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ABSTRACT

Assume that an insurance company pays dividends to its shareholders when-
ever the surplus process is above a given threshold. In this paper we study the
expected amount of dividends paid, and the expected time to ruin in the com-
pound Poisson risk process perturbed by a Brownian motion. Two models are
considered: In the first one the insurance company pays whatever amount
exceeds a given level b as dividends to its shareholders. In the second model,
the company starts to pay dividends at a given rate, smaller than the premium
rate, whenever the surplus up-crosses the level b. The dividends are paid until
the surplus down-crosses the level a, a < b. We assume that the claim sizes are
phase-type distributed. In the analysis we apply the multidimensional Wald
martingale, and the multidimensional Asmussesn and Kella martingale.
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1. INTRODUCTION

De Finetti (1957) was the first to suggest the reduction of the free reserves by
paying dividends to the shareholders when the reserve reaches a high level
greater than the initial reserve. For the discrete time Binomial model, De Finetti
found that the optimal strategy is the barrier strategy, that is, dividends are paid
whenever the surplus process reaches a fixed high level greater than the initial
reserve.

Since De Finetti’s (1957) paper, the reserve process with dividends has been
studied by many researchers.

In this paper we consider two models:

Model I. When the surplus reaches the level b, all the surplus overflow above
b is paid as dividends.
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Model II. Whenever the surplus reaches the level b, dividends are paid at rate
d < c, where c is the premium rate. Dividends are paid until the risk
process reaches the level a, a < b, and are paid, again, in the same
pattern when the surplus reaches the level b again.

Many works studied Model I. Most of them assumed that the claims arrive
according to a Poisson process.

Irbäck (2003) obtained numerous results concerning the time to ruin when
the barrier is asymptotically infinity. He assumed that the initial reserve is
either close to the barrier, or very small compared to the barrier.

In most of the papers an integro-differential equation is derived to obtain
the expected dividends paid, and the expected time to ruin. Bühlmann (1970)
discussed various dividend policies in discrete time. For the continuous time
he presented an integro-differential equation for the expected discounted div-
idends paid until ruin.

Gerber (1979) also discussed an integro-differential equation for the cumu-
lative expected discounted dividend payout. By presenting a certain martingale
he obtained an expression for the Laplace transform of the time to ruin.

Paulsen and Gjessing (1997) considered a risk process with a stochastic
return on the investment, where both the risk process and the return process
are Lévy processes with a compound Poisson component, and a Brownian
motion component. They obtained an integro-differential equation for the
expected discounted dividends.

In 1998 Gerber and Shiu presented their famous paper where they defined
the penalty function to analyze the discounted time to ruin. Gerber and Shiu
(1998), Section 7, presented an integro-differential equation for the discounted
dividends. Some researchers applied Gerber and Shiu’s penalty function to
study the dividend problem. Lin et al. (2003) obtained an integral equation
for the expected penalty function. From this equation they derived expressions
for the Laplace transform of the time to ruin, and expressions for the moment
of the deficit at ruin. Both quantities are given as functions of compound geo-
metric distribution. Applying similar methods, Dickson and Waters (2004)
found an integro-differential equation for the discounted moments of the
dividend payments for the classical compound Poisson risk process. They also
analyzed a discrete model and showed how the discrete time model can approx-
imate the continuous one.

Zhou (2005) considered Poisson arrival process and implied results from
spectrally negative Lévy process to obtain the joint distribution of the surplus
before and after ruin. The results are given as a function which is a solution
to an integral equation. In a more recent paper, Gerber and Shiu (2006)
discussed the optimal dividend rate in the case of Poisson arrival process.
They obtained an intero-differential equation for the expected dividends in the
case of constant dividend barrier.

Li and Garrido (2004) and Albrecher et al. (2005), assumed Erlang inter-
arrival times. Li and Garrido extended Lin et al.’s (2003) results, and Albrecher
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et al. (2005) obtained an integro-differential equations for the moment gener-
ating function and for the moments of the dividends.

Gereber and Shiu (2004) considered the case where surplus process is mod-
eled as Brownian motion. They found the expected discounted dividends, the
moment generating function of the dividends, and the Laplace transform of
the time to ruin. Frostig (2005a) considered the classical model with a constant
dividends barrier with phase type distributed claim sizes. In this case she
obtained an algorithm to calculate the expected dividends and the expected time
to ruin.

In a recent paper Li (2006) obtained an integro-differential equation for
the n-th moment of the discounted dividends in the case of the classical com-
pound Poisson model perturbed by Brownian motion. Li (2006) obtained the
expected dividends paid as integrals of the non-ruin probabilities in a classical
compound Poisson risk model perturbed by diffusion.

Lately, a few papers have considered Model II. Lin and Pavlova (2006)
considered the classical compound Poisson risk model, where dividends are
paid at a smaller rate than the premium rate whenever the surplus is above the
barrier. They obtained an integro-differential equation for Gerber-Shiu penalty
function, and derived the ruin probabilities as functions of the ruin probabil-
ity in the classical model without dividends. Gerber and Shiu (2006) obtained
an integro-differential equation for the expected discounted dividends, and
moment generating function for the time to ruin. In a recent paper Bratiychunk
and Derfla (2007) exploited the properties of Lèvy process without negative
jumps, to find the ruin probability. The ruin probability was found as a function
of a solution to an integral equation which is difficult to find explicitly.

In all the papers explicit expressions were obtained for the case of Erlang
or mixture of Erlang distributions claims amount.

Frostig (2005b) assumed phase type claim size distribution. By exploiting
Kella and Whitt’s (1992) martingale and Asmussen and Kella’s (2000) mar-
tingale, she obtained algorithm to derive numerically the expected time to ruin,
and the expected dividend payments.

In this paper we consider Models I and II with Poisson claim arrivals that
is perturbed by diffusion. The purpose is to obtain algorithms that are easy to
implement to calculate the expected dividends, expected time to ruin, and the
distribution of the deficit at ruin. For the second model we also obtain the
ruin probability. We assume that the claims are phase-type distributed. The
family of the phase type distributions is dense in the set of all distributions.
This means that every distribution can be approximated by phase type distri-
bution. The special structure of the phase type distributions has been applied
in many applied probability models, especially in queueing theory (Neuts (1981),
Asmussen (2003)), to derive quantities of interest. It was also applied in risk
theory to obtain explicit formula for the ruin probabilities. (See Asmussen (2000)
and references therein).

