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Abstract. In this paper, we study an exceptional theta correspondence, obtained by restricting the
minimal automorphic representation of the adjoint group of tipeand rank 3 ovef) to the dual

pair G x PGSps. HereG is the anisotropic form o> over (; using the correspondence, we lift
certain automorphic forms a# to holomorphic cusp forms aRG Spe. This lifting provides the first

step in a project to construct motives of rank 7 and weight O @evith Galois group of type..

Mathematics Subject Classifications1991).F27, F70, G18.

Key words: Exceptional theta correspondence, modular forms, motives.

Introduction

Serre has asked if there are motiidswith motivic Galois group of typé&r, [Se3;
pg 386]. This paper is the first step in a project to construct such a mufijvef
rank 7 and weight O, over the base figd

LetG be the anisotropic form af, overQ, and letr = ®,, be an automorphic
representation of the adelic grogf{A). At almost all primes, the local repre-
sentationr, is unramified and has Satake paramsjga semi-simple conjugacy
class in the dual group!(C) = G2(C). Let V be the irreducible 7-dimensional
representation o&(C). The unramified representatior) is determined by the
characteristic polynomial of, on ¥:

L(my, V, X) = def1 — s, X|V)~1.

By giving a rational structure on the space of modular form&fowve show that
the coefficients of all the polynomials d&t— s, X|¥) lie in a totally real number
field E C C. Under the additional hypothesis that at least one local component of
is the Steinberg representation, we conjecture the existence of a tbtivel/ ()
of weight 0 overQ with coefficients inE, whose localL-function at unramified
primesp is given by the formula

L,(M,s) = L(WP,V,p_S).
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The first step in our construction @f is to lift = to an automorphic, cuspidal
representation’ of the split groupgs’ = PG Sps. Such allifting, at least at the level
of L-packets, is predicted by Langlands functoriality. Indeed, we have an inclusion
of dual groups

G(C) = G2(C) — Spiny(C) = G'(C)

which realizeg5, as the stabilizer of a non-isotropic vector in the 8-dimensional
spin representation of SginWe are able to construct a lifting — =’ with the
property predicted by functoriality in many cases, using an exceptional theta-
correspondence. The grodpx G’ appears as a dual pair in the adjoint gratlip
of type E7 and rank 3 ovet).

The bulk of this paper is devoted to a study of the theta-correspondence which
results from the restriction of the minimal representatiorHoto the subgroup
G x G'. The local results were suggested by the work of Huang, Bandnd
Savin [HPS] on the quaternionic form &f; of rank 4 overR. The global results
on cuspidality and non-vanishing were inspired by the work of Ginzburg, Rallis,
and Soudry [GRS2] in the split case.

The second step in our construction &f is to use the lifted representation
7' of G’ to define a motiveM’ in the cohomology of a Siegel modular variety.
Specifically, assume that there is a finite, non-emptySsef primes such that
mp is unramified for allp ¢ S, andn, is the Steinberg representation for all
p € S. Let X be the 6-dimensional Siegel modular variety o@erclassifying
principally polarized abelian varieties of dimension 3 with an Iwahorilevel structure
atallp € S. If o has highest weighktiw; + kow2, wherew; is the weight
of the 7-dimensional representation apglis the weight of the 14-dimensional
adjoint representation, |T be the local system ol corresponding to the rational
representation oy’ with highest weight= (k1 + 2ko, k1 + k2, k2). Then theyr}-
isotypic component/’ C H8(X, F) (3) should have rank 8 and coefficientsin
As 7’ is lifted from G, M’ should decompose as the sum\éfand a Hodge class,
arising from Hilbert modular 3-folds iX . Several difficulties remain in proving
this, but we hope to treat these geometric questions in a future paper.

1. Spaces of modular forms

In this chapter we develop the arithmetic theory of modular forms for semi-simple
groups over with G(R) compact. At the end of this chapter we specialize to the
case whertd is of type G». In particular, we construct two interesting modular
forms for the anisotropic form af. It will be shown in Chapter 5, that they lift
non-trivially to G' = PG Spe.

1. Groups
Let G be a semi-simple algebraic group ow@with G(R) compact. To simplify
some of the exposition, we will further assume t&ais simply connected, and is
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an inner form of a split group ovel. ThenG is split overQ, for almost all primes
p, and—1 is an element of the Weyl group 6f. Also, the cente# (G) is killed by
2.

LetW be anirreducible algebraic representatioG@iverQ, which is absolutely
irreducible (i.e. remains irreducible ov@). ThenW is orthogonal, and thé-
invariant symmetric bilinear form o’ is definite overR. We fix a G-invariant,
positive-definite inner product

LYW x W = Q (1.1)

which is unique up to scaling by .

2. Modular forms

LetQ = Q® Z be the ring of finite adlles ofQ, S0A = R x Q is the ring of aéles.
Let K be an open compact subgroup of the locally compact g@((p). Since
G(Q)\G(Q) is compact ([B2]), the double coset space

G(Q\G(Q)/K 2.1)
is finite. Let{g,} represent the distinct double cosets, and for eaatefine the
finite group

To = G(Q NgaKg,™

= {7 € G(Q|79a K = gu K} (2.2)

Associated tdX ¢ G(Q) and an irreducible representatiéin of G overQ, we
have a rational vector space

A = AK,W)
= {F:G(Q)/K — W|F(yg) =~F(g), allyeG(Q}. (2.3)

This is the space of modular forms of ‘lev&l and ‘weightWW’ for G.

