globally stable
to 3-D perturbations with different spanwise wavelengths. At h = 6 mm, the supersonic
BFS flow becomes unstable, with the largest growth rate occurring at λ/h = 2.094. Mode
1 is oscillatory and becomes dominant over a large range of spanwise wavelengths.
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Figure 9. Growth rates of modes 1 and 2 as a function of spanwise wavelengths for different step heights:
(a) h = 5 mm; (b) h = 6 mm and (c) h = 7 mm. The enlarged views around λ/h ≈ 1 are shown in the right
column. Square symbols, stationary modes; triangle symbols, oscillatory modes. The horizontal line indicates
the zero-growth rate; the vertical line indicates mode 1’s maximum value position.

However, mode 1 and its conjugate mode merge into two stationary modes at
approximately λ/h = 0.6. In terms of the two stationary modes, mode 1 with a large growth
rate is labelled mode 1L, while mode 1 with a small growth rate is labelled mode 1S. As
the step height is further increased, the mode coalescence occurs at a larger spanwise
wavelength of λ/h = 3.142. One branch of the real eigenvalues becomes the dominant
mode. The maximum growth rate increases significantly, shifting to a smaller wavelength
at λ/h = 1.396. Similar mode coalescence was reported in hypersonic compression corner
flow (Cao et al. 2021b, 2022; Hao et al. 2021); however, no long-wavelength unstable
mode can be found in the BFS flow. The other branch has a smaller growth rate; it is still
unstable at λ/h = 1.396, but has a marginal impact on the instability of the system. The
GSA result reveals that the critical step height for supersonic BFS at the Reynolds number
considered in the present study is approximately 6 mm. The case of h = 6 mm is weakly
unstable and dominated by an oscillatory mode, while the case of h = 7 mm is strongly
unstable with a significantly increased growth rate and dominated by a stationary mode.
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Figure 10. Contours of the real part of spanwise velocity perturbations (left column) for the least stable
spanwise wavelength and the corresponding eigenvalue spectra (right column): (a) h = 5 mm, λ/h = 4.189;
(b) h = 6 mm, λ/h = 2.094; and (c) h = 7 mm, λ/h = 1.396. Red, positive velocity perturbations; blue, negative
velocity perturbations. Black dashed line, isoline of u = 0.

Figure 10 shows the real parts of the spanwise velocity perturbations ŵ/u∞ at the
least stable wavelength for different step heights, and the corresponding eigenvalue
spectra are shown in the right column of figure 10. For all cases, the spanwise velocity
perturbations are mostly confined to the recirculation zone. At h = 5 mm, the least stable
mode presents as a pattern of alternating positive and negative components located in the
region of x/h ≤ 6. With increasing step height, the amplitude of the spanwise perturbation
located at x/h ≤ 6 weakens and eventually disappears. A new pair of positive and negative
components of the spanwise velocity perturbations occurs at approximately 6 ≤ x/h ≤ 8,
where the skin coefficient has a local minimum value, as shown in figure 6. The step
height of h = 6 mm is the critical case, which has an oscillatory unstable mode. Comparing
figures 10(a) and 10(b) shows that the oscillation is probably associated with the spanwise
velocity perturbations in the primary vortex at x/h ≤ 6 and that the instability is featured by
the spanwise velocity perturbations at 6 ≤ x/h ≤ 8. This speculation can be proven further
by the case of h = 7 mm, where the perturbations contributing to oscillation diminish at
x/h ≤ 6. Meanwhile, the perturbations located at 6 ≤ x/h ≤ 8 are highly distorted as more
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Figure 11. Contour of the real part of spanwise velocity perturbations at h = 7 mm for (a) mode 1S and
(b) mode 2 at λ/h = 1.396. Black dashed line, isoline of u = 0.

than one pair of positive and negative velocity perturbation components. It can also be
observed that the perturbation is transmitted to the free stream as oblique waves.

