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MOURRE THEORY FOR TIME-PERIODIC SYSTEMS

KOICHIRO YOKOYAMA

Abstract. Studies for A.C. Stark Hamiltonian are closely related to that for
the self-adjoint operator K — — i-j^ + H(t) on torus. In this paper we use
Mourre's commutator method, which makes great progress for the study of
time-independent Hamiltonian. By use of it we show the asymptotic behavior
of the unitary propagator e~tσK as σ —*• ±oo.

§1. Introduction

We consider the following Schrodinger equation with time-dependent

Hamiltonian on R1',

(1.1) i-K-uit, x) = H(t)u(t, x), (£, x) e R x R",
at

(1.2) H(t) = -Ax + V(t),

where V(t) is a multiplicative operator by a function V(t,x) which is peri-

odic in t with period 2π:

(1.3) V(£ + 2τr,z) = V(t,x).

As is well-known, with some suitable conditions on V(t,x), H(t) generates

a unique unitary propagator {£/i(t, 5)}_oo<t,5<oo For Ho = — Δ x , the asso-

ciated unitary propagator is denoted by Uo(t, s) — e-'ί(t-8)Hom A traditional

way to study the temporal asymptotics as t —> ±oc of Uι(t,s) is to intro-

duce a family of operators {U(σ)}σGM on M = L2(T x R») (T = R/2πZ) as

follows and to investigate the asymptotic behavior of U(σ).

(1.4) (U(σ)/)(t,x) = (C7i(t,t-σ)/(t-(7,.))(x), for / € H.
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194 K. YOKOYAMA

We write the generator of this group as —ιK. Then K = — i-^ + H(t) is a

self-adjoint operator on H. Let

(1.5) Ko = -i^- + Ho.
at

Then for short-range potentials, the wave operators

Ω± = s- lim eiσKe~iσK° on L 2(T x IT)
σ—>zboo

W±(s) = s- lim Ui(t,s)*U0(t,8) on L2(R")
t—>ioo

are known to exist, and Ω± are asymptotically complete, namely

R a n Ω ± = Hac(K)

where 7ίac{K) denotes the absolutely continuous subspace of a self-adjoint

operator K. Moreover, the asymptotic completeness of W±(s) holds in the

following sense.

Ran W±(s) =Hac{Ui(s,s + 2π)) for all s e R

These facts were first proved by Howland [How] and Yajima [Ya] by

using the smoothness theory of Kato [Ka]. These results were extended to

the 3-body problem by Nakamura [Na]. Kuwabara-Yajima [Ku-Y] studied

the limiting absorption principle for the long-range potentials by using the

pseudo-differential calculus due to Agmon and Hδrmander. The asymptotic

completeness of modified wave operator for long-range potential was proved

by Kitada-Yajima [Ki-Y].

The aim of this paper is to accommodate the commutator technique of

E. Mourre [Mo], which has brought a big progress in the spectral and scat-

tering theory to the time-periodic 2-body Schrodinger operators. It covers

almost all known results by a simpler method with weaker assumption on

the potential. More precisely, we establish the limiting absorption principle

for K and study propagation properties of e~ισK.

Let S be the set of functions / such that / G C°°(T x W) and for all

α, 7 G N and multi index β, \(x)ad%d? f(t, x)\ < CaβΊ o n T x K ' for some

constant CaβΊ > 0. Here (•) = (1 + | | 2 )2. As the conjugate operator A,

which plays an important role in the Mourre theory, we adopt the following

one.
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DEFINITION 1.1.

(1.6) A = -(LD'X + xΊD)
Δ

where Dx = \VX and LD = {Lj)χ<j<v with Lj = DXj {Dx)-2.

A is essentially self-adjoint on domain D = D(|x |). (See Theorem X.36 in

[R-S].)

The following assumption is imposed on V(t).

ASSUMPTION 1.2. Let V be the operator of multiplication by the func-

tion V(ί, x) on H. We assume that

(i) V, [V,A] are extended to Ko-compact operators.