Afunction F'in A is clearly determined by the valué%g,,) on the double coset
representatives, and(g,,) lies in the subspace &¥ fixed byT',,. This observation
gives a proof of the following.

PROPOSITION 2.3The space is finite-dimensional and the map taki#gto
the element# (g, ) in W' is a linear isomorphismt = @, W'e.

We can use the proposition to define an inner product aith values inQ, by
the formula

<F7 F,>A = Zw;].(F(ga)aFl(ga»a (24)
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wherew, = CardT,). This is independent of the choice of coset representatives,
as the pairing, ) on W is G(Q)-invariant.

3. Hecke operators
The Hecke algebra oK is the convolution algebra of locally constant, compactly
supported functions

Hx = H(G(Q)//K)
= {/: K\G(Q)/K - Q} (3.1)

using Haar measure giving volume 1. This has, as additive basis, the character-
istic functions chatK'¢tK') of double cosets, and acdtslinearly on A as follows.
Let 7/ € A. Writing

KtK = Uit; K, (3.2)
where the number of single cosets is finite, we have the formula

cha(KtK)|F(g) = Z F(gt;). (3.3)
The following adjoint formula shows that is a semi-simplé{ x-module.

PROPOSITION 3.4.
(cha(KtK)|F, F') o = (F,cha(Kt 1K)|F') 4. (3.5)

Proof. This is standard. See, for example, [Shm].

Over the algebraically closed fielt] the isotypic decomposition of ® C as an
‘H x ® C module is given by the theory of automorphic forms. kebe an element
in

Homg @) (W ® C, L*(G(Q)\G(4)/K)). (3.6)

If wis an elementii ® C, the functionm,, = m(w) is smooth. In particular, for
anyg in G(A), the complex number.,(g) is well defined. We define an element
F = F(m)in A® C by the formula

whereg; is in G(Q).

PROPOSITION 3.7The mapn — F'(m) gives alinear isomorphism 6{ 5 ® C-
modules

Home(e)(W ® C, 2 (G(Q)\G(4)/K)) = A® T
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Proof. We construct an inverse map. LBtbe in A ® C. If g is an element in
G(A), write g = g X g7 Whereg; is in G(R), andg; is in G(Q). We define an
elementn = m(F) in Homg ) (W ® C, L?(G(Q)\G(A)/K)) by the formula

muw(9) = (goow, F(gy))-

The mapF — m(F) is the inverse of the map — F(m).

4. Spherical operators
Assume thall = [] K,, in G(Q). If

Hi, = {fp: Kp\G(Q)/Kp — Q} (4.1)

is the local Hecke algebra, we obtain a mapedlgebrasi x, — H x taking f, to

the functionf = f, ® cha(]], ., K;) on G(Q). In fact, we obtain an isomorphism
of the restricted tensor product of local algebras (with respect to the unit element)
andH i

&M, = Hr. (4.2)

We say the prime is unramified fork if G(Q,) is splitandK N G(Q,) = K,
is a hyperspecial maximal compact subgroup. In this case, the Satake isomorphism
gives an identification [Ct; pg. 148]

i, ® QpY?) = R(G) @, Qp*?], (4.3)

whered is the dual Langlands group amt(G) its representation ring. The half-

integral powers enter only in term$*), where)\ is a co-character of a maximal

torusT C G ® Q,, andp is half the sum of the positive roots relative to a Borel

subgroup containin@'. Since we have assumed tlgats simply connected), p)

is always an integer, and the Satake transform gives an isomorphigralgébras
Hr, = R(G) ® Q. (4.4)

P

Let T be the commutativ®-subalgebra oH x generated by the local algebras
H i, for all unramifiedp. Then by (4.4)

T =2 ®p unramR(é) ® Q. (4.5)
PROPOSITION 4.6The elements df give commuting self-adjoint operators on
A.

Proof. We have

Kt,K = Kt;'K,
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forallt, in G(Q,). Indeed, ifI" is a split torus inG(Q, ), thenG(Q, ) = K,T K, by
the Cartan decomposition. Sined is in the Weyl group of7, there is an element
in K, such thatut,n=! = t;l. The proposition now follows from Proposition 3.4.

Let F' be an eigenvector fdr acting on the spacé ® C. By (4.4), F gives rise
to an element

s, € Hom(R(G), C), (4.7)

for all unramified primeg. But the spectrum OR(G) ® C consists of the set of
semi-simple conjugacy classesiiC). Thus we have shown

PROPOSITION 4.8If F' is an eigenvector fof in A ® C, the eigenvalues deter-
mine a collectior{s,} of semi-simple conjugacy classed(ifiC), indexed by the
unramified primep for K.

We note that by Proposition 4.6 each such eigenvectot @& C is actually
defined over a totally real number field.

5. The Steinberg subspace
Assume thaty is split and quasi-simple ovel,, andK, a hyperspecial maximal
compact subgroup a¥(Q, ). We now consider the space= A(K, W) of forms
of weight W and level K in the special case wheR = I, x K’ whereI,
is an Iwahori subgroup of7(Q,) contained inkK,. The Iwahori Hecke algebra
M1, = H(G(Q)//1,) then has a distinguished rational character, corresponding
to the Steinberg representatioi, of G(Q,). This character sends the standard
Iwahori-Matsumoto generators [Lu] f;, to —1.

