
1 The Mathematical Minimum

In this section, we briefly discuss the minimum mathematical background that is
required to fully understand this text. Readers who are familiar with the concepts may
safely skip this section. Readers who are easily discouraged by even basic math may
proceed to the next chapter and refer back here later.

1.1 Complex Numbers

Let us briefly recapitulate complex numbers. A complex number z is of the form

z = x + iy.

The x is called the real part of z; y is the imaginary part. The imaginary number i is
defined as the solution to the equation:

x2
+ 1 = 0.

In other words, i is defined as the square root of −1. A complex number’s con-
jugate, often denoted by z̄ or z∗, is created by simply negating its imaginary part:
i →−i . For example, for z = 5+ 2i the conjugate z∗ would simply be z∗ = 5− 2i .

The conjugate of a product of complex numbers is equal to the product of the
conjugates of the complex numbers:

(ab)∗ = a∗b∗.

The norm of a complex number, denoted by |z|, is computed by multiplying the
complex number with its conjugate:

|z|2 = z∗z,

|z| =
√

z∗z.

Complex numbers can be drawn in the 2D plane with an x- and y-axis according
to the definition. If we think of a complex number as a vector originating at (0, 0), the
norm of a complex number, which is then the length of the corresponding vector, is a
real number and can be computed using Pythagoras’ theorem as:

|z| = |x + iy| =
√

(x − iy)(x + iy) =
√

x2 + y2
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For complex numbers, the norm is commonly referred to as the modulus. Note the
difference between the square of a complex number and its squared norm. The square
is computed as:

z2
= (x + iy)2

= (x + iy)(x + iy) = x2
+ 2i xy − y2.

Complex exponentiation is defined by Euler’s famous formula:

reiφ
= r

(
cos(φ)+ i sin(φ)

)
.

Correspondingly, for complex numbers with norm |z| = r = 1.0:

z = eiφ
= cos(φ)+ i sin(φ).

The resulting complex numbers from this exponentiation are on a unit circle around
the origin (0,0).

In Python, complex numbers are, conveniently, part of the language. Note how-
ever, that the imaginary i is written as a j, which is customarily used in electrical
engineering. An example:

x = 1.0 + 0.5j

To conjugate, you can use the built-in conjugate() function for the complex data
types or use numpy’s conj() function. For example:

x_conj = x.conjugate() # or

x_conj = np.conj(x)

1.2 Dirac Notation, Bras, and Kets

In quantum computing, we think of qubits and states as column vectors of n com-
plex numbers, where n is typically a power of 2. A vector with n elements is called
n-dimensional. In the so-called Dirac notation, a column vector is called a ket and
written as |x〉:

|x〉 =


x0

x1
...

xn−1

 , with xi ∈ C and |x〉 ∈ Cn .

Remember that to transpose a matrix A, we take column i of A and make it row i
of the transpose AT , or AT

i j = A j i . The Hermitian conjugate of a column vector |x〉,
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denoted by a dagger |x〉†, is the transpose of the vector with each element conjugated.
We write this vector as 〈x |, changing the direction of the angle bracket:

|x〉† = 〈x | =
[
x∗0 x∗1 . . . x∗n−1

]
.

In Dirac notation, such a row vector 〈x | is called a bra or the dual vector for a
ket |x〉. Transposition and conjugation goes both ways – applying the transformation
twice results in the original ket, a property called involutivity.

|x〉† = 〈x |,

〈x |† = |x〉,

(|x〉†)†
= |x〉.

There is potential for confusion around the conjugates: should the conjugates be
denoted explicitly, via a∗ or a†, as in 〈x∗0 x∗1 . . . x∗n−1|, or is the fact that a vector has
been converted from ket to bra sufficient? Typically, the conjugates are not marked
explicitly.

1.2.1 Inner Product

The inner product, which is also called the scalar product or the dot product, is com-
puted as a matrix product of a bra and a ket, which simplifies to the product between
a row vector and a column vector – an element-wise vector-vector multiplication and
summation. It is written in the following forms, with the dot (·) denoting a scalar
product:

〈x | · |y〉 = 〈x ||y〉 = 〈x |y〉.

For kets |x〉 and |y〉, the inner product is defined as:

|x〉 =


x0

x1
...

xn−1

 , 〈x | =
[
x∗0 x∗1 . . . x∗n−1

]
, |y〉 =


y0

y1
...

yn−1

 ,

〈x |y〉 = x∗0 y0 + x∗1 y1 + · · · + x∗n−1 yn−1.

The inner product is how vectors in this notation get their names. It forms a product
of a bra and a ket, a bra(c)ket. Naming is difficult in general and quantum computing
is no exception.