(ii) [[V, A], A] is extended to a Ko-bounded operator.

We denote the extension of the form [UT, A] as [Ky A]0. This assumption

is satisfied in the following case. The proof is given in Lemma 2.4.

EXAMPLE 1. The potential V(t,x) is split into two parts VL(t,x) +

Vs(t, x) where VL(t, •)eC(T; C 0 0 ^ ) ) a n d t h e r e e x i s t s s > ° s u c h t h a t

(1.7) \dϊVL{t,x)\<Ca{x)-δ-\«\ V

Vs'(£,•) is compactly supported and Vs(t, ) G C(Ύ]LP(W)) with p >

max{z//2,1}.

Under Assumption 1.2, we have the following results.

THEOREM 1.3. Suppose Assumption 1.2 is satisfied. For λ G R \ Z,

Zet d(λ, Z) denote the distance from λ to Z. Then,

(i) For α/ί 0 < <5 < d(λ,Z) αnrf / G C^°([λ - δ,λ + δ]), there exists a

compact operator C such that the following inequality holds:

(1.8) f(K)i[K,Aff(K) > J>&lLf(K)* + C,

where I = [λ — δ, λ + δ] and c?(/, Z) is the distance from I to Z.
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(ii) Eigenvalues of K(the set of which are denoted by σpp(K)) are discrete

with possible accumulation points in Z.

// λ e M \ (Z U σpp(K)), for each e > 0 there exists 0 < δ < d(λ, Z)

such that

(1.9) f{K)i[K, A]°f(K) >

for all f eC0°°([λ-<5,λ + <5]).

- e)f{Kγ

Let 03 (H) be the set of bounded operators on H.

THEOREM 1.4. Suppose a > 1/2.

(i) For each closed interval I C 1R\ (ZUσpp(K)) the following inequalities

hold:

(1.10) sup ||(A)-«(K - zΓ^ΛΓΊaCH) < oo,

(1.11)

sup
0,R

sup (x)-a(K - < oo.

(ii) There exist the norm limits in 03(11).

lim
^±0,Re^

lim

- ^ ^ - λ T ^ O ) - 1 ^ ) ^ are Holder

continuous with respect t o λ G R \ ( Z U σ P p ( i ί ) ) .

Next we proceed to the propagation estimates. We need the following

stronger assumption on the potential.

ASSUMPTION 1.5. There exists <50 > 0 such that

(1.12) V(t, ) e C(T;C°°(R»)), \d%V{t,x)\ < Ca(x)~δ°-^, V

THEOREM 1.6. Suppose Assumption 1.5 is satisfied. Let £ G K \ ( Z U

σpp(K))j and e > 0 be given. Then there exists a small open interval I

containing E such that for any f G CQ°(/) and sr > s > 0,

(1.13) _λe
) e-*κ f(K)(x)-

<B(H)

= O ( σ ~ s ) as σ —> oo
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MOURRE THEORY FOR TIME-PERIODIC SYSTEMS 197

where χ(x < a) denotes the characteristic function of the interval (—oo,α).

§2. Conjugate operator

We shall assume Assumption 1.2 throughout this section. We prove the

following Lemma at first.

LEMMA 2.1. Let A be as in 1.6. Then eιAa leaves D(K) invariant,

i.e. for each Ψ € H

(2.1) sup \\KeiΛa(K + iy^Wu < oo.

Proof. As V is Ko-compact, it is sufficient to show eιAa leaves D(KQ)

invariant. Let $ be the Fourier transformation with respect to x, and we

define A by

(2.2) A \

Then eιAa can be expressed as

(2.3) (ei

where Ta(p) = C^l

a{p))i<i<u ι s the solution of the following differential

equation

(2.4) {
( Γ0(p) = P-

We note — i^ on L2(T) has eigenvalues k € Z. Let P^ be the associated

eigenprojection. Then KQ can be decomposed as

And for each Φ G

From (2.4) it is easily seen that | |Γ α (p) | 2 — |p | 2 | < 2|α|, which proves the

Lemma. Π
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Once we have proved Lemma 2.1, we can trace the Mourre theory in

the same way.

