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Abstract

Conditioning independent and identically distributed bond percolation with retention
parameter p on a one-dimensional periodic lattice on the event of having a bi-infinite path
from −∞ to ∞ is shown to make sense, and the resulting model exhibits a Markovian
structure that facilitates its analysis. Stochastic monotonicity in p turns out to fail in
general for this model, but a weaker monotonicity property does hold: the average edge
density is increasing in p.
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1. Introduction

In this paper we consider bond percolation on a class of one-dimensional periodic lattices.
A basic example of such lattices is the ‘ladder’ graph in Figure 1, while the general definition
will be given in Definition 4.1, below. In bond percolation on a graph G = (V , E), the edges are
randomly declared to be closed (i.e. deleted) or open (retained) according to some probability
measure on {0, 1}E , where 0 means closed and 1 means open.

The usual independent and identically distributed (i.i.d.) bond percolation model, in which
each edge is independently retained with the same probability p ∈ [0, 1], on one-dimensional
periodic lattices has been mostly ignored, the reason being that the critical probability pc of
having an infinite cluster equals 1, so that the event of having an infinite cluster has probability
0 for any nontrivial value of p (this follows from an easy Borel–Cantelli argument). Here, we
will liven up the model by conditioning on the existence of an infinite cluster reaching infinitely
far in both directions. More precisely, we condition on the existence of an open path passing
from one end to the other of a finite portion of the lattice, and take limits as the portion grows

Figure 1: The ladder graph.
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Conditional percolation on one-dimensional lattices 1103

towards the full lattice. Thus, our construction is somewhat reminiscent of the ‘incipient infinite
cluster’ on the Z

d lattice, studied by Kesten [7], Jarai [6], and others. One difference, however,
is that while these authors considered the incipient infinite cluster at criticality, we will start
from i.i.d. percolation below criticality (simply because pc = 1 in our setting).

We will show, for the case of the ladder graph in Figure 1, that the limiting measure is indeed
well defined (Section 2), and derive a useful Markov representation of this measure (Section 3).
These results are extended to general one-dimensional periodic lattices in Section 4. Finally,
in Section 5, we study how the model depends on p. It turns out that stochastic monotonicity
in p fails in general, but a weaker property holds such that the ‘edge density’, suitably defined,
is an increasing function of p.

In a companion paper [2], the Markov representation played a crucial role in the analysis of a
biased random walk on the infinite cluster arising in our model. The bias is governed by a drift
parameter β ≥ 1, where β = 1, and the main result in [2] is the derivation of an explicit critical
value βc = βc(p) such that the asymptotic speed to the right is strictly positive for β ∈ (1, βc),
and zero for β ≥ βc. This is motivated by the works of Berger et al. [3] and Sznitman [8]
on a similar random walk on the infinite cluster of i.i.d. percolation on Z

d , where zero speed
and positive speed regimes are found, but where the monotonicity property needed to separate
these by a unique critical value βc was left open.

2. Conditional percolation on the ladder: existence of limiting measure

Consider the ladder graph L = (V , E) in Figure 1 with vertex set V = Z × {0, 1} and
E the set of edges connecting vertices at Euclidean distance 1 from each other. We wish to
consider i.i.d. bond percolation on L with edge probability p ∈ (0, 1) conditioned on the event
B of having an ‘open path from −∞ to ∞’. More precisely, B is the event that, for any
N > 0, there exists an open path from some vertex with x-coordinate −N to some vertex with
x-coordinate N . As noted in Section 1, the existence of an infinite cluster has probability 0
for any p ∈ (0, 1), whence the same holds for the event B. Making sense of conditioning on
B is therefore a nontrivial issue, and we will approach the problem via a limiting procedure.
Thus, for N1, N2 > 0, let BN1,N2 be the event that there exists an open path from some vertex
with x-coordinate −N1 to some vertex with x-coordinate N2, and, for p ∈ (0, 1), let Pp,N1,N2

be the probability measure on {0, 1}E that arises by conditioning i.i.d. bond percolation with
parameter p on the event BN1,N2 . We have the following result, where convergence is in the
product topology, meaning that the probability of any cylinder event converges.

Theorem 2.1. For any p ∈ (0, 1), the probability measures Pp,N1,N2 converge weakly to a
probability measure Pp on {0, 1}E as N1, N2 → ∞.

The proof proceeds by mimicking the disagreement percolation technique of van den
Berg [9].

Proof of Theorem 2.1. Let A ⊂ {0, 1}E be any cylinder event; we need to prove that

lim
N1,N2→∞ Pp,N1,N2(A)

exists. To this end, it is enough to show that, for any ε > 0, there exists an M > 0 such that

|Pp,N1,N2(A) − Pp,N ′
1,N

′
2
(A)| < ε (2.1)

whenever N1, N2, N
′
1, and N ′

2 all exceed M . Fix a > 0 such that the cylinder event A is defined
solely in terms of edges with endpoints in [−a, a] × {0, 1}.
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1104 M. AXELSON-FISK AND O. HÄGGSTRÖM

Let X, X′ ∈ {0, 1}E be two independent random edge configurations with respective distri-
butions Pp,N1,N2 and Pp,N ′

1,N
′
2

with N1, N2, N
′
1, and N ′

2 all exceeding a. We will reveal X and
X′ sequentially as follows. First we peek at the values in X and X′ of all edges sitting at or
to the left of x-coordinate −(min(N1, N

′
1)), and all edges sitting to the right of x-coordinate

min(N2, N
′
2). Next, we start examining the X and X′ values of the remaining edges one at a

time systematically going from left to right, meaning that we always choose the edge whose
midpoint has the smallest x-coordinate, with the y-coordinate acting as tie-breaker. We do
this until we encounter a vertical edge e (i.e. e = 〈{x, 0}, {x, 1}〉 for some x ∈ Z) such that
X(e) = X′(e) = 1, and define −K1 as the x-coordinate of the vertical edge where this happens.
We then stop and start going from x-coordinate min(N2, N

′
2) towards the left in the same manner,

again stopping as soon as we encounter a vertical edge e such that X(e) = X′(e) = 1, defining
K2 as the x-coordinate of the vertical edge where this happens. At this point, we pause to
reflect on the conditional distribution of X and X′ restricted to the not-yet-examined edges, i.e.
the set of edges having at least one endpoint with x-coordinate strictly between −K1 and K2.
A moment’s thought reveals that, for both X and X′, the conditional distribution of what happens
in this interval is precisely i.i.d. bond percolation with parameter p conditioned on the event
BK1,K2 of having an open path between x-coordinates −K1 and K2. The key observation here
is that this conditional distribution is identical for X and for X′, so if we define D to be the
event {−K1 < −a, a < K2}, it is clear that

Pr(X ∈ A | D) = Pr(X′ ∈ A | D),

where Pr is used as a generic symbol for probability, in this case denoting the probability
measure on the probability space on which X and X′ are jointly constructed. Hence,

Pp,N1,N2(A) − Pp,N ′
1,N

′
2
(A) = Pr(X ∈ A) − Pr(X′ ∈ A)

= Pr(X ∈ A, D) + Pr(X ∈ A, ¬D) − Pr(X′ ∈ A, D)

− Pr(X′ ∈ A, ¬D)

= Pr(X ∈ A, ¬D) − Pr(X′ ∈ A, ¬D),

so that
|Pp,N1,N2(A) − Pp,N ′

1,N
′
2
(A)| ≤ Pr(¬D).

