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Abstract
Accurate 3D deformation control of deformable soft tissues is of paramount importance in robotic-assisted surg-
eries. Selecting optimal grasping points is a fundamental challenge, as the deformation behavior is highly dependent
on the applied forces and their locations. This paper presents an efficient grasping point selection algorithm using
optimization-based inverse finite element method for tissue manipulation tasks. We propose a method for the auto-
matic identification of optimal grasping points that minimize feature or shape errors during deformation tasks.
Specifically, we formulate the grasping task as a quadratic programming problem while considering the complex
mechanical coupling within the tissue structure. Our method effectively accommodates both discrete key points
and point clouds as input, and can simultaneously determine multiple optimal grasping points in one optimization
process. We validate the proposed method in simulation on a tissue and liver model, demonstrating its feasibility
and efficiency in various scenarios. Real-world experiments are conducted on a silicone liver phantom to further
validate the effectiveness of our proposed method.

1. Introduction
In the realm of medical robotics, the precision and dexterity enabled by robotic systems have revolu-
tionized the approach to minimally invasive surgeries [1]. There is a growing emphasis on automating
surgical subtasks to enhance surgical efficiency and patient outcomes. Among these tasks, soft tissue
manipulation remains particularly challenging due to its inherent complexity and critical impact on sur-
gical success. In recent years, the trend toward more intelligent and autonomous robotic-assisted surgery
has led to increased research attention on the automation of delicate sub-procedures, including tissue
grasping, retraction, and repositioning [2]. The ability of robots to reliably and safely manipulate soft
tissues is fundamental for expanding the range of procedures that can benefit from automation. However,
the successful realization of such capabilities is hindered by the intricate, highly nonlinear, and patient-
specific mechanical properties of biological tissues, which differ significantly from the rigid objects
commonly handled in industrial robotics [3].

From repositioning organs for improved access to precise procedures such as tumor excision [4] and
tissue retraction [5], accurate handling of deformable tissues is essential to avoid damage and ensure
optimal patient outcomes. However, the unstructured nature of soft tissues, coupled with their nonlinear
and dynamic behavior, poses significant challenges to achieving autonomous and reliable manipulation
[6]. Furthermore, in clinical practice, surgeons rely on a combination of visual feedback, tactile sensa-
tion, and deep anatomical knowledge to intuitively select grasping points and modulate force application.
Replicating this expert intuition in a robotic system requires not only advanced sensing and perception
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but also efficient computational models capable of predicting tissue response in real time. The integra-
tion of modern sensing modalities – such as depth cameras and force sensors [7] – has improved the
perception of tissue state, yet the translation from perception to optimal manipulation strategies remains
non-trivial.

Traditional approaches to tissue manipulation often rely on predetermined grasping points [8], [9],
[10]. While effective in controlled settings, these methods lack adaptability and do not account for the
unique mechanical properties of individual tissues. In robotic-assisted surgeries, the ability to dynam-
ically determine optimal grasping points is crucial, as deformation behavior is intimately linked to the
locations where external forces are applied. Surgeons intuitively select grasping points based on their
understanding of motion-deformation relationships. Replicating this intuition in robotic systems, how-
ever, remains a complex problem, as it requires explicitly modeling the intricate coupling between tissue
deformation and applied forces [11].

Recent advances in optimization-based planning, particularly those leveraging the finite element
method (FEM) [12], [13], [14], have shown promise for capturing the mechanical coupling between
grasping points and tissue deformation. By formulating the grasping point selection as an optimiza-
tion problem, these methods can move beyond heuristic or purely geometric approaches, offering the
potential for greater accuracy and adaptability. Nevertheless, most existing methods either focus on for-
ward deformation prediction or are computationally intensive, limiting their practicality for real-time,
multi-point grasping in surgery.

In this paper, we present an efficient grasping point selection framework that addresses these limi-
tations. We formulate the deformation task as an optimization problem based on inverse FEM, where
optimal grasping points are computed by solving a quadratic programming (QP) problem. Our main
contributions are as follows:

1. We formulate the grasping point selection problem as a unified QP optimization based on the
inverse FEM, enabling the simultaneous identification of multiple optimal grasping points in a
single step while explicitly considering the mechanical coupling within soft tissue structures.