Let

A(St) C A (5.1)

be theQ-subspace of modular forms on whigy, acts by the Steinberg character.
This is anH x-submodule ofd. Our aim in this section is to show it is a reasonably
large subspace of, so that there are many automorphic representations with local
componeniSt,. To first order, we will show that:

dmA(St,) . r+1 1 -

The algebrat;, contains the finite sub-algebfd(K,//I,). Let ¢, be the
restriction toH (K, //1I,) of the Steinberg character &f; . This character corre-
sponds to the Steinberg representation of the finite Chevalley gtgudCa]. The
spaceA(St,) is contained in the subspace

Alep) CA (5.3)
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on which the finite algebra acts by the charaeterTo first order, we will show
that

dimA(e,) . 1 <£> B
“dma = 1 ’ +0 7)) r = rank Q). (5.4)

Let 7 be a maximal simplex in the building ¢f overQ,, which is fixed by
the Iwahori subgroug,, and for each non-empty facg of F let 1,,(i) 2 I, be
the stabilizer ofF;. Let A(¢) be the subspace of of forms of weighti?’ and level
K(i) = I(i) x K'.

Finally, we let A(1) be the subspace ol corresponding to the trivial 1-
dimensional representation 6f. Then dimA(1) = 1 whenW = Q, and dim
A(1) = 0 otherwise.

PROPOSITION 5.8n the Grothendieck group of finite-dimensioftak . -modules
A(St) + (1)7AL) = (-1 A®)

Fi

Algp) = D ()M A®),
Fi2Fo

whereF, is the hyperspecial vertex fixed B,

Proof. The first follows from the Kottwitz’s formula [K0]

1 ™= SED)
Z(_l)codim}'i dim(ﬂ.lp(i)) =< (-1)" w=1,
Fi 0 otherwise

for the Euler characteristic of the continuous cohomology of a unitary irreducible
representation of G(Q, ). The second formula follows from the standard resolution
of the Steinberg character of the finite Chevalley gréi(p) [Ca; pg. 187]. Note:
if we include the empty fac&y, with the stabilizerK (§)) = G, then the formula
for A(St,) can be written without the correction tera(1).

We can compute dim (i) if G(Q) acts freely orG(Q)/I,(i) x K'. In this case

dimA = (I, (i): I,) dim A(3). (5.6)

We say thak is p-neat ifG(Q) acts freely orG(Q) /1, (i) x K' for all i, and that it
is weakly neat it (Q) acts freely orG(Q) /1, (i) x K' forall I,(i) C 1,(0) = K.
Proposition and (5.6) give a formula for diA(St,) and dimA(e,):

COROLLARY 5.7.1f K’ is weakly neat, we have
ei+1 _

dimA = ][ 1’711 dim A(0)
=1 P~
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and
dim A(e,) Hpel dim A(0).
=1

If K is neat we also have

dim A(St,) = ﬁ(pei — 1) dim A(0) — (—1)" dim A(1).
i=1

Herees, e, ..., e, are the exponents for the Weyl group®{Bu; pg. 118].

Proof. This is standard inclusion-exclusion [Sel; pgs 664—667]. For example

T p8i+1 _ 1
b = (K L) = (Gp) : B))
=1 p
s
Hpei :pdimU(p) — Z codlm]—' K T ( ))
i=1 i)CK,

whereB(p) is a Borel subgroup aoff (p) andU (p) the unipotent radical aB(p).

6. The caser = Aut(0)
We work out some details of the theory presented in this chapter for the simplest
case of a grougr with a model ovefZ with G(R) compact, andr(Q,) split for all
p. NamelyG is the simple group of typé&', overQ defined as the automorphism
group of Cayley’s octonion algebm@ [J3]. We recall thatD is a hon-associative
division algebra of rank 8 ovép

Q+ Qe1 + Qe2 + Qez + Qes + Qes + Qes + Qez,

e?=—-1 alli (6.1)

€; - (6i+1 . 6i+3) = (ei . €i+1) $ €43 all ¢ (mod 7)

The mapz = ag + Y a;e; — T = ag — ). a;¢; defines an anti-involution o,
with fixed fieldQ.
On O, we have the trace

Tr:0—>Q
T — T+ I = 2ag, (6.2)
which isQ-linear, and the norm

N: 0 — Q
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- - _ 2 2
xr—>x-m—x-x—a0+2ai (6.3)

which satisfieN(z - y) = N(z)N(y). Although the multiplication is neither com-
mutative nor associative, we have

Tr(z-y)=Tr(y-z)
Tr(z-(y-2) =Tr((z - y) - 2). (6.4)

We denote the latter rational number simply by(Zyz).
LetR (see [Co]) be the&-lattice inO spanned by the; and the elements

(1+e1+ e2+ es),

1l+e+e3+ey),

( ) (6.5)
(1+e1+es5+ ep),

(

NI NI NI NI

e1+ e2 + ez + es).

ThenR is stable under octonionic multiplication, attl= Aut(R) is the unique
model overZ with good reduction at all primes [Gr]. We writ&(p) for the finite
groupG(F,) = Aut(R/pR).

The groupsl’', stabilizing the cosetg, K (2.2) have orders dividing 2337
[Se2]. WhenK C G/(Z) they are all subgroups 6#(z). The groupG (Z) has order
26337 = 12096, and is isomorphic 6(2) under reduction modulo 2 [A].