So the key to establishing the desired inequality (2.1) is to show that Pr(¬D) can be made
arbitrarily small by letting N1, N2, N

′
1, and N ′

2 all be large.
In order to bound Pr(¬D), the following observation is crucial. For any e ∈ E, the

conditional probability that X(e) = 1 given the X-status of all other edges is either 1 or p

depending on whether e is pivotal or not for the existence of an open path between x-coordinates
−N1 and N2. Hence, conditioning on some partial information of X(E \ {e}) makes the
conditional probability that X(e) = 1 at least p. The analogous statement for X′ holds as well.
Since X and X′ are independent, we can deduce that each time in the above procedure that we
inspect an edge e for its X and X′ values, the conditional probability that X(e) = X′(e) = 1
given everything we have seen so far is at least p2. Hence,

Pr(¬D) ≤ Pr(K1 < a) + Pr(K2 < a)

≤ (1 − p2)min(N1,N
′
1)−a + (1 − p2)min(N2,N

′
2)−a

≤ 2(1 − p2)M−a,

which tends to 0 as M → ∞, so (2.1) is established for large enough M , and the proof is
complete.
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Equipped with Theorem 2.1, we obtain two easy corollaries. The first verifies that the event
B of an open path from −∞ to ∞ indeed happens almost surely (a.s.) under the limiting
measure Pp.

Corollary 2.1. For any p ∈ (0, 1), Pp(B) = 1.

Proof. For each k > 0, we have Pp,N,N (Bk) = 1 whenever N > k. Hence,

Pp(Bk) = lim
N→∞ Pp,N,N (Bk) = 1,

and since B = ⋂∞
k=1 Bk, the result follows.

In the next corollary, we obtain translation invariance of Pp, meaning that, for any k ≥ 1,
any

e1 = 〈{x1, y1}, {x′
1, y

′
1}〉, . . . , ek = 〈{xk, yk}, {x′

k, y
′
k}〉 ∈ E,

any z ∈ Z, and any i1, . . . , ik ∈ {0, 1}, an {0, 1}E-valued random object X with distribution Pp

satisfies

Pp(X(〈{x1, y1}, {x′
1, y

′
1}〉) = i1, . . . , X(〈{xk, yk}, {x′

k, y
′
k}〉) = ik)

= Pp(X(〈{x1 + z, y1}, {x′
1 + z, y′

1}〉) = i1, . . . , X(〈{xk + z, yk}, {x′
k + z, y′

k}〉) = ik).

Corollary 2.2. For any p ∈ (0, 1), Pp is translation invariant.

Proof. Theorem 2.1 implies that limN→∞ Pp,N−z,N+z gives rise to the same limiting mea-
sure regardless of the choice of z. The corollary follows easily.

3. Conditional percolation on the ladder: Markov structure

Our task in this section will be to establish the Markov structure of Pp that will be crucial
to the rest of our study. We begin with some lemmas that will be needed concerning stochastic
domination and conditional probabilities.

We equip the edge configuration space {0, 1}E with the coordinatewise partial order
‘�’, meaning that, for ξ, ξ ′ ∈ {0, 1}E , ξ � ξ ′ if ξ(e) ≤ ξ ′(e) for every e ∈ E. A function
f : {0, 1}E → R is said to be increasing if f (ξ) ≤ f (ξ ′) whenever ξ � ξ ′.

Definition 3.1. Let µ1 and µ2 be two probability measures on {0, 1}E . We say that µ1 is
stochastically dominated by µ2, written µ1 �d µ2, if, for every bounded increasing function
f : {0, 1}E → R, we have µ1(f ) ≤ µ2(f ).

By the well-known Strassen’s theorem (see, e.g. [4]), µ1 �d µ2 is equivalent to the existence
of a coupling of two {0, 1}E-valued random objects X1 and X2, with distributions µ1 and µ2,
respectively, such that Pr(X1 � X2) = 1.

Lemma 3.1. For any p ∈ (0, 1), Pp stochastically dominates i.i.d. (p) bond percolation on L.
For any N , the same holds with Pp,N,N in place of Pp.

Proof. Write µp for the probability measure on {0, 1}E corresponding to i.i.d. bond per-
colation on L. The Harris–FKG inequality (see, e.g. [4]) tells us that, for any two bounded
increasing functions f, g : {0, 1}E → R, we have µp(f )µp(g) ≤ µp(fg). In particular, when
g is assumed to be {0, 1}-valued, we have µp(f ) ≤ µp(f | g = 1). For the special case where
g is the indicator of the event BN,N , this yields µp(f ) ≤ Pp,N,N (f ). Hence, µp � Pp,N,N ,
and since stochastic domination is preserved under weak limits, we also have µp � Pp.
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For the next lemma, we define an edge e ∈ E to be pivotal, relative to a configuration
ξ ∈ {0, 1}E\{e} if (i) the set of open edges in ξ does not contain an infinite path from −∞ to
∞, while (ii) adding e would create such a path. The configuration ξ is said to be permissible
if either it contains a path from −∞ to ∞ or (ii) holds.

Lemma 3.2. Pp admits conditional probabilities such that, for each e ∈ E and each ξ ∈
{0, 1}E\{e},

Pp(e is open | ξ) =
{

1 if e is pivotal,

p otherwise.

Proof. For ξ ∈ {0, 1}E\{e}, let Aξ,M denote the event that the edge configuration on
{0, 1}E\{e} restricted to x-coordinates between −M and M agrees with ξ . What we need
to show is that, for Pp-almost everywhere ξ , we have

lim
M→∞ Pp(e is open | Aξ,M) =

{
1 if e is pivotal for ξ,

p otherwise.
(3.1)

Fix e ∈ E. If e is a vertical edge, define x to be the common x-coordinate of its two endpoints,
while if e is a horizontal edge, take x to be the x-coordinate of its leftmost endpoint. For
ξ ∈ {0, 1}E\{e} and N > |x|, define N -permissibility of ξ and N -pivotality of e (with respect
to ξ ) analogously to permissibility and pivotality but with a path between x-coordinates −N

and N in place of one between −∞ and ∞. It is immediate from the definition of Pp,N,N that

Pp,N,N (e is open | ξ) =
{

1 if e is N -pivotal,

p otherwise,
(3.2)

whenever ξ is N -permissible. Next, define ∗-permissibility and ∗-pivotality analogously to
permissibility and pivotality but with a path between the closest open (in ξ ) vertical edge
strictly to the right of e and the closest open (in ξ ) vertical edge strictly to the left of e in place
of one between −∞ and ∞. For N > |x| + 1, define Dx,N to be the event that at least one
vertical edge with x-coordinate strictly between −N and x is open and at least one vertical
edge with x-coordinate strictly between x and N is open. Also, define

Dx,∞ =
∞⋃

N=|x|+1

Dx,N .

By Lemma 3.1 and the Borel–Cantelli lemma,

Pp(Dx,∞) = 1. (3.3)

Note, crucially, that on the event Dx,N , Pp,N,N -a.s., e is N -pivotal if and only if it is ∗-pivotal
(we need look no further than to the nearest open vertical edge to the left and the nearest open
vertical edge to the right to determine N -pivotality). Likewise, due to (3.3), Pp-a.s., e is pivotal
if and only if it is ∗-pivotal. Hence, showing (3.1) is the same as showing, for Pp-almost
everywhere ξ ∈ {0, 1}E\{e} on the event Dx,∞, that

lim
M→∞ Pp(e is open | Aξ,M) =

{
1 if e is ∗-pivotal for ξ,

p otherwise.
(3.4)
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Pick such a ξ , and pick M = M(ξ) < ∞ large enough so that ξ ∈ Dx,M . We can then learn
from Aξ,M whether or not e is ∗-pivotal for ξ . For any N > M , we thus find from (3.2) that

Pp,N,N (e is open | Aξ,M) =
{

1 if Aξ,M is such that e is ∗-pivotal,

p otherwise,

and sending N → ∞ yields

Pp(e is open | Aξ,M) =
{

1 if Aξ,M is such that e is ∗-pivotal,

p otherwise.

Since this holds for all sufficiently large M (depending on ξ ), we obtain (3.4), and (3.1) follows
as desired.