2. Our framework flexibly supports both sparse key points and dense point cloud inputs, allowing
the method to be applied to a wide range of tissue manipulation scenarios without requiring
major modifications to the algorithm.

3. The proposed method is comprehensively validated in both simulation and real-world exper-
iments. Results demonstrate that our approach achieves high accuracy and strong sim-to-real
transferability, outperforming traditional distance-based methods in various challenging tasks.

Figure 1 shows the experimental setup for the proposed method.

2. Related work
2.1. Deformable tissue manipulation
Robotic manipulation of deformable tissues is a fundamental yet challenging problem in surgical
automation, due to the nonlinear and highly coupled mechanical properties of soft tissues. Model-based
methods, such as those utilizing FEMs or mass-spring models, aim to capture the physical behavior of
tissues for planning and control purposes [15], [16]. FEM has become particularly prominent due to
its ability to accurately model large 3D deformations of soft materials. However, most model-based
studies focus on deformation prediction and control, while the problem of grasping point selection
remains under-explored. Specifically, few works have formulated the grasping point estimation as an
optimization problem that directly leverages the mechanical coupling between applied forces and desired
deformations.

Model-free approaches, including imitation learning and reinforcement learning (RL), learn manip-
ulation strategies directly from data or demonstrations [17], [18]. While these methods have shown
promise in handling high-dimensional and complex manipulation tasks, they generally require large
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Figure 1. Illustration of the manipulation task and grasping point selection. Optimal grasping points
lead to task completion while random grasping points lead to failure. The workflow of the proposed
method is shown next to the figure.

volumes of training data and suffer from limited adaptability to varying tissue geometries and mechan-
ical properties. Moreover, their ability to achieve precise and real-time deformation control is often
constrained by the complexity of the learning process and the lack of explicit physical modeling.

2.2. Grasp planning
Grasp planning is crucial for robotic manipulation since it ensures that robots can achieve stable and
effective grasps [19], [20], which are fundamental for executing complex tasks such as assembly, surgery,
and human–robot collaboration. Existing methods for grasping point selection can be broadly cat-
egorized into assessment-based and distance-based approaches. Assessment-based methods evaluate
grasping quality across a set of candidate points using various indices, such as deformation energy,
stress distribution, or control effort [21], [22]. For instance, Patil et al. [23] proposed a model-based
sampling method that computes deformation energy and maximum stress to determine optimal grasp-
ing points for tissue retraction. Han et al. [24] developed an optimization-based strategy that integrates
contact stability and operational effectiveness indices to ensure efficient deformation control. Although
these methods achieve high accuracy, they are computationally expensive, as they require evaluating all
possible grasping points, making them impractical for real-time applications.

On the other hand, distance-based methods reduce computational complexity by selecting grasping
points based on geometric criteria, such as the largest displacement between initial and target shapes
[25]. Nadon et al. [26], [27] developed a selection method by analyzing the difference between the initial
and desired contours in polar coordinates, selecting grasping points at locations with maximum contour
differences. Nevertheless, this approach fails when multiple grasping points are required. To address
this, Huang et al. [28] proposed a task-oriented metric that incorporates both distance and directional
factors. This metric evaluates the grasping effectiveness by integrating the grasp’s influence along the
deformation path of the object. For dual-arm grasping tasks, the method first identifies two key points
based on the extent of deformation and their relative positions. The algorithm is then applied separately
to each key point to determine the optimal grasping points. However, distance-based methods overlook
the complex mechanical coupling of the tissue structure and may fail in multi-point grasping scenarios
or require the implementation of multi-stage planning.

Additionally, RL has been explored for tissue manipulation, where physical simulators are used to
train policies for selecting grasping points. For instance, Ou et al. [29] and He et al. [30] employed
RL-based methods to identify optimal grasping points by minimizing control displacement and other
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Figure 2. Illustration of point definition. The points depicted on the object are nodes of the volumetric
mesh of the 3D object. The blue points are nodes attached to the gripper, the green points are the feature
points, and the red points are static.

matrices. However, these approaches often require extensive training and face challenges in handling
complex deformation behaviors, making them computationally expensive.

