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Introduction

A large number of results are available on the lattice of subvarieties of the
variety of metabelian groups. When considering metabelian ^-groups (for odd p),
the immediate division is between groups of nilpotency class less than/?, and those
of class at least p. The first case was dealt with in some detail in [1 ], and this paper
extends the results to the next interesting cases, classes p and p +1. The main re-
sults are stated in Theorems 2 and 4, which give the basis laws for certain varieties,
and 3 and 5, which assert the existence of specific generating groups for these
varieties, and hence their non-trivial existence. The notation, and the essential
parts of the logic, are as in [1]; for the purposes of this paper, the following modi-
fication of Lemma 1.1 of [1], and also the ring-of-integer operations used in its
proof, are together dubbed the 'Stirling manipulation':

'Let 58 be a variety ofp-groups, with the law Y\l=oWk = \, n < p, where the
Wk are distinct commuting words. If there is a set of valid transformations {4>;},
X= 1, 2, • • • n+1 such that (j)x(Wk) = Wf, then Wk = 1 is a law in SS for each
k: k = 0, 1, 2, • • •«.'

Certain other modifications can be made in the manner in which the properties
of the Stirling numbers can be exploited, and they are 'obvious' when the ap-
propriate arrays are written down. Consequently, these details will not be given in
the proofs.

1. Laws in metabelian p-groups of "large class"

Results obtained by N. D. Gupta and M. F. Newman [2] (on laws with re-
peated entries in commutator words) can be extended to the more general results
below. These include some of the results of H. Meier-Wunderli [3], but the de-
monstration of the inclusion is left.

THEOREM 1. Let G be a metabelian p-group of class c = p + m where m 2: 0,
and let the exponent of yc(G) be p"c, where ac is minimal. Then no law of the form

(xi,n2x2,(n1-l)x1,n3x3,--; ntxt)
p" = 1
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will hold in G, with \i < ac, the t variables being distinct, Y!i=\ ni = c> and oil
nt > 0, with t g 3 when m = 0, t ̂  m+2 when m ¥= 0.

(The proof is almost the same as that for the more special Lemma 2 of [1],
the restriction on t being sufficient to allow use of the Stirling manipulation, so
the details are not given.) By extending the methods of 2.1 of [1], it is possible to
obtain:

LEMMA 1.1. Let Gbea metabelian p-group of class c; ifG has the law inn ^ s + 2
variables:

(x, my, vu v2, . . ., t>s)
p* = 1, m<p+l, m+l + c = c, s^O

(where none of the vi is x or y, but the vt need not be distinct) then G also has the
law in n+l variables: (x,y, (m—l)z, vlt • • •, vsf

m + 1)p" = 1, and in particular, if
p does not divide (m+l), the law: (x,y, (m — l)z, vt, • • •, vsy = 1.

One further lemma is useful:

LEMMA 1.2. Let G be a metabelian p-group of class c i^ p+\. Then if G has
the law

it follows that every two-generator group H in Var (G) has yc(H) of exponent at
most p*.

PROOF. Substitute xy for y in the given law, and use the given law itself, to
obtain

C\\(x,y,{k-i)y,{c-l-k)xjl-2ir = 1.

Apply the Stirling manipulation using the substitution of yk for y as the 'valid
transformation'. Since c ^ p+l, then immediately

(x, ky, ( c - l - / c ) x ) p " = 1, k = 1, 2, • • •, c - 1 .

The immediate consequences of the above results for a metabelian />-group
G are then:

(i)IfG is of class p, then (x, (p—\)y)v" — 1 implies (x, (p — 2)y, z)p" + 1 = 1 which
implies yp(G) is of exponent at most p11*1.

(ii) IfG is of class p + \, then (x,pyY" = 1 implies (x, (p—l)y,z)p" = 1 which
implies yp+1(G) is of exponent at most p".

Using (i) and (ii) together with Theorem 1 and Lemma 1.1

(iii) / / Gfyp+1(G) has both the laws (Xl,x2,--- xpj»= 1 and (x, {p-\)y)v*p~l

= 1, ap and ap— 1 being minimal, then G/yr+1(G) has the law (x1, x2, • • •
XrY"--1 = 1 for r* p+l.
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Unfortunately, it appears that the minimal number of variables, t, needed
to ensure that:
'any c-weight commutator law

(xl>n2x2,(n-l)x1,n3x3,- • •, ntx,)p" = 1 in G/yc+1

implies that yc(G) has exponent p"'
might well be given by Theorem 1 and some easy extensions on special word-
forms. No attempt will be made to settle the question here.

