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Abstract

The current assays to confirm herbicide resistance can be time- and labor-intensive (dose–
response) or require a skill set/technical equipment (genetic sequencing). Stakeholders could
benefit from a rapid assay to confirm herbicide-resistant weeds to ensure sustainable crop
production. Because protoporphyrinogen oxidase (PPO)-inhibiting herbicides rapidly interfere
with chlorophyll production/integrity; we propose a new, rapid assay utilizing spectral reflec-
tance to confirm resistance. Leaf disks were excised from two PPO-inhibiting herbicide-
resistant (target-site [TSR] and non–target site [NTSR]) and herbicide-susceptible redroot
pigweed (Amaranthus retroflexus L.) populations and placed into a 24-well plate containing
different concentrations (0 to 10 mM) of fomesafen for 48 h. A multispectral sensor captured
images from the red (668 nm), green (560 nm), blue (475 nm), and red edge (717 nm) wave-
bands after a 48-h incubation period. The green leaf index (GLI) was utilized to determine
spectral reflectance ratios of the treated leaf disks. Clear differences of spectral reflectance were
observed in the red edge waveband for all populations treated with the 10 mM concentration in
the dose–response assays. Differences of spectral reflectance were observed for the NTSR pop-
ulation compared with the TSR and susceptible populations treated with the 10 mM concen-
tration in the green waveband and the GLI in the dose–response assay. Leaf disks from the
aforementioned A. retroflexus populations and two additional susceptible populations were
subjected to a similar assay with the discriminating concentration (10mM). Spectral reflectance
was different between the PPO-inhibiting herbicide-resistant and herbicide-susceptible popu-
lations in the red, blue, and green wavebands. Spectral reflectance was not distinctive between
the populations in the red edge waveband and the GLI. The results provide a basis for rapidly
(~48 h) detecting PPO-inhibiting herbicide-resistant A. retroflexus via spectral reflectance.
Discrimination between TSR and NTSR populations was possible only in the dose–response
assay, but the assay still has utility in distinguishing herbicide-resistant plants from
herbicide-susceptible plants.

Introduction

Redroot pigweed (Amaranthus retroflexus L.) is a globally pervasive weed species (Costea et al.
2004; Weaver and McWilliams 1980). Despite being pervasive, the species has historically been
easy to control with herbicides (Mayo et al. 1995; Oliveira et al. 2017). Control difficulty is exac-
erbated in crops where the chemical control options are limited (Miranda et al. 2022; Owen and
Zelaya 2005). Acetolactate synthase (ALS; EC 2.2.1.6; Group 2) and protoporphyrinogen oxi-
dase (PPO; EC 1.3.3.4; Group 14) are herbicides used in soybean [Glycine max (L.) Merr.] to
control many weeds and are efficacious on Amaranthus spp.; thus, herbicide-resistant weeds
have been selected with recurrent use and overuse of these herbicides (Gressel et al. 2017;
Hinz and Owen 1997; Shoup et al. 2003). One hundred and sixty-nine and fourteen species have
evolved resistance to the ALS- and PPO-inhibiting herbicides, respectively, including A. retro-
flexus (Heap 2022). While ALS-inhibiting herbicide resistance has been well characterized in A.
retroflexus (Ferguson et al. 2001; McNaughton et al. 2005), recent reports of populations
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resistant to ALS- and PPO-inhibiting herbicides are very concern-
ing (Cao et al. 2021; Jones et al. 2023a; Wang et al. 2019).
Stakeholders could benefit from a rapid assay to determine
whether putative PPO-inhibiting herbicide-resistant A. retroflexus
individuals are present so effective control can be implemented
before the biotypes become widespread (Burgos et al. 2013;
Squires et al. 2021).