3. Forward modeling of deformable objects
In this section, we first introduce the discrete-time kinematic equation of soft tissue based on real-time
FEM [31]. With the assumption that the tissue manipulation is conducted at relatively low veloci-
ties, therefore, we can model the tissue with quasi-static equations. The equilibrium equations are
then projected into a constraint space to enable real-time computation. Lastly, the inverse simulation
is formulated as a QP optimization problem.

Let x ∈R
n denote the configuration of the object, where n represents the degrees of freedom. The

equilibrium equations of the system at the (k + 1)th sampling time can be described by:

M(xk+1)v̇k+1 = pk+1 − f(xk+1, vk+1) + uk+1 (1)

where x ∈R
n and v ∈R

n are the vectors of generalized degrees of freedom (displacement and velocity
of the nodes in a mesh); M ∈R

n×n is the diagonal mass matrix. p and f are respectively the vectors of
external (i.e. gravity) and internal forces; u denotes the external force from the manipulator and can be
written as HT

g λg, where Hg is the mapping matrix between nodes and directions of grasping forces, and
λg ∈R

M×3 is the contribution vector of grasping forces with M being the number of grasping points.
Since the deformation control is conducted at a relatively low velocity, we thus consider the system in a
quasi-static condition. (1) can be rewritten as,

pk+1 − f(xk+1) + HT
g (xk+1)λg,k+1 = 0 (2)

The internal forces f(x) are non-linear, we then use a Taylor series expansion to f(x) and obtain a
first-order approximation at a time step (k + 1),

f(xk+1) = f(xk) + ∂f(xk)

∂xk

dxk (3)

where ∂f (xk)
∂xk

can be expressed by the stiffness matrix Kk, dxk = xk+1 − xk.
While controlling the whole set of vertices of the object, the problem can be intractable and redun-

dant. To reduce the dimension of the problem, we select a set of feature points on the surface of the
mesh to represent the deformation. Figure 2 illustrates the definition of points. The position vectors of
grasping points and feature points are then defined as δg and δf , respectively. Combining (2) and (3), the
equilibrium equation of soft tissue at each step can be established. To perform the modeling in real-time,
the problem is projected in the constraint space using the Schur complement:

δf ,k+1 = Wfg(xk)λg,k + δ
free
f ,k (4)

δg,k+1 = Wgg(xk)λg,k + δ
free
g,k (5)
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where Wij(xk) = Hi(xk+1)K−1(xk)HT
j (xk+1) (i, j = f , g). δ

free
f ,k and δ

free
g,k are respectively position vectors of

feature points and grasping points when λg = 0. With Wfg, we can measure the mechanical coupling
between feature points and grasping points, and with Wgg, the coupling between grasping points.

With the continuity assumption of Wfg(xk+1) ≈ Wfg(xk), (4) can be simplified as

δf ,k+1 = δf ,k + Wfg(xk)�λg,k+1 (6)

δg,k+1 = δg,k + Wgg(xk)�λg,k+1 (7)

where �λg,k = λg,k+1 − λg,k. As the grasping point is controlled in position, the change in displacement
leads to the motion of feature points by

�δf ,k = WfgW−1
gg

︸ ︷︷ ︸

J

�δg,k (8)

where J is the deformation Jacobian that provides a mapping between grasping point motions and feature
point displacements and is updated at each time step.

Finally, the configuration of the soft tissue for the forward FEM simulation is updated at (k + 1)th
time step by

xk+1 = xk + K−1
k HT

g �λg,k (9)

Remark. The compliance matrices Wfg and Wgg cannot be pre-computed because their values depend
on the positions of all nodes (the configuration of the tissue) so they change at each iteration. Based on
the fact that the soft materials have slow dynamics and are not subject to high-frequency external loads,
we assume that the matrices Wfg and Wgg are constant between two neighboring time steps.

Remark. The tangent stiffness matrix K is positive definite when the robot is constrained to have no
rigid body motion. By on different nodes of the FEM or with different directions, there will be no linear
dependency between lines of Hf and Hg so that the matrices Wgg is positive-definite and Wfg is generally
full row rank when the number of lines in Hf is smaller than the number of lines in Hg, and Wfg is full
column rank in the opposite case.

4. Methodology
In this section, we first present the details of the proposed method. Then, we introduce the definition
of different cases of inputs: 1) key points and 2) 3D shape point cloud. Lastly, we present the details of
inverse FEM and the grasping point selection algorithm.