In Section 2 we analyze the first model. We obtain the distribution of the
dividends and the distribution of the deficit at ruin. We derive the expected time
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to ruin. The second model is presented in Section 3. For the case where the ruin
probability is 1, we obtain the expected dividends, the expected time to ruin,
and the distribution of the deficit. We also derive the ruin probability when it
is less than 1.

2. MODEL I

2.1. Model description and general result

Consider the risk process {R(u, t), t $ 0}, where 

R(u, t) = u + ct – j .B ts
j

t

1

+
=

N

W! ^

]

h

g

(2.1)

Claims arrive according to a Poisson process N(t) with rate l > 0, Wi is the ith
claim amount, Wi are i.i.d distributed as a random variable W, the premium
income rate is c > 0, and the initial reserve is u. The risk process is perturbed
by a Brownian motion B(t) with volatility coefficient s > 0. We assume that the
claims amount, the arrival process, and the Brownian motion, are independent.

Let b > u. In this section we consider model I, where all the surplus over-
flow above b is paid as dividends.

Let 

X(u, t) = b – R(u, t) = b – u + X(t), where (2.2)

X(t) = .ct B tsi
i

t

1

- +
=
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h

g

(2.3)

Note that X (u,0) = b – u. The process X(t) is a Lévy process with no negative
jumps, and with a Lévy exponent c(q), where 

c(q) = log(� [eqX(1)] ) = – cq + s2q2/2 + l(�e qW – 1). (2.4)

Let L(t) = – inf{X(s) : 0 # s # t}, and L(u, t) = (L(t) – (b – u))+, where x+ =
max(x,0). Let V(u,t) = X(u,t) + L(u,t). Note that L(u,t,) is the total dividends
paid up to time t when the initial reserve is u, u# b. L(u,t) is called the local time
process at 0 for the process V(u,t), (see Asmussen (2003), p. 250-251). For prop-
erties of the local time for Lévy processes Bertoin (1996), Chapters IV and V.

Let Ub(u, t) = b – V(u, t), be the surplus process in the presence of the con-
stant barrier. The process Ub(u, t) describes the modified surplus process when
all the surplus above b is paid as dividends. Let tb(u) = inf{t :Ub(u, t) # 0} =
inf{t : V(u, t) $ b}. tb(u) is the time to ruin when the initial reserve is u # b.
Let Db(u) = L(u,tb(u)) be the total dividends paid until ruin occurs, and �b(u) =
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� [Db(u)]. Under the barrier policy, ruin occurs with probability 1. The objec-
tive in this section is to obtain expressions for the expected time to ruin –
� [tb(u)], and the expected dividends paid until ruin occurs– � [Db(u)] = �b(u).

Let T(u,0) = inf{t : X(u, t) # 0} be the first time that the process X(u, t)
hits 0, and T(u,b) = inf{t : X(u,t) $ b} the first time that the process X(u,t) hits
or exceeds b. Let T(u,0,b) = min(T(u,0),T(u,b)). Note that when T(u,0,b) =
T(u,b), then ruin occurs before dividends are paid.

Let a > 0. Denote by Ta the first passage time of the process V in [a,3), Ta =
inf{t $ 0 : V(t) = a}.

Proposition 2.1. L(Ta) is exponentially distributed.

The proof of this proposition appears in Bertoin (1996), p. 144 (See also p. 123,
exercise 1).

We are now ready to state the first result. In the following proposition we
assume that the claim amounts are i.i.d, with a general distribution G.

Proposition 2.2. When u = b the amount of dividends paid until ruin L(b,tb(b))
is exponentially distributed. When b > u, the amount of dividends paid until ruin
occurs is a mixture of an exponential distribution and a degenerate distribution
at 0.

The case u = b is immediate from Proposition 2.1. Assume that u < b. Let q(u) =
P(T(u,0) < T(u,b)). With probability q(u), the process X(u,t) reaches 0 before b.
Once reaching 0, the amount of dividends paid until ruin is exponentially dis-
tributed. With probability 1 – q(u), X(u, t) reaches the level b before 0 (ruin
occurs before dividend payment); thus ruin occurs before dividends are paid.
In this case the amount of dividends is zero.

Remark 2.3.
1. Gerber and Shiu (Section 5, (2004)) obtained the same result in the case

where the risk process is a Brownian motion with a drift without jumps,
while Dickson and Waters (Section 3, (2004)) obtained the same result for
the classical risk process (without Brownian motion).

2. Li (2006) arrived at the same result by deriving the moment generating func-
tion of the dividends by applying integro-differential equation.

Remark 2.4. Bertoin ((1996), Theorem 8 of Chapter VII) shows that 

q u
Q b
Q u

=^
^

^
h

h

h

where Q : [0,3) $ [0,3) is the unique continuous increasing function with
Laplace transform 

,ae Q x dx
c

1ax

0
=

-

3
-# ^

^
h

h
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where c is as per (2.4). See also discussions on the compound Poisson risk
process in Zhou (2005, p. 98), and Bartiychung and Derfla (2007, eq. 6).

In the sequel we will find q(u) and the expected dividends explicitly for the
case where G is phase type. Thus for this family of distribution we identify
explicitly the parameters of the distribution of the dividends. The probability
q(u) was obtained by Gerber and Shiu (Section 5, (1996)) when the risk process
evolves as a Brownian motion.