2. The lattice of varieties of class p

The inductive steps to prove that certain laws form part of a 'basis', used to
prove Theorem 3 of [1 ], are valid for class p, as long as we allow for the possibility
of (x,(p-l)yf"'~1= 1 and (xlt x2, • • ; x / ' = 1 both being true, with ocp

being minimal.
The exponent of the variety has a bearing on the existence of the two-variable

law. Although results from another article [4] are used to establish the lemma
below, the lemma itself properly occurs in this context.

LEMMA 2.1. Let G be a metabelian p-group of class p and exponent p". Then
every two-generator group H in Var(G) has yp{H) of exponent at most p"~l.

PROOF. HjHp is of exponent p, and hence has (x, (p — l)y) = 1 as a law, ([3],
[4]), and so (x, (p-l)y) e H" for all x,yeH. But H" has exponent/>" ~x at most,
by the elementary result that (ap", bp") = S*", Se y2((a, ^))> m a n v metabelian
p-group of class less than 2p, and elementary calculation.

The strategy to establish a basis for the laws of a variety of class p is as fol-
lows; we note first that (from its proof) the inductive lemma 5 of [1 ] applies to the
free group generating the variety, thus allowing certain laws in commutator words
of weight < p to be elements of a basis, so our concern here is with p-weight com-
mutator laws. If (JC, (p-l)y)p"p = 1 but (x, (p-1 )yfP'1 # 1, we have no trouble,
because exactly the same technique applies as for the small-class case. The real
concern then lies with the situation where

( x , 0 > - l > r = 1 and (x,(p-2)y,zY"+l = 1,

both indices being minimal, and ap = fi + l. Since the first law implies the second,
we need to show that any/?-weight commutator law follows from (x, (p— l)y)p" = 1,
irrespective of the number of distinct variables. Lemma 4 of [1] (which was ade-
quate for the small-class case) is clearly insufficient, since it is part of an induction
assuming that / i ^ a c , The result we need is provided in the following three lemmas:

LEMMA 2.2. Let G be a metabelian p-group of class p, in which the law 3? :
(x, (p-l)y)p" = 1 holds. Then any law in G of the form [!• ^i = l> where the Lt
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are commutator words of weight p, each of which contains no more than three distinct
variables, is a consequence of the law =§?.

LEMMA 2.3. Let al, a2, • • •, an be a partition ofp, such that each at > 0, and
at+ • • • +an = p. Let G be a metabelian p-group of class p in which the law
& : (x, (p—\)y)p" = 1 holds. Then one of the consequences of3? in G is a law in n
distinct variables xl,x2,

m ' m,xB, of the form:
n-ln
i = 1

in which no /?; is divisible by p, and further, p does not divide I"lJ j?;.

LEMMA 2.4. Let G be a metabelian p-group of class p, in which

J?:(x,(p-l)yy»=l

is a law. Then any law in G in p-weight commutator words, in n ^ 3 variables, can
be derived from =£?.

The last Lemma follows from the previous two, which are proved as follows:

PROOF OF 2.2. We assume the non-trivial case ap = ^ + l.Inthelaw]^[;Z,j = 1,
select any three variables, say x, y, z, and set the rest to 1. The resulting law can be
written in 'basic' commutator form, according to the ordering x 2: y ^ z, and then
re-collected into the form flk=o ^it = 1> where Wk is a product each of whose
factors has precisely k entries of z. By applying the Stirling manipulation, we obtain
each Wk = 1. Wo = 1 and Wp^l = 1 are each consequences of J?, by 1.2 and
by the proof of 1.2 of [1]. Taking any Wm = \,m # 0, m ¥= p— 1, we can write it
in the form n * = o Vm,k — 1> where each Vmtk is a product of commutators with
m entries of z and k entries of x; the Stirling manipulation then gives each
Vm>k = 1 as a law, Fm>0 = 1 and VUp_1 = 1 being consequences of =£?. We can
rewrite each remaining case in the form

Vm, „ = (x, z, y, (a - l)x, (b - l)y, (m - l)z)^(y, z, x, (a - l)x, (b - l)y, (m - l)z)"«
= 1

with a # 0, b # 0, m # 0, and where q is the partition a, b, m of p. By putting
x for z, we obtainp"\yq by the minimality of \x, and similarly /?"!/?,,. If/>"+1|y, then
P" + 1\Pq and Vm>a= 1 is an immediate consequence of =£?. The only case left to con-
sider is when yq = yp", {St = ft/, y # 0, P # 0 (modp). By substituting yz for y, xz
for x, expanding, and using the Stirling manipulation twice we can arrive at the law:

V : (x, z, y, (p^zf^iy, z, x, (p-3)z)a»* = 1.