4.1. Overview of proposed method
The proposed method consists of three main steps, as shown in Fig. 3. First, the deformable object is
represented as a mesh, which can be reconstructed from medical images. The process of reconstructing
mesh from medical images is shown in Fig. 4. We obtain volumetric imaging and segment the target
organ using semi-automatic thresholding and region growing in 3D Slicer. The segmentation is con-
verted to a triangular surface with marching cubes, smoothed and resampled, and then tetrahedralized
in Gmsh to produce the FEM mesh. A finite element (FE) model is then constructed based on the mesh
using tetrahedral elements, providing a foundation for real-time deformation simulation.

Then, the desired deformation is specified by the input of key points case (IOK) or shape point cloud
(IOS). For IOK, the locations of key points are assumed to be known, and the closest vertices on the
mesh are selected as feature points. For IOS, a point cloud of the target deformation is captured and
aligned with the FE model using a 3D deformation registration method, ensuring consistency between
the input and the simulation framework.
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Figure 3. The overall workflow of the proposed method.

Figure 4. The workflow of mesh reconstruction.

Finally, the optimal grasping points are identified by solving a QP problem, which leverages the
inverse FEM model to minimize feature errors while accounting for mechanical coupling between
grasping and feature points. Unlike prior work relying on heuristic metrics, this formulation allows
for the simultaneous identification of multiple grasping points without requiring multi-stage planning.
By dynamically considering the mechanical properties of the tissue and supporting both discrete feature
points and shape inputs, the proposed method provides a unified and flexible framework for tasks with
both single and multiple grasping points.

4.2. Determination of feature points location
To solve (11), it is essential to determine δ

r
f . This paper addresses two types of manipulation tasks: point

manipulation and shape manipulation, corresponding to inputs as discrete key points and 3D shape point
clouds, respectively. The process of determining feature points for each case is outlined as follows:

4.2.1. Points as input
For tasks where discrete key points are used as input, their locations are assumed to be predefined or
directly measurable. We can obtain the positions by visual tracking of key points on the tissue surface.
These feature points are often derived from geometric or anatomical markers, commonly used in planar
tissue manipulation tasks [8]. Once the desired feature point locations are given, the closest vertices on
the surface of the FE mesh are selected as the feature points. This ensures that the desired deformation
can be effectively represented within the finite element framework.

4.2.2. Point cloud as input
For tasks involving 3D shape manipulation, the desired deformation is provided as a dense point cloud
of the target shape. However, since there is no direct correspondence between the input point cloud and
the feature points on the FE mesh, a 3D deformation registration process [32] is employed to determine
the desired feature locations. The procedure is shown in Fig. 5. Specifically, the point cloud of the target
shape is captured using a depth camera and segmented using a color-based region-growing algorithm.
The segmented point cloud is aligned with the FE model through rigid registration by an Iterative Closest
Point method to ensure consistency between the physical object and the simulation.
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Figure 5. Deformation registration scheme to register the desired 3D shape with the FE model in
simulation. Feature points are evenly selected from the surface. Initial feature locations and deformed
feature locations are shown in orange and yellow dots, respectively.

Let Y = {yj}Ny

j=1 be the set of vertices of the captured deformed point cloud after alignment and
X = {xj}Nx

j=1 the mesh vertices at the current time step. We first conduct a K-Nearest Neighbor search-
ing algorithm to find the correspondences from mesh to point and point to mesh, respectively. By
doing this, we can obtain the nearest neighbors from X to Y (PX = {NNY(xj)|xj ∈ X}) and from Y to X
(PY = {NNX(yj)|yj ∈ Y}). The resulting virtual forces, computed based on the weighted distances between
corresponding points [32], are applied to the FE model to deform it iteratively, yielding the desired
feature point locations δ

r
f for optimization.

4.3. optimization-based inverse modeling
In the inverse modeling, the object is to minimize 1

2
δ

T
f δ

r
f . A convex optimization problem can be

formulated to minimize the feature error based on (6):

�(λg) = 1

2
||Wfg(xk)�λg,k − (δf ,k − δ

r
f ,k)||2 (10)

From (10), we can formulate a standard QP that can be efficiently solved

min
�λg,k

1

2
�λT

g,kQ�λg,k + cT
t �λg,k (11)

where Q = WT
fgWfg and ck = WT

fg(δf ,k − δ
r
f ,k). A solution for �λg can be found for reaching the minimiza-

tion of the feature errors.