The irreducible representatiois of G' considered in Section 1 of this chapter,
can all be constructed from the irreducible representaltioon octonions with
trace 0. Namely, the 14-dimensional adjoint representatioiny is the kernel of
the map

/\ZV—>V,
VAW U-w—w v (6.6)

and forki, k2 > O there is an irreducible representatidn = W (k1, k2) of G

defined ovef) which occurs as th€-submodule of highest weight In®** @ g©*2.
W has dimension

(k1 4 1) (k2 + 1) (k1 + ka2 + 2)(K1 + 2ka + 3) (k1 + 3k2 4 4)(2ki + 3k2 + 5) (6.7)
120 ’ )

We fix the inner product,) on W by taking (v,w) = Tr(tw) on V, using
the second exterior power of this productg A2V, and then taking the tensor
product of the previously defined inner productsionC V" @ ¢®*2.
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Let K, = G(Z,). We make the Satake isomorphism (4.4)

~

HKP = R(G) 0 @7

completely explicit. Lef” C B C G be a maximal split torus in a Borel subgroup,
all defined ovetZ,,. Let {a1, oo} be the corresponding root basis for the character
group ofT', wherea; long anda;, short, and lety; andw, be the dual basis for the
co-characters. We define

t1 = chalK,w1(p)K,),
{ 1 { p 1(p) p) 6.8)
to = chal K,wo(p)K,)
in H,. These have degrees (the number of sidgjecosets)
6
d(t1) = pL—,
pt (6.9)

6-1
d(t2) = p°L=7.

The element&; andw; are the fundamental weights of the dual grtofi(m) =
G2(C). Sincew; is short ando, is long, w1 corresponds to the 7-dimensional
representatioff andw, corresponds to the 14-dimensional adjoint representgtion
Let xy1 andy, denote the characters of these representatior}%(@()) = Z[x1, X2

In the inverse of the Satake isomorphism

x1maps taty + 1)/p°,
{ “ )/ (6.10)
x2maps tdtz + t1 + p* + 1) /p°,
HenceH i, = Q[t1,t2]. If F'in A® R is an eigenvector foH ., with
t1|F = A\ F,
| (6.11)
t2|F = Ao F)|

then the semi-simple class= s,(F) in G(C) has the following characteristic
polynomial onV’

detfl — sT|V) =1 — a1T + a2T? — asT> + agT* — asT® + agT® — T, (6.12)
where
a1 = (A1 +1)/p°,

az = A2+ (P + DA+ (p* +p* + 1)) /p°,
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2
a3z =ai1+a1—az

anda; = a7 ;fori=1,...,6.
The Iwahori Hecke algebrH ;, has generatorf, 71, 1> and relations

(T; —p)(Ti +1) =0, 1=0,1,2,

ToT? = 1T,

ToThTo = T11oT1,

(T1T%)° = (T211)°. (6.13)

The subalgebrél(K,//I,) = H(G(p)//B(p)) has generators, andT>.

7. Examples of modular forms a@r = Aut(Q) R
We now do some explicit examples, whétds a subgroup of finite index iG'(Z).
Letp be a rational prime, and €2 (p) C G(p) be a Borel subgroup. We let

K(p) C Ko(p) C G(Z) (7.1)

be the subgroups reducing to 1 (mppdand toB(p) (mod p) respectively. Then
K (p) is a normal subgroup a(Z), and the local component @fo(p) atp is an
Iwahori subgroup. In particular, the spaces

A(St,) € Als) € AW, Ko(p)) (7.2)

are defined.
Consider first the case wheii = K (2) and W is arbitrary. SinceG(Q) =
G(Q)G(2), andG(z) = G(2) [Gr],

G(Q) = G(Q x K(2), (7.3)
so we have one double coset, with= 1. Hence by (2.3)

AW,K(2)) =W (7.4)
asQ-vector spaces. This is actually an isomorphisra'(2) = G(Z)-modules. By

(2.3) we obtain isomorphisms

~ W B(2)
{A<W,Ko<2>> W B @), 75

AW, G(2)) = W&(@

of Q-vector spaces. The former is an isomorphismH(G(Z)// Ko(2)) =
H(G(2)//B(2))-modules.

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

164 B. H. GROSS AND G. SAVIN

Consider the special case whéin = W (1,1) has dimension 64= 25. The
restriction ofi¥ to G(Z) is isomorphic to the Steinberg representatitrof G (2).
Hence

A(e2) = A(W, Ko(2)) (7.6)
is one-dimensional.

PROPOSITION 7.7There exists a unique automorphic representatiaf G (A)
withm, = W(1,1)®C, m = St,, the Steinberg representation, amglunramified
forall p # 2.

Proof. The Ky(2)-fixed vectors in such a contribute a line to the space
A(St) ® C, so we must show that(ez) = A(Sty).

The elementd’ andT generate the Hecke algeb#aG(2)//B(2)). Since
Ty =T, = —10onA(ep), andToTh Ty = T1ToT1, we have—TO2 = Toon A(ez), SO
Tp must act as-1 also.

Finally, consider the case whé¥ = W (0, 0) = Q is the trivial representation
of G andK = Kp(p). From (7.2) we have an isomorphism@{vector spaces

{ A(Q, Ko(p)) = (Ind5 ") @)¢), 78

A(Q, Ko(p))(gp) = (Stp)G(Z)-
Herest, is the Steinberg representation@fp). Its dimension i®, and appears
with multiplicity one in the induced representation frdsp).

Let d(p) = dim(st,)“%). For small primesp, we have the following table
(computed by D. Pollack and J. Lansky):

D 2 3 5 7 11 13 17 19

(7.9)
dp) 0 0 1 13 142 416 1980 3931
Forp # 2,3,7, K. Magaard has shown that
d(p) = (p® + 56p° + 3152 + ap + b) /12096 (7.10)

where the signt is chosen so that = +1 (mod 3), and the coefficientsandb
depend on the congruencewimodulo 24:

p= 1(24) 5(24) 7(24) 11(24) 13(24) 17(24) 19(24) 23(24)
a 1932 —420 420 —1932 1932 —420 420 —1932 (7.11)
b 9792 —2304 3744 3744 3744 3744-2304 9792
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PROPOSITION 7.12There is a unique automorphic representatiorof G(A)
with 7o, = C, 5 = Sts, andm, unramified forp # 5.