2.2. Phase type distribution

From here on we assume that the claim size is Phase type distributed with rep-
resentation (n, b,T). A phase-type distribution with representation (n,(b0, b),T),
or in abbreviation ((b0,b ),T), is the distribution to absorption in a Markov
jump process with n transient states, and one absorbing state, say state 0, where
absorbing is certain from each transient state. The transition rate matrix among
the transient states is denoted by T. The initial probability vector for star-
ting in the transient state is b = ( b1, g, bn). The probability of starting in the
absorbing state and thus being immediately absorbed is b0 – the atom at 0. Let
t = – T1, be the vector of the transition rates to the absorbing state. 1 denotes
a column vector with all components equal to 1. If W has a phase type distri-
bution then 

�esW = b (–sI – T)t

� [W ] = –b T –11, when the expectations exist. (2.5)

Here I is the identity matrix. When there is no atom at 0, we denote the rep-
resentation by (b, T). Note that the family of phase type distributions includes
the exponential distribution, Erlang distributions, hyper-exponential distribu-
tions, Coxian distributions. This family is dense in the weak convergence sense
in the set of all probability distributions on (0,3). Thus every distribution on
(0,3) can be approximated by phase-type distribution (Asmussen (2003, chap-
ter III, Asmussen (2000)). References for the properties of Phase-type distribu-
tions and their applications to queueing theory are Neuts (1981), Asmussen
(2003), chapter III. For applications of Phase type distribution in risk theory,
see Asmussen (2000), Chapter VII. For statistical procedures that approximate
a given distribution function by Phase type distribution, see Asmussen, Nerman
and Olsson (1996), Asmussen (2000), and references therein.

2.3. The fluid description

In the sequel we apply the fluid description of X(u,t) and V(u,t). Consider the
process X f(u, t), which is constructed from the process X(u, t), as follows:
Let Ti be the time of the ith jump (claim arrival) in the process X(u, t). For

188 E. FROSTIG

0587-07_Astin38/1_11  02-06-2008  13:03  Pagina 188

https://doi.org/10.2143/AST.38.1.2030410 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.1.2030410


0 # t # T1, X f(u,t) = X(u,t). Assume that at time T1 there is a jump of size W1

in the processes X(u, t). At this time the processes X f(u, ·) start to increase lin-
early at rate 1 for W1 time units. Thus X f(u,T1 +W1) = X(u,T1

+), where X(u,Tj
+)

is the value of the process X(u, t) immediately after the jth jump. Assume that
X f(u,Tn + jj 1=

n W! ) = X(u,Tn
+). Then X f(u,Tn + jj 1=

n W! + t) = X(Tn + t), for
0 # t # Tn + 1 – Tn. Let Lf(b, t) = – inf{X f(b, s), 0 # s # t}, and for u < b let
Lf(u,t) = (Lf(b,t) – (b – u))+. Note The description of Xf implies that for u# b,
Lf(u,t + jj 1=

( )N t W! ) = L(u, t). Let 

Vf(u, t) = X f(u, t) + Lf(u, t). (2.6)

Let t f(u) = min{t : Vf(u, t) $ b}. The above construction implies that t f(u) =
t(u) + jj 1=

( )N t W! , and L(u,t(u)) = Lf(u,t f(u)).

Let’s consider a jump Markov process J(t) with state space 0,1, ···, n. The
sojourn time of the process at state 0 is exponentially distributed with rate l.
Upon leaving state 0, the process jumps to state i with probability bi, i = 1, ···, n.
The sojourn time in state i, i = 1, ···, n is exponentially distributed at rate (–Ti, i).
The process jumps to state j ! i, j = 1, ···, n with probability Ti, j / (–Ti, i) and
with probability ti / (–Ti, i,) it jumps to state 0. The process Xf(u, t) behaves as
follows: When J(t) = 0, Xf(u,t) behaves as a Brownian motion with a drift – c,
thus with a Lévy exponent c0(a) = – ca + s2a2/2. When J(t) = i, i = 1, ···, n,
Xf(u, t) increases linearly at rate 1, and thus with a Lévy exponent cj(a) = a.
Such a process is called Markov additive process – MAP (See Asmussen (2003)
Chapter XI).

The process J(t) describing the modulating state is a continuous time jump
Markov process with a generator Q, where 

l .Q
t T

l b
=

-
d n (2.7)

Note that Q is an n + 1 ≈ n + 1 matrix, where n is the number of phases in the
phase time distribution. When the modulating state is i, Xf(u, t) behaves as a
Lévy process with exponent ci(a). Let

C(a) =

/

,

a a
a

a

c s 2 0
0

2 2

h

j

g

g

h

g

- +J

L

K
K
K
KK

N

P

O
O
O
OO

(2.8)

Let K be the following matrix:

K(a) = Q + C(a). (2.9)
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Asmussen (2003), Chapter XI.2, shows that 

� [eaX f(b, t); Jt = j ] = etK(a), for a such that the expectation exists.

Let k(a) be an eigenvalue of the matrix K(a), and let ha be the corresponding
right eigenvector. In our analysis we apply the multivariate version of Wald’s
martingale introduced in Lemma 2.1 of Asmussen and Kella (2000).

Lemma 2.5. Let a be a complex number such that �[eaX f(b,t); J(t) = j | J(0) = i ]
exists, and let k(a) and ha be eigenvalue and right eigenvector of the matrix
K(a), then with every initial distribution of (Xf(b,0), J(0)), {eaX f(b,t) – tk(a) ha

J(t)}
is a martingale.

2.4. The probability q(u)

In this section we apply the multidimensional Wald martingale to obtain the
probability q(u) – the probability that X(u,t) hits the level 0 before the level b,
note that 1 – q(u) is the probability of ruin before any dividends are paid.
Let qf(u) be the probability that Xf(u,t) reaches the level 0 before the level b.
The construction of Xf(u, t) implies that qf(u) = q(u). Let g(u, j) be the prob-
ability that the process Xf(u, t), and hence X(u, t), hits the level b when the
modulating state is j, j = 0, ···, n, before reaching the level 0. Thus, g(u,0) is the
probability of ruin before dividends are payed due to diffusion, and for j =1,
···, n, g(u, j) is the probability of ruin before dividends are paid due to a claim
hitting the level 0 at phase j. Note that q(u) = 1 – j 0= gn! (u, j).

Consider the equations det(K(a)) = 0. Assume it has n + 2 solutions a0, ···,
an+1, where a0 = 0, with eigenvector h0 = 1. Let hi be the eigenvectors corre-
sponding to ai. Then by Lemma 2.5, the process eaiX

f(u,t)h j
J(t) is a martingale.

Applying the optional sampling theorem to T(u,0,b) = min(T(u,0), T(u,b)), we
obtain:

e a b

j

n

0

i

=

! g(u, j)hi
j + q(u)hi

0 = eai (b–u)hi
0. (2.10)

Thus we obtain n+2 equations for q(u), and g(u,0) ···, g(u,n).