Note that 〈x |y〉 does not generally equal 〈y|x〉. For example, consider two kets |x〉
and |y〉:

|x〉 =

−1
2i
1

 , |y〉 =

1
0
i

 . (1.1)
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We construct the corresponding bras via transposition and negation of the imaginary
parts:

〈x | =
[
−1 −2i 1

]
, 〈y| =

[
1 0 −i

]
.

We then compute the inner products:

〈x |y〉 = −1 ∗ 1+ 2i ∗ 0+ i ∗ 1 = −1+ i,

〈y|x〉 = 1 ∗ −1+ 0 ∗ 2i − i ∗ 1 = −1− i .

The second result is the conjugate of the first; the two inner products are different.
This points to the important general rule:

〈x |y〉∗ = 〈y|x〉.

Two vectors are orthogonal if and only if their scalar product is zero. For 2D
vectors, we visualize orthogonal vectors as perpendicular to each other:

〈x |y〉 = 0 ⇒ x,y orthogonal.

Similar to the way in which we compute the norm of a complex number, the norm of
a vector is the scalar product of the vector with its dual vector. A vector is normalized
if its norm is 1: ∣∣|x〉∣∣ = 〈x |x〉 = 1 ⇒ |x〉 normalized. (1.2)

State vectors in quantum computing represent probability distributions that must
total 1.0 by definition. Hence, normalized vectors play an important role in quantum
computing.

1.2.2 Outer Product

Corresponding to the inner product, we can construct an outer product between two
kets |x〉 and |y〉, denoted as:

|x〉〈y| =


x0

x1
...

xn−1

[y∗0 y∗1 . . . y∗n−1

]
=


x0 y∗0 x0 y∗1 . . . x0 y∗n−1

x1 y∗0 x1 y∗1 . . . x1 y∗n−1
...

...
. . .

...

xn−1 y∗0 xn−1 y∗1 . . . xn−1 y∗n−1

 .

In the example given by Equation (1.1), |x〉 is a 3×1 vector and |y〉 is a 1×3 vector.
By the rules of matrix multiplication, their outer product will be a 3×3 matrix. Again,
if the vector elements are complex, we conjugate the vector elements when converting
from bra to ket and vice versa.
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1.3 Tensor Product

To compute the tensor product1 of two vectors, which can be either bras or kets, we
use any of these notations:

|x〉 ⊗ |y〉 = |x〉|y〉 = |x,y〉 = |xy〉. (1.3)

And correspondingly:

〈x | ⊗ 〈y| = 〈x |〈y| = 〈x,y| = 〈xy|.

In a tensor product, each element of the first constituent is multiplied with the whole
of the second constituent. Hence, an n × m matrix tensored with an k × l matrix
will result in an nk × ml matrix. For example, to compute the tensor products of the
following two kets:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
,

|0〉 ⊗ |1〉 = |01〉 =

1

[
0
1

]
0

[
0
1

]
 =


0
1
0
0

 .

You can see that the tensor product of two kets is a ket. Similarly, the tensor product
of two bras is a bra, and the tensor product of two diagonal matrices is a diagonal
matrix. Of course, tensor products are also defined for general matrices:

[
a00 a01

a10 a11

]
⊗

[
b00 b01

b10 b11

]
=

a00

[
b00 b01

b10 b11

]
a01

[
b00 b01

b10 b11

]
a10

[
b00 b01

b10 b11

]
a11

[
b00 b01

b10 b11

]


=


a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11

 .

For multiplication of scalars α and β with a tensor product, these rules apply:

α(x ⊗ y) = (αx)⊗ y = x ⊗ (αy), (1.4)

(α + β)(x ⊗ y) = αx ⊗ y + βx ⊗ y. (1.5)

A key property of the the tensor product is the following – it is used in many
derivations in this text:

(A ⊗ B)(a ⊗ b) = (A ⊗ a)(B ⊗ b). (1.6)

1 Here, we are ignoring differences between the tensor product and the Kronecker product.
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The next rule is also very important for this text. Given two composite kets:

|ψ1〉 = |φ1〉 ⊗ |χ1〉 and |ψ2〉 = |φ2〉 ⊗ |χ2〉,

the inner product between |ψ1〉 and |ψ2〉 is computed as:

〈ψ1|ψ2〉 =
(
|φ1〉 ⊗ |χ1〉

)†(
|φ2〉 ⊗ |χ2〉

)
=
(
〈φ1| ⊗ 〈χ1|

)(
|φ2〉 ⊗ |χ2〉

)
= 〈φ1|φ2〉〈χ1|χ2〉. (1.7)

1.4 Unitary and Hermitian Matrices

A square matrix A is Hermitian if it is equal to its transposed complex conjugate A†.
Hence the diagonal elements must be real numbers, and the elements mirrored along
the main diagonal are the complex conjugates of each other. For example:

A = A†
=

[
1 3+ i

√
2

3− i
√

2 0

]
.