Proof. We must show that

A(Q, Ko(5))(St)

is one-dimensional. To do this, we will compute the dimensions of the spaces
A(Q K (i), whereK (i) = [],.5 G(Z}) x Is(¢) andIs(i) is an arbitrary parahoric

at the prime 5. The parahorics are indexed by the facets of a 30-60-90 triangle (a
maximal simplex in the building, the white vertex is hyperspecial), and we will
find the dimensions

1
3

2 3

1 3
4

This gives dimA(St) =7 — (3+3+4) + (1+ 1+ 3) — 1 = 1 by Kottwitz’s
formula (5.5). The dimensions

4

are easily computed by the above considerations, as the corresponding parahorics
I5(i) are contained inG(Zs). Now let I5(i) be the maximal parahoric whose
reduction (mod 5) is S4(5). Using the mass formula [Gr], we find

1 1
DN
G(Q\G(Q)/K (@)
Since every finite subgroup &f (i) has order dividing 23, we find a single double
coset, with stabilizer of order®3, reducing to the normalizer of a maximal split
torus in Slz(5). Hence dimA(Q, K (z)) = 1, so we have obtained the dimensions:

1
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Since the normalizer of a split maximal torus in33&) has precisely 3 orbits
onP?(5), we obtain the dimensions:

It remains to compute the dimension féf (i) with local component/s(i)
maximal, whose reduction (mod 5) is split §6). Here the mass formula yields

5 1 31
«#l, 23
G\G(Q)/K ()

Hence the number of double cosets is either 2 or 3. Since the order of a finite
subgroup ofk (i) divides £32, and we cannot write the mass as a sum of two such
terms, the dimension is 3 as claimed.

2. Motives

In this chapter, we present a conjecture on motives of rank 7@waessociated to
automorphic forms on the anisotropic folth= Aut(0) of G,. Since we hope to
construct these motives as the orthogonal complement of a Hodge class in a motive
of rank 8, we give local criteria which allow one to show that a subgioapSOg

is contained in either Spjror G2 = Spin, N SO;. Finally, we discuss the simply
connected form oF- of rank 3 overQ, its 56-dimensional representation, and the
dual pairG x G’ = Aut(0) x PG Spe in the associated adjoint group.

1. A conjecture or{7,-motives
Let G = Aut(R) be the form ofG overZ constructed in (6.2) in Chapter I, and
fix a finite, non-empty se$ of primes. Fop in S, let K, C G(Z,) be an lwahori
subgroup. Fop notin S, let K, = G(Zy).

Fix an irreducible representatid’ of G, and putk = [], K,. Let A =
A(W, K) be the associated space of automorphic forms, and

As = A(Sts) C 4, (1.1)

the subspace which is localized at the Steinberg representgtjoffor all primes
pin S. ThenAg is a finite-dimensional inner product space oRewith

dimw

dimAg ~ 7120961)1;@ 1)(p—1), 1.2)
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by (5.2) of Section 1.

The spherical Hecke algebia,qsH(G(Q,)//G(Z,)) acts onAg, via self-
adjoint commuting operators. Lét be a simultaneous eigenvector, defined over
a totally real number-fieldz. ThenF corresponds to an irreducible automorphic
representation af7(A)

T = ®m,, (1.3)

with 7o =& W ® C, m, = St,, for all p in S andr, spherical for all primeg not
inS.

CONJECTURE 1.4Associated to the eigenvectBrin Ag (or to the automorphic
representation), there is a motivé/ of rank 7 and weight O ovepwith coefficients
in E. The motive\l enjoys the following local properties.

(1) AssuméV = W (k1, k2). The Hodge componemtg?:? of Mp ® C have rank
1 over E ® C for those(p, q) which satisfyp + ¢ = 0 and
p = 3+ k1+ 2k;
24+ k1+ k2
1+ ko
0
—(1+ k2)
—(24 k1 + k2)
—(3+ k1 + 2k»).
OtherwiseMP? = 0. The real Frobeniug’,, acts as—1 on M0,

(2) Assume ¢ S, som, is spherical with Satake parametey. Let ) be a finite
prime of £ not dividingp. Then the\-adic representatiod/, of Gal(Q/Q) is
unramified ap. If F}, is a Frobenius element, then

det(l — F,T|M)) = det1 — s,T|Vc)

has coefficients ii.

(3) Assumep € S, som, = St,. Let X be a finite prime of£! not dividing p.
Then the\-adic representatiod/), of Gal(Q/Q) is tamely ramified ap, and
isomorphic toSynPH(X, E,)(3), whereX is a Tate elliptic curve oveg), .