2.5. The expected dividends and the distribution of the deficit

For u # b and for j = 1, ···, n, let p(u, j) be the probability that the process V(u,t)
hits the level b at phase j and let p(u,0) be the probability that it hits the level b
by diffusion. Thus, p(u, j) is the probability that Vf(u, t) hits the level b when
the modulating state is j, j = 0, ···, n. Note that p(u,0) is the probability that ruin
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occurs due to diffusion, while for j = 1, ···, n, p(u, j) is the probability that ruin
occurs due to a claim that hits the level 0 at phase j.

Let p(u) = ( p(u,1), ···, p(u,n)). Let h be the overflow of the process V(u, t)
at time t(u), when it hits b. Thus h is the deficit at ruin. From the above dis-
cussion h is phase-type distributed with representation (( p(u,0), p(u)),T).

To find the probabilities p(u, j ), and the expected dividends �b(u), we apply
the Asmussen and Kella multidimensional martingale. Consider Vf(u,t) as per
(2.6). Asmussen and Kella (2000) proved that the process:

J J J

J

f f

f

,

,

a a

a

M t e dsh ds e h e h

e h dL u s

k , , ,

,

a a a

a

u s
t

s
u u t

t

u t
t

s
f

0

0
0

0

f
= + -

+

a a a

a

V V V

V

#

#

^ ^ ]
]

]
]

]
]

]
] ^

h h g
g

g
g

g
g

g
g h

(2.11)

is a zero mean martingale. Note that dLf(u, s) > 0 implies that J(s) = 0 and
V f(u,s) = 0.

Substituting in (2.11) a = aj, such that det(K(aj)) = 0, k(aj) = 0, J(0) = 0,
and V f(u,0) = b – u, we obtain that the process 

eaj (b – u)h j
0 – eaj V f(u, t)h j

J(t) + aj L
f(u, t)h0

is a zero mean martingale, j = 0, ···, n + 1. Applying the optional sampling theo-
rem yields 

eaj (b – u)h j
0 – eaj b j

kh
k

n

0=

! p(u,k) + aj �b(u)h j
0 = 0. (2.12)

Note that the equation for j = 0 is k 0= ,p u k 1n
=! ^ h . Thus we get n + 2 equations

for p(u,0), ···, p(u,n) and �b(u).

Conclusions

a. When the initial reserve is b, the total dividends paid is exponentially dis-
tributed with mean �b(b), where �b(b) is found by solving (2.12) with
u = b.

b. When the initial reserve is u < b the total dividends paid is 0 with probability
1 – q(u), and it is exponentially distributed with mean �b(b) with probability
q(u), where q(u) is obtained in Section 2.4.

The deficit at ruin. Let h be the deficit at ruin. p(u,0) is the probability that
ruin occurs by diffusion, and p(u, j) is the probability that ruin occurs when a
claim crosses 0 at phase j, j = 1, ···, n. Therefore the deficit at ruin is phase type
with an atom (p(u,0), p (u),T), where p (u) = (p(u,1), ···, p(u,n)).
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2.6. The expected time to ruin

Let X(u,t) be the Lévy process as defined in the previous section, and let V(u,t)
be the reflected Lévy process. Note that V(u,tb(u)) = b + h, where h is the deficit
at ruin. Applying Wald identity (see Asmussen (2003), p. 258-259),

b – u + � [X(1)] � [tb(u)] = b – u + (– c + l� [W ] ) � [tb(u)] = � [X(u,tb(u))].

By substituting 

X(u,tb(u)) = V(u,tb(u)) – L(u,tb(u)) = b + h – L(u,tb(u)),

taking expectations, and applying (2.5), we obtain that

.�
�

�
u

c W
u u

c

u u u

T
p T

l
h

l b 1
1

b
b b

1

1

=
-

- -
=

+

+ -
-

-

t
, ,

^
^ ^ ^

h
h h h

7
6

6
A

@

@
(2.13)

Thus we can obtain the expected time to ruin.

2.7. The algorithm

We summarize the procedure for one dividend barrier. Assume that the claim
size distribution is phase type with representation (b,T). Then:

(i) Construct the matrix K(a), as per (2.9).

(ii) Solve the equations det(K(a)) = 0 to obtain the n +2 solutions a0, ···, an+1.

(iii) For each aj find the non-null vector h j, such that K(aj)h j = 0.

(iv) Solve the set of n + 2 equations in (2.10), find q(u)–probability of reach-
ing b before ruin, and the probabilities g(u, j) of ruin in phase j before div-
idends payment.

(v) Solve the set of n + 2 equations in (2.12) to find the expected dividends
and the probabilities p(u,0), and p(u, j ), j = 1, ···, n of ruin due to diffu-
sion or due to a claim at phase j, respectively.

(vi) The deficit at ruin is phase type with an atom p(u,0)] at 0, and with rep-
resentation ((p(u,0), p(u)),T).

(vii) The expected time to ruin is as per (2.13).

2.8. Detailed example

In this example we imply the last procedure step by step on the following data:
u = 20, b = 50, c = 0.7, l = 1. We chose the claim amount distribution to be
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a phase type distribution that approximates the distribution of min(enW– n2/2,2),
where W is a standard normal random variable, i.e. our phase type distribu-
tion approximates a truncated lognormal distribution. This distribution fits
the distribution of claim amount of some Swedish fire insurance data. The
approximation is presented in Asmussen and Rolski (1991). When n = 1.8 the
parameters of the fitted phase type distribution are:

b = (0.5614,0.4386), ,
.
.

.

.
T

8 640
0 101

1 997
1 095

=
-

-
d n

.

.
t 6 643

0 994
= d n

The expected claim amount is � (W ) = 0.6015.

(i)
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(ii) Solve det (K)(a) = a(0.5a3 – 5.5675a2 + 10.4440a – 0.9117) = 0. Solutions:
a0 = 0, a1 = 0.0917, a2 = 2.2638, a3 = 8.7795

(iii) Solve K(aj)h j = 0 yields 

0h
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1
1

=
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(iv) Solve the set of equations (2.10) to find q(u), and g(20, j ), j = 0, 1, 2.
The solution is: g(20,0) = 0.0670, g(20,) = 0.0020, g(20,2) = 0.0075, and
q(20) = 0.8562.

