DIMENSION AND LOWER CENTRAL SUBGROUPS
OF METABELIAN p-GROUPS

NARAIN GUPTA* AND KEN-ICHI TAHARA

To the memory of the late Takehiko Miyata

§ 1. Introduction

It is a well-known result due to Sjogren [9] that if G is a finitely generated p-group then, for all $n \leq p - 1$, the $(n + 2)$-th dimension subgroup $D_{n+2}(G)$ of G coincides with $\gamma_{n+2}(G)$, the $(n + 2)$-th term of the lower central series of G. This was earlier proved by Moran [5] for $n \leq p - 2$. For $p = 2$, Sjogren’s result is the best possible as Rips [8] has exhibited a finite 2-group G for which $D_4(G) \nsubseteq \gamma_4(G)$ (see also Tahara [10, 11]). In this note we prove that if G is a finitely generated metabelian p-group then, for all $n \leq p$, $D_{n+2}(G) \subseteq \gamma_{n+2}(G)$. It follows, in particular, that, for p odd, $D_{n+2}(G) = \gamma_{n+2}(G)$ for all $n \leq p$ and all metabelian p-groups G.

§ 2. Notation and preliminaries

While the central idea of the proof of our main result stems from Gupta [1], with a slight repetition, it is equally convenient to give a self-contained proof using a less cumbersome notation.

Let $\mathfrak{i} = ZF(F - 1)$ denote the augmentation ideal of the integral group ring ZF of a free group F freely generated by $x_1, x_2, \ldots, x_m, m \geq 2$. For a fixed prime p, let $(p^{\alpha_1}, p^{\alpha_2}, \ldots, p^{\alpha_m})$, $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_m > 0$ be an m-tuple of p-powers, and let $S = \langle x_1^{p^\alpha_1}, x_2^{p^\alpha_2}, \ldots, x_m^{p^\alpha_m}, F' \rangle$ be the normal subgroup of F so that F/S is abelian. Set $\bar{s} = ZF(S - 1)$, the ideal of ZF generated by all elements $s - 1, s \in S$. For $1 \leq n \leq p$, we shall need to investigate the structure of the subgroup $D_{n+2}(\bar{s}) = F \cap (1 + \bar{s} + \bar{s}^{p+2})$ of F which consists of all elements $w \in F$ such that $w - 1 \in \bar{s} + \bar{s}^{p+2}$. It is clear that $[F', S]\gamma_{n+2}(F) \subseteq D_{n+2}(\bar{s})$.

Let $w \in D_{n+2}(\bar{s})$ be an arbitrary element. Then $w - 1 \in \mathfrak{i}$ and it

Received July 25, 1984.

* Research supported by N.S.E.R.C., Canada.
follows that \(w \in F' \). Thus, modulo \(F'' \), using the Jacobi identity, we may write \(w \) as
\[
(1)\quad w \equiv w_1 w_2 \cdots w_{m-1},
\]
where
\[
(2)\quad w_i = \prod_{j=i+1}^m [x_i, x_j]^{d_{ij}}
\]
and \(d_{ij} = d_{ij}(x_1, x_{i+1}, \ldots, x_m) \in \mathbb{Z}F \). For \(i = 1, 2, \ldots, m \), define homomorphisms \(\theta_i : \mathbb{Z}F \to \mathbb{Z}F \) by \(x_k \mapsto 1 \) if \(k \leq i \), \(x_k \mapsto x_k \) if \(k > i \). Since the ideals \(\mathfrak{j}, \mathfrak{s} \) are invariant under \(\theta_i \)'s, it follows, using \(\theta_1, \theta_2, \ldots, \theta_{m-2} \) in succession, that if \(w - 1 \in \mathfrak{j} + \mathfrak{s} + \mathfrak{i}^{n+2} \) then \(w_i - 1 \in \mathfrak{j} + \mathfrak{s} + \mathfrak{i}^{n+2} \) for each \(i \). For each \(k = 1, 2, \ldots, m \), define
\[
(3)\quad t(x_k) = 1 + x_k + \cdots + x_k^{p^{a_k}-1}.
\]
Then
\[
(4)\quad t(x_k) = \sum_{i=1}^{p^{a_k}} \left(\sum_{j=1}^{m} \binom{p^a - 1}{j} \right) (x_k - 1)^{j-1} \\
\equiv p^{a_k} + \left(\sum_{j=1}^{m} \binom{p^a - 1}{j} \right) (x_k - 1)^{p-1} \mod (\mathfrak{s} + \mathfrak{i}^p).
\]
We can now prove,

Lemma 2.1. Let \(w_i \) be as in (2) with \(w_i - 1 \in \mathfrak{j} + \mathfrak{s} + \mathfrak{i}^{n+2} \) and \(n \leq p \). Then, modulo \(\mathfrak{s} + \mathfrak{i}^p \), \(d_{ij} \equiv t(x_i) a_{ij} \equiv t(x_i) b_{ij} \), where \(t(x_i) \), \(t(x_j) \) are given by (3), \(a_{ij} \in Z \) and \(b_{ij} \in \mathbb{Z}F \). Moreover, if \(\alpha_i = \alpha_j \), then \(b_{ij} \in Z \).