In particular, part (2) of the conjecture implies that the local components of
w are all tempered. This need not be true for arbitrary eigenveétinsA ® C,
but should be true for eigenvectors in the subspa(st,) for anyp in S. Also,
we expect the spectrum of the spherical Hecke algebra to be multiplicity free on
As ® R
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If the motive of Conjecture 1.4 exists, ifsfunction at finite primes is given by
the Euler product

L(M,s) = [J(@=p~ 35" [] det(d — s, - p~#|9) 7, (1.6)
peES pg¢S

which converges for R¢s) > 1. This is a Dirichlet serie$’, .1 a,n~* with
coefficients in the subfiel& of C. If (see [De], pg. 329)

LOO(M, S) = FC(S + (3 + k1 + Zkz))
xIe(s+ 24+ k1 +k2))Te(s+ (14 k2))lr(s+1)  (1.7)

is the ArchimedianL-factor, then the producA(M,s) = Lo (M,s)L(M,s)
should have an analytic continuation to the entiplane, and satisfy the func-
tional equation

A(M,s) = N2 5A(M,1— s),

with exponential factolV = [[,,c 5 p°.

The fact thatF,, = —1 on M%C implies thats = 0 ands = 1 are critical for
L(M, s), inthe sense of Deligne [De; pg. 318] .M is realized as the complement
of a Hodge class in the orthogonal motigé’ of rank 8, as suggested in the
introduction, then

{ L(M';5) = ((s)L(M, s),

(1.8)
L(M,1) = Res—1L(M',s)ds.

2. Subgroups 0Dg
As described in the introduction, we hope to constidct M’ C HS(X, F) (3),
whereM' is an orthogonal motive of rank 8. It is therefore useful to have criteria
which allow to conclude that the motivic Galois groupMdf is a proper subgroup
of the orthogonal group (M) = Os.

Let W be a non-degenerate quadratic space of dimension 8pweerd lets be
a semi-simple conjugacy class@(V') = Og. Let

8
F(T) =def(l— sT|W) = > (=1)* Tr(s| A* w)T* (2.1)
k=0

be the characteristic polynomial eon .

PROPOSITION 2.2.
(1) If s lives in the normal subgroufG; of elements witldet(s) = 1, then
f(T) has the form

f(T)=1- AT + BT? - CT3 + DT* — CT® + BT® — AT" + T®,
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where the coefficientsi, B, C, D) are (arbitrary) elements irc*.

(2) If s lives in the subgrousO; C SG; fixing a non-isotropic line, or in
the subgrous0; x SO; C SGj stabilizing an orthogonal decompositioiin =
W3 & Ws, then the coefficient&A, B, C, D) of f(T') are (arbitrary) elements in
the hyperplane

2A-2B+2C—-D—-2=0.

(3)If s liesinthe subgroupin, C SOG; embedded by the spin representation, or
in the subgrougsL, x Sp,/A(+1) = Sping x Sping/A(+1) C SCG; embedded by
the tensor product of the two spin representations, then the coeffiCients C, D)
of f(T') are (arbitrary) elements in the hypersurface

A?(D 4+ 2B +1) = C? 4+ 2AC + A*.

(4) If s lies in the subgrougz, = Spin, N SO; C SO of Spin, fixing a
non-isotropic line, or in the subgroupGL; C SO; embedded by the adjoint
representation, then the coefficiemtsand B of f(T") are (arbitrary) elements of
C, and the coefficients’ and D are given by

C =A% - A,
D =2(A>-B -1).

Proof.(1) This is well-known. (2) Ifs lies in SQ,, thenf(T") = (T'—1)g(T'), so
f(1) = 1. This gives the linear relation on coefficients. In fg¢t) = (T'—1)h(T),
although this gives no new relations. The same holdssfor SO; x SG;, as
s = s1 X sp, Wheres; fixes a vector in the 3-dimensional representafiigs) and
s fixes a vector in the 5-dimensional representalién

(3) In these two cases, the smallest degree invariant lia8liii, where there is
a unique fixed line. The polynomial relation is computed from the representation
rings of the two groups.

(4) These equations are simply a combination of (2) and (3). They state that the
roots of f(T) have the form{1, 1, o, 3,7, "L, 371, v~} with a3y = 1. This is
also true for semi-simple elements in P4£L

We say that a subgroupC SG; is locally contained in S@if the coefficients
of the characteristic polynomials of all elemegnt® I' satisfy the equation in (2),
Proposition 2.2. Similarly, we say thAt C SQs is locally contained in Spinif
the coefficients of the characteristic polynomials of all elemerits” satisfy the
equationin (3), Proposition 2.2. Note that the group S@GC;s is locally contained
in SOy, even though it does not globally fix a line. Similarly, the group $pin
Sping/A(£1) is locally contained in Spin If we introduce regular unipotent
elements, we can eliminate these examples.

PROPOSITION 2.3LetI" C SO be a subgroup which acts semi-simply 6h
Assume that
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(1) T contains a regular unipotent element
(2) I"is locally contained ir50;.

ThenI is contained irSO;.

Similarly, assume that

(1) T contains a regular unipotent elemeint
(2) I' is locally contained irSpin.

Thenl is contained irSpin,.

Proof. We the fact that the connected, reductive subgroups gfc@@taining a
regular unipotent form a chain:

Spin.
/ 7\
SOg G, C PGL,
N
SO,

whereG, = SO;N Spiny, and PGL is the principal subgroup of SQletermined
by w.

Let C C SO be the Zariski closure df. Then the connected componezit
is reductive, as it has a faithful semi-simple representaiionlt also contains
a regular unipotent element, so is one of the groups in the chainidfiocally
contained in S, then so i, hence

Cc°=S0;,, G, or PGL.

The normalizers of these in S@reC° x (+1), but—1 is not locally contained in
SO;. HenceC is connected, anH is contained in S@

The same argument works whénis locally contained in Spin but nowC
can beGz x (£1) or PGLy x (£1). Since these are both contained in Spinis
contained in Spin

COROLLARY 2.4.LetT" C SG; be a subgroup which acts semi-simply h
Assume that

(1) T contains a regular unipotent element
(2) T is locally contained in7,: the coefficients of the characteristic polynomial
of s € T" satisfy the equations in Propositi@®, part (4).