The next lemma will extend Lemma 3.2 from single-edge conditional probabilities to condi-
tional distributions for finite edge sets. For a finite F ⊂ E and two configurations ξ ∈ {0, 1}E\F
and η ∈ {0, 1}F , write (ξ ∨ η) for the {0, 1}E-valued configuration that agrees with ξ on E \ F

and with η on F . We generalize the notion of permissibility by saying that ξ ∈ {0, 1}E\F is
permissible if there exists some η ∈ {0, 1}F such that (ξ ∨ η) ∈ B, where B, as before, is the
event that there exists an open path from −∞ to ∞.

For ξ ∈ {0, 1}E\F permissible, define the measure Pp,F,ξ on {0, 1}E by setting, for each
η ∈ {0, 1}F ,

Pp,F,ξ (η) = 1{(ξ∨η)∈B}
Zp,F,ξ

∏
e∈F

pη(e)(1 − p)1−η(e), (3.5)

where 1 denotes an indicator function and Zp,F,ξ is a normalizing constant, making Pp,F,ξ a
probability measure. In other words, Pp,F,ξ means letting the edges in F independently be
open with probability p, conditional on (ξ ∨ η) containing an open path from −∞ to ∞.

Lemma 3.3. Pp admits conditional probabilities such that, for a corresponding {0, 1}E-valued
random configuration X, we have, for any finite F ⊂ E, any permissible ξ ∈ {0, 1}E\F , and
any η ∈ {0, 1}E ,

Pp(X(F ) = η | X(E \ F) = ξ) = Pp,F,ξ (η). (3.6)

Note that, by Corollary 2.1, the restriction to ξ being permissible involves no essential loss
of generality. The lemma can be proved either by generalizing the argument in the proof of
Lemma 3.2, or by the following argument, modeled after [5, Proof of Lemma 2.4].

Proof of Lemma 3.3. Pick X ∈ {0, 1}E according to Pp, set ξ = X(E \ F), and define a

{0, 1}F -valued Markov chain {Xξ
0 , X

ξ
1 , . . . } by setting X

ξ
0 = X(F) and giving it a transition

mechanism as follows. At each time n, an edge e ∈ F is chosen at random (uniform distribution)
and X

ξ
n(e′) is set equal to X

ξ
n−1(e

′) for all e′ ∈ F \ {e}. If it turns out that setting X
ξ
n(e) = 0

would result in (ξ ∨ X
ξ
n) ∈ B then we set X

ξ
n(e) = 1, while otherwise we set

Xξ
n(e) =

{
1 with probability p,

0 with probability 1 − p.

By Lemma 3.2, it is easy to see by checking local equilibrium that this transition mechanism
preserves the initial distribution, so the Markov chain is stationary. By the same argument we
see that Pp,F,ξ is a stationary distribution for the chain (Monte Carlo Markov chain aficionados
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may note that the chain we have defined is in fact a Gibbs sampler for Pp,F,ξ ). That the chain has
a unique stationary distribution follows from the observation that the maximal state η, given
by η(e) = 1 for all e ∈ F , can be reached in a finite number of steps from any other state
(simply by turning on edges one at a time). Hence, the distribution of X

ξ
n converges to Pp,F,ξ

as n → ∞, but since the chain was stationary, X
ξ
0 must therefore have distribution Pp,F,ξ , and

(3.6) follows.

After these preparatory lemmas, we are finally ready to approach the main issue of this
section: Markov properties of Pp. We begin with a negative observation. In order for Pp to
exhibit Markovianness in the most direct sense, we would want the conditional distribution
of everything to the right of x-coordinate 0 given everything to the left of (and including)
x-coordinate 0 to depend on the latter only via the status of edges with x-coordinates in some
fixed finite window [−K, 0]. The following example shows that this is not the case. Fix K ,
and let AK be the event that

X(〈{−(i + 1), j}, {−i, j}〉) = 1 for i = 0, . . . , K and j = 0, 1,

X(〈{−i, 0}, {−i, 1}〉) = 0 for i = 0, . . . , K,

X(〈{−(K + 1), 0}, {−(K + 1), 1}〉) = 1.

In other words, AK stipulates that we have two parallel open paths from x-coordinate 0 and
backwards with no connection to each other until at x-coordinate −(K + 1). Also, let A∗

K be
the same event as AK except that we insist that the single edge 〈{−(K + 1), 0}, {−K, 0}〉 takes
value 0 rather than 1; see Figure 2. Note that AK and A∗

K imply identical edge configurations on
[−K, 0]. It follows easily from Lemma 3.3 that Pp(AK) and Pp(A∗

K) are both strictly positive,
while

P(X〈{0, 1}, {1, 1}〉 = 0 | AK) > 0 (3.7)

and
P(X〈{0, 1}, {1, 1}〉 = 0 | A∗

K) = 0. (3.8)

Since K was arbitrary, the discrepancy between the two conditional probabilities in (3.7) and
(3.8) shows that the random edge configuration X does not in itself exhibit any finite-range
Markov property.

Not all is lost, however, and it turns out that a useful Markov chain representation can
be obtained by encoding a little bit of nonlocal information at each x-coordinate. (The idea
that such encodings may be useful in percolation theory goes back at least to [5].) For fixed
i ∈ Z, partition the edge set E into E = Ei,− ∪ Ei,+, where Ei,− is the set of edges both
of whose endpoints have x-coordinates not exceeding i, and Ei,+ = E \ Ei,−. Given X ∈
{0, 1}E , we say that a vertex {i, j} is backwards communicating if it is connected to −∞ via
a path that is completely contained in Ei,− and all of whose edges are open in X. Define the

00 K–1+– K( )

Figure 2: The events AK (left) and A∗
K (right). The edge 〈{0, 1}, {1, 1}〉 (dashed line) next to A∗

K must
be open for an open bi-infinite path to exist.
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{00,01,10,11}-valued process {Ti}i∈Z by setting, for each i ∈ Z,

Ti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
00 if neither {i, 0} nor {i, 1} is backwards communicating,

01 if {i, 1} but not {i, 0} is backwards communicating,

10 if {i, 0} but not {i, 1} is backwards communicating,

11 if both {i, 0} and {i, 1} are backwards communicating.

(3.9)

Note that Corollary 2.1 implies that Pp(Ti = 00) = 0 for any i; the first line of (3.9) is included
for completeness only.

The usefulness of {Ti}i∈Z for studying the percolation process governed by Pp comes from
the following result, and from Theorem 3.2, below.

Theorem 3.1. {Ti}i∈Z is a time-homogeneous Markov chain.

Proof. Due to Corollary 2.2 on translation invariance, and the fact that {Ti}i∈Z is obtained
from X in a way that commutes with translation, it is enough to show that {Ti}i∈Z is a Markov
chain; time homogeneity is then automatic. Thus, what we need to show is that Pp admits
conditional probabilities such that, for any . . . , Ti−2, Ti−1 and cd ∈ {01,10,11}, we have

Pp(Ti = cd | . . . , Ti−2, Ti−1) = Pp(Ti = cd | Ti−1). (3.10)

Define Ei = Ei,− \ Ei−1,−, so that in other words Ei consists of the three edges 〈{i −
1, 0}, {i, 0}〉, 〈{i − 1, 1}, {i, 1}〉, and 〈{i, 0}, {i, 1}〉. Note that, given Ti−1 ∈ {01,10,11}
and the status X(Ei) of these three edges, we can read off the value of Ti from the formula

Ti = cd,

where

c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if X(Ei) connects {i, 0} to at least one vertex

v ∈ {{i − 1, 0}, {i − 1, 1}} that is designated by Ti−1 to be

backwards communicating,

0 otherwise,

and

d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if X(Ei) connects {i, 1} to at least one vertex

v ∈ {{i − 1, 0}, {i − 1, 1}} that is designated by Ti−1 to be

backwards communicating,

0 otherwise.