Note that q(20) is the probability of reaching b = 50 before ruin, and
g(20, j), j = 1,2 is the probability of ruin before reaching b due to a claim
in phase j, and g(20,0) is the probability of ruin before reaching b, due to
diffusion.
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TABLE 2

THE EXPECTED TIME TO RUIN

b s = 0.5 s = 1 s = 1.5

20 980 409 191
30 4420 1337 507
40 17796 3659 1076
50 69803 9470 2098
60 272021 24016 3935
70 1058298 60423 7237
80 4115548 151548 13171

(v) Solve the set of equations (2.12). The solution yields that the probability
of ruin due to diffusion is: p(20,0) = 0.4659, the probability of ruin due
to a claim in phase 1 is p(20,1) = 0.0139, and due to a claim at phase 2
is p(20,2) = 0.5202. The expected dividends �50(20) = 953.0. Thus,

(vi) The deficit at ruin is phase type with atom p(20,0) = 0.4659 at 0, and
representation (0.0139, 0.5202),T).

(vii) Substituting �50(20), p(20,1), p(20,2) in (2.13) yields that the expected
time to ruin is �(tb(u)) = 9470.3.

2.9. Numerical example

Example I. In this section the data and the claim amount distribution is as in 2.8.
In tables 1 and 2 we show the expected dividends paid and the expected time
to ruin for different barrier levels and three value of volatility s.

194 E. FROSTIG

TABLE 1

THE EXPECTED DIVIDENDS

b s = 0.5 s = 1 s = 1.5

20 117 61 39
30 456 152 70
40 1773 381 126
50 6894 953 227
60 26806 2385 408
70 104229 5970 733
80 405269 14943 1317

Example II. In the next example we apply the algorithm to the case where the
volatility coefficient in the log-normal distribution is n = 0.8. In this case the
parameters of the phase type distribution that approximates the lognormal
are as follows (Asmussen and Rolski (1991)):

b = (0.9731, 0.0152, 0.0106, 0.001),

.

.

.

.

.
.
.
.

.

.
.
.

.

.

.
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In this case �(W ) = 0.8807. We assume that l = 1, and c = 1. The results for this
data are exhibited in Tables 3 and 4.
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In both examples we see that the expected dividends and the expected time to
ruin are very sensitive to the the volatility coefficient of the Brownian motion.
Both decrease as the volatility coefficient increases.

3. MODEL II

3.1. Model description

Let a,b be numbers, such that b > a > u. Whenever the risk process reaches the
level b, dividends are paid at a rate d < c. Let c1 = c – d. The dividends are paid
until the process reaches the level a. Thus, if the surplus reaches the level b
before ruin, dividends are paid, until the surplus down-crosses the level a, and
so on. We consider two cases: 1. c1 < l�[W ], and 2. c1 > l�[W ]. In the first case
ruin occurs with probability 1, and thus we will obtain the expected dividends
paid until ruin occurs, and the expected time to ruin. In the second case we
will find the ruin probability. Unless assuming otherwise, we consider the first
case.

3.2. The expected dividends

Consider the risk process described above, with initial reserve u. Let e1 < o1 <
e2 < o2 < ···. ej is the j th time that the process crosses the level b from below
and oj is the first time after ej that the process crosses the level a from above.
Thus ej – oj is the duration of the j-th period of dividend payments. Assume
that the surplus process R(u,t) reaches the level b before ruin. From that point
until the reserve reaches level a, it behaves as a risk process R1,1(b – a, t) = b –
a + c1t – jj 1=

( )N t W! . Let X1(t) = b – a – R1(b – a, t). Let t1, j(b – a) = oj – ej . Thus
t1, j(b – a) is the time to ruin for the process R1, j(b – a, t), with R1, j(b – a, t) is
the risk process between ej and oj. Since c1 < l� [W ], the expected time to ruin
is finite. Let h1, j be the deficit at ruin for the process R1, j (b – a, t). Note that

ON RISK MODEL WITH DIVIDENDS PAYMENTS 195

TABLE 4

THE EXPECTED TIME TO RUIN

b s = 0.5 s = 1 s = 1.5

20 1054 430 197
30 5518 1555 558
40 26240 1781 1274
50 122424 14041 2694
60 568702 40617 5512
70 2635889 118887 11102
80 12137038 335735 22190

TABLE 3

THE EXPECTED DIVIDENDS

b s = 0.5 s = 1 s = 1.5

20 146 72 44
30 679 206 87
40 3150 591 558
50 14621 1695 342
60 67849 4864 678
70 314401 13961 1344
80 1447596 40063 22189
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R1, j, h1, j and t1, j j = 1,2, ··· are probabilistically identical to R1,1, h1,1 and t1,1,
respectively. Thus we will use the notation R1, h1 and t1, respectively. Wald equal-
ity implies that:

.�
�

�
b a

W c
b a

t
l

h
1

1

1- =
-

- +
^

^
h

h
7

6

6
A

@

@
(3.1)

The deficit at ruin h1 for the process R1 is phase-type distributed with an atom
j0 at zero, and with representation ((j0, j), T), where j = (j1, ···, jn). To find
(j0,j), we consider the fluid version, X1

f(t), of X1(t). Thus, jj is the probabil-
ity that X1(t) hits the level b – a at state j, j = 0, ···, n, j0 is the probability in the
process R1(b – a, t) ruin occurs due to diffusion, while for j = 1, ···, n, jj is the
probability of ruin due to a claim in state j. X1

f(t) is a MAP, as described in
Section 2.3. The modulating states are 0, ···, n. When in state 0 the process
behaves as Brownian motion with a drift – c1, and variance s2, and when in
state j = 1, ···, n, the process increases linearly at rate 1. Let J(t) be a jump
Markov process describing the modulating state; the generator of J(t) is Q, as
per (2.7).

� [eaX f
1 (t); J(t) = j | J(0) = i ] = etK1(a), where K1(a) = Q + C1(a), and C1(a)

is as C(a) in (2.8), where c is replaced by c1. Assume that the equation
det(K1(a)) = 0 has n + 2 different roots a1,0, ···, a1, n+1. Note that one of the
roots, let’s say a1,0 is 0, with corresponding eigenvector equal to 1. Let h j

1 be
the eigenvectors of K(a1, j), that is non-zero vectors such that 

K(a1, j ) h j
1 = 0.