We can combine this with one of the consequences of 3? (see, for example, the
proof of 2.1 of [1]) to show (x,z, y, {p-3)z)w-ay)p" = 1 and hence bfi-ay = 0
(mod/?) by Theorem 1. Now another of the consequences of 3? (see [1]) is the set
of laws
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(x, z, y, (p-2-k)y, (k-l)zj"k ')p\y, z, x, (p-2-k)y, (k-l)z)"("fc^ = 1,

for k = 0, 1, • • • p — 2. If we select p — 2 — k = b—l, and raise to the power t,

where t( ^ I = 1 modp, substitute xz for z, and apply the Stirling manipulation,

we obtain, as a consequence of =S?,

(x, z, y, (a - \)x, (b - \)y, (m - l)z)Mp\y, z, x, (a - l)x, (b - l)y, (m - l)z)NpM = 1

where

= (p-b-l\(p-b-a-b(a-i)\

\ a-\ 1\ p-b-1 /

(p-b-l\
= a \ mod p

\ a — I /

M = (Pb2\ - b (
\ a-\ I \ a-2

and

Since P f l _ i ) ^ 0 mod/?, we have now

(x, z, y,(a-l)x,(b- l)y, (m - \)z)a'\y, z, x, (a - l)x, (b - l)j;, (m - \)zf = 1

as a consequence of =£?. Since, however, fi/y = a/b (modp), the law Fm>0 = 1
can be derived from this. We have now, in fact, shown that the original word
]~J Z-j is a product of words each of which is 1 as a consequence of =§?.

PROOF OF 2.3. (ap = fi + l). The case n = 3 being true by the last part of the
proof in the previous Lemma, take as inductive assumption the truth of 2.3 for
n—I variables, n > 3: we have that J ? implies a law

Y[(xi,xn,(an_1+an-l)xn,an_2xn-.2,---,alxiy"*' = 1
i= 1

with no yt divisible by/?, and ]£, yt not divisible by p. By putting xn_jXn for xn,

writing r for an^1+an— 1, expanding, and using the Stirling manipulation, we
arrive at the law in the statement of 2.3, with j3; = T^M Vfforl ^ / ̂  n - 2

and/?„_!= - (a . ) I * -
The proof of Lemma 2.4 is by induction on n: considering any law of the form

mentioned, we proceed in a manner similar to the proof of 2.2, using the Stirling
manipulation and 2.3 at the appropriate places. The details are tedious but straight-
forward, and are therefore omitted.

We now have all the necessary results to establish a basis for the laws of any
variety of metabelian /7-groups nilpotent of class p. The proof is simply a minor
re-wording of the corresponding proof in [1], using 2.4 when discussing commuta-
tor laws of weight p. Hence:
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THEOREM 2. Any variety of metabelian p-groups of class p ^ 3 and finite
exponent p*1 has as a basis for its laws, either the set S:

( ((x, y), (w, v)) = 1, (Xj, x2, • • ; Xp+i) = 1, x""1 = 1,

(x,(i-l)y)^' = 1, i = 2, 3, ••;p-\

(x, (p — 2)y, zfa" = 1 (which is equivalent to (xl,x2,- • •, xp)
p1"" = 1)

or the set S together with the law L:

L : ( x , ( p r l

for some suitable set of indices a;, «x ^ a2 ^ • • • 2; ap > 0, a// indices being mini-
mal.

In case a t = a2 = • • • = ap, Âe se? 5 implies the law L.
The actual existence of such varieties is not certain until we have classes of groups
which generate them. For the set S with at > ap, and without the law L, a two-
generator group which will generate the variety is easily constructed, as in [1], so
each such variety is generated by its reduced-free group of rank two. For at = ap,
or for at > ap with S and L, the existence of the variety is given by Theorem 3
below. With the existence settled, the lattice of such varieties can be described by
the minimal indices in the basis laws, it is distributive, and the lattice of varieties
of metabelian/7-groups of class < p can be included in it with the same description
as in [1].