Hence, in order to establish (3.10), it is enough to show, for any η ∈ {0, 1}Ei
, that

Pp(X(Ei) = η | . . . , Ti−2, Ti−1) = Pp(X(Ei) = η | Ti−1). (3.11)

Since {. . . , Ti−2, Ti−1} is a function of X(Ei−1,−), (3.11) follows if we can show that

Pp(X(Ei) = η | X(Ei−1,−)) = Pp(X(Ei) = η | Ti−1). (3.12)

Let us consider the case in which
Ti−1 = 10 (3.13)
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(the cases Ti−1 = 01 and Ti−1 = 11 follow analogously). Let ξ, ξ ′ ∈ {0, 1}Ei−1,−
be two

configurations such that each of the statements X(Ei−1,−) = ξ and X(Ei−1,−) = ξ ′ imply
that Ti−1 = 10. Lemma 3.1 implies that X(Ei−1,−) contains at least one open vertical edge
Pp-a.s., so there is no loss of generality in assuming that both ξ and ξ ′ contain such an edge,
and we can find a K such that both ξ and ξ ′ contain such an edge to the right of x-coordinate K .

For (3.12), what we need is to show that its left-hand side takes the same value Pp-a.s. on
the event Ti−1 = 10, which follows if we can show that

Pp(X(Ei) = η | X(Ei−1,−) = ξ) = Pp(X(Ei) = η | X(Ei−1,−) = ξ ′) (3.14)

for any ξ and ξ ′ as above. Analogously to the reasoning in the proof of Lemma 3.2, define (for
M < i −1) Aξ,M,i−1 as the event that X(Ei−1,− \EM,−) = ξ(Ei−1,− \EM,−), and Aξ ′,M,i−1
similarly. Showing (3.14) is tantamount to showing that

lim
M→−∞ Pp(X(Ei) = η | Aξ,M,i−1) = lim

M→−∞ Pp(X(Ei) = η | Aξ ′,M,i−1),

for which it is of course enough to show that

Pp(X(Ei) = η | Aξ,M,i−1) = Pp(X(Ei) = η | Aξ ′,M,i−1) for all M < K. (3.15)

So take M < K , and then N > max{|M|, |i|}, and let us for the moment consider the measure
Pp,N,N in place of Pp. On the event Aξ,M,i−1 we find (due to our choice (3.13)) that {i − 1, 1}
but not {i − 1, 0} is connected to the first vertical open edge to the right of x-coordinate i − 1,
and, therefore, Pp,N,N -a.s. on the same event that {i − 1, 1} but not {i − 1, 0} is connected to
x-coordinate −N . It follows from the definition of Pp,N,N that its conditional distribution of
X(Ei+1,+) given Aξ,M,i−1 is simply i.i.d. (p) percolation conditioned on the existence of an
open path from {i − 1, 1} to some vertex with x-coordinate M . The same argument holds with
Aξ ′,M,i−1 in place of Aξ,M,i−1, so in particular X(Ei+1,+) has the same Pp,N,N -conditional
distribution regardless of which of the two events we condition on. Restricting to Ei gives

Pp,N,N (X(Ei) = η | Aξ,M,i−1) = Pp,N,N (X(Ei) = η | Aξ ′,M,i−1). (3.16)

Since all events in (3.16) are cylinder events, Theorem 2.1 allows us to pass to the limit with
N → ∞ and still have equality, obtaining (3.15). Backtracking our argument, we recall that
this implies (3.14), which implies (3.12), which implies (3.11), which implies (3.10), so the
proof is complete.

We will soon calculate the transition matrix for the chain {Ti}i∈Z. Together with the following
result, which shows how to obtain the percolation process X ∈ {0, 1}E from {Ti}i∈Z, this yields
an efficient way to study the latter—both analytically and by way of computer simulation.

Recall that, given Ti−1 and X(Ei), we know the value of Ti . Given Ti−1 = ab ∈
{01,10,11} and Ti = cd ∈ {01,10,11}, we call a configuration η ∈ {0, 1}Ei

Ti−1, Ti-
compatible if Ti−1 = ab and X(Ei) = η yields Ti = cd. Note that, for Ti−1 = 01 and
Ti = 10, or vice versa, there is no Ti−1, Ti-compatible η ∈ {0, 1}Ei

. For all other choices,
define, analogously to (3.5), the probability measure Pp,i,Ti−1,Ti

on {0, 1}Ei
by setting, for each

η ∈ {0, 1}Ei
,

Pp,i,Ti−1,Ti
(η) = 1{η is Ti−1,Ti -compatible}

Zp,i,Ti−1,Ti

∏
e∈Ei

pη(e)(1 − p)1−η(e),

where Zp,i,Ti−1,Ti
is a normalizing constant, making Pp,i,Ti−1,Ti

a probability measure.
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Theorem 3.2. The conditional distribution of the percolation process X ∈ {0, 1}E given the
Markov chain {Ti}i∈Z is ∏

j∈Z

Pp,j,Tj−1,Tj
. (3.17)

In other words, given {Ti}i∈Z, it is for each j the case that X(Ej ) has distribution Pp,j,Tj−1,Tj
,

with independence for different js.

Proof of Theorem 3.2. To show that X(Ej ) has distribution Pp,j,Tj−1,Tj
conditional on

{Ti}i∈Z, it is obviously enough to show that it has conditional distribution even if we condition
further on X(E \ Ej). But this is the same as conditioning only on X(E \ Ej) and on Tj ,
because given these, the remaining {Ti}i∈Z\{j} can be reconstructed.

Now, if we had conditioned only on X(E \ Ej) (and not on Tj as well) then Lemma 3.3
would have given us the conditional distribution of X(Ej ) to be Pp,Ej ,ξ (as defined in (3.5)) with
ξ ∈ {0, 1}E\Ej

. Conditioning further on Tj means simply conditioning Pp,Ej ,ξ on the event
that X(Ej ) is Tj−1, Tj -compatible. This yields precisely the desired distribution Pp,j,Tj−1,Tj

.
From here, the desired product form (3.17) follows using the fact that we obtained the same

distribution Pp,j,Tj−1,Tj
even when conditioning further on X(E \ Ej).

It remains to derive expressions for the elements of the transition matrix governing {Ti}i∈Z.
The chain is {00,01,10,11}-valued, but since Pp(Ti = 00) = 0 for any i, it is in effect a
three-state Markov chain, and we may denote the 3 × 3 transition matrix by

p =
⎛
⎝p01,01 p01,10 p01,11

p10,01 p10,10 p10,11

p11,01 p11,10 p11,11

⎞
⎠ .

We have already noted that Ti = 01 cannot be followed by Ti+1 = 10 or vice versa; hence,
p01,10 = p10,01 = 0. Furthermore, symmetry of the model under interchange of y-coordinate
0 and y-coordinate 1 yields p01,01 = p10,10 and p11,01 = p11,10. Hence,

p =
⎛
⎝p01,01 p01,10 p01,11

p10,01 p10,10 p10,11

p11,01 p11,10 p11,11

⎞
⎠ =

⎛
⎝1 − p01,11 0 p01,11

0 1 − p01,11 p01,11

p11,01 p11,01 1 − 2p11,01

⎞
⎠ .

(It may be noted that this chain is reversible, though we will not be using this fact.) It
only remains to calculate p01,11 and p11,01. This is readily done by the following device,
which is a variant of Theorem 3.2. Given Ti−1 = ab ∈ {01,10,11} and Ti+1 = cd ∈
{01,10,11}, we call a configuration η ∈ {0, 1}Ei∪Ei+1

Ti−1, Ti+1-dicompatible if Ti−1 = ab
and X(Ei ∪ Ei+1) = η yields Ti+1 = cd.

Lemma 3.4. The conditional distribution of X(Ei∪Ei+1) given Ti−1 and Ti+1 equals the prob-
ability measure Pp,i,2,Ti−1,Ti+1 on {0, 1}Ei∪Ei+1

defined by setting, for each η ∈ {0, 1}Ei∪Ei+1
,

Pp,i,2,Ti−1,Ti+1(η) = 1{η is Ti−1,Ti+1-dicompatible}
Zp,i,2,Ti−1,Ti+1

∏
e∈Ei

pη(e)(1 − p)1−η(e),

where, as usual, Zp,i,2,Ti−1,Ti+1 is a normalizing constant.