The assumption that c1 < l�[W ] implies that �[t1(b – a)] <3. As in Section 2.4,
we apply the multidimensional Wald martingale in Lemma 2.5, and the optional
sampling theorem, to obtain the following equations for (j0, j):

j , , .e h h i nj 0 1, ,
a b a

j

n

j
i i

0
1 1 0

, i1 g= = +-

=

! ] g (3.2)

Note that for i = 0, equation (3.2) reads: jj 0= .j 1n
=!

Corollary 3.1. The deficit at ruin, h1, of the risk process R1(b – a,t) is phase-type
with representation ((j0,j),T), where (j0,j) is as per (3.2). Thus

� [h1] = –jT –11. (3.3)

The risk process R(u, t) starts at level u. With probability q(u) it reaches the
level b before the level 0, and with probability 1 – q(u) ruin occurs before the
process reaches b and no dividends are paid. In the case that level b is reached
before ruin, the risk process behaves as R1(b – a) during the period t1 = e1 – o1.
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From time e1 to o2, the risk process behaves as R2,1(t). Similarly, for j = 1,2,…,
from ej to oj+1 the surplus process R2, j (t) is below b, and behaves as R2(t),
where

R2(t) = a – h1 + ct + sB(t) – .k
k

N t

1=

W!
] g

(3.4)

Let X2(t) = b – R2(t). The process X2 is a Lévy process which is statistically
identical to the process X(a – h1, t). Let r be the probability that X2(t) reaches
the level 0 before the level b. Clearly this probability is 0, if h1 > a (i.e. just
before ruin the surplus process is above a, dividends are paid, and ruin occurs
due to a claim). Let A be the event A = (h1 < a). Let z be a random variable
with distribution function Fz, where 

Fz(x) = P(h1 # x | h1 < a). (3.5)

Let T(0) and T(b) be the first time that the process X2(t) hits 0 and b, respec-
tively, given A. Let r be the probability that the process X2(t) hits 0 before b,
given A. Note that if T(b) < T(0), then ruin occurs. Note further that X2(t)
hits 0 due to a diffusion while it may hit b due to a diffusion (state 0), or at
phase k, k = 1, ···, n.

Let w(0) be the probability that X2(t) hits level b before 0 due to diffusion,
and let w( j ) be the probability that it hits level b before level 0 at phase j,
j = 1, ···, n, given A. To obtain r and w( j ) j = 0, ···, n, we consider the fluid
version X f

2 (t) of X2(t) and apply the multidimensional Wald martingale as per
Lemma 2.5

e a b

j

n

0

1

=

! w( j )hi
j + rhi

0 = �eai (b – a + z)hi
0, (3.6)

where (ai, i = 0, ···, n + 1) and (hi
j, i = 0, ···, n + 1, j = 0, ···, n) are as in (2.10), and 

�eai (b – a + z) = eai (b – a)
aT
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e

e e dstj

j
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a sa
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(3.7)

= eai (b – a)
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Let w0 be the probability that X2(t) hits level b before 0 due to diffusion, let
w(k) be the probability it hits the level b before level 0 at phase k, k = 1, ···, n,
and let r be the probability that X2(t) hits 0 before b (by diffusion). Then 
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w0 = P(h1 # a) w0

wk = P(h1 # a) wk + jeTa1k, k = 1, ···, n (3.8)

r = P(h1 # a) r

where 1k is an n dimensional column vector with all components 0 except the
j th which is 1. Let w = (w1, ···, wn). Thus w0 is the probability of ruin (for the
process R2) due to diffusion, and wk k = 1, ···, n is the probability of ruin due
to a claim at phase k. r is the probability that R2 reaches level b before ruin.

3.2.1. The deficit at ruin

Assume that the initial reserve is u. With probability g(u,0), ruin occurs before
any dividends’ payments due to a diffusion, and with probability g(u,j), j =1, ···, n
ruin occurs before any dividends’ payments due to a claim at phase j. g(u,0),
and g(u) = (g (u,1), ···, g (u,n)) are as per (2.10). In this case the deficit at ruin
is phase type with representation ((g(u,0), g(u)),T). With probability q(u) the
deficit at ruin is phase type with representation (w0 / (1 – r), w / (1 – r)), where
w0, w = (w1, ···, wn) and r are as per (3.8). Thus the deficit at ruin is phase-type
with representation 

, , , .u q u u
q u

Tg r
w

rg w0 1 1
0+

-
+

-

J

L

K
K ^ ^ ^

^
f

N

P

O
Oh h h

h
p

3.2.2. The amount of dividends

Define the j-th cycle, C( j), as the time elapses from ej to ej +1. Clearly the cycles
are i.i.d distributed as C. Let C(u, j ) be the time that elapses from ej to oj, and
C(d, j ) be the time that elapses from oj to ej+1. Note that C(u, j ) is statistically
identical to t1(b – a), and thus �C(u, j ) is given by substituting (3.3) in (3.1).
The expected dividend paid in one cycle is d� [t1(b – a)]. Let N be the number
of cycles until ruin occurs. Then,

P(N = 0) = 1 – q(u)

P(N = j ) = q(u) r j–1(1 – r) j = 1,2, ···.

Thus 

� [N ] = .
q u

r1 -

^ h
(3.9)

Corollary 3.2. The expected dividends paid until ruin occurs are:

d � [N ] � [C(u,1)] = .
�

dq u
W c

b a T
r l

j
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1
1
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3.2.2. The expected time to ruin

Let t(u) be the time to ruin. Then 

t(u) = min(T(u,0),T(u,b)) + I(T(u,0) < T(u,b)) , , ,C u j C d j D
j

N

1

+ -
=

!
J

L

K
K ^ ^_

N

P

O
Oh hi

where I is the indicator function, and D is the time that elapses from the moment
that ruin occurs in the N th cycle until the end of this cycle, i.e., until eN +1.

If the event (T(u,0) < T(u,b)) occurs, then X(u,T(u,0,b)) = 0. The process
X(u, t ) reaches the level 0 before the level b. Recall that P(T(u,0) < T(u,b)) =
q(u).