LEMMA 2.2. For K and A defined above, the following facts hold.

(i) (K — z)"1 leaves D(A) invariant for all z G C \ σ(K).

(ii) (A + iλ)~ι leaves D(K) invariant for all λGR, and

lim|λ H o o(if + i) iλ(A + i\)-ι(K + i ) - 1 * = Φ for all Φ G H.

COROLLARY 2.3. (the Virial theorem) For all Φ G D(K),

l i m μ H o o i[K, i\A(A + iX)'1]^ = i[K, A]°Φ.

For the proof of Lemma 2.2 and Corollary 2.3, see [Mo].

Proof of Theorem 1.3. By the symbol calculus we have

i[K,A] = i[H0,A]+i[V,A]

Let us recall the well-known formula of functional calculus [H-S]. Let

/ G C°°(R) be such that for some m0 G R

(2.5)

Then we can construct an almost analytic extension f(z) of f(t) satisfying

/(*)=/(*), teR,

\d-J\ < CN\laίz\N{z)mo-1-N, V7V 6 N,

supp/(z) C {z;|Imz| < l + |Rez|}.

We remark that supp / is compact in C if / € CQ°(K) (due to Appendix in

[Gel]).

Further, if (2.5) holds with mo < 0 we have

(2.6) f(K) = -L / dj(z)(z - K)-1 dz Λ dz.
2m Jc
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We assume λ G (/,/ + 1) with some I G N. From Assumption 1.2 and

the above formula, f(K) — f(Ko) is a compact operator. Therefore we have

f(K)i{K, A]°f(K) = 2f(K)H0(H0 + I ) " 1 / W + f(K)i[V, A]°f(K)

= 2f(Ko)H0(H0 + ΐ)'ιf(K0) + (compact operator).

By decomposing KQ as ^kei(k + HQ) <g> Pk again

(2.7) 2f(Ko)Ho(Ho + iyιf(K0) = 2 ] £ H0(H0 + l)~ιf(k + H0)
2 ® Pk

Since supp f(k + -) C [λ — δ — k,λ + δ — k] and ^ is a monotone increasing

function for t > 0, we have the following inequality

f(Ko)Ho(Ho + l Γ
fc<ί

d(J,Z)

which proves(l). By shrinking supp/ we also obtain (2).

We omit the proof of Theorem 1.4. Since it follows from Theorem 1.3

by the well-known arguments.

LEMMA 2.4. Let V(t,x) be as in Example 1. Then as a multiplicative

operator, V = V(t,x) satisfies Assumption 1.2.

Proof. As was proved by Yajima (Lemma 3.1 in [Ya]), if W(t,x) G

C(T; LP(W)) with p > max{zy/2,1}, VF is i^o-compact. Ko-compactness of

[Vs, A] and jFίo-boundness of [[Vs, A], A] also hold as we take Vs{t,x) sup-

ported in a compact set. One can also see the following fact: For any δ > 0,

(x)~δ is a Ko-compact operator. In fact, we have only to approximate (x)~δ

by a compactly supported function. It indicates that VL is ίίo-compact.

For the sake of convenience, we write V and Dj instead of VL and DXj.

It is sufficient to show that [V,XjLj] is /ίo-corm?act, and [[V, XjLj], XkLk]

is i^o-bounded. Here 1 < j , k < v and Xj is a multiplicative operator

by a function Xj. We denote XjV{t,x) as Vj(t,x). At first we split the

commutator into two parts

[V,XjLj] = [Vj,Lj] + [Lj,Xj]V
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From the assumption we assume in Example 1, we can easily see that

h{x)δ e <8(H). For Iχ, we split it again

= h + h-

We use the Assumption for VL to see I^(x)lJrδ G *B(H). We can rewrite Is

as

We use the Assumption for VL again to prove that [VL, A] is KΌ-compact.