Proof. This follows similarly to the proof of Theorem 3.2.
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The transition probabilities p01,11 and p11,01 can now be obtained as follows. Given Ti−1,
Ti+1, and X(Ei ∪Ei+1), we can read off the value of Ti . Thus, Lemma 3.4 allows us to calculate
Pp(Ti = cd | Ti−1 = ab, Ti+1 = ef) for any ab,cd,ef ∈ {01,10,11}. In particular, we
obtain expressions (as a function of p) for the ratios

Pp(Ti = 11 | Ti−1 = 01, Ti+1 = 01)

Pp(Ti = 01 | Ti−1 = 01, Ti+1 = 01)
(3.18)

and
Pp(Ti = 11 | Ti−1 = 11, Ti+1 = 01)

Pp(Ti = 01 | Ti−1 = 11, Ti+1 = 01)
. (3.19)

The ratios in (3.18) and (3.19), which we may denote by α = α(p) and β = β(p), respectively,
can alternatively be written as

α = p01,11p11,01

p01,01p01,01
= p01,11p11,01

(1 − p11,01)2 (3.20)

and

β = p11,11p11,01

p11,01p01,01
= 1 − 2p11,01

1 − p01,11
. (3.21)

These are two equations for the two unknowns p01,11 and p11,01. Solving for p11,01 in (3.20)
and substituting into (3.21) gives a quadratic for p01,11, and ignoring false (negative) solutions
gives

p01,11 = 1

2p
(2p2 − 1 +

√
1 + 4p2 − 8p3 + 4p4)

and

p11,01 = 1

4(1 − p)
(2(1 − p) − (3 − 2p)(1 + 2p − 2p2 −

√
1 + 4p2 − 8p3 + 4p4)).

It is readily checked that p01,11 and p11,01 are both strictly positive for p ∈ (0, 1), making
the chain irreducible. Its stationary distribution is readily calculated, and is given by

π = {π01, π10, π11} =
{

p11,01

2p11,01 + p01,11
,

p11,01

2p11,01 + p01,11
,

p01,11

2p11,01 + p01,11

}
.

For later purposes (Section 5), we finally record that limp→0 p01,11 = 0, limp→0 p11,01 = 1
2 ,

and (consequently) limp→0 π01 = 1
2 .

4. More general graphs

The idea of conditioning i.i.d. percolation on the existence of a bi-infinite open path and
finding a Markov chain representation for the resulting model can be generalized substantially
beyond the infinite ladder L considered in previous sections. The natural generality, we believe,
is to consider the class of graphs arising from the following definition (with only the additional
assumption of connectivity).

Definition 4.1. A graph G = (V , E) is said to be a one-dimensional periodic lattice if

(i) V = Z × {1, . . . , k} for some finite k,
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(ii) for any x, x′, i ∈ Z and any y, y′ ∈ {1, . . . , k}, we have 〈{x, y}, {x′, y′}〉 ∈ E if and only
if 〈{x + i, y}, {x′ + i, y′}〉 ∈ E,

(iii) 〈{x, y}, {x′, y′}〉 ∈ E implies that |x − x′| ≤ 1.

Stochastic models defined on the same class of graphs have been considered by Alm and
Janson [1] and others. Definition 4.1(iii) may seem somewhat restrictive, but it is easy to see,
by means of a relabeling of V , that it involves no loss of generality compared to the (at first
sight weaker-looking) condition

(iii′) G has bounded degree.

The structural property obtained in the following lemma will turn out to be useful. By a path
from a vertex v ∈ V to −∞ we mean an infinite path starting at v whose x-coordinate tends
to −∞. As in Section 3, let Ei,− denote the set of edges e ∈ E whose endpoints both have
x-coordinates not exceeding i. Also, call a vertex {i, j} backwards well connected if G contains
a path from {i, j} to −∞ whose edges are all contained in Ei,−, and (for later purposes) call the
same vertex forwards well connected if G contains a path from {i, j} to +∞ that never visits a
vertex with x-coordinate strictly smaller than i.

Lemma 4.1. Let G = (V , E) be a connected one-dimensional periodic lattice, let {i, j} and
{i, j ′} be two vertices with the same x-coordinate, and suppose that {i, j} and {i, j ′} are both
backwards well connected. Then there exists a path from {i, j} to {i, j ′} whose edges are all
contained in Ei,−.

Proof. Note first that since G is connected, we have

max{distG({i, l}, {i, m}) : l, m ∈ {1, . . . , k}} < ∞, (4.1)

where distG(u, v) denotes the length of the shortest path in G between u and v. Let {i, j} and
{i, j ′} be as in the lemma, and assume for contradiction that

there is no path between {i, j} and {i, j ′} that is contained in Ei,−. (4.2)

The assumption that {i, j} and {i, j ′} are backwards well connected guarantees that, for any
n ≥ 0, we can find a vertex {i − n, l} on a path in Ei,− from {i, j} to −∞, as well as a vertex
{i − n, l′} on a path in Ei,− from {i, j ′} to −∞. Assumption (4.2) implies that any path from
{i − n, l} to {i − n, l′} has to pass through x-coordinate i + 1. Consequently, distG({i −
n, l}, {i − n, l′}) > 2n. By Definition 4.1(ii), this implies that distG({i, l}, {i, l′}) > 2n, so that
in particular

max{distG({i, l}, {i, m}) : l, m ∈ {1, . . . , k}} > 2n.

Since n was arbitrary, this contradicts (4.1), so the proof is complete.

The assumption that G = (V , E) is a connected one-dimensional periodic lattice will
henceforth be taken for granted. To introduce our conditional percolation model on G, we
proceed as with the ladder L in Section 2. Let BN1,N2 be the event that there exists an open
path from some vertex with x-coordinate −N1 to some vertex with x-coordinate N2, and,
for p ∈ (0, 1), let PG,p,N1,N2 be the probability measure on {0, 1}E that arises from i.i.d.
bond percolation with parameter p conditional on the event BN1,N2 . We have the following
generalization of Theorem 2.1.
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Theorem 4.1. For any p ∈ (0, 1), the probability measures PG,p,N1,N2 converge weakly to a
probability measure PG,p on {0, 1}E as N1, N2 → ∞.

Let us consider what happens when trying to imitate the proof of Theorem 2.1 in order
to prove Theorem 4.1. The key use that the proof of Theorem 2.1 makes of the particular
graph structure of L is the role played by open vertical edges. These serve as a kind of
regeneration points: conditional on having vertical edges at two different x-coordinates −K1
and K2, whatever happens between these coordinates is conditionally independent of what
happens on the outside. Or more simply, but equivalently, given an open vertical edge, the
configurations to the left and to the right of it are conditionally independent. Achieving this
kind of regeneration is obviously more complicated in the more general setting of Theorem 4.1,
but using Lemma 4.1 it can be done, as follows.

Define the constant RG as the smallest R such that (i) any pair of vertices {0, j} and {0, j ′}
that are connected by a path in E0,− are also connected by a path in E0,− \ E−R,0, and (ii) no
vertex {0, j} that fails to have a path in E0,− to −∞ has a path in E0,− to x-coordinate −R.
Also, consider the lattice G̃ = (Ṽ , Ẽ) obtained by reversing left and right in G, meaning more
precisely that Ṽ = V and

Ẽ = {〈{i, j}, {i′, j ′}〉 : 〈{i, j ′}, {i′, j}〉 ∈ E},
and let R∗

G = max{RG, RG̃}. Next, for any i, let Di ⊂ {0, 1}E denote the event that all edges
with both x-coordinates in the interval [i − R∗

G, i] are open.
The point of the choice of R∗

G is the following. Pick N1, N2, and i in such a way that
−N1 < i − R∗

G < i < N2, and suppose that the configuration η ∈ {0, 1}E also satisfies η ∈
Di ⊂ {0, 1}E . Knowing this, suppose that we wish to evaluate whether η is also in the event
BN1,N2 that there exists an open path between x-coordinates −N1 and N2. For BN1,N2 to
happen, we claim that (on the event Di) necessary and sufficient conditions are that

(a) there exists an open path in Ei,− between some vertex with x-coordinate −N1 and some
forwards well-connected vertex with x-coordinate i − R∗

G, and

(b) there exists an open path in E
i−R∗

G,+ between some backwards well-connected vertex
with x-coordinate i and some vertex with x-coordinate N2.