THEOREM 3. Given a set of indices ax 2; a2 ^ • • • ^ a p > 0 , p ^ 3, there
exists a metabelian p-group G of precise class p which has, as a basis for its laws,
the set S of Theorem 2, together with the law

all indices being minimal. G is on 3 generators.

PROOF. By construction; the recipe follows. Take 2(p— 1) cyclic groups (Bty,
<C;>, 1 ^ig.p-1, of orders p"*1 for 1 £ i < p-1, and p"p~l for / = p-\.

Take {^) cyclic groups <g;y> with i ^ 1, j ^ 1, i+j ^ p, «2o> o f o r d e r P"+J

for i+j < p, (Qij} of order p*p~l for i+j = p. Take ((p—l)/2)2 cyclic groups
<M0->, l | i g (/»-l)/2, l g ; ^ (p-l)/2 of orders p"'+J + 1. Take the direct
product of all these cyclic groups, and name it G". Then extend G' by the cyclic
group <a> of order p"3 by using the automorphism

Bt = B,, C° = Ct, M"iJ = MiJ

Qij = QijM^2 unless either i or j is > , in which case Qij = Qu.
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Then extend the group <cr, (?'> by a cyclic group <ft> of order p"2 by using the
automorphism

a" = aBt, Bb = BiBi + 1 for 1 ^ i < p-l, Bb
p_1 = Bp-t

C\ = Q M f 1 for i = 1, 2, • • • ^ , Cb = Q for i > V—

Mbij = MuMi+Uj for i < V—, Mbj = Mu for i ^ ^ ^

G?j = QtjQi+i.j for i + j < p, Qij = Qu for i + j = p.

Then extend the group <a, ft, G'> by a cyclic group <c> of order p"1 by using the

automorphism

ac =

B< =

C? =

Qh-

- BtMn

- ctcH

= QuQ

bc = bQu,

for 1 < i <

.! for 1 ^ i

Vf.-.y+i for 1

IiJ + 1 for i+J

. P~
' 2

< P~

j < p

1 c
' i

1 z^1^
~ •*-> p ~

p-\

2 '

, Qh =

• B fnr i --
2

1 = C p - t

..(P-D/2

2iy for i + j = p.

The resulting group is <a, ft, c, G'>, and in fact is <a, ft, c>, the derived group being
the direct product named G'. If at = a2, this group will do for G; if a t > a2,
take the direct product of this group with a cyclic group <z> of order p"1, and take
G as the subgroup <az, ft, c>. The verification that the group so constructed does
have the required properties is straightforward.

3. The lattice of varieties of class p + 1

Nearly all the inductive steps needed to prove that a certain set of laws forms
a 'basis' are valid for class (p +1) as well as for class p or less, as can be seen from
their proofs. We need, however, a supplement to Lemma 5 of [1], to allow the
particular step from laws in class ^ p to laws in class p +1. This is provided by:

LEMMA 3.1. Let the variety 95 of metabelian p-groups contain the reduced-free
group F. Then if(x,(p-\)y)^ = \and(x,(p-2)y,zy* = 1 arelawsinF/yp + 1(F),
so also are they laws in F/yp+2(F).

We note (by Theorem 1 and Lemma 1.1) that (x,py)pli = 1 implies (x1 ; x2,
• • • xp+1)pM = 1, so that the divisibility arguments of Lemma 5 of [1] will apply;
Lemma 4 of [1] will allow induction on the number of variables in deriveable laws,
as long as we provide the starting point by Lemma 3.2 below. (That Lemma 4 of
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[1] is valid for c = p+l can be established by using the Stirling manipulation
instead of the argument about the non-singularity of a certain matrix in its proof.)
The starting point is:

LEMMA 3.2. Let 33 be a variety ofmetabelian p- groups of class p+l, with the
law (x,pyy" = 1, \i minimal. If there is any law of the form

in 33, then (x, ky, (p-k)xfk = 1, k = 1, 2, • • • p, are all laws in 93, each fik is
divisible by p", each of these laws is a consequence of(x, py)p* = 1, and further, any
law of the form (x, ky, (p — k)xf = 1 implies (x, py)n = 1.

Lemma 4 of [1] then implies that all (p+1)-weight commutator laws in 33
follow from (x, py)"" = 1.