As for the double commutator, we compute

[[V, XjL^XkLk] = [h + h + h, XkLk}.

We can easily obtain the following result by using the pseudo differential

calculus, as we commute X^Dk with V or another PsDO.

[Jα, XkLk] is i ίo- c o m P a ct for a — 2, 3,4.

D

§3. Propagation estimate

We shall prove Theorem 1.6 in this section. We follow the abstract

framework constructed by Skibsted [Sk], In our case K is not a semi-

bounded operator, which introduces a slight difference in applying the

method of [Sk]. From Assumption 1.5, it follows that [if, A] is extended to

a bounded operator. We add this condition as an additional assumption in

the abstract framework.

DEFINITION 3.1. Given /?, a > 0 and e > 0, we denote by dβ,a,e as

the set of function g of the form, g(x,τ) = gp^e(x,r) — —τ~^(—x)aχ(^)

defined for (x,r) G R x M+, where χ G C°°(R) and satisfies the following

properties:

χ(x) — 1 for x < —2e, χ(x) = 0 for x > —e.

— χ(x) < 0 a n d aχ(x) + x—χ(x) = χ(x)2 for s o m e x G C ° ° ( R ) , χ>0
ax ax
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It follows from the last equation that (g^1' (#, T ) ) 2 is smooth. Here g(n) (x, τ)

= (d/dx)ng(x,τ). For operators P and Q, we define adg(P) = P and for

m G N, ad^(P) = [ a d ™ " 1 ^ ) , ^ inductively.

LEMMA 3.2. Let A and P be linear operators on M. Suppose A is

self-adjoint and P-bounded. Suppose that the form ad™(P) extends to a

bounded operator for 1 < m < n. Then for any g G C°°(R) satisfying 2.5

with TΠQ < n

(i)

(3.1) Pg(A) = Σ 9—^fί ad™(P) + i / 9S9(Z)K,AAZ)
 dz Λ '

m=0

(ϋ)

n 1 / t \m

^-. ί d-zg{z)Rι

nΛ P{z) dz Λ dz,
2Έ% JCm=0 m

(3.2)

lϋ/iere i ? ^ p ( ^ ) = (z — A)~ 1 ad^(P)(A - 2:)~n and g{z) denotes an

almost analytic extension of g(x).

These formulas of asymptotic expansion are obtained by virtue of (2.6) and

the calculus of the commutator [(z — A)" 1 , P]. (See Lemma 3.3 in [Ge2].)

ASSUMPTION 3.3. Let n 0 e N, σ0 > 0, n 0 - \ > a0 > 0. Let f,

/2 ^ Co°(K) be such that $2$ = / and K, A(τ), B be self-adjoint operators

on H. Assume that A(τ) have common domain D for r = σ + CΓQ σ > 0 ;

D(K) ΠD is dense in D{K), B > I and that (Ao)^ {B)~^ G 95(H) with

AQ = A(σo). Assume moreover

(i) With 1 < n < ΠQ, in a d ^ / J K ) extends to a bounded self-adjoint op-

erator, and ad^τ)(UT) = O(l) in 95(H) α5 r —> 00.

(ii) If Air) is unbounded, s u p ^ ^ ! ||-fiΓeiΛMα^||H < 00 for any ψ G D(K)

and T > σo
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(iii) For each τ\, τ2 > σo, A(τ\) — A(τ2) is a bounded operator, and the

derivative dτA(r) = jpA(r) exists in 93 (H). Further &άn^,\(dτA(τ)) =

O(l) in 95(H) as r —> oo for 1 < n < n 0 .

(iv) Forn < no ad^/ N(ΛΓ) αndad^τA(d rA(τ)) are continuous *B(M)-valued

functions of r > σo.