To see this, note that each of (a) and (b) is clearly necessary for BN1,N2 , while, on the other
hand, the definition of Di in conjunction with Lemma 4.1 guarantees the existence of an open
path between any forwards well-connected vertex with x-coordinate i −R∗

G and any backwards
well-connected vertex with x-coordinate i, so that the intersection of (a) and (b) implies BN1,N2 .

To evaluate whether (a) happens, we only need to look at edges in E
i−R∗

G,−, while to check
if (b) happens, we only need to look at edges in Ei,+ (while it is true both events involve edges
between x-coordinates i − R∗

G and i, these edges give no information since we have assumed
Di). It follows that the PG,p,N1,N2 conditioned on Di is tantamount to letting edges to the left
of x-coordinate i − R∗

G be i.i.d. (p) conditional on (a), while independently of this, edges to
the right of x-coordinate i are i.i.d. (p) conditional on (b), and edges in between are open. The
bottom line is that what happens to the left of i − R∗

G and what happens to the right of i are
conditionally independent given Di . This turns Di into the kind of regeneration event we need
to play the same role on G as open vertical edges play on L. With this in mind, the proof of
Theorem 2.1 is easily adapted to handle Theorem 4.1; we omit further details and consider
Theorem 4.1 established.
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At this point, the proofs of Corollaries 2.1 and 2.2 translate trivially to the G setting, and we
may combine them in the following statement.

Corollary 4.1. For any p ∈ (0, 1), PG,p is translation invariant and assigns probability 1 to
the event B = ⋂∞

N=1 BN,N that a bi-infinite open path from −∞ to ∞ exists.

Moving on to the results for L in Section 3, these also admit translation to the more general
context of connected one-dimensional periodic lattices. The proof of Lemma 3.1 on stochastic
domination makes no reference to the graph structure and, therefore, generalizes immediately
to the more general setting, described in the following lemma.

Lemma 4.2. For any p ∈ (0, 1), PG,p stochastically dominates i.i.d. (p) bond percolation
on G. For any N , the same holds with PG,p,N,N in place of PG,p.

The case of Lemma 3.2 concerning single-edge conditional probabilities involves the use of
open vertical edges as regeneration events, but replacing these by the events Di discussed above
gives an argument that goes through smoothly in the more general setting. The extension to
finite edge sets in Lemma 3.3 uses nothing about the graph structure of L, and, thus, generalizes
immediately, giving us the following.

Lemma 4.3. PG,p admits conditional probabilities such that, for a corresponding {0, 1}E-
valued random configuration X, we have, for any finite F ⊂ E, any permissible ξ ∈ {0, 1}E\F ,
and any η ∈ {0, 1}E ,

PG,p(X(F ) = η | X(E \ F) = ξ) = PG,p,F,ξ (η),

where PG,p,F,ξ is defined by setting, for each η ∈ {0, 1}F ,

PG,p,F,ξ (η) = 1{(ξ∨η)∈B}
ZG,p,F,ξ

∏
e∈F

pη(e)(1 − p)1−η(e). (4.3)

Next comes the task of finding a Markov chain {Ti}i∈Z that can represent the percolation
process on G in the same way as was accomplished for L in Section 3. A first issue to decide
is what a suitable state space S for the chain might be. The crucial property we are looking
for is that Ti should convey all the information of the percolation process X(Ei,−) to the left
of x-coordinate i that we need in order to determine which realizations to the right of i will
result in the event B of having an open path between −∞ and ∞. A first attempt—and the
most obvious extension of the Markov chain we devised for L—is to let S = {0, 1}k , where
the j th bit of Ti indicates whether {i, j} is connected to −∞ via an open path in Ei,−. This is
not enough information, however, as the following example shows.

Take G = (V , E) with V = Z × {1, 2, 3} and E consisting of pairs of vertices that are
either identical in the x-coordinate and differ by 1 in the y-coordinate, or vice versa. (Thus,
G may be pictured as the ladder L with an extra rail.) Imagine that S = {0, 1}k , as suggested
above, and that Ti = (0, 0, 1), indicating that the vertex {i, 3} is connected to −∞ via an
open path in Ei,− while {i, 1} and {i, 2} are not. It may seem that (if we insist on the event B

happening) Ti = (0, 0, 1) forces X(Ei,+) to supply an open path between {i, 3} and +∞. But
in case X(Ei,−) happens to supply an open path between {i, 1} and {i, 2}, then there is another
possibility for X(Ei,+) to bring about B, namely to supply an open path between {i, 3} and
{i, 2} as well as an open path between {i, 1} and +∞. Note also that this would not have been
good enough if {i, 1} and {i, 2} had failed to connect in X(Ei,−).
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The bottom line of this example is that it is not enough for Ti to encode which vertices at
x-coordinate i have an open path to −∞ in Ei,−; it also has to encode which pairs among these
vertices are connected to each other via open paths in Ei,−. To this end, we may take the state
space S of the Markov chain to be the set of all binary symmetric (k + 1) × (k + 1) matrices
S = {Sj,j ′ }j,j ′∈{0,1,...,k} with diagonal elements equal to 1. When Ti = S, the matrix element
Sj,j ′ with j and j ′ nonzero indicates whether {i, j} and {i, j ′} are connected by an open path in
Ei,−, while, for j ′ = 0, it indicates whether {i, j} is connected to −∞ by an open path in Ei,−.

This defines the process {Ti}i∈Z. The proof of Theorem 3.1 is easily adapted, replacing as
usual the use of open vertical edges as regeneration events by the events Di defined above, to
establish the following.

Theorem 4.2. For any connected one-dimensional periodic lattice G, the process {Ti}i∈Z as
defined above becomes a time-homogeneous and stationary Markov chain.

Similarly as for the case of the ladder L studied in Section 3, the relevance of {Ti}i∈Z lies
not only in its simple Markovian structure but also in the simple form of the distribution
of the percolation configuration given the Markov chain; Theorem 3.2 has the following
straightforward generalization to connected one-dimensional periodic lattices. As in the L
case, we let Ei denote the edge set Ei+1,− \ Ei,−.

Theorem 4.3. Let G = (V , E) and {Ti}i∈Z be as above. The conditional distribution of the
percolation process X ∈ {0, 1}E given {Ti}i∈Z is∏

j∈Z

PG,p,j,Tj−1,Tj
,

where the probability measure PG,p,i,Ti−1,Ti
on {0, 1}Ei

is defined by setting, for each η ∈
{0, 1}Ei

,

PG,p,i,Ti−1,Ti
(η) = 1{η is Ti−1,Ti -compatible}

ZG,p,i,Ti−1,Ti

∏
e∈Ei

pη(e)(1 − p)1−η(e).

We remark that while in the case of the ladder in Section 3 the Markov chain {Ti}i∈Z that
we obtained turned out to be reversible (and the same thing would happen if we insisted on
defining the chain formally as in the present section, which would in fact merely amount to a
relabeling of the chain’s state space), this feature does not carry through to the more general
setting. To obtain a nonreversible counterexample, it suffices to add an edge of the form
〈{i, 0}, {i + 1, 1}〉 for each i to the ladder L; this leads to a Markov chain in which (with the
state space terminology of Section 3) the event {T0 = 01, T1 = 10} has positive probability
while {T0 = 10, T1 = 01} has zero probability, implying nonreversibility.