Figure 11 shows the real parts of the spanwise velocity perturbations of mode 1 from
the lower branch (i.e. mode 1S) and mode 2 at h = 7 mm. Mode 1S exhibits the same
behaviour as mode 1L, characterized by small perturbations at 6 ≤ x/h ≤ 8. Mode 2,
which corresponds to an oscillatory mode, has a perturbation structure within the primary
vortex similar to that of mode 1 (oscillatory) at h = 6 mm. However, the variations in the
perturbations in the primary vortex of mode 2 at h = 7 mm are stronger, which appears as
more than one pair of positive and negative portions. From the above discussion, it can
be inferred that the global instability of supersonic BFS flow is mainly attributed to the
distortion near the upstream of the reattachment point, i.e. fragmentation of the core of the
primary vortex.

To understand the instability mechanism of supersonic BFS flow, the GSA result is
imposed onto the base flow to reveal the evolution of the most unstable mode at h = 7 mm,
as shown in figure 12. The compressible stream function ψ in the recirculation zone is
computed using the definition of ρu = ∇ × ψ, ψ = [0, 0, ψ] (Hildebrand et al. 2018)
to characterize the primary vortex. The stream function can be computed through path
integration of the u and v components, under the condition that the spanwise component
of the velocity (w) is much smaller than the other two velocity components. Additionally,
the influence of the density can be neglected since it remains nearly constant within the
separation zone. By computing the stream function in each xy plane, a 3-D contour of
ψ can be formed. As the global mode is stationary, the isosurface of the stream function
ψ = 0, denoted by the grey isosurface in figure 12, can indicate the streamwise extent of
the recirculation zone.

Under the influence of the velocity perturbations, the straight reattachment line is
distorted into a zigzag shape. The main streamwise vortices underneath the primary vortex
are located in the region of 6 ≤ x/h ≤ 8, which presents as a couple of three counterrotating
vortices that contribute to the distortion of the reattachment line. Because the base flow has
zero spanwise velocity, the formation of the counterrotating vortices within the primary
vortex are mainly induced by spanwise velocity perturbations associated with the 3-D
global mode. The counterrotation of these vortices plays a role in transferring energy.
These vortices attract high-momentum fluid outside the recirculation zone towards the
wall and push low-momentum fluid inside the recirculation zone upwards into the flow.
The couple of counterrotating vortices appear periodically as a spanwise array in the
spanwise direction, further changing the base flow pattern. Furthermore, these vortices
alter the smoothness of the isosurface of ψ = 0, and an uneven isosurface can be observed
downstream where there is the root of the reattachment shock. The same features are shown
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Figure 12. Main flow structures of BFS flow reconstructed from 2-D base flow and GSA results at β = 4.5 for
the case of h = 7 mm. In all figures, the grey isosurface represents the boundary of the primary vortex. (a) Blue
and red isosurfaces represent the positive and negative streamwise vortices, respectively, including contours of
the density gradient magnitude on the left; (b) spanwise array of the isosurfaces of the positive and negative
streamwise perturbations; and (c) pressure perturbations superimposed on the grey isosurface.

in figure 12(c), and the velocity vector and pressure are superimposed on the isosurface of
ψ = 0. The staggered pressure distributions in both the spanwise and streamwise directions
can be seen clearly, which supports the spanwise momentum exchange. From another
point of view, the distribution of the pressure shows evidence of the corrugation of the
isosurface of ψ = 0 located at the foot of the reattachment shock. Based on the analysis
of the reconstructed flow, it can be concluded that the spanwise velocity perturbations
can amplify to a significant degree, leading to the development of streamwise vortices.
These vortices alter the flow pattern in the spanwise direction and effectively transport the
high-momentum flow into the separation zone. Furthermore, these vortices and pressure
perturbations support the corrugations of the separation zone, which also contribute to the
instability of the system. Nonetheless, further investigation is still needed to determine the
primary source responsible for exciting the initial perturbations that ultimately induce the
instability of the flow system.