(v) There exists δ > 0 5̂ /c/ι £/mί ̂ /ze following condition q(βo,ao,δ) holds.

q(βo,o>o,δ): Let DA(r) denote the symmetric operator i[K,A(τ)] +

drA(τ).

There exist bounded operators B\{τ) and -E?2(r) o n H such that

(3.3) f2(K)DA(τ)f2(K) > B^T) + J32(r).

IISIMHBOHQ = O(τ~δ) as T -> oo; and /or (/?, a) = (0,1), . . . , (0, a{,),

(A)>«o) (<*ό = max{m G N:m < α0}) (= (A)ϊαo) i/ <̂o < 1) the

following estimates holds:

Given e > 0 and g{x,τ) G 5β,α,o ^Λere exz5̂ 5 C > 0 such that with

C(σ) = h

(3.4) / dσ|(C(σ),B2(τ)C(σ))M |

where ( , )e = ( , •) ̂  ί/ιe inner product ofW.

THEOREM 3.4. Suppose Assumption 3.3 is satisfied and in addition,

a0 + 2 < β0 + n 0 ,

α;

0 + 2 < n 0 , (if α 0 > 1)

OL'Q + - < n 0 , {if a0 > 1).

Then for (β, a) = (0,1), . . . , (0, c/0), (/?0, α 0 ) (= (/3o,«o) */«o <

e > 0 and g(x,τ) G 3y3,α,o

(3.6) ||(- f lAα |€(A(r),r))3e-^/(lΓ)β-f 1^(^=0(1) α5 r -> oo
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COROLLARY 3.5. Under the same conditions in Theorem 3.4; we have

the following result:

For (/3,α) = (0,1), . . . , (0,αό), (/%,α0), anV e > °> d(xir) € $β,a,e, a n d

1 > θ > 0

(3.7)
= O(τ^~"" l /"4 6) as r - ^ o o .

We note that (3.7) is easily obtained by (3.6) and the inequality

Sketch of Proof. The proof of Theorem 3.4 is almost the same as that of

Theorem 2.4 in [Sk]. Let fλ e C$°(R) be real valued and satisfy /χ/2 = / 2 .

We denote φ(σ) = e~iσKf(K)B~a/2φ, and DχA{τ) = dτA(τ) + i[fι{K)K,

A{τ)). Then (ψ(σ),g(A(τ),τ)ψ(σ)) is continuously differentiate with

(3.8) ^(φ(σ),g(A(r),τ)φ(σ)) = (ψ(σ),Dg(A(τ),τ)ψ(σ)),

where

o no-l

Dg{A(τ),τ) = (-p)(A(r),r)+ ^(m!)-Vm)μ(r),r)ad--)

1(D1A(r))
m=l

+~J d-z~g(z,τ)(z - A(τ))-n° ad jHDiAίr))^ - A(r))"1 dz Λ df.

We can then prove that (ψ(σ),Dg(A(τ),τ)ψ(σ)) is integrable with respect

to r, which indicates the assertion of Theorem 3.4. Corollary 3.5 follows

from the same argument as in [Sk]. Q

With these results, we proceed to prove the propagation estimate for

operator K with potential V satisfying Assumption 1.5.
1/ Π"l Γ77\

Suppose £ G M \ Z and 0 < Ef < MEZ)+I ' ^ e c ^ o o s e /
MEZ)+I '

a s

Assumption 3.3, with support in a small interval / C R \ Z. Put σo = 1,

Λi(r) = A - 2E'τ (r = σ + 1), and B - (Ai(l)>.

By virtue of Lemma 2.1 and some elementary calculus one can prove

that Aι(τ) verifies Assumption 3.3 with arbitrary ΠQ, ®O, βo- By the same

argument as in the proof of Corollary 3.5 we have that:

(3.9) \\(-^llγ2X(^l)e-iσKf(K)B-sUm = O(τ~η as r -, oo
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for s > i .