Proof. Expansion of \(w_i - 1 \) shows
\[
(5)\quad \sum_{j=0}^{m} ((x_i - 1)(x_j - 1) - (x_j - 1)(x_i - 1)) d_{ij} \in \mathfrak{j} + \mathfrak{s} + \mathfrak{i}^{n+2}.
\]
Since \(\mathfrak{j} \) is a free right \(\mathbb{Z}F \)-module on \(x_1, x_2, \ldots, x_m \), it follows from (5) that, for all \(j = i + 1, \ldots, m \),
\[
(x_i - 1)(x_j - 1) d_{ij} \in \mathfrak{j} + \mathfrak{s} + \mathfrak{i}^{n+2},
\]
which yields
\[
(6)\quad (x_i - 1) d_{ij} \in \mathfrak{s} + \mathfrak{i}^{n+1}
\]
and, in turn,
\[
(7)\quad d_{ij} \in t(x_i) \mathbb{Z}F + \mathfrak{s} + \mathfrak{i}^p,
\]
where \(t(x_i) \) is given by (3). Since \(n \leq p \), (4) induces that, for \(k \geq i \),
\[
t(x_i)(x_k - 1) \equiv p^{e_i - a_k} p^{a_k}(x_k - 1) \equiv 0 \mod (\mathfrak{s} + \mathfrak{i}^p).
\]
Thus (7) implies \(d_{ij} \equiv \)
(x_i - 1) \sum_{j=i+1}^{m} (x_j - 1) d_{ij} \in \bar{s} + \bar{t}^{n+1}.

and, as before,

\sum_{j=i+1}^{m} (x_j - 1) d_{ij} \in \bar{s} + \bar{t}^{n+1}.

Using the homomorphisms \(\theta_{i+1}, \ldots, \theta_{m-1} \) in turn, gives

\begin{equation}
(x_j - 1) d_{ij} \in \bar{s} + \bar{t}^{n+1}
\end{equation}

for all \(j = i + 1, \ldots, m \), since \(d_{ij} \equiv t(x_i) a_{ij} \mod (\bar{s} + \bar{t}^{n}) \) with \(a_{ij} \in \mathbb{Z} \). Thus

\begin{equation}
d_{ij} \in t(x_i)ZF + \bar{s} + \bar{t}^{n},
\end{equation}

and if \(\alpha_i = \alpha_j \) then, as before, \(d_{ij} \equiv t(x_i) b_{ij} \mod (\bar{s} + \bar{t}^{n}) \) with \(b_{ij} \in \mathbb{Z} \). This completes the proof of the lemma.

Now, let \(\frac{\partial}{\partial x_k} d \) be a free partial derivative of \(d \in ZF \) with respect to \(x_k \). Then we prove,

Lemma 2.2. \(\frac{\partial}{\partial x_k} d_{ij} \in p^{\alpha_i}ZF + \bar{s} + \bar{t}^{n-1}, i < k, \) and

\[\frac{\partial}{\partial x_i} d_{ij} \in \begin{cases} p^{\alpha_i}ZF + \bar{s} + \bar{t}^{n-1} & \text{if } \alpha_i = \alpha_j \\ p^{\alpha_i}ZF + p^{\alpha_i-1}(x_i - 1)p^{\alpha_i-1}ZF + \bar{s} + \bar{t}^{n-1} & \text{if } \alpha_i > \alpha_j. \end{cases} \]

Proof. We have

\[\frac{\partial}{\partial x_k} (\bar{s}) \subseteq \bar{s} + p^{\alpha_i}ZF; \quad \frac{\partial}{\partial x_k} (\bar{t}^{n}) \subseteq \bar{t}^{n-1}. \]

Thus since \(d_{ij} \equiv t(x_i) a_{ij} \mod (\bar{s} + \bar{t}^{n}) \) with \(a_{ij} \in \mathbb{Z} \), it follows that

\[\frac{\partial}{\partial x_k} d_{ij} \equiv 0 \mod (p^{\alpha_i}ZF + \bar{s} + \bar{t}^{n-1}). \]