Protoporphyrin oxidase–inhibiting herbicides cease the con-
version of protoporphyrinogen IX (protogen) into protoporphyrin
IX (proto) in chloroplasts (Beale andWeinstein 1990). Under light
conditions, proto generates singlet oxygens that extract hydrogens
from lipids, disrupting cell membrane integrity relatively quickly
(Beale andWeinstein 1990). Chloroplast integrity is compromised,
and vegetative tissue loses green pigment (Carter 1993; Major et al.
2003). Chlorophyll content and spectral reflectance are correlated;
thus, PPO-inhibiting herbicide-treated plants could be imaged and
analyzed to detect differences in spectral reflectance and thus con-
firm resistance (Gitelson et al. 2003a; Major et al. 2003; Paril and
Fournier-Level 2019). Previous research has demonstrated that
spectral reflectance can discriminate between herbicide-treated
plants, weed species, and herbicide-resistant weed biotypes
(Everman et al. 2008; Reddy et al. 2014; Sanders et al. 2021; Zhao
et al. 2014). In many instances of PPO-inhibiting herbicide resis-
tance, the mechanism of resistance is facilitated by a mutation in
the PPX2 gene (Mendes et al. 2020; Montgomery et al. 2021).
However, some PPO-inhibiting herbicide resistance is facilitated
by non–target site mechanisms (Jones et al. 2023a; Varanasi
et al. 2018). Because both target-site resistance and non–target site
resistance to PPO-inhibiting herbicides have been documented in

A. retroflexus, knowledge of spectral reflectance profiles between
populations possessing the different mechanisms would be benefi-
cial in developing a rapid detection assay.

While dose–response assays are a proven way to document dif-
ferential susceptibility to herbicides, the results are not procured in
time to implement effective control in the growing season and
require a lot of labor, time, and space (Burgos 2015; Burgos
et al. 2013; Squires et al. 2021). Genetic sequencing can expedite
the time to procure results (on the magnitude of hours to days),
but the technical knowledge and equipment needed represent a
barrier to entry (Burgos et al. 2013; Squires et al. 2021). Thus,
the objectives of this research were to determine whether PPO-
inhibiting herbicide-resistant and herbicide-susceptible A. retro-
flexus populations could be successfully discriminated with multi-
spectral reflectance and whether a single discriminating herbicide
concentration could be adapted into a rapid detection assay.

Materials and Methods

Plant Material

Five A. retroflexus populations were utilized in the experiments.
Three herbicide-susceptible A. retroflexus populations were col-
lected from Wake and Yadkin (A and B) counties, North
Carolina, in 2019. Two ALS- and PPO-inhibiting herbicide-resist-
ant A. retroflexus populations were collected from Camden and
Pasquotank counties, North Carolina, in 2019 and 2020, respec-
tively. The Camden County population carries a Arg-98-Glymuta-
tion in the PPX2 gene, while the Pasquotank County population

Figure 1. Flowchart of how the image of the leaf disks in the 24-well plates containing various fomesafen concentrations (A) has the background pixels removed; (B) then only the
green leaf disks remain (C), and the different digital number values are extracted from the wavebands and the green leaf index (GLI) (D).
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exhibited no mutation in the PPX2 gene (Jones et al. 2023a). The
Camden County and Pasquotank County populations are also
resistant to ALS-inhibiting herbicides and carry a Trp-574-Leu
and Pro-197-His mutation in the ALS gene, respectively.

Dose–Response Assay

Seeds of the Camden County, Pasquotank County, and Wake
County populations were sown into separate 21 cm by 28 cm flats
containing a 4:1 soil mixture and 5 g of pellet fertilizer (14-14-14).
Plants were transplanted at 5 cm in height (2- to 4-leaf) into 10-cm
pots containing a 4:1 soil mixture with 1 g of pellet fertilizer (14-14-
14). When the plants reached approximately 7.6 to 10 cm in height
(4- to 6-leaf), leaf disks were excised using a 6-mm hole puncher
from the youngest completely unfolded leaves. Fomesafen (290 g ai
L−1) was diluted to various concentrations (mM) using de-ionized
water. The tested fomesafen concentrations were 0.01, 0.0316, 0.1,
0.316, 1, 3.16, and 10 mM. A nontreated leaf disk was included as
well. These concentrations were selected based on similar previously
conducted research (Jones et al. 2023b; Wu et al. 2021). Treatments
were arranged as a randomized complete block design with three
replications (each replication was a plant), and the experiment
was conducted twice. Twenty-four-well plates (Spex Sample Prep,
Metuchen, NJ) were cut in half to a depth of 1.25 cm and used as
the vessel to hold the leaf disk and herbicide aliquot. One-milliliter
aliquots of the various fomesafen concentrations were added to the
corresponding well, and leaf disks were placed in the well with for-
ceps. The leaf disks were submerged into the aliquot and allowed to
resurface with the adaxial side facing up. The 24-well plates contain-
ing the herbicide aliquots and leaf disks were placed into a photog-
raphy box and subjected to continuous light from an LED light (12
lumens m−2) at 22 C with 50% relative humidity.