To further understand the flow mechanisms that drive the induced global instability by
the separation zone, a kinetic energy budget analysis is performed for the most unstable
mode at h = 7 mm. In fact, the kinetic energy contributes approximately 90 % of the Chu
energy (Chu 1965). Chu energy represents the total energy in the disturbance, which
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characterizes the intensity of the disturbances in the sense,

E =
∫
ν

(
1
2
ρ̄u′

iu
′
i + 1

2
ā2

γ

p′2

ρ̄
+ 1

2
ρ̄CvT ′2

T̄

)
dΩ. (3.1)

Thus, only the kinetic disturbance energy is considered here, which is expected to provide
insight into the physical instability mechanism. The linearized governing equation of
velocity perturbations is given by

∂u′
i

∂t
+ ūj

∂u′
i

∂xj
= −(ρuj)

′

ρ̄

∂ ūi

∂xj
− 1
ρ̄

∂p′

∂xi
+ 1
ρ̄

∂τ ′
ij

∂xj
, (3.2)

where indices i = 1, 2 and 3 represent the x, y and z directions, respectively. The specific
kinetic disturbance energy is defined by

e′
k = 1

2 u′u′†
i . (3.3)

Generally, the kinetic disturbance energy e′
k can be obtained by multiplying (3.2) and u′†

i ;
then, one can obtain the following equation:

∂e′
k

∂t
= u′

i
† ∂u′

i
∂t

= Re

⎛
⎜⎜⎜⎝−u′

i
†ūj
∂u′

i
∂xj︸ ︷︷ ︸

Convection

−u′
i
†u′

j
∂ ūi

∂xj
− ρ′

ρ̄
u′

i
†ūj
∂ ūi

∂xj︸ ︷︷ ︸
Production

−u′
i
†

ρ̄

∂p′

∂xi︸ ︷︷ ︸
Transfer

+u′
i
†

ρ̄

∂τ ′
ij

∂xj︸ ︷︷ ︸
Viscous

⎞
⎟⎟⎟⎠, (3.4)

where † and Re denote the complex conjugate and the real part of a complex number,
respectively. Recall that the perturbations can be written in terms of eigenmodes, as given
by (2.4). The right-hand side of (3.4) represents the contributions to the time rate of change
in the kinetic disturbance energy from various mechanisms. Note that the base flow is
unstable if the left-hand side of (3.4) is positive and vice versa. The first term on the
right-hand side of the equation represents the convection of the kinetic disturbance energy
by the base flow. The second term represents the production of the kinetic disturbance
energy extracted from the base flow. The third and last terms represent the work done
by the perturbed pressure and viscous forces, respectively. Among the four terms, the
production term contributes most to the instability of the base flow, which is consistent
with the findings of Hao et al. (2021). Figure 13 shows the spatial distribution of the
production term for the most unstable mode and mode 2 for h = 7 mm at the spanwise
wavelength λ/h = 1.396. Clearly, the production term transfer from the base flow to the
mode is mostly near the core region of the primary vortex, which confirms that the main
instability arises from the separation zone. Based on the distribution of the production
term, it is likely that the instability of the present supersonic BFS flow is dominated
by an elliptic instability mechanism. The elliptic instability is commonly associated with
viscous vortices that have elliptical streamlines (Pierrehumbert 1986, Sipp & Jacquin 1998,
Kerswell (2002). Kuhlmann, Wanschura & Rath (1998) expanded this concept, proposing
that the elliptical instability can also apply to strained vortices with closely aligned
streamlines, referred to as a generic elliptical vortex. At the step height of h = 7 mm, the
flow structure exhibits a topology similar to an elliptical vortex. Additional support for the
elliptic instability mechanism comes from the observed energy transfer near the central
elliptic stagnation point. In figure 13, the disturbance energy transferred from the basic
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Figure 13. Spatial distributions of the production terms in the kinetic disturbance energy equations obtained
from different modes with streamlines superimposed at h = 7 mm with spanwise wavelength λ/h = 1.396: (a)
mode 1L and (b) mode 2.

flow predominantly concentrates at the centre of the vortex, particularly in the dominant
mode 1L. These findings support the existence of elliptical instability.

In summary, the spatial distribution of energy transfer, which acts as a destabilizing
factor, closely resembles the pure elliptical instability flow and the subsonic BFS
flow studied by Lanzerstorfer & Kuhlmann (2012b). Furthermore, the perturbations of
mode 1 are primarily concentrated near the elliptical vortex, leading to the breakup of
quasi-elliptical regions in the streamlines. These two distinct features, which serve as the
characteristic signatures of an elliptic instability, are clearly evident in figures 10(c) and 13.
Consequently, we propose that the dominant mechanism driving this instability is likely
the elliptic instability, which is characterized by a peak in energy production associated
with the vortex core and a highly perturbed flow aligned with the principal direction of
the vortex. Moreover, the production term obtained from mode 1L is much larger than that
from mode 2, which also indicates that mode 1 is the dominant mode to destabilize the
base flow.