Not all states S in the state space S defined above appear in the chain {Ti}i∈Z with positive
probability. For instance, transitivity of connectivity implies, for any nonzero j, j ′, j ′′, that
only states S such that

Sj,j ′′ ≥ Sj,j ′Sj ′,j ′′ (4.4)

appear. In fact, (4.4) holds also when the indices j, j ′, j ′′ are allowed to take value 0; this follows
from the observation (due to a Borel–Cantelli argument) that, for any i ∈ Z, the regeneration
event Di′ happens for some i′ < i, which causes any two open paths from x-coordinate i to
−∞ to connect to each other. Yet another restriction on S is that there must be a j > 0 such
that Sj,0 = 1, as otherwise the event B would not happen. Further restrictions on S may be
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implied by the particular graph structure of G. A precise condition for which S ∈ S appears in
the Markov chain is the following.

Definition 4.2. Fix G, and let S be as above. Define S∗ ⊂ S as the set of states S for which
there exists an η ∈ {0, 1}E such that

η ∈ B, η ∈
∞⋃
i=1

D−i , η ∈
∞⋃

i=R∗
G

Di, (4.5)

and such that taking X = η gives T0 = S.

Lemma 4.4. For any S ∈ S, write count(S) for the number of times that S occurs in the
sequence {Ti}i∈Z. Here count(S) is an almost-sure constant which equals ∞ if S ∈ S∗ and
which equals 0 otherwise.

Proof. Pick X ∈ {0, 1}E according to PG,p. The familiar Borel–Cantelli argument shows
that X ∈ Di for some i < 0 a.s., and that X ∈ Di for some i ≥ R∗

G a.s. We may also recall from
Corollary 4.1 that X ∈ B a.s. Hence, X satisfies the conditions imposed on η in (4.5). Thus,
T0 ∈ S a.s., but since the chain is stationary, we have Ti ∈ S a.s. for any i, so that count(S) = 0
for any S ∈ S∗.

Suppose on the other hand that S ∈ S∗. Pick an η ∈ {0, 1}E satisfying (4.5) and such
that taking X = η gives T0 = S. Given such an η, we can pick i′ < 0 and i′′ ≥ R∗

G such
that η ∈ Di′ and η ∈ Di′′ . It follows from the definition of the regeneration events Di that
no matter what happens with X outside of the interval [i′ − R∗

G, i′′], taking X equal to η on
this interval cannot cause the event B to fail. Hence, Lemma 4.3 tells us that T0 = S with
positive probability, and in fact gives a nonzero lower bound on the conditional probability that
T0 = S given what happens outside of [i′ −R∗

G, i′′]. Applying the same argument to an infinite
collection of disjoint intervals of length i′′−i′+R∗

G and using a Borel–Cantelli argument shows
that count(S) = ∞ a.s.

It may be noted that taking η ∈ {0, 1}E in Definition 4.2 to be the configuration where all
edges e ∈ E are open yields a state Smax ∈ S∗ which is maximal in the following sense. The
event Ti = Smax indicates that all vertices with x-coordinate i that can be connected to each
other in Ei,− indeed are, and likewise for all vertices with x-coordinate i that can be connected
to −∞ in Ei,−. Note that the regeneration event Di implies that Ti = Smax.

Our final result in this section is the following.

Theorem 4.4. The chain {Ti}i∈Z, viewed as having state space S∗, is irreducible and aperiodic.

Proof. For any S ∈ S∗, the final step in the proof of Lemma 4.4 shows not only that
count(S) = ∞, but also that Ti = S happens for arbitrarily large i a.s. Hence, for any
S, S′ ∈ S∗, there exist a.s. i, i′ ∈ Z such that i < i′, Ti = S, and Ti′ = S′. Hence, the chain
moves with positive probability from state S to state S′ in a finite number of steps. But since
S, S′ ∈ S∗ were arbitrary, it follows that the chain is irreducible.

For aperiodicity, a sufficient condition is that there exists a state S ∈ S∗ such that the
chain jumps from S to S with positive probability. Lemma 4.3 guarantees that, with positive
probability, all edges in the interval [−R∗

G, 1] are open. But on this event, both D0 and D1
happen, so that T0 = T1 = Smax, and aperiodicity is established.
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5. Stochastic monotonicity

The following monotonicity property of i.i.d. percolation is well known (and trivial). Writing
µp for the probability measure on {0, 1}E (where G = (V , E) is any graph) corresponding to
i.i.d. bond percolation with parameter p, we have

µp1 �d µp2

whenever p1 ≤ p2. It is natural to ask whether the analogous statement holds for our conditional
percolation model on L. The answer is no, however, as indicated by the following result.

Proposition 5.1. For the conditional percolation model on L, we have, for any fixed p ∈ (0, 1),
an ε ∈ (0, p) such that

Pp′ �d Pp (5.1)

for all p′ ∈ (0, ε).

Proof. Fix p ∈ (0, 1). In order to establish (5.1) for some given p′, we need to find an
increasing event A (i.e. an event A ⊂ {0, 1}E whose indicator 1A is an increasing function of
the edge configuration) such that Pp′(A) > Pp(A). To this end, let An be the event that all
horizontal edges in the upper layer of L between x-coordinates 0 and n are open:

An = {η ∈ {0, 1}E : η(〈{i, 1}, {i + 1, 1}〉) = 1 for i = 0, . . . , n − 1}.
By the usual Borel–Cantelli argument,

Pp(X(〈{i, 1}, {i + 1, 1}〉) = 1 for all i ≥ 0) = 0,

whence limn→∞ Pp(An) = 0. Fix an n such that

Pp(An) < 1
2 . (5.2)

Note now that if Ti = Ti+1 = 01 then the edge 〈{i, 1}{i + 1, 1}〉 is forced to be open. Hence,

Pp(An) ≥ Pp(T0 = T1 = · · · = Tn = 01) = π01(p01,01)
n. (5.3)

Recall from the final lines of Section 3 that

lim
p→0

π01 = 1
2 (5.4)

and that limp→0 p01,11 = 0. The latter observation implies that

lim
p→0

p01,01 = 1. (5.5)

Sending p → 0 in (5.3) and substituting in (5.4) and (5.5) yields limp→0 Pp(An) ≥ 1
2 .

Combining this with (5.2) yields Pp′(An) > Pp(An) for all sufficiently small p′ > 0, and
the lemma is established.

We mention that Proposition 5.1 does not extend to arbitrary one-dimensional periodic
lattices G. A trivial counterexample is the usual Z

1 lattice, but other, slightly less trivial,
examples can be found. We will make no attempt at a general condition on G that decides
whether the analogue Proposition 5.1 holds.

Another question that we leave unanswered is whether for L there are other choices of p

and p′ such that Pp �d Pp′ can be established. Instead, we consider monotonicity with respect
to a weaker property than stochastic domination, namely the following natural quantity.
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Definition 5.1. For our one-dimensional conditional percolation model on L with parameter
p ∈ (0, 1), we define the edge density θL = θL(p) as

θL(p) = Pp(〈{0, 0}, {0, 1}〉 is open) + Pp(〈{0, 1}, {1, 1}〉 is open)

+ Pp(〈{1, 0}, {1, 1}〉 is open).

More generally, for our model on a connected one-dimensional periodic lattice G = (V , E) at
parameter p, define the edge density as

θG(p) =
∑
e∈E0

sPG,p(e is open),

where, as before, Ei = Ei+1,− \ Ei,− is the set of edges which has either two endpoints with
x-coordinate i+1, or one endpoint with x-coordinate i and the other endpoint with x-coordinate
i + 1.