If (T(u,0) > T(u,b)), then X(u, t) hits level b before level 0, and ruin occurs
before any dividends are paid. In this case X(u,T(u,0,b)) = b + h, where h is the
deficit at ruin. Given that (T(u,0) > T(u,b)), the deficit at ruin–h is phase type
with representation, (g(u,0) / (1 – q(u)), g/(1 – q(u)),T), where g(u,0) and g(u) =
(g(u,1), ···, g(u,n)) are given in (2.10). Wald identity implies that 

� [T(u,0,b)] = .
�c W

q u b u u T
l

g 11

-

- + -
^ ^h h

6 @

The random variable I(T(0,u) < T(b,u)) is independent of the evolution of the
process after time T(u,0,b) and P(I(T(0) < T(b)) = 1) = q(u). By Corollary 3.1
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(3.10)

where j is as per (3.2). C(d, j ) is the time that elapses from oj where X2(0) = b
– a + h1 until ej +1. Applying the Wald identity, we obtain 

� [C(d, j )] = .
�

�

c W
b a

l
h1

-

- +

6

6

@

@
(3.11)

D is the time from the moment that X2(t) up-crosses level b until it hits 0 in
the N cycle. The overflow of the process XN (t) above b is just the deficit at ruin
given that ruin occurs. Let h be a random variable distributed as the deficit at
ruin given that ruin occurs in the N cycle. Then h is phase-type distributed
with representation (w0 / (1 – r), w / (1 – r),T ). Applying the Wald identity we
obtain that:

E[D] =
/

.
�c W

b T
l

rw 1 11

-

- - -
^_ hi

6 @
(3.12)
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Corollary 3.3. The expected time to ruin � [t(u)] is as follows:

� [t(u)] = � [T(u,0,b)] + q(u) (� [N ] (� [C(u,1)] + � [C(d,1)]) – � [D] ) (3.13)

3.2.4. Detailed example

In this example we implement the last procedure step by step to the following
data: c = 0.7, l = 1, c1 = 0.5, (i.e. dividends are paid at rate 0.2), u = 20, b = 50,
a = 40, and the claim distribution is two dimensional phase type as in sec-
tion 2.8. In the following procedure we add only the additional steps to those
in section 2.8.
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2. Solve det(K1(a)) = a(0.5a3 – 5.3675a2 + 8.49705a – 0.94010) = 0. Solutions:
a1,0 = 0, a1,1 = – 0.104, a1,2 = 2.065, a1,3 = 8.774.

3. For j = 0,1,2,3, solve K1(aj)h1
j = 0. The solutions are:

h
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.
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4. Solve the set of equations (3.2) to find j0 – the probability that ruin in the
risk process R1(b – a) occurs due to diffusion, and jj – the probability that
ruin in the risk process R1(b – a) occurs due to claim in phase j, j = 1,2.
The solution is: j0 = 0.51102, j1 = 0.01381, and j2 = 0.47517. Thus the
deficit at ruin, h1, of the surplus process R1, is phase type with represen-
tation ((0.0138, 0.47517),T).

5. Let z be a random variable distributed as the conditional distribution of
h1 given h1 # a. To find the right hand side of 3.6 we have to substitute the
solutions ai, i = 0,1,2,3 as per section 2.8.

6. Solve the set of equations (3.6) to obtain wi , i = 0,1,2 – the probability that
ruin occurs due to diffusion, or due to to a claim hitting 0 at phase i, i =
1,2, and r, the probability that the process reaches the level b before ruin.
All this probabilities are conditional probabilities given that R2 starts with
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reserve a – h1 > 0. The solution is: w0 = 0.00738, w1 = 0.00022, w1 = 0.00824,
r = 0.98417.

7. Find wi, i = 0,1,2 – the ruin probability for R2 due to diffusion or due to
a claim in phase i. In this example Pr(h1 # a) . 1 , thus wi . wi, i = 0,1,2,
and r . r.

8. The deficit at ruin is phase type with parameter 0 with probability (g0 +
q(u) w0 /(1 – r), g(u) + q(u) / (1 – r) w,T), with g0 + q(u) w0 /(1 – r) = 0.46615,
g1 + q(u) w1 / (1 – r) = 0.0139, and with probability g2 + q(u) w2 / (1 – r) =
0.520489.

9. The expected number of cycles is as per (3.9), � [N ] = 54.13.

10. The expected time dividends are paid per cycle is as per (3.1), �[C(u,1)] =
103.

11. The expected dividends d� [N ] � [C(u,1)] = 1113.56.

12. The expected time until the risk process hits b or 0 is: � [T(u,0,b)] = 231.

13. The expected time in one cycle that the process is below b is � [C(d,1)] =
106.15.

14. The expected time from the moment of ruin until the surplus reaches level
b is � [D] = 513.

15. The expected time to ruin:

� [T(u,0,b)] + q(u) (� [N ] (� [C(u,1)] + � [C(d,1)) – � [D] = 11101.

3.3. Numerical example

Example III. We imply the algorithm to data in 3.2.4 for different values of
b, a = 0.8b, and s.
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TABLE 6

THE EXPECTED TIME TO RUIN

b s = 0.5 s = 1 s = 1.5

20 1433 768 479
30 5294 2008 953
40 18978 4806 1751
50 60165 11101 3095
60 197915 25223 5335
70 646337 56822 9150
80 2098661 127345 15517

TABLE 5

THE EXPECTED DIVIDENDS

b s = 0.5 s = 1 s = 1.5

20 162 96 67
30 542 218 114
40 1801 494 192
50 5945 1134 325
60 19509 2504 548
70 63664 5616 921
80 206671 12560 1548
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Example IV. In this example we imply the algorithm to the following data:£
c = 1, l = 1, u = 20, a = 0.8b, and claim size distribution is as in Example II in
section 2.9.
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TABLE 8

THE EXPECTED TIME TO RUIN

b s = 0.5 s = 1 s = 1.5

20 1336 692 416
30 5461 1977 893
40 20658 5136 1752
50 76263 12883 3294
60 278390 31821 6062
70 1008576 77966 11021
80 3631033 190053 19895

TABLE 7

THE EXPECTED DIVIDENDS

b s = 0.5 s = 1 s = 1.5

20 174 100 68
30 649 249 123
40 2398 611 222
50 8799 1503 399
60 32066 3683 717
70 116118 8995 1288
80 417988 21897 2310

Examples III and IV exhibit the same phenomena as Examples I and II of
model 1. The amount of dividends and the time to ruin are very sensitive to
the volatility coefficient of the Brown motion. Both decrease as s increase.