3.3. DNS of supersonic BFS flow
In this section, DNS is performed to reveal the 3-D flow structure and verify the GSA
result. The case of h = 7 mm is considered here, which has two stationary and oscillatory
modes. Since the most unstable mode at h = 7 mm occurs at the spanwise wavelength of
λ/h = 1.396 (corresponding to β = 4.5), four times the wavelengths are extended in the
spanwise directions for the computational region. The distributions of grid cells in the
streamwise and wall-normal directions remain unchanged as the adopted medium grid
resolution, which is used for computing base flow. Seventy cells are placed uniformly for
every spanwise wavelength, resulting in a total of 280 cells in the spanwise direction. The
total number of grid cells for DNS is approximately 90 million. The 3-D simulation starts
from tu∞/h = 0 to 1510 (i.e. the physical time is 0–20 ms) to obtain a quasi-steady state to
resolve the development of three-dimensionality and low-frequency unsteadiness. In the
present study, no extra perturbations are imposed in the simulation. It is expected that the
growth of instability waves can arise from the exceedingly small perturbations provided
by the numerical round-off errors to depict the intrinsic instability predicted by GSA.

To characterize the development of 3-D perturbations with respect to the base flow in
terms of the specific spanwise wavelength, the temporal evolution of the spanwise velocity
perturbations is extracted for comparison. As illustrated by Cao et al. (2021b, 2022) and
Hao et al. (2021), the averaged spanwise velocity magnitude normalized by the free stream
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Figure 14. Temporal evolution of the average absolute spanwise velocity perturbations at x/h = 7.14 obtained
from the DNS result compared with the growth rate of the most unstable mode predicted by GSA. Solid line,
DNS; dashed line, GSA.

velocity in a streamwise normal plane is calculated using the following equation:

σw =

√√√√√ 1
NyNz

Ny∑
j=1

Nz∑
k=1

(
w

u∞

)2

j,k
, (3.5)

where Ny and Nz are the numbers of grid cells in the wall-normal and spanwise directions,
respectively. Figure 14 shows the temporal evolution of the averaged spanwise velocity
magnitude in the z–y plane located at x/h = 7.14. This plane is located in the region
where the spanwise perturbations are confined; this region represents where the main
perturbations occur, as obtained from the GSA result, as shown in figure 10(c). After an
initial adjustment owing to the numerical method, the exponential growth rate obtained
from DNS shows good agreement with that of the most unstable mode predicted by
GSA until tu∞/h = 405, which verifies the fidelity of both GSA and DNS. The initial
adjustment could be attributed to slight differences in the numerical methods employed
between the 2-D and 3-D simulations. The inherent complexes, additional dimensions
and applications of periodic boundary conditions in 3-D simulations can lead to slight
discrepancies compared with the flow field extruded from 2-D base flow during the initial
transient, which may manifest as the initial adjustment. However, it is well noted that the
adjustments can be principally excluded by adapting the numerical method (Hildebrand
et al. 2018), but more computational time will be needed to achieve the linear growth
stage. After the exponential growth of σw, nonlinear saturation occurs until tu∞/h ≈ 900,
and then a quasi-steady state is established. This comparison provides strong evidence that
GSA can accurately predict the most unstable mode induced by the global instability of
the flow and proves the significant effectiveness of both GSA and DNS.