A square matrix A is unitary if its conjugate transpose is equal to its inverse, with
A† A = I . Unitary matrices are norm preserving – multiplying a unitary matrix with a
vector might change the vector’s orientation but will not change its norm. For example,
here the matrix Y is both unitary and Hermitian. The matrix S is unitary but not
Hermitian:

Y = Y †
=

[
0 i
−i 0

]
, and S =

[
1 0
0 ei

]
6=

[
1 0
0 e−i

]
= S†.

Similar to the way we computed Hermitian conjugates for vectors in Section 1.2, to
construct the Hermitian conjugate of a square matrix, you have to transpose the matrix
and conjugate its elements. A Hermitian conjugate is also called a Hermitian adjoint,
or just adjoint for short. The terms adjoint and Hermitian conjugate are synonyms.

1.5 Hermitian Adjoint of Expressions

Here are the rules for how to conjugate expressions of matrices and vectors. We have
already learned how to convert between bras and kets:

|ψ〉† = 〈ψ|,

〈ψ|† = |ψ〉.

To compute the adjoint of a matrix scaled by a complex factor:

(αA)†
= α∗A†. (1.8)
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For matrix-matrix products, the order reverses (this is an important rule used in this
book):

(AB)†
= B† A†. (1.9)

And similarly, to compute the adjoint for products of matrices and vectors:

(A|ψ〉)†
= 〈ψ|A†, (1.10)

(AB|ψ〉)†
= 〈ψ|B† A†. (1.11)

For matrices in outer product notation, this rule is easy to derive:

A = |ψ〉〈φ| ⇒ A†
= |φ〉〈ψ|. (1.12)

And finally:

(A + B)†
= A†

+ B†. (1.13)

1.6 Eigenvalues and Eigenvectors

There is a special case of matrix-vector multiplication, where the following equation
holds. Here, A is a square matrix, |ψ〉 is a ket, and λ is a simple (complex) scalar:

A|ψ〉 = λ|ψ〉.

Applying A to the special vector |ψ〉 only scales the vector with a complex number,
it does not change its orientation. We call λ an eigenvalue of A. There can be multiple
eigenvalues for a given operator. The corresponding vectors for which this equation
holds are called eigenvectors. In quantum mechanics, the synonym eigenstates is also
used. Eigenvalues are allowed to be 0 by definition, but a null vector is not considered
an eigenvector.

Diagonal matrices are a case for which finding the eigenvalues is trivial. Given a
diagonal matrix of this form: 

λ0

λ1
. . .

λn−1

 ,

we can pick the eigenvalues right off the diagonal. The corresponding eigenvectors
are the computational bases (1,0,0, . . .)T , (0,1,0, . . .)T , and so on. For Hermitian
matrices the eigenvalues are necessarily real.
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1.7 Trace of a Matrix

The trace of an n × n matrix A is defined as the sum of its diagonal elements:

tr(A) =
n−1∑
i=0

ai i = a00 + a11 + · · · + an−1n−1.

Basic properties of the trace are the following, where c is a scalar, and A and B are
square matrices:

tr(A + B) = tr(A)+ tr(B), (1.14)

tr(cA) = c tr(A), (1.15)

tr(AB) = tr(B A). (1.16)

For tensor products, this important relation holds:

tr(A ⊗ B) = tr(A) tr(B). (1.17)

The trace of a Hermitian matrix is real because the diagonal elements of a Hermitian
are real. The trace of a matrix A is the sum of its n eigenvalues λi :

tr(A) =
n−1∑
i=0

λi . (1.18)

This next relation is important for measurements. Suppose we have two kets |x〉 and
|y〉, such that

|x〉 =


x0

x1
...

xn−1

 and |y〉 =


y0

y1
...

yn−1

 .

The trace of the outer product of |x〉 and 〈y| is equal to their inner product:

tr(|x〉〈y|) = 〈y|x〉. (1.19)

This is easy to see from the outer product:
x0

x1
...

xn−1

[y∗0 y∗1 . . . y∗n−1

]
=


x0 y∗0 x0 y∗1 . . . x0 y∗n−1
x1 y∗0 x1 y∗1 . . . x1 y∗n−1

...
...

. . .
...

xn−1 y∗0 xn−1 y∗1 . . . xn−1 y∗n−1



H⇒ tr(|x〉〈y|) =
n−1∑
i=0

xi y∗i = 〈y|x〉.
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