3.4. The ruin probability when c1 > l� [W ]

Assume that c1 > l� [W]. In this case the ruin probability is less than 1. Let
f1(b – a) be the ruin probability for the risk process R1, and let h1 be distrib-
uted as the deficit at ruin, given that ruin occurs.

The ruin probability fb(u) can be written as follows:

fb(u) = 1 – q(u) + q(u) (
j 1

3

=

! f1(b – a)r) j –1 f1(b – a) (1 – r)

(3.14)
= 1 – q(u) + q(u)

b a
b a

f r
f r
1

1
- -

- -

1

1

^

^ ^

h

h h
.

Recall that 1 – q(u) is the probability that ruin occurs before reaching the div-
idend barrier. With probability q(u) the dividend barrier is reached before ruin
occurs. 1 – r is the probability that ruin occurs, given that ruin occurred at the
process R1. Thus, f1(b – a)r is the probability of reaching the dividend barrier
before ruin occurs, after ruin occurs in R1.

To obtain f1(b – a), and the distribution of h1, we apply the result obtained
by Asmussen (Asmussen (2000), Chapter VIII.4 , p. 229-233), and some results
on Lévy processes with no negative jumps.
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Consider a risk process where the claims interarrival times are i.i.d with a
general distribution function F, and the claim sizes are i.i.d independent of
the arrival process phase-type distributed with representation ( b, S ), where S
is an n ≈ n square matrix. Let u be the initial reserve, and let f(u) be the ruin
probability. Then:

Proposition 3.4.

(i) f(u) = b+e (S + sb+)u1,

where, s = –S1, b+ is the solution to the following equation:

b+ = b e
0

3

# (S + sb+)y F(dy), (3.15)

where sb+ is an n ≈ n square matrix with i, j element equal to si b
+
j .

(ii) Assume that there is a claim at time 0 with phase-type distribution with rep-
resentation (b0, S), then the ruin probability is 

f0(u) = b0 e (S + sb+)u1 (3.16)

(iii) The deficit at ruin, given ruin occurs is phase-type with representation (n(u), S)
in case (i), and (n0(u),S) in case (ii), where 

n(u) =
uf

1
^ h

b+e (S + sb+)u and,

(3.17)
n0(u) =

uf
1

0^ h
b 0e (S + sb+)u.

Proof. Statement (i) was proved by Asmussen ((Asmussen (2000)), Theorem 4.4,
Chapter VIII, p. 230-231). Statements (ii) and (iii) follow from Corollary 2.3
and Theorem 4.4 in Chapter VIII, of Asmussen (2000). ¡

The process R1 is a compound Poisson risk process with phase-type claim
amounts perturbed by a Brownian motion. Mordecki (2002) found the ruin
probability for this model. His results are based on (Bertoin (1996)).

Let Y(t) = –ct + sB(t), where B(t) is a Brownian motion, and let c(z) =
– cz + s2z2/2 be its Lévy exponent. Let ql be the positive root of c(z) = l.
The following Proposition follows from Theorem 4, page 191, and Theorem 5,
page 159, in Bertoin (1996).

Proposition 3.5. Let M (t) = sup{0 # s # t :Y(s)}. Let El be an exponentially
distributed random variable independent of Y(t), with parameter l. Then 

(i) M (El) is exponentially distributed with parameter ql.
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(ii) Let q > 0, and let V = M(El) –Y (El), then 

�(exp{– qV}) = .
cl q
l q

l

l

- -

+

q
q

^ h
(3.18)

(iii) V and M (El) are independent.

Mordecki (2002) applied Proposition 3.5, and showed that the ruin probabil-
ity for this model is the same as the ruin probability in a risk model, where the
claims arrive according to a renewal process where the inter-arrival times are
i.i.d distributed as V, and the claim sizes are i.i.d independent of inter-arrival
times, with phase-type distribution with representation ((0, b ),S ), where S is
an n + 1 ≈ n + 1 matrix 

.
t T

S 0l=
q

d n

The first arrival occurs at time 0, with claim amount which is exponentially dis-
tributed with parameter ql. Let b+ be as per (3.15) with F = FV being the dis-
tribution function of V. Proposition 3.4 implies that

1. f1(b – a) = 1�1 e (S + sb+)(b – a)1, (3.19)

where 1�1 is an n+1 dimensional row vector with all components except the
first, which is 1.

2. The deficit at ruin for the process R1, given that ruin occurs, is distributed
as a random variable h1, which has a phase-type distribution with represen-
tation ((n0,n), S ), where 

(n0,n) =
b af
1
-1^ h

1�1 e (S + sb+)(b – a). (3.20)

Note that n0 is the atom at 0.

To obtain the ruin probability in (3.14), we need to derive r – the probability
of reaching the level b before ruin after the down-crossing the level a, and wi,
i = 0, ···, n, the probability that ruin occurs due to diffusion or a claim in phase i.
To obtain r, and wi , we substitute T with S, and j with n in equations (3.6)-(3.8).

Substituting r and (3.19) in (3.14) we obtain the ruin probability.
The deficit at ruin given ruin occurs. Clearly the deficit at ruin given ruin

occurs is phase-type with representation ((d0,d),T ), where d0 is the atom at 0
when ruin occurs due to diffusion. Let di be the probability that ruin occurs at
phase i, i = 0, ···, n, then 

di = g(u, i ) + q(u)wi r r

r

1

1

3
-

=

! f1(b – a)r = g(u, i ) + wi .
b a

q u b a
rf
f

1
1

- -

-

1^

^ ^

h

h h

204 E. FROSTIG

0587-07_Astin38/1_11  02-06-2008  13:06  Pagina 204

https://doi.org/10.2143/AST.38.1.2030410 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.1.2030410


Therefore the distribution of the deficit at ruin given ruin occurs is phase type

with representation ((d0, d),T), where di = .d

ufb

i

] g
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