Figure 15(a) shows the contour of the spanwise velocity in the x–y plane of z/h = 0.7143
at tu∞/h = 362.5 in the linear growth stage. The main flow structure is nearly identical to
the spanwise velocity perturbations of mode 1L in the case of h = 7 mm predicted by GSA,
as shown in figure 10(c), which also confirms that mode 1 dominates the linear growth
stage of the 3-D perturbations. Figures 15(b) and 15(c) show the contours of the spanwise
velocity at two y–z planes of x/h = 6.8281 and 7.6814, respectively. There is a slight
attenuation of the spanwise velocity in the middle of the plane. This phenomenon is likely
a result of perturbations that tend to arise from the periodic boundary conditions applied
in the spanwise direction. However, this attenuation does not have a significant impact
on the growth of the instability wave, as evidenced by figure 14. The perturbations have
a periodic distribution with a wavelength of approximately λ/h = 1.3. For a quantitative
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Figure 15. Contours of the spanwise velocity at tu∞/h = 362.5: (a) x–y plane at z/h = 0.7143; (b) y–z plane at
x/h = 6.8281, denoted by A in panel (a); and (c) y–z plane at x/h = 7.6814, denoted by B in panel (a).
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Figure 16. Power spectral density of the skin friction coefficient on the wall downstream of the step obtained
from DNS at tu∞/h = 362.5.

comparison, the spatial characteristics of the perturbations are provided by the (spatial)
power spectral density (PSD) of Cf along the streamline direction, as shown in figure 16.
From the PSD of Cf , the peaks at the spanwise wavelength λ/h ≈ 1.3 can be extracted in
the region of x ≈ 7, which is more energetic and corresponds well to the region with large
spanwise velocity perturbations predicted by GSA. The wavelength λ/h obtained from the
PSD is approximately 1.35, which is slightly smaller than the predetermined wavelength
λ/h = 1.3916 from the GSA. A closer examination of figure 9 gives an explanation that the
growth rates and the structures of mode 1 in the wavelength range of 1.23∼1.39 are nearly
identical. This observation suggests that the signals detected by DNS may be subject to
blurring, resulting in a slight shift in wavelength.

Figure 17 shows the evolution of the spanwise velocities in the later linear stage in an
x–y plane of z/h = 0.7143. At tu∞/h = 407.8 and 438.0, the spatial flow structure is still
almost identical to that of mode 1 captured by the GSA. The spanwise velocity magnitude
increases with time and occupies a larger region. At tu∞/h = 438.0, the perturbations
begin to propagate upstream within the primary vortex, resulting in the formation of
streak-shaped structures aligned in the streamwise direction. After tu∞/h = 468.2, the
streak-shaped structures are strongly distorted and slowly break up into smaller structures.
At tu∞/h = 528.7, the flow structure looks like a combination of unstable modes captured
by GSA (figures 10 and 11), which hints at the emergence of mode 2 and mode 1S. The
non-dimensional frequency of mode 2 from the GSA result is approximately 0.005, which
is of the same order as the low frequency (0.009) reported in the large eddy simulation
(LES) conducted by Riley, Ranjan & Gaitonde (2021). Although the Reynolds number
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Figure 17. Temporal evolution of the spanwise velocities at the x–y plane of z/h = 0.7143 obtained from
different times: (a) tu∞/h = 377.6; (b) tu∞/h = 407.8; (c) tu∞/h = 438.0; (d) tu∞/h = 468.2; (e) tu∞/h = 498.5
and ( f ) tu∞/h = 528.7.
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Figure 18. Contours of the skin friction coefficient at (a) tu∞/h = 113.3, (b) tu∞/h = 422.9, (c) tu∞/h =
604.2, (d) tu∞/h = 1057.3, (e) tu∞/h = 1283.9 and ( f ) tu∞/h = 1495.4. Black solid lines, isolines of Cf = 0.

and Mach number in the study of Riley et al. (2021) are higher than those in the present
study, it can be speculated that mode 2 can persist in supersonic BFS flow.

Owing to the existence of global unstable modes, the saturated flow obtained from DNS
exhibits a complicated structure in both spatial and temporal space. To further understand
the influence of the perturbation on the flow structure, the Cf distributions downstream of
the step at different times are shown in figure 18. Isolines of Cf = 0 are used to indicate the
separation regions. Note that the vertical solid line at x/h ≈ 3.5 represents the secondary
separation line (also see figure 4), which separates the primary–secondary vortices on the
wall in the streamwise direction. The second solid line at x/h ≈ 12 is the reattachment line.
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Figure 19. Power spectral density of the averaged spanwise velocity at x/h = 7.14 from tu∞/h = 377.6 to
1510.5.