Thus, by the same logic as in the proof of Theorem 3 of [1 ] and Theorem 2
of this, we have:

THEOREM 4. Any variety ofmetabelian p-groups of class p+1 and finite exponent
p"1 has as a basis for its laws either the set S:

((x, y), (u, v)) = 1, (xx , x 2 , • • • xp+2) = 1, x"*' = 1

S
(x, (p-2)y, zf ' = 1 (equivalent to (xl, x2, • • ; xpf" = 1)

or the set S together with the law L:

L: (x,(p-l)y)>"1'-1 = 1

for some suitable set of indices a,-, c^ 2: a2 = ' ' ' = ap+i > 0> a^ indices being
minimal.

In the case that L is present, ap + 1 £ ap— 1, and in the case that al = a2 = • • •
= ap, L is present.

Again the question of the existence of such varieties must be considered, but
in this case the construction has already been done: for S without L (and hence
ap < aj) the construction of a two-generator generating group as in [1] proceeds
even with the restriction eased to c ^ p +1 rather than c < p, and for S with L
(including xl = ap) the construction for Theorem 3 extends easily to a class p+1
group by adjoining two more cyclic groups <5p> and <Cp> of orders p"p + ' (ap+1

< <xp) in the direct product to give G', and extending the automorphisms in the
obvious manner. Thus:

THEOREM 5. For each possible variety mentioned in Theorem 4, there is a single
group which generates it; the group is on 2 or 3 generators, depending on the ab-
sence or presence of L.
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Again, the lattice of such varieties is given simply by considering the minimal
indices in the basis laws; it is distributive, and in it can be included the lattice of all
varieties of finite-exponent metabelian /^-groups of class ^ p + l. The varieties are
simply named as [at, a2, • • • ap, q, a p + 1 ] , with a t ^ a2 ̂  • • • ^ ap ̂  ? ̂  ap + t

^ 0, with ap ^ <7 ^ ap— 1, and the restrictions that q = ap— 1 whenever ax = ap.
I fa p + 1 = 0, we interpret the variety as of class/?; if ac + 1 = ac + 2 = • • • = ap = 0,
we interpret the variety as of class c:

(>! , • • • , <?, o t p + 1 ]v [a ; , - - - , 4', ap + 1 ]

= [max (a t , a\), • • ; max(g, q), max (ocp+1, <xp+1)]

[>! , - •• , g , a p + 1 ] A |> ; , •••,<?', a p + 1 ]

= [min ( a t , a;), • • •, min (q, q'), min (a p + 1 , a p + 1 ) ] .

It remains to establish Lemmas 3.1 and 3.2.

PROOF OF 3.1. Take first the law (x, (p-\)y)pA = 1 in F/yp+1(F). If this is not
a law in F/yp+2(F), there must be some relation

amongst a subset {gt, g2, • • •} of the free generators of F, where the Cn are com-
mutator words in gt, g2, • •

M, of weight at least p + 2. This relation leads to a law
in F, hence a law in F/yp+2(F), by reading x for gt ,y for g2,z for # 3 , • • •. Setting
every variable, except x and y, equal to 1, we then have a law

(x,(P-l)yf- = fl(x,y,(k-l)y,(p-k)xYk

k=l

in F/yp+2(F). (We note that then (x, (p-l)y, z)pA = 1, so the exponent of
yp+i(F/yp+2(F)) is at most / / . ) By writing the law in the form n£=i ^ t = *>
where ^ ^ = (x, {p-^yY^x, (p-l)y, xf'-\ but PFk = (x,y, (k-l)y,
(p — k)x) for k =£ p—\, and by applying the Stirling manipulation, we derive
Wp

p = 1 and W^S^- Ws
p = 1, where S is a Stirling number divisible by p. Thus

Wp-! = 1 is a law in F/yp+2(F). Applying the Stirling manipulation again, (this
time, on the number of x-entries), we have the required result. The result for the
law (x, (p — 2)y, z)p" = 1 is obtained similarly, but requires extra collection steps
for the three variables involved.

PROOF OF 3.2. That each factor in the given law is identically 1 is a simple
consequence of the Stirling manipulation, and the involvement of Stirling numbers
divisible by p. This gives p"\p'k by the minimality of n. That 'each of these laws is
a consequence of (x, py)"" = V is simply Lemma 1.2. That '(JC, ky, (p — k)x)n = 1
implies (x,py)n = V is a simple application of the Stirling manipulation after
substitution of xy for y.
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