Multispectral images were acquired using aMicaSense RedEdge
multispectral sensor (MicaSense, Seattle, WA) every 2 h for 48 h.
The multispectral sensor measures reflected energy in five discrete
regions: red (668 to 682 nm), green (560 to 587 nm), blue (475 to
507nm), red edge (717 to 729 nm), and near infrared (842 to 899).
Limited radiance output by the LED light source in the near infra-
red resulted in underexposed images at this wavelength and was
not included in the analysis. The multispectral sensor has a focal
length of 5.5 mm, a horizontal field of view of 47.2°, and an image
resolution of 1,280 × 960 pixels. Ground spatial resolution for the
multispectral sensor is 0.7 mm per pixel at 1 m above ground level.
The multispectral sensor was placed approximately 1 m above the
24-well plates containing the leaf disks. The resulting images were
combined into a single four-band, geometrically rectified image
composite using custom Python (Python Software Foundation,
Wilmington, DE) code and the SIFT (Scale-Invariant Feature
Transform, https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_
intro.html) library available in OpenCV. The image composites
were then used to determine reflected raw digital number (DN)
values for each waveband using the FIELDIMAGER package in
RStudio v. 4.1.1 (Matias et al. 2020; R Core Team 2020).
Reflectance ratios were calculated as well for the green leaf index
(GLI) in addition to the wavebands captured by the multispectral
sensor in FIELDIMAGER and calculated using Equation 1.

2�red � green � blueð Þ
2�red � green � blueð Þ [1]

Where red is the DN value from the red waveband, green is the DN
value from the green waveband, and blue is the DN value from the

blue waveband. The GLI was selected, as it is commonly used as a
metric to measure chlorophyll content (Gitelson et al. 2003b). A
flowchart of the process from the captured image to extracted
DN is outlined in Figure 1.

Rapid Discrimination of PPO-inhibiting Herbicide Resistance
across Populations

Two additional PPO-inhibiting herbicide-susceptible A. retroflexus
populations (Yadkin County A and B) were utilized to determine
whether the assay could discriminate across different populations.
Seeds from all populationswere sown and curated as described earlier.
Leaf disks were excised and placed into the 24-well plate with the cor-
responding fomesafen concentrations and placed in a photography
box as described earlier. Fomesafen concentrations were 0 mM and
the discriminating concentration for the dose–response assay.
Treatments were arranged as a randomized complete block design
with four replications (each replication was a plant), and the experi-
ment was conducted twice. The multispectral sensor collected
imagery at 0, 24, and 48 h after treatment. The multispectral sensor
was approximately 1 m above the 24-well plate containing the leaf
disks, as described earlier. The images were mosaicked and reflected
DN values from wavebands, and GLI values were extracted from the
mosaicked images as described earlier.

Whole-Plant Response to Fomesafen

Plants that were sampled for the experiments described earlier
were subsequently treated with fomesafen after the leaf disks were
excised to ascertain whether the plants were resistant or susceptible.
Fomesafen (290 g ai ha−1) þ crop oil (1% v/v) was applied 46 cm
above the target height at an output of 140 L ha−1 using a CO2-pow-
ered track-mounted sprayer equipped with a TeeJet® 8002EVS nozzle
(TeeJet Technologies,Wheaton, IL). Plant survival was evaluated at 21
d after treatment on a binomial scale where 0 equaled plant death and
1 equaled plant survival.

Table 1. Parameter estimates from the regression models for the spectral
reflectance of protoporphyrinogen oxidase–inhibiting herbicide-resistant and
herbicide-susceptible Amaranthus retroflexus leaf disks treated with increasing
fomesafen concentrations.

Waveband/
index Populationa Modelb r2

Red TSR y= 47.7þ 5.0/1 þ (x/−1.1)−18.1 0.67
NTSR y= 49.9/1 þ (xþ 6.4)2.0 0.29
Susceptible y= 46.5þ 3.4/1 þ (x/0.3)−16.7 0.28

Green TSR y= 73.0þ 5.0/1 þ e−[(x − 0.1)/−0.003] 0.31
NTSR y= 75.5þ 3.9/1 þ e−[(x − 3.16)/0.1] 0.46
Susceptible y= 58.7þ 19.4/1 þ e−[(xþ 4251.4)/

0.2]
0.65

Blue TSR y= 38.6 – 0.4 * xþ 0.06 * x2 0.35
Non-target

site–
resistant

y= 38.9þ 0.07 * x – 0.0001 * x2 0.17

Susceptible y= 38.0þ 1.6/1 þ e−[(xþ 0.2)/0.0045] 0.38
Red edge TSR y= 115.0 − 2.0 * xþ 0.3 * x2 0.3