In the initial stage, the two vertical lines present 2-D characteristics. At the later stage of
the linear growth period, the reattachment and secondary separation lines become slightly
distorted, but the separation zone retains the original pattern. With increasing time, the
reattachment line twists further with a zigzag pattern, and similar features were reported
by Cao et al. (2021b, 2022) in their DNS of hypersonic compression corner flows and by
Hao et al. (2022) in their DNS of hypersonic double cone flows. Meanwhile, the secondary
separation line becomes highly disordered and breaks up into several small separation
zones, which are not observed in 2-D simulations. After tu∞/h = 1057.3, the reattachment
line presents a harmonic distribution characteristic, exhibiting a wavelength of λ/h ≈ 0.68,
which is consistent with the second harmonic of the wavelength of mode 1. Additionally,
the line oscillates at a relatively low frequency. Meanwhile, the secondary separation line
is fully distorted and cannot be intuitively distinguished. More small bubbles with irregular
shapes can be observed and are distributed randomly in the original secondary separation
region. The peak of Cf is much higher than that in the linear growth stage, and the
streamwise streaky patterns persist downstream of the reattachment line. The streak-like
flow structures attest to the phenomena observed by Ginoux (1960) and Zhu et al. (2015).
Thus, it can be concluded from the GSA and DNS results that intrinsic instability is
responsible for the generation of streak-like flow structures. Figure 19 shows the power
spectral density of the averaged spanwise velocity (σw) at x/h = 7.14 from th/u∞ = 377.6
to 1510.5. Based on the spectrum, the quasi-steady BFS flow exhibits a broadband feature
covering the frequency of mode 2. The low-frequency broadband characteristics account
for the oscillation of Cf , as shown in figure 18.

To closely examine the 3-D flow structures in the separation zone, figure 20 shows the
contours of the streamwise velocity u/u∞ (<0.99) on several y–z planes (seven equidistant
distributed planes at 6 ≤ x/h ≤ 8) and one x–z plane (at y/h = 0.1) at tu∞/h = 422.9
and tu∞/h = 1283.9, respectively. The isolines of u/u∞ (<0) are superimposed in the
equidistantly distributed streamwise planes. The contours of the spanwise velocity are
shown on the left. To facilitate processing, the isosurfaces of u = 0 are plotted to
characterize the separation zones. At tu∞/h = 422.9, the spanwise perturbations gathered
at approximately 6 ≤ x/h ≤ 8 and the primary vortex with a zigzag reattachment line
remained smooth. The flow structures are nearly identical to those reconstructed using
the global mode and the base flow, as shown in figure 12(a). In the quasi-steady state,
the spanwise velocity perturbations propagate upstream and pervade the whole separation
zone. The primary vortex is severely corrugated. Several small bubbles form with
irregular shapes and are randomly distributed in the secondary vortex, which reinforces
the observations based on the skin friction coefficient plotted in figure 18. In addition,
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Figure 20. Contours of the streamwise velocity shown on a wall-parallel plane at y/h = 0.1 close to the wall
and seven equidistantly distributed streamwise planes superimposed with isolines of streamwise velocity in
the range of 0 ≤ x/h ≤ 12 at different times. Contours of the spanwise velocity at the z = 0 plane are shown in
panels (c) and (d), respectively. Grey isosurfaces of u = 0 are plotted to represent the separation zones. (a) and
(c) tu∞/h = 422.9; (b) and (d) tu∞/h = 1283.9. (The cut-off levels are u/u∞> 0.99 and u/u∞> 0 for contours
and isolines of streamwise velocity, respectively.)

streamwise streaks can be observed and do not breakdown downstream. Whether the
intrinsic instability is able to trigger a laminar-turbulent transition at h = 15 mm will be the
focus of a future study. That, again, would imply that the streak-like flow structures can be
attributed to the intrinsic instability of supersonic BFS flow, which is two-dimensionally
stable and destabilized under the influence of 3-D perturbations with a specific spanwise
wavelength.
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4. Conclusion

In the present study, DNS and GSA are performed for a supersonic backward-facing
step flow where the step heights vary from 5 to 15 mm. The free stream Mach number
and Reynolds number based on the flat-plate length are 2.16 and 7.94 × 105, respectively.
Owing to the sudden expansion downstream of the step, a large recirculation zone forms,
which mainly includes a primary and a secondary zone. More Moffatt vortices can also be
observed with sufficient grid resolution near the origin of the step corner. Importantly, the
flows for all step heights considered in the present study are stable in a 2-D state; that is,
no two-dimensionally unstable mode is found.