Proposition 1. Given a reachable shape manually manipulated by surgeons, the optimal grasping point
can be uniquely determined if the number of feature points nf is equal to or larger than the number of
candidate grasping points ng [33].
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Figure 6. The results of the stress field in FEM simulation using (b) Abaqus and (c) real-time FEM.
(a) shows the initial shape, (d) demonstrates the displacement of the node to which the force is applied.

Proof. Let’s consider the shape error minimization problem of (10). For a set of grasping points �1 ⊆ �,
let �λ1

g be a solution that achieves a certain feature error ε1:

‖Wfg�λ1
g − (δf − δ

r
f )‖2 = ζ1 (12)

For any other set �2 ⊆ � with corresponding solution �λ2
g:

‖Wfg�λ2
g − (δf − δ

r
f )‖2 = ζ2 (13)

The difference between these solutions must satisfy:

Wfg(�λ1
g − �λ2

g) = ζ1 − ζ2 (14)

Due to the sparsity constraint of grasping points, �λ1
g can have at most k non-zero elements (where

k is the number of grasping points) and �λ2
g can also have at most k non-zero elements. Therefore,

(�λ1
g − �λ2

g) can have at most ng non-zero elements (since 2k ≤ ng). When nf ≥ ng and Wfg has full
column rank, therefore, the null space of Wfg contains only the zero vector. This implies ζ1 = ζ2 only if
�λ1

g = �λ2
g. �

We show our strategy in two steps to estimate the grasping points:

• Firstly, the candidate grasping points are predefined on the surface of the mesh. We make nf > ng

to achieve the requirement of Proposition 1.
• Then, the intensity of all candidate grasping points is computed at the same time by solving the

QP problem (11). The non-zero elements in �λg correspond to the indices of optimal grasping
points.

5. Simulation validation
5.1. Accuracy validation of FEM
We used Abaqus to validate the accuracy of our real-time FEM solver. Abaqus is one of the most widely
used and reliable commercial finite element analysis software packages, renowned for its accuracy and
robustness. For this purpose, a scene containing a liver model was constructed, as illustrated in Fig. 6
and Fig. 7. In both simulations, the Young’s modulus and Poisson’s ratio were set to 1000 MPa and
0.3, respectively, and both the Abaqus simulation and our real-time FEM solver utilized the same mesh,
consisting of 778 tetrahedral elements.

In the first test, a 100 n external grasping force was applied to node No.17 of the mesh. In the second
test, a rigid cylinder was moved upward to contact the liver, causing deformation. Figure 6(b) and (c)
show a comparison of the von Mises stress fields obtained from Abaqus and the real-time FEM solver,
while Fig. 6(d) presents the displacement of the grasping node over time. A similar trend can be seen in
Fig. 7(b) and (c) for the second test. These results demonstrate that our real-time FEM solver achieves
high accuracy, closely matching the results produced by Abaqus.

To further evaluate the computational efficiency of our solver, we recorded the runtime of both meth-
ods, as summarized in Table I. The results show that our real-time FEM solver significantly outperforms
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Table I. Comparison of computational time (s) between Abaqus
and real-time FEM.

Method Test1 Test2
Abaqus 2.8 11.8
Real-time FEM 0.011 0.049

Figure 7. The results of the stress field in FEM simulation using (b) Abaqus and (c) our method. (a) The
simulation scene shows a cylinder moving upward to contact the liver. (d) illustrates the displacement
of node No.17 in Abaqus and real-time FEM.

Figure 8. (a) and (c) are the objects used in simulation validation. (b) and (d) are the corresponding
FE models. The fixed points are defined with a cyan box.

Abaqus in terms of computational speed, while maintaining comparable accuracy. This demonstrates
the feasibility and effectiveness of our method for real-time grasping planning.

5.2. Simulation results
To evaluate the performance of the proposed method, comprehensive simulation experiments are con-
ducted. The targets for these simulations are generated using forward FEM simulations, where random
forces are applied to the boundaries of the objects to emulate manipulations performed by surgeons. The
optimal grasping points are then estimated using the proposed inverse FEM-based QP approach, and the
resulting deformation is evaluated.