ThenI' is contained inGs.
Proof. This is a combination of the two results of Proposition 2.3(Gas=

Spin,N SO; in SGs. The proof shows that the Zariski closureldofn Og is either
G2, or the principal PGk in G» determined by.
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3.Aform of E;

As mentioned in the introduction, there is a (unique) fatfrof the split adjoint
group of typeEs7, which has rank 3 ove@. This group is split ove, for all
primesp, and acts on the exceptional tube domain dkeit can be constructed
from the Cayley division algebr@ [Fr]. We sketch such a construction of the
simply connected double covéf,. over@Q, which lies in the exact sequence of
algebraic groups

1— pu»— Hye > H— 1. (3.1)

The constuction is based on the existence of a faithful represent&tioidimen-
sion 56 overQ. We note that the only other simply-connected group of tipe
admitting a 56-dimensional representation a@as the split form.

Let Jp be the exceptional 27-dimensional Jordan algebra of:alB3Hermitian
symmetric matrices oved

azy
A=1zb x|, (3.2)
Yy T c
whereaq, b, ¢ lie in Q andz, y, z lie in Q. The Jordan multiplication is given by the
formula
Ao B =1(AB + BA). (3.3)

There is a cubic form detl; — Q, defined by

det A) = abc + Tr(zyz) — aN(z) — bN(y) — ¢N(z). (3.4)
Let (A, B, C) be the unique symmetric trilinear form such that [EG]

(A, A, A) = 6det(A). (3.5)

Let M be the reductive algebraic group ov@rof invertible linear mappings
m: Jo — Jo Which satisfy

detm(A)) = A(m)det(A), (3.6)

for a similitudeA(m) in Q*. The center of\/ is G,,, acting by scalar matrices,
and the kernel of the morphisit M — G, is a simply connected group of type
Eg and rank 2 ove®) [CS]. On the centen\(a) = a°.

Let V be a unipotent Abelian group ové&r isomorphic taJy. In H,. we have
a maximal parabolic subgroup

P,. = MN, (3.7)
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where the conjugation action 8f on N is given by
mAm = XY (m) m(A). (3.8)

Note that this action has a kernel (the center of{.).
We now define a representation 8§, on the 56-dimensional module

W=QaJooJ;eq, (3.9)
whereJi = Hom (Jo, Q), andQ* = Hom (Q, Q) = Q. The subgroug/ acts on
W by

m(ya Y, Y*a y*) = ()‘(m)ya m(Y)a m” (Y*)a Ail(m)y*)a (310)

wherem* is defined as follows; if X, Y*) is the pairingJy x J& — Q, we have
(mX,m*Y*) = (X,Y*) forall X € Jy andY™* € J§. One can give complicated
formulas for the action oV on W [Ki; pg. 143], but since we are in characteristic
0, it suffices to define the action of L{éV) = J,. This acts by

X(y, Y, Y™, y%) = (05X, X x Y, (X,Y7")). (3.11)

whereX x Y is the element ofj; mappingZ to (X,Y, Z).
Using (3.8), one can check that the formulas (3.10) and (3.11) define an action
of P, onW, which preserves the natural symplectic form

{(z, X, X%, 2%), (v, Y, Y7, ") }
= (zy" —ya”) + (X, Y7) = (¥, X7)). (3.12)

The groupH,. C Sp(W) is generated by, and an element of order 4, giving
a simple reflection in the Weyl group which normaliz&s(a Levi factor ofP;.).

To definew in Sp(WW'), we need to choose a polarizatibaf Jg with det(7) = 1
andl > 0in Jp ® R [EG; Ch. 2]. SinceM acts transitively on polarizations over
Q, there is no loss of generality in takingto be the identity matrix in/g. This
gives a positive-definite bilinear form ofy, defined by

If I is the identity matrix, thedA, B) = Tr(AB) = Tr(A o B) = Tr(BA). This
form defines anidentificatiar, = J. With this identification, we define, which
depends o and satisfies)? = —1, by

w(y,Y,Y*,y*) = (—y*, =Y, Y,y). (3.14)

ThenH,. = (Ps., w) in Sp(W). The elementv acts by inversion on the center
Gy, of M, andw? is an involution in the center @/, which generates the center
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w2 of Hye. In the quotientd = H./u2, the imagew of w has order 2, and gives
the Cartan involution of Li¢ /) overR.
The adjoint groupd has the maximal parabolic

P =P,./us = MN, (3.15)

with isomorphic Levi factor §4/u, = M), but with a different conjugation action
of M onN = Jy:

mAm~™t = m(A). (3.16)

Note that this action is faithful.

We can use the Coxeter orderC O to give a model fotH ;. overZ with good
reduction at all primeg [Gr]. Let Jr C Jp be the lattice consisting of all elements
with @, b, c in Z, andz, y, z in R. Then

Wy=26&Jr®Jh L (3.17)

is a lattice iniV, whereJy, = Hom(Jg,Z) = Jg such that [EG], and* = Hom
(Z,Z) = Z. The stabilizer oW, gives a desired modé{.(Z) C Spse(Z). Then
Lie (Hs./Z) C2 Lie(H/Z) as lattices in Lig H ). If we normalize the Killing form
so that the determinant of L(i&,./Z) is 2, then Li€H/Z) is the dual lattice.