GSA shows that the supersonic BFS flow is unstable to 3-D perturbations when the
step height h exceeds 5.4 mm in the present study. As the step height approaches 6 mm,
a pair of conjugate modes are detected. Then, the pair of conjugate modes merges into
two stationary unstable modes at h = 7 mm, and another oscillatory unstable mode is
revealed. The spanwise velocity perturbations of the most unstable mode are mainly
confined to a small region near the primary vortex core that is located close to the
reattachment point, whereas the velocity perturbations in the unstable oscillatory mode
almost fill the whole region of the recirculation zone, and are presented as pairs of
positive and negative components. Reconstructing the 3-D flow field by superimposing
the most unstable mode on the base flow shows that the primary vortex is corrugated
and the reattachment line exhibits a zigzag shape. Streamwise vortices occur in the
primary vortex, accompanied by the formation of a spanwise array of pairs of positive
and negative streamwise perturbations. Furthermore, the energy budget analysis suggests
that the instability of supersonic BFS flow is probably of the elliptic type.

A step height of h = 7 mm is selected to conduct a DNS study. The spanwise length of
the computational region for DNS is four times the wavelength of the most unstable mode.
The exponential linear growth rate obtained from DNS shows good agreement with the
predicted rate obtained from GSA, and the most unstable mode (mode 1 predicted by GSA)
dominates the linear growth stage, in which the contours of the spanwise velocity coincide
with the corresponding spanwise velocity perturbations from GSA. Mode 2 emerges in
the later linear growth stage and then affects the flow structure together with mode 1.
The saturated flow exhibits a broadband low-frequency unsteadiness characteristic. The
boundary-layer streaks and surface friction streaks appear in an oscillatory form with a low
frequency. In addition, the separation zone is severely distorted, especially the secondary
separation zone that fragments into several small bubbles. No transition is observed in the
present case.

In conclusion, the numerical simulations and GSA illustrate that supersonic BFS flow
is intrinsically unstable to 3-D perturbations when the step exceeds a certain value. The
streak-like flow structures that were observed in supersonic BFS flow can be attributed to
the global instability of the separated flow.
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ωrLs/uL + (ωiLs/uL)i

β Ramanan & Homsy (1994) Theofilis et al. (2004) Present

1 0.00 − 0.34i 0.0000 − 0.3297i 0.0000 − 0.3289i
2 0.00 − 0.23i 0.0000 − 0.2267i 0.0000 − 0.2264i
3 0.11 − 0.29i 0.1073 − 0.2954i 0.1065 − 0.2955i
4 0.28 − 0.30i 0.2810 − 0.2956i 0.2806 − 0.2960i
5 0.43 − 0.34i 0.4260 − 0.3404i 0.4256 − 0.3409i
6 0.58 − 0.39i 0.5821 − 0.3844i 0.5823 − 0.3850i
7 0.67 − 0.41i 0.6733 − 0.4013i 0.6736 − 0.4015i
8 0.72 − 0.45i 0.7232 − 0.4587i 0.7235 − 0.4587i
9 0.76 − 0.54i 0.7622 − 0.5473i 0.7624 − 0.5472i

Table 2. Comparisons of the frequencies and growth rates of the least stable modes at Re = 200 from β = 1
to 9 with the results of Ramanan & Homsy (1994) and Theofilis et al. (2004).
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Figure 21. Comparisons of the variations in ωi and ωr with β at Re = 200. Blue dashed line, Theofilis et al.
(2004); green dash-dotted line, Ramanan & Homsy (1994); red solid line with triangle symbols, the present
results.