By (4) and \(d_{ij} \equiv t(x_i) a_{ij} \mod (\bar{s} + \bar{t}^{n}) \), we have

\[\frac{\partial}{\partial x_i} d_{ij} \equiv a_{ij} \left(\frac{p^{\alpha_i}}{p} \right) (p - 1)(x_i - 1)p^{\alpha_i-2} \mod (p^{\alpha_i}ZF + \bar{s} + \bar{t}^{n-1}). \]

Since \(p^{\alpha_i-1} \) divides \(\left(\frac{p^{\alpha_i}}{p} \right) \), \(\frac{\partial}{\partial x_i} d_{ij} \equiv 0 \mod (p^{\alpha_i-1}(x_i - 1)p^{\alpha_i-1}ZF + p^{\alpha_i}ZF + \bar{s} + \bar{t}^{n-1}). \) If \(\alpha_i = \alpha_j \), then \(b_{ij} \in \mathbb{Z} \), and we may differentiate \(d_{ij} \equiv t(x_i) b_{ij} \) with
respect to x_i to obtain the desired result.

Next, we need to expand $[x_i, x_j]^{d_{ij}} - 1$ modulo $(n^{2\delta} + n^{\nu + 2})$. We first observe,

$$
[x_i, x_j]^{d_{ij}} - 1 = x_i \cdot x_j - 1
$$

Thus we have,

$$
[x_i, x_j]^{d_{ij}} - 1 \equiv ([x_i, x_j] - 1)d_{ij} - \sum_{k=1}^{m} (x_k - 1)([x_i, x_j]^{d_{ij}} - 1).
$$

Now, modulo $(n^{2\delta} + n^{\nu + 2})$

$$
([x_i, x_j] - 1)d_{ij} \equiv (x_i - 1)x_j - (x_j - 1)(x_i - 1)d_{ij}
$$

Finally, using (6) and (8), we have, for any x_a, mod $[F', S]_F$,

$$
[[x_i, x_j]^{d_{ij}}, x_a] \equiv [x_i, x_j, x_a]^{d_{ij}}
$$

Thus we have,
LEMMA 2.4 (Gupta [2]). \([D_{n+3}(\text{fg}), F] \subseteq [F', S] r_{n+3}(F)\) for all \(n \geq 0\).

This completes our preliminary discussions.

§ 3. The main theorem

Let \(G\) be a finitely generated metabelian \(p\)-group. Then \(G\) admits a presentation of the form

\[
G = F/R = \langle x_1, x_2, \ldots, x_m; x_1^{\alpha_1}, x_2^{\alpha_2}, \ldots, x_m^{\alpha_m}, \gamma_1, \gamma_2, \ldots, F' \rangle,
\]

where \(\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_m > 0\) (see for instance [4], page 149). Let \(S\) be the normal subgroup of \(F\) generated by \(x_1^{\alpha_1}, x_2^{\alpha_2}, \ldots, x_m^{\alpha_m}\) and \(F'\), then it follows that \(S' \subseteq R \subseteq S\). In terms of the free group rings, the dimension subgroup \(D_{n+2}(G) = D_{n+2}(x)/R\), where \(\tau = ZF(R - 1)\) and \(D_{n+2}(\tau) = F(1 + r + \cdots + \gamma^{n+2})\). Then \(Rr_{n+2}(F) \subseteq D_{n+2}(\tau)\). If \(z \in D_{n+2}(\tau)\), then \(z - 1 \in \tau + \gamma^{n+2}\) implies that \(zr - 1 \in \tau + \gamma^{n+2}\) for some \(r \in R\). It follows that \(D_{n+2}(G) = r_{n+2}(G)\) if and only if \(D_{n+2}(\tau) = F(1 + \tau + \gamma^{n+2}) \subseteq Rr_{n+2}(F)\). We now prove our main result.

THEOREM 3.1. \(D_{n+2}(\tau) \subseteq Rr_{n+2}(F)\) for all \(n \leq p\).