LEMMA 3.6. Fix 0 < E" < E1 < df^\λ • Lei / 2 , / , σ0, β0 and

ao as above. For an arbitrary fixed eff > 0 we take g G 5o,i,e" satisfying

(-g(x,τ))l2, (_( |- f l)( x, τ))* e C°°(IR x R+). We puί M(i,Ό = (E" -

J g ^ ) i G = (-^(-rM(f,e),r)) |= D i e and set A2(r) = -G*G

Then for all β$, cx^, ΠQ, there exists δ > 0 such that ^ ( T ) satisfies

Assumption 3.3.

Before the proof of this Lemma, we introduce a symbol class and asymptotic

expansion formulas.

DEFINITION 3.7. For /, m e R, let S(τι{ξ)m) be the set of functions

aτ(x,ξ) G C°°(βζ x Rp such that

for all multi-indexes α, /3.

We write aτ(x,Dx) £ Op5(r'(L>x)
m), if ατ(x,ξ) € S(τι{ξ)m).

LEMMA 3.8. 5wppose Oτ(x,0 € 5(τ i(ξ)m), αnc/ 6τ(a;,ξ) € S(τι'{ξ)m').

Then aτ(x,Dx)* G O p S 1 ^ ^ ^ ) " 1 ) and aτ(x,Dx)bτ(x,Dx) <E O p 5 ( r w '

(Z? x)m + m ). Ĥ e have the following asymptotic formulas.

(3.10) ar(x,Dxy- Σ ^ω(x>0\ζ=Dx

\cx\<N

aτ(x,Dx)bτ(x,Dx) - Σ -^aτ(
a\x,ξ)bT(a)(x,ξ)\ς=Dχ

(3.11)

eθpS(τι+ι'-N(Dx)
m+m'-N).

Proof of Lemma 3.6. We rewrite DA2{τ) = -(dτGfG - G*(dτG) +

ί[KyA2{τ)}. Let M denote M(^ξ). It can be easily verified that G G S(τΐ)

and

(3.12) (drGyG = -

+ Op5(τ-1).
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Using the assumption for g in Lemma 3.6, we have

d A

(3.13) κdτjy

The last term i[K, ^ ( r ) ] has the following expression

+i[V,A2(τ)} + Op Sir-1)

We denote {g^\-τM,τ)M-ι)^\ξ=lDχ as gH(x,Dx) <Ξ Op5(1). We also

remark that ^^w5iί(ίC)ξ) € £(!)• We can rewrite the right hand side of

(3.14) as

l-gH{x, Dx)*(^- + 2E')gH(x, Dx) + i[V, A2(τ)} + R0(r),

where ||i?o(^)||<s(H) = °(τ~l) as r -> oo.
For i[V, A2(τ)], we obtain ||[V, A2(τ)}\\ί3{m) = O(τ-δ°) by computing VXV

L •

V ζ ( 5 (-rM,r)) .

Summing up, we have

(3.15) DA2(τ) > \gH{χ, DX)*(^Q + 2(E' - E"))gH(x, Dx)

where δ\ = minjδo, 1} and ||JRI('r)||r8(iHr) — O(τ~δl) as r —» oo.

Since

(3.16) ^ + 2{E> - E") >
T

we can replace ^ + 2(E' - E") by ̂ χ ( ^ ) with e = E' - E". Thus

it suffices to prove (-^fl\(^l)gH(x,Dx)f2(K){g^e(A2{r),T))^

e~iσK f{K)B-a/2 is square integrable.

For I e NU{O}, we put gι(x,τ) = (£)l((-f)δχ(f)) and we write the
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almost analytic extension of gι(x,τ) as gι(z^τ). From (3.2)

(3.17)
lib

ά J {z' TϊRlnoAΛτ)9H(Xn)(z)dzά Jc
Jc o,Λ),9H(tx)

By the symbol calculus of PsDO, we have

II a d Z(τ)(##( x > Ar))||<8(H) = 0(1) as r -> oo for all 0 < m < n 0 .