NTSR y= 117.0þ 9.0/1 þ (x/−3.2)−18.1 0.6
Susceptible y= 115.07 − 1.8 * xþ 0.2 * x2 0.51

Green leaf
index

TSR y= 0.2þ 0.03/1 þ (x/0.2)2.6 0.52
NTSR y= 0.3 − 0.0004 * x − 0.0006 * x2 0.38
Susceptible y= 0.2þ 0.04/1 þ e−[(x − 0.3)/16.5] 0.75

aNTSR, non–target site resistant; TSR, target-site resistant.
bLinear (y ¼ y0 þ ax) or three-parameter sigmodal (y ¼ a

1 þ x � x0ð Þb) equations were
selected based on goodness of fit to the data.

200 Jones et al.: Reflectance for HR weeds

https://doi.org/10.1017/wsc.2023.25 Published online by Cambridge University Press

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://doi.org/10.1017/wsc.2023.25


Figure 2. Spectral reflectance of protoporphyrinogen oxidase–inhibiting herbicide-resistant (target-site: black circle; non–target site: white circle) and herbicide-susceptible
(triangle) Amaranthus retroflexus leaf disks treated with various concentrations of fomesafen. (A) Red (668) waveband; (B) green (560) waveband; (C) blue (475) waveband;
(D) red edge (717 nm) waveband; (E) green leaf index. Error bars represent the standard errors of the mean.
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Statistical Analysis

Dose–Response Assay
Spectral reflectance data from all wavebands and the GLI were
modeled across fomesafen concentrations using four-parameter
log-logistic, three-parameter sigmoidal-logistic, four-parameter
sigmoidal-logsitic, and quadratic equations in SigmaPlot v. 14.0
(Systat Software, Palo Alto, CA).

The four-parameter log-logistic model is described as

y ¼ y0 þ a=
x
x0

� �
b

[2]

where a is the upper asymptote, x is the fomesafen concentration,
x0 and y0 equal inflection points, and b is the slope at x0.

The three-parameter sigmoidal-logistic model is described as

y ¼ y0

1þ exp � xþx0ð Þ
b

h in o
0
@

1
A [3]

where x is the fomesafen concentration, x0 and y0 equal inflection
points, and b is the slope at x0.

The four-parameter sigmoidal-logistic model is described as

y ¼ y0 þ
a

1þ exp � xþx0ð Þ
b

h in o
0
@

1
A [4]

where y0 is the upper asymptote, x is the fomesafen concentration,
x0 equals an inflection point, and b is the slope at x0.

The quadratic model is described as

y ¼ y0 þ a�x þ b�x2ð Þ [5]

where a is the upper asymptote, x is the fomesafen concentration,
x0 and y0 equal inflection points, and b is the slope at x0.

Rapid Discrimination of PPO-inhibiting Herbicide Resistance
across Populations
Spectral reflectance data from all wavebands and GLI were sub-
jected to ANOVA using PROC GLIMMIX in SAS v. 9.4
(Statistical Analysis Software, SAS Institute, Cary, NC), with fome-
safen concentration, resistance trait, resistance trait (nested within
population), and the interactions were considered fixed effects,
while experimental run and replication were considered random
effects. Treatment means were separated using Fisher’s
LSD (α≤ 0.1).

Whole-Plant Assay
Plant survival data were subjected to ANOVA using PROC
GLIMMIX in SAS v. 9.4 (Statistical Analysis Software, SAS
Institute). Amaranthus retroflexus population was considered a
fixed effect, while the experimental run and replication were con-
sidered random effects. Means were separated using Fisher’s
LSD (α≤ 0.05).

Results and Discussion

Only the 48-h time point provided clear, significant differences of
spectral reflectance; thus, all subsequent results will reflect data col-
lected at 48 h after treatment.

Dose–Response Assay

Red
Spectral reflectance of the A. retroflexus populations across
fomesafen concentrations was best modeled with a three-
parameter sigmoidal equation (Table 1; Figure 2). Spectral
reflectance increased as the fomesafen concentration increased
for all A. retroflexus populations (Figure 2). Largely, the spectral
reflectance value of each A. retroflexus population was insepa-
rable (Figure 2).