Proof. Let \(w \in D_{n+2}(\tau)\). Then \(w - 1 \in \tau + \gamma^{n+2} \subseteq \delta + \gamma^{n+2}\), and by Lemma 2.1,

\[
w \equiv \prod_{1 \leq i < j \leq m} x_i x_j d_{ij}^{\delta_{ij}} \mod F',
\]

where \(d_{ij} \equiv t(x_i)a_{ij} \equiv t(x_i)b_{ij} \mod (\delta + \gamma)\). Now, \(w - 1 \in \tau + \gamma^{n+2}\) implies \(w - 1 \in \tau + \gamma^{n+2} \subseteq \delta + \gamma^{n+2}\). Then it follows by Lemma 2.3, that

\[
w - 1 = \sum_{k=1}^m (x_k - 1)(y_k u_k^{-1} - 1) \equiv 0 \mod (\tau + \gamma^{n+2}),
\]

where

\[
y_k = \prod_{i < k} x_i \prod_{k < j} x_j d_{ij}^{\delta_{ij}} , \quad u_k = \prod_{i \leq k} (x_i, x_j) d_{ij}^{\delta_{ij} / \gamma^{n+2}}.
\]

From (10) it follows that for each \(k = 1, 2, \ldots, m\),

\[
y_k u_k^{-1} - 1 \in \tau + \gamma^{n+2} + \gamma^{n+1},
\]

which yields, in turn, using \(\tau \subseteq \delta\),

\[
y_k u_k^{-1} r_k = 1 \in \delta + \gamma^{n+1}
\]

with some \(r_k \in R\), and by Lemma 2.4, for all \(k = 1, 2, \ldots, m\),
which reduces to

\[[x_k, y_k u_k^{-1} r_k] \in R \gamma_{n+2}(F) \]

and hence

(11) \[[x_k, u_k^{-1}] [x_k, y_k] \in R \gamma_{n+2}(F) \]

Next, \([x_k, u_k^{-1}] \equiv [x_k, u_k]^{-1} \mod R \gamma_{n+2}(F)\), and \([x_k, u_k]\) is a product of commutators of the form

\[[x_k, [x_i, x_j]]^{x_k(\beta /\alpha_0 \beta) \delta_{ij}}, \quad 1 \leq i \leq k, \quad 1 \leq i < j \leq m \]

By Lemma 2.2, for either \(i < k\) or \(i = k\) and \(\alpha_i = \alpha_j\),

\[[x_k, [x_i, x_j]]^{x_k(\beta /\alpha_0 \beta) \delta_{ij}} \equiv [x_k, [x_i, x_j]]^{x_k v_0 u_0} \text{ for some } v \in ZF, \]

\[\equiv [x_k^{\alpha_k}, [x_i, x_j]]^{x_k^{-1}} \]

\[\equiv 1 \mod [F', S] \gamma_{n+2}(F) \]

If \(i = k\) and \(\alpha_i > \alpha_j\), then by Lemma 2.2, for some \(v, w \in ZF,

\[[x_k, [x_i, x_j]]^{x_k(\beta /\alpha_0 \beta) \delta_{ij}} \equiv [x_k, [x_i, x_j]]^{x_k p^{v-1} p^{\alpha_k-1} p^{\beta_0-1} p^{\alpha_j-1}} \]

\[\equiv [x_k^p, x_i, \ldots, x_j]^{p \alpha_k-1 - \alpha_j} \text{ mod } [F', S] \gamma_{n+2}(F) \]

\[\equiv 1 \mod R \gamma_{n+2}(F) \]

Thus (11) is reduced to \([x_k, y_k] \in R \gamma_{n+2}(F)\). However,

\[[x_k, y_k] \equiv \prod_{i < k} [x_i^{\alpha_i q_i}, x_i] \prod_{k < j} [x_k, x_j^{\beta_j q_j}] \]

\[\equiv \prod_{i < k} [x_i, x_k]^{\delta_{ik}} \prod_{k < j} [x_k, x_j]^{\delta_{kj}} \text{ mod } [F', S] \gamma_{n+2}(F) \]

Thus

\[w^2 \equiv \prod_{k=1}^{m} [x_k, y_k] \equiv 1 \mod R \gamma_{n+2}(F) \]

This completes the proof of our main theorem.

As a corollary we obtain,

Theorem 3.2. Let \(G\) be a finitely generated metabelian \(p\)-group. Then
(a) \(D_{n+2}(G) = \gamma_{n+2}(G) \) for all \(n \leq p - 1 \),
(b) if \(p = 2 \), \(D_2(G) \subseteq \gamma_2(G) \),
(c) if \(p \) is odd, \(D_{p+2}(G) = \gamma_{p+2}(G) \).

For \(p = 3 \), part (a) of Theorem 3.2 was first proved by Passi [6]; part (b) is due to Losey [3]. We refer the reader to Passi [7] for a general background on the dimension subgroup problem.

References

Narain Gupta
Department of Mathematics
University of Manitoba
Winnipeg, R3T 2N2
Canada

Ken-Ichi Tahara
Department of Mathematics
Aichi University of Education
Kariya, 448
Japan