The last term in the right hand side of (3.17) is dominated from above by

(3.18)

So it remains to prove that for 0 < m <

(3.19) gm(Aχ(τ),τ)f2(K)

is square integrable. We apply (3.2) again to see that this is equal to

(3.20) [ ^ " ~ " "' ' '

Here we note that r 1 n°(^L a e(A2(r), r)) 2 is square integrable with respect

to r because of the assumption (3.5) and the fact s u p r > 1 || 2

T H%(H) = L <

00. Again using (3.2) we have

(3.21)
j=o

\ ^ Λ.Q \ [ O
/ J j Ai(τ)\\yp,o

+_L ί
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We rewrite (g{β^€(x,τ))* as T5HHα-i)(_£)α/2-i/2£(2) and put

(3.22) hτ{x) = τl2^^-ι\-xγl2-ι'2χ{x).

Let p(x) G CQ°(R) be real valued and satisfies p(x) = 1 on \x\ < L + 1.

By constructing an almost analytic extension of hτ{x)p(x), which we denote

by hτ(z), we have

(3 2 3 ) (flβle(^2(r), r))3 = ̂ L ̂  a^ τ (z)( 2 - ^ M ) - i dz Λ

(3.24)
= ^ή Jc

 d"kτ{z) &dMτ)«z - ^-Γ1) dz Λ dz.

By induction, we can see that for Imz φ 0

(3.25) U a d J

Λ i ( τ ) ( ( * - ^ ) - 1 ) | | <

where Cj is independent of r. Combining (3.24) and (3.25)

(3.26) | | a d ^ ( τ ) ( ( 4 ^ e μ 2 ( r ) , r ) ) i ) | | s ( H ) = O ( r ( - ^ - 1 ) / 2 ) as r - , oo.

Using (3.2) we compute

n o - 1

(3.27) = Oίriί-^"1)

Here we apply (3.9) with β = ( A ^ l ) ) 1 ^ (K > 0). Then

(3.28)

So we have proved

is square integrable in r. Q
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Hence the conclusions of Theorem 3.4 and Corollary 3.5 hold. i.e.

(3.29)
A2(τ) iσK)e-iσKf(K)(A)-s'\\SB{u)

for all 0 < s < sf as τ —• oo

Our final aim is to change the weight in (3.29) by functions of x.

(3.30)

Proof of Theorem 1.6. It follows from (3.29) that

Mr) <-e)e— κf(K)(x)-s\\^m=O(σ-s) as σ ̂  oo.

Therefore Theorem 1.6 is proved if we show for any

.12

x(
\X\

(3.31)

= X(
\x\ ,-N\

a s

Again we use an almost analytic extension of χp(denoted by χ) and

(3.32)

We denote the symbol of 2^τ' as aτ(x,ξ).

Then

(3.33) Rr{x,ξ) = ατ(x,e) - ^ ( - ^ r ) £ ̂ (r

We construct a parametrix of (z ^^) by putting

(3.34)

& r i d z Λ d~z.

Then

(3.35)
iv
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Moreover we have the following estimates: There exists I ̂ > 1 such that

(3.36) 1 1 ( ^ - ^ ^ ) 7 2 ^ -III«(H) <Cτ-N\ίmz\-N-1.
T i=o

So replacing the resolvent by the parametrix Σqj{x,Dx) we have

/• Mr)Λ-ι, Λ ,_
/ OzX\z)\Z ) dzΛdz

N
1

+r~N f
Jc/C

Combined with the fact that

\x 2

χ(E" - e > ^ ) χ ( - j ( - r M ( 3 , 0 , τ ) / r ) = χ{E" -

this shows

/ π / / " ~ x as r —> oo.

Since Λ̂  is arbitrary, we take N > s and obtain Theorem 1.6. Q
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