Green
Spectral reflectance of theA. retroflexus populations was best mod-
eled with a linear equation (Table 1; Figure 2). Spectral reflectance
values for the resistant (Camden County and Pasquotank County)
and the susceptible (Wake County)A. retroflexus populations were
inseparable until the 10 mM concentration (Figure 2). The spectral
reflectance of both resistance populations increased, while the
spectral reflectance decreased for the Wake County population
(Figure 2; Table 1). The spectral reflectance values of the
Camden County (target-site resistant [TSR]) and Pasquotank
County (non–target site resistant [NTSR]) populations were no
different at the 10 mM concentration (Figure 2).

Blue
Spectral reflectance of the A. retroflexus populations across fome-
safen concentrations was best modeled with a linear equation
(Table 1; Figure 2). The spectral reflectance values for each A. ret-
roflexus population were inseparable across all fomesafen concen-
trations (Figure 2).

Red Edge
Spectral reflectance of the A. retroflexus populations across fome-
safen concentrations was best modeled with a linear equation
(Table 1; Figure 2). The spectral reflectance of the Wake County
population remained constant across fomesafen concentrations;
the spectral reflectance of the Camden County (TSR) and the
Pasquotank County (NTSR) populations increased (Figure 2;
Table 1). All A. retroflexus populations were spectrally distinct
at the 10 mM concentration (Figure 2).

GLI
Spectral reflectance of the A. retroflexus across fomesafen con-
centrations was best modeled with a linear equation (Table 1;
Figure 2). The spectral reflectance of the Camden County and
Wake County populations decreased with increasing fomesafen
concentrations, while the spectral reflectance of the Pasquotank
County population increased with increasing fomesafen con-
centrations (Table 1; Figure 2). While the slopes of individual

Table 2. Survival of Amaranthus retroflexus treated with fomesafen
(290 g ai ha−1) after the leaf disks were excised for the dose–response assay.

Survivalb

Populationa %
Camden County 100 a
Pasquotank County 33 b
Wake County 0 c

aHerbicide-resistant populations: Camden County (target-site resistance); Pasquotank
County (non–target site resistance). Herbicide-susceptible population: Wake County.
bValues that share the same letters are not statistically different based on Fisher’s LSD
(P< 0.05).
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A. retroflexus populations showed different trends, the reflec-
tance values were largely inseparable (Figure 2).

The concurrent whole-plant bioassay had concordant results
where the Camden County (100%) and Pasquotank County
(33%) population plants survived the fomesafen treatment, while
the Wake County population had no surviving plants (Table 2).

Rapid Discrimination of PPO-inhibiting Herbicide Resistance
across Populations

Amaranthus retroflexus population was not a significant effect
(P> 0.1) on the spectral reflectance on the tested wavebands
and GLI. However, the resistance profile was a significant effect
(P< 0.1) on the spectral reflectance on the tested wavebands
and GLI; thus, the spectral reflectance for each waveband and
GLI was averaged across resistance profile.

Red
Spectral reflectance was not different between the nontreated
resistant and susceptible populations (Table 3). The spectral reflec-
tance was higher in the resistant populations compared was the
susceptible populations when treated with 10 mM of fomesafen.
This result is not concordant with the results from the dose–
response assay (Figure 2; Table 3). While not concordant, the
trends from the dose–response assay suggest that the reflectance
increases as the concentration increases (Figure 2).

Green
Spectral reflectance was no different between the nontreated leaf
disks and the 10 mM–treated resistant leaf disks; the spectral
reflectance of the 10 mM–treated susceptible leaf disks was lower

compared with the other leaf disks (Table 3). This result is con-
cordant with the results from the dose–response assay (Figure 2;
Table 3).

Blue
Spectral reflectance was no different between the nontreated leaf
disks and the 10 mM–treated susceptible leaf disks; the spectral
reflectance of the 10 mM–treated resistant leaf disks was higher
compared with the other leaf disks (Table 3). This result is not con-
cordant with the results from the dose–response assay (Figure 2;
Table 3). The trends from the dose–response assay do not elucidate
why spectral reflectance separation occurs; the increased sample
size and inclusion of more populations may be a driving factor.

Red Edge
Spectral reflectance was no different between the nontreated and
treated leaf disks (Table 3). This result is not concordant with
the results from the dose–response assay (Figure 2; Table 3).
When analyzed by population, the Wake County population
had a lower reflectance value than the other A. retroflexus popula-
tions in the red edge waveband; this result may elucidate the differ-
ential responses at a population level (data not shown).