By translation invariance, the edge density is the expected number of open edges per length
unit. We also have the following ergodicity result. Given G = (V , E) and X ∈ {0, 1}E ,
define Yn as the number of open edges with both endpoints having x-coordinates in the interval
[−n, n].
Lemma 5.1. For any connected one-dimensional periodic lattice G and any p ∈ (0, 1), we
have, with PG,p-probability 1,

lim
n→∞

Yn

2n
= θG(p). (5.6)

Proof. Since the percolation process is translation invariant (Corollary 4.1), almost-sure
existence of a limit in (5.6) follows from the pointwise ergodic theorem. It remains to show
that the limit is an almost-sure constant and equals the value predicted by expectations, and, for
this, it suffices to show that the percolation process is ergodic. By Theorem 4.4, the Markov
chain {Ti}i∈Z is ergodic. It is intuitively clear that the noise generated in the manner described
in Theorem 4.3 on top of the Markov chain does not mess up ergodicity, and one way to see it is
as follows. For each i, define T̂i = (Ti, X(Ei)). Theorem 4.3 implies that {T̂i}i∈Z inherits the
Markov chain property of {Ti}i∈Z, as well as the irreducibility and aperiodicity properties from
Theorem 4.4. The new Markov chain is therefore ergodic. But this implies that the percolation
process, which is a function of {T̂i}i∈Z, is also ergodic.

Despite Proposition 5.1, we may hope that θG(p) is increasing in p. For the case G = L,
it is possible to derive an explicit expression for θL(p) using our explicit computation of the
transition matrix p for {Ti}i∈Z and its stationary distribution π , together with Theorem 3.2, and
verify that θL(p) is indeed increasing in p. Such an approach is however unsatisfactory for two
reasons. First, it is not very instructive—it conveys little or no understanding as to why θL(p)

is increasing. Second, although the method may extend to other graphs on a case-by-case basis,
it offers no clue as to how to extend it to all connected one-dimensional periodic lattices. We
shall instead settle on a different approach, based on a coupling similar to the one employed in
the proof of Theorem 2.1, to establish the following general result.

Theorem 5.1. For any one-dimensional periodic lattice G and any p1, p2 such that 0 < p1 <

p2 < 1, we have
θG(p1) ≤ θG(p2).
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For the proof, we will need the following minor extension of Lemma 5.1. For n1, n2 ≥ 0,
define Yn1,n2 as the number of open edges with both endpoints having x-coordinates in the
interval [−n1, n2].
Lemma 5.2. For any connected one-dimensional periodic lattice G and any p ∈ (0, 1), we
have, with PG,p-probability 1,

lim
n1,n2→∞

Yn1,n2

n1 + n2
= θG(p).

Proof. This is a standard consequence of ergodicity of the percolation process.

Proof of Theorem 5.1. We may assume that θG(p1) = θG(p2), since otherwise we are done.
Our coupling will be to pick X, X′ ∈ {0, 1}E independently with distributions PG,p1 and PG,p2 .
This is the simplest possible coupling of PG,p1 and PG,p2 ; what will give it life is the way in
which we will reveal information about X and X′ sequentially.

As in Section 4, define Di as the event that all edges with both endpoints having x-coordinates
in the interval [i − R∗

G, i] are open in X (recall from Section 4 the definition of the constant R∗
G).

Define D′
i analogously but with respect to X′ rather than X. By the stipulated independence of

X and X′ we have
Pr(Di ∩ D′

i ) = Pr(Di) Pr(D′
i ) > 0. (5.7)

By the proof of Lemma 5.1, X and X′ are both ergodic, and the proof easily extends to show
that they are jointly ergodic. Hence, (5.7) implies that, with probability 1, Di ∩ D′

i happens
for infinitely many i, and moreover that, for any ε > 0, there exists an l > 0 such that, for any
interval I of length l, we have

P(there exists i ∈ I such that Di ∩ D′
i happens) > 9

10 . (5.8)

Now pick an ε > 0 small enough so that |θG(p2)−θG(p1)| > 3ε. Let Yn1,n2 be as in Lemma 5.1,
and define Y ′

n1,n2
analogously but with respect to X′. Pick an N large enough so that

(i) N = l for some l chosen so that (5.8) holds,

(ii) Pr

(
Yn1,n2

n1 + n2
∈ (θG(p1) − ε, θG(p1) + ε) for all n1, n2 ≥ N

)
>

9

10
, and

(iii) Pr

(
Y ′

n1,n2

n1 + n2
∈ (θG(p2) − ε, θG(p2) + ε) for all n1, n2 ≥ N

)
>

9

10

(that (ii) and (iii) are satisfied for large N follows from Lemma 5.2). Consider the following
sequential procedure for revealing X and X′, reminiscent of the procedure in the proof of
Theorem 2.1. First reveal everything that happens outside the interval [−N, N ]. Then,
starting at x-coordinate −2N , scan X and X′ from left to right in a synchronized fashion
until we encounter an x-coordinate −K1 such that D−K1 ∩ D′−K1

happens. Then scan from
right to left starting at x-coordinate 2N until we encounter an x-coordinate K2 such that
DK2+R∗

G
∩ D′

K2+R∗
G
. Note that by condition (i) in the choice of N we have

P(−K1 < −N < N < K2) > 8
10 . (5.9)

Suppose that this event happens, and define F as the (random) set of edges that have at least
one endpoint between −K1 and K2. Write F for the σ -field of everything we know about X

and X′ at this stage, and note that what remains to be revealed is exactly X(F) and X′(F ).
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Let ξ ∈ {0, 1}E\F be the configuration that sets all edges in E \ F to be open. Recall
definition (4.3) of PG,p,F,ξ , and note that, by the defining properties of Di , the conditional
distribution of X(F) given F is PG,p1,F,ξ and the conditional distribution of X′(F ) given F is
PG,p2,F,ξ .

Imagine now that we send a friend to look at X(F) and X′(F ), and ask her to inform us
about what these configurations are without telling us which is which. Write η+, η− ∈ {0, 1}F
for the two configurations, where η is taken to be the one with the largest number of edges (with
an arbitrary tie-breaking convention). We claim that

P(X(F ) = η− | F , η+, η−) ≥ 1
2 . (5.10)

Before proving this, let us first show how it implies the theorem. Combining (5.10) with (5.9)
yields

P(there exist n1, n2 ≥ N such that Y ′
n1,n2

≥ Yn1,n2) > 1
2

8
10 = 4

10 . (5.11)

But if it were the case that θG(p1) > θG(p2), then conditions (ii) and (iii) in the choice of N

would show that

P(there exist n1, n2 ≥ N such that Y ′
n1,n2

≥ Yn1,n2) <
(
1 − 9

10

) + (
1 − 9

10

) = 2
10 ,

contradicting (5.11). Hence, θG(p1) ≤ θG(p2), as desired.
It remains to establish (5.10). If η+ = η− then the probability in (5.10) equals 1, so we may

safely assume that η+ = η−. We write m for the number of edges in F , and also write m(η+)

and m(η−) for the number of open edges in η+ and η−, respectively. Note that m(η+) ≥ m(η−)

and that (since p1 < p2) p2(1 − p1)/p1(1 − p2) > 1. We calculate

P(X(F ) = η− | F , η+, η−)

P(X(F ) = η+ | F , η+, η−)

= PG,p1,F,ξ (η
−) PG,p2,F,ξ (η

+)

PG,p1,F,ξ (η+) PG,p2,F,ξ (η−)

=
(

1{(ξ∨η)∈B}
ZG,p1,F,ξ

p
m(η−)
1 (1 − p1)

m−m(η−) 1{(ξ∨η)∈B}
ZG,p2,F,ξ

p
m(η+)
2

)
(1 − p2)

m−m(η+)

×
(

1{(ξ∨η)∈B}
ZG,p1,F,ξ

p
m(η+)
1 (1 − p1)

m−m(η+) 1{(ξ∨η)∈B}
ZG,p2,F,ξ

p
m(η−)
2 (1 − p2)

m−m(η−)

)−1

=
(

p2(1 − p1)

p1(1 − p2)

)m(η+)−m(η−)

≥ 1,

and (5.10) follows.
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