Two deformable objects are used for the simulation: an arbitrarily shaped tissue (Pha01) and a liver
model (Pha02), as shown in Fig. 8. Pha01 consists of 2279 tetrahedron mesh elements, while Pha02 has
1330 elements. Both models are assigned material properties with Young’s modulus of 100 kPa and a
Poisson’s ratio of 0.3 to simulate soft tissue behavior. For each object, 20 candidate grasping points are
pre-defined on the surface. For the case of IOS, we evenly select 75 feature points on the surface. The
feature error ef and mean feature error es are used as performance metrics, defined as:

ef = ||δf − δ
r
f ||2, es = ef /nf (15)
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Figure 9. Simulation validation results of the tissue model. (a) The result of IOK case, (b) the result
of IOS. The red line indicates the feature error with the identified optimal grasping point (GP), and the
other lines represent the 3-first lowest feature errors from the candidate grasping points.

To validate the proposed method, forward FEM simulations are performed using the estimated grasp-
ing points, and the resulting feature errors are compared against those obtained using other candidate
grasping points.

The proposed method is then used to estimate the optimal grasping points based on the target feature
locations or point clouds, depending on the input type. For validation, forward FEM simulations are
carried out using the identified grasping points, and the resulting deformations are compared against the
target configurations. Additionally, the feature errors for all other candidate grasping points are com-
puted, with the three lowest feature errors recorded for comparison. This process is repeated for both
Pha01 and Pha02 across three trials for each input type. For each trial, different target deformations are
assigned. Figure 9 shows the result of Pha01 with Fig. 10(a) and (b) demonstrating the case of IOK and
IOS, respectively. Notably, ef and es with the optimal grasping point are the lowest in all trials of both
cases. A similar situation is seen in Fig. 10, which shows the result of Pha02. In a different structure,
the proposed method is also capable of identifying the optimal grasping point.

For comparison, a distance-based method is implemented to determine the grasping location by
identifying the largest distance between the initial shape and the target shape. We have proved that the
distance-based method will lead to sub-optimal results in some cases because it does not consider the
structural characteristics. To evaluate its performance against the proposed method, both approaches are
tested using the same target inputs of IOS with 10 trials and share the same candidate grasping point set.
The grasping points determined by each method are set as inputs of forward FEM simulations, and the
resulting deformations are analyzed. The result is shown in Fig. 11, which demonstrates that the pro-
posed method significantly outperforms the distance-based method. Specifically, our method achieved
an average of 54% and 93% reduction of mean feature error for Pha01 and Pha02 scenarios, respectively.

In dual-arm grasping scenarios, our method has been demonstrated to efficiently identify all grasp-
ing points in a single optimization step. To validate this capability, we conduct experiments using two
grasping points with the point cloud as input, enabling a direct comparison with the distance-based
method. For this evaluation, two random forces are applied to the FE model to generate the target point
cloud, and the grasping points are then determined by each method. The results are illustrated in Fig. 12.
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Figure 10. Simulation validation results of the liver model. (a) The result of the IOK case, (b) the result
of the IOS. The red line indicates the feature error with the identified optimal grasping point (GP), and
the other lines represent the 3-first lowest feature errors from the candidate grasping points.

Figure 11. Grasping location comparison with the proposed method and distance-based method.
Columns (a)–(d) show the pictures of example trials. (e) presents the average terminal mean feature
error (1: grasping position of the proposed method; 2: grasping position of the distance-based method.

Figure 12(a) demonstrates the computed �λg values from QP optimization, where the candidate grasp-
ing points with the highest and second-highest values are selected. Figure 12(b) shows the mean feature
error. The proposed method consistently identified grasping points near the locations where the forces
are applied, resulting in significantly lower mean feature errors compared to the distance-based method.
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Figure 12. Comparison validation between our method and distance-based method in dual-arm manip-
ulation scenario. (a) The planning result of our method, and the selected grasping points are shown in
red. (b) The mean feature error of manipulation results with grasping points planned by our method (in
red) and by the distance-based method (in blue).