Appendix A. Validation of stability analysis

First, the validation of the present global stability analysis code is performed for
incompressible lid-driven square cavity flow at Re = 200 based on the side length Ls and
the lid velocity uL. Table 2 presents a comparison of the growth rates and frequencies of
the least stable eigenmode at different spanwise wavenumbers between the present study
and the results from Ramanan & Homsy (1994) and Theofilis et al. (2004). The same
results are also presented in figure 21 for the variations in the growth rates and frequencies
with the spanwise wavenumber. Overall, there is a good quantitative agreement between
the present and previous results, indicating the effectiveness of the GSA code used in this
study.

We also compare our results for compressible open-cavity flow with a length-to-depth
ratio of L/D = 2, Ma∞ = 1.4 and Reθ = 56.8 to the results obtained by Sun et al. (2017).
Here, the Reynolds number Reθ is based on the initial momentum boundary layer thickness
at the cavity leading edge and the free stream values. Table 3 shows the comparisons of
the frequencies and growth rates of Rossiter Modes I and II. The obtained frequencies and
growth rates are in good agreement with those of Sun et al. (2017).
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(ωrL/2πu∞) + (ωiD/u∞)i

Open-cavity flow Rossiter Mode I Rossiter Mode II

Sun et al. (2017) 0.310 − 0.029i 0.566 + 0.037i
Present 0.300 − 0.028i 0.550 + 0.036i

Table 3. Comparisons of the growth rates and frequencies of Rossiter Mode I and II obtained from Sun et al.
(2017) and the present study.
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x/h
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Figure 22. Comparisons of the wall pressure normalized by the free stream pressure obtained from the 2-D
numerical simulations and experiments conducted by Smith (1967).

Appendix B. Validation of the numerical simulation code

The PHAROS code used in the present study has been extensively validated with typical
benchmark cases in our previous work. The details of the validation cases can be found
in these studies. Further validation of the PHAROS code for simulating supersonic BFS
flow was performed by comparing it with the experimental results of Smith (1967). The
experiment used to validate the PHAROS code was conducted on a BFS model with a
step height of 11.252 mm and a flat-plate length of 101.6 mm. The nominal free stream
Mach number, total temperature and total pressure are 2.5, 344.44 K and 31026.41 Pa,
respectively, resulting in a corresponding Reynolds number based on the flat-plate length
of 2.48 × 105. Figure 22 compares the 2-D simulation results from the PHAROS code with
the experimental data of Simth (1967) in terms of the wall pressure normalized by the free
stream pressure. Note that the experimental results are reproduced from the graph provided
by Smith (1967). The wall pressure shows a rise tendency in the reattachment process
after the pressure plateau region. In general, the numerical results show good agreement
with the experiments in terms of the pressure on the flat plate, the plateau pressure, the
pressure rise and the reattachment location. This comparison demonstrates the satisfactory
performance of the PHAROS code in simulating supersonic BFS flow.

Appendix C. Determination of critical step height

To determine the onset of linear global instability, the approach described in the previous
sections is employed for supersonic BFS flow in the present study by varying the step
height from h = 5 mm to 6 mm, with a regular interval of 0.1 mm. The GSA result
indicates that the step height at which instability marginally appears is approximately
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Figure 23. Growth rates of modes 1 and 2 as a function of spanwise wavelengths for different step heights:
green, h = 5.3 mm; blue, h = 5.4 mm; red, h = 5.5 mm. (a) Triangle symbols with solid line, oscillatory mode
1; (b) triangle symbols with dash dotted line, oscillatory mode 2.

5.4 mm. At a step height of h = 5.4 mm, the unstable modes are characterized by a
pair of oscillatory modes. Figure 23 illustrates the growth rate of modes 1 and 2 as
a function of spanwise wavelengths for three critical step heights (i.e. h = 5.3, 5.4 and
5.5 mm). Note that only oscillatory mode 1 is shown in figure 23, since stationary mode
1 concentrates near λ/h ≈ 0.5. At a step height of h = 5.4 mm, the supersonic BFS flow
becomes marginally unstable, with the most unstable mode occurring at a spanwise
wavelength of λ/h ≈ 3.142. Additionally, a couple of oscillatory unstable modes unstable
modes dominate over a very limited range of spanwise wavelength. When the step height
is increased to 5.5 mm, mode 2 becomes unstable. Consequently, the distribution of
the growth rate, as shown in figure 23, closely resembles the distributions depicted in
figure 9(b).
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