GLI
Spectral reflectance was no different between the nontreated and
treated leaf disks (Table 3). This result is concordant with the
results from the dose–response assay (Figure 2; Table 3).

The concurrent whole-plant bioassay had concordant results
wherein the PPO-inhibiting herbicide-resistant populations had
plant survival ranging from 50% to 100% and the herbicide-sus-
ceptible populations had plant survival ranging from 0% to
12.5% when treated with fomesafen (Table 4).

Results of the experiments provide evidence that spectral reflec-
tance in combination with dose–response and rapid detection
assays can discriminate between PPO-inhibiting herbicide-resist-
ant and herbicide-susceptible A. retroflexus within 48 h. Because
results showing the plants to be “resistant” or “susceptible” are pro-
cured rapidly, effective control tactics can be implemented before
resistant individuals reproduce to cease the spread of this biotype
in the agroecosystem, compared with whole-plant dose–response
assays, in which results are procured much later after the growing
season (Ervin et al. 2019; Norsworthy et al. 2012). This assay also
hasminimal barriers of entry (technical skill set and/or equipment)
compared with genetic sequencing assays that can procure results
in a similar time frame.

Both PPO-inhibiting herbicide-resistant populations could
be distinguished from herbicide-susceptible populations with

Table 3. Reflectance of protoporphyrinogen oxidase–inhibiting herbicide-resistant and herbicide-susceptible Amaranthus retroflexus leaf disks treated with 10 mM of
fomesafen 48 h after treatment.

Red Green Blue Red edge GLIa

Resistance profile Concentration Digital number (SE)b

—mM—
Resistant 0 47.4 (10.2) c 78.8 (18.8) a 38.6 (9.1) b 119.5 (28.0) a 0.30 (0.08) a

10 61.2 (13.0) a 76.2 (16.3) a 43.1 (9.8) a 110.0 (26.6) b 0.20 (0.04) b
Susceptible 0 47.5 (8.7) c 77.2 (15.5) a 38.3 (7.6) b 118.2 (23.9) a 0.29 (0.06) a

10 54.2 (11.3) b 70.6 (14.5) b 39.5 (8.0) b 107.2 (23.2) b 0.20 (0.04) b

aGLI, green leaf index.
bColumns that share the same letters are not statistically different based on Fisher’s LSD (P< 0.1).

Table 4. Survival of Amaranthus retroflexus treated with fomesafen
(290 g ai ha−1) after the leaf disks were excised for the rapid assay.

Survivalb

Populationa %
Camden County 100 a
Pasquotank County 50 b
Yadkin (A) County 12.5 c
Yadkin (B) County 0 c
Wake County 12.5 c

aHerbicide-resistant populations: Camden County (target-site resistance); Pasquotank
County (non–target site resistance). Herbicide-susceptible populations: Wake County; Yadkin
(A and B) County.
bValues that share the same letters are not statistically different based on Fisher’s LSD
(P< 0.05).
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multispectral imaging in both assays; however, detection of target-
site versus non–target site resistance was less clear (Figure 2;
Table 3). While the mechanism of resistance was not clearly
defined in either assay, the utility of these assays provides a meth-
odology to rapidly confirm PPO-inhibiting herbicide-resistant A.
retroflexus. Research utilizing chlorophyll fluorescence imaging
successfully discriminated between weed populations possessing
target-site and non–target site resistance (Kaiser et al. 2013).
Amaranthus retroflexus is relatively genetically similar across indi-
viduals due to monoicy and plants being largely self-pollinated
(Mandák et al. 2011; Weaver and McWilliams 1980). The distinct
spectral response of the herbicide-resistant and herbicide-suscep-
tible A. retroflexus populations to the 10-mM concentration of
fomesafen may be due to the lack of differential genetic back-
ground (Bravo et al. 2017; Leon et al. 2021). These assays may need
adjustments when implemented for very genetically diverse species
such as waterhemp [Amaranthus tuberculatus (Moq.) Sauer] and
Palmer amaranth (Amaranthus palmeri S. Watson) (Chandi et al.
2013; Lee et al. 2009). They may have utility in confirming/
detecting herbicide-resistant weeds if the herbicide mode of action
is comparable to that of fomesafen or inhibits chlorophyll/pigment
production (Grossmann 2009; Hawkes 2014; Mitchell et al. 2001;
Takano et. al 2019). Herbicide concentration may need to be
adjusted based on herbicide activity and weed species.
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