6. Real-world experimental validation
To evaluate the proposed method in real-world scenarios, we conducted experiments involving a silicone
liver phantom. Unlike the simulation experiments, the desired feature locations and point clouds are
directly acquired from a depth camera. The experimental setup consists of four main components: a
laparoscopic gripper, an Intel RealSense D435 depth camera, a silicone liver phantom, and a 6-DOF
robotic manipulator. The depth camera is used for capturing the 3D point cloud of the deformed shape.
The gripper is mounted on the end-effector of the robotic manipulator, enabling precise execution of the
planned motions. The experimental setup can be seen in Fig. 1.

For the IOK experiments, colored markers are placed on the surface of the liver phantom to define
the target feature locations. The desired configurations are generated by manually deforming the liver
phantom while fixing the gripper at a random boundary position. The feature points are tracked using
a combination of color-based segmentation in RGB images and depth measurements. These tracked
positions are used as input for the inverse FEM-based optimization to determine the optimal grasping
point. Once the grasping point is identified, the gripper is guided to the selected position. The computed
motion �δg is applied to the robotic manipulator under position control. During deformation, the feature
points are observed to converge rapidly toward their desired locations, as shown in Fig. 13.

In the IOS experiments, the captured target shape is first registered with the FE model for 3D defor-
mation tracking and 75 uniformly distributed feature points are selected on the surface of the FE model
to represent the deformation. Since there is no constant direct correspondence between the feature points
and the observed point cloud. Hence, the Chamfer distance, which computes the average distance of each
point in one point cloud to the closest point in the other, is used to quantify the difference between the
target and achieved point clouds. The point clouds are continuously captured at intervals of 0.1s during
deformation, and the Chamfer distances are calculated to evaluate the accuracy of the deformation. As
shown in Fig. 14, the terminal Chamfer distances for three trials are 1.18 × 10−3 m, 3.62 × 10−3 m, and
1.29 × 10−3 m, demonstrating the high precision of the method in replicating the desired deformation.

We note that our proposed framework is broadly applicable across practical surgical scenarios, includ-
ing organ retraction, exposure of tumors or vessels, and training simulators with phantom tissues. A
representative use case is deforming an organ into a surgeon-specified configuration to expose an under-
lying lesion, a step toward fully automated robotic assistance. To quantify effectiveness, we employ
feature error and Chamfer distance to assess how closely the manipulated tissue matches the desired
target shape; in practice, target shapes can be specified by the surgeon according to clinical needs.
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Figure 13. Real-world experiment of manipulation in case of IOK. Column (a) shows the result of the
planned grasping point (in green). Column (b) shows the deformation control result with the planned
grasping point. The feature points are marked in red and blue circles. Column (c) shows the feature error.
In each trial, the target deformation is different, while the set of candidate grasping points remains the
same.

7. Conclusion
In this paper, we propose an efficient grasping point selection framework for 3D soft tissue manipu-
lation based on inverse FEM. By formulating the grasping task as a QP problem, our method enables
the simultaneous identification of multiple optimal grasping points while accounting for the complex
mechanical coupling within tissue structures. The proposed framework supports key points and point
cloud inputs, providing flexibility for diverse surgical scenarios. Extensive simulation studies on differ-
ent models demonstrated the effectiveness of our approach in selecting optimal grasping points in both
single- and dual-arm manipulation tasks. Real-world experiments on a silicone liver phantom further
validate the sim-to-real applicability and effectiveness of the framework.

There are several limitations to the current work. First, dual-arm manipulation is validated only in
simulation, and real-world experiments are conducted on silicone phantoms. Second, the method relies
on a quasi-static deformation assumption and may underperform for rapid or highly dynamic tissue
motions. Third, the framework depends on an RGB-D camera for feature detection and has been eval-
uated only in open-cavity settings; extending it to minimally invasive/cavity surgery using endoscopic
imaging remains future work. Looking ahead, we plan to handle dynamic tissue behavior by incorporat-
ing real-time feedback control and exploring integration into clinical surgical workflows. Additionally,
experiments with in-vivo phantoms will be conducted to further validate the approach.
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Figure 14. Real-world experiment with point cloud input and corresponding chamfer distance. We
conduct 3 different trials shown in (a)–(c). In each trial, the target deformation is different, while the set
of candidate grasping points remains the same. The planned grasping point is deployed in a real liver
phantom, and the terminal point clouds are shown. The green dot indicates the grasping point. Point
clouds in green and blue represent the target and terminal point clouds in deployment.
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