4.Dual pair G x G’
We now give two constructions of the dual p&ir< G’ = Aut(Q) x PG Spein H
overQ. The first uses the relative root system, and the second our construction of
H as a group generated Byandw.

OverQ, the simple grouf has index [Ti; pgs 59—-60]

O @ T *—O—O (4.1)

and relative root system of type Cs. Let S be a maximal split torus of dimension
3 in H. The derived group of the centralizél(S) (the semi-simple anisotropic
kernel) is isomorphic to the group (see [Gr])

Sping(0) = {(71,72:73) € GL(0)*|N(v;z) = N(x),
Tr(yiz - y2y - v32z) = Tr(zyz)}. 4.2)

The group has 3 orthogonal representatigngd/», V3 of dimension 8, via the action
of Y1,7Y2,7Y3 0N 0.
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The 6 long root spaces LigH), (o« = +2¢;) for S have dimension 1, and
trivial action of Spig(0). The 12 short root spaces Li#/ ), (o = *e; =-¢;) for S
have dimension 8, and Spii®) acts on Lie(H )., +., by the representatioVy,

(i # j # k).

From this viewpointi is the subgroup of all triplegy, 7, ~y) in Sping(Q) with
v in Aut (0). Sincey(1) = 1, the restriction of eacl; to G is isomorphic to
Q@ V. Hence Lig(H)$ has dimension 1 for all € ®, and the centralizer @ in
H is a split group of typ&’s. Since the root® give a basis for the character group
of S, G’ is of adjoint type, and?’ = PG Sps. Conversely, the centralizer 6f is
contained in Spig(0), and fixes a vector in each 8-dimensional represent&fion
This shows that the centralizer 6f is contained inG, hence equal t6:.

The following alternative construction of the closed subgr@upG’ of H uses
our construction in the previous section. The gréip- Aut(0) is a subgroup of
M C P, via the action on the matrix entriesy, z of Ain Jy. LetU C N be the
group fixed by this action, consisting of matrices with rational entries z. Then
U has dimension 6 ové). We have an embedding éf= GLgz into M given by

detlg) " gAg', (4.3)
where defg) andg’ denote the determinant and the transpose of the83natrix
g. Note that the restriction of to L = GL3 is det(g)~*. The image stabilizes the
subgroud/, and the semi-direct product
Q=LU (4.4)
is a subgroup of?, commuting withG.
Assume that the polarizatioh definingw has rational entries, (for example,

take I the identity matrix). Then the image of w in H commutes withG' and
normalizes.. Moreover,

G' = PGSps = (Q, ) (4.5)

in H. This gives the dual pai# x G' in H.

3. Real correspondences

Let H(R) be the adjoint algebraic group of ty@d¢ whose connected component
is the group of conformal transformations of the exceptional symmetric domain.
We have the dual pair

G(R) x G'(R) = Aut(0 ® R) x PG Spe(R) (0.1)

in H(R) with G(R) the compact form of7».
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Let II be the minimal representation &f(R). In this chapter we show that
|G @w)x/(z) = Srm @ O(), (0.2)

where the sum is taken over all finite dimensional representatioG Rf and

©(m) is an irreducible representation whose restriction tg(8pis a sum of

a holomorphic and an anti-holomorphic discrete series representation. The lift
7 — O(m) is functorial for the inclusion of dual grougs,(C) — Spin;(C) (note
that( is the stabilizer of a generic vector in the spin-module of Hpin

1. Minimal representation off;.(R)

Let Hy.(R) be the simply connected group of ty# 3 overR. Its real rank is

3 and the reduced root systemds. Lete; —e;, (1 < @ < j < 3) ande; + ¢,

(1 <7 < j < 3)bethe standard set of positive roots. The root spaces corresponding
toe; +e;, (1 <4 < j < 3) are 8-dimensional and can be identified wity R. The

root spaces corresponding to strongly orthogorala2e one-dimensional, hence
we have an embedding

SLa(R) x SLa(R) x SLa(R) C Hy.(R). (1.1)
ChooseK.(R), a maximal compact subgroup . (R), such that
Z1(R) x Z2(R) x Z3(R) = Ksc(R) N SLz(R) x SLz(R) x SLz(R)  (1.2)
is a compact maximal Cartan subgroup o68t) x SLy(R) x SLy(R). Let
Z(R) = K,o(R) N SLa(R), (1.3)

where Skh(R) C SLy(R)x SLy(R) x SLy(R) is diagonally embedded. Note that
Z(R) = SOx(R) is the center of;.(R), and(£1) C Z(R) is the center of{,.(R).

We henceforth denote b¥i,., K., Z... the complexifications of,.(R),
K .(R) Z(R)... Leth andt be the Lie algebras dff;. andK .. Then

h=p DtPpT, (1.4)

wherep® are two fundamental 27-dimensional representations of the exceptional
Lie algebrag = [¢, £] of type Fg. Under the action af; x Z» x Z3, p* decomposes
as a sum of root spaces+ v;, (1 <i<j < 3).
Lete ,z,e" be a standard basis of sl(2)sl(2) & sl(2) ® sl(2) C h such that
z spans the Lie algebra &f, e~ € p— ande™ € p*.
Let AT be the highest weight of the irreduciblg-modulep™. Let E(n) be
the irreducible representation @f with highest weight:A™. Sincet = ¢g @ Cz,
let E(n, k) be the representation efsuch that the restriction tg is isomorphic
to E(n) andz acts via the scalak. Let II™ be the irreducibl€h, K,.)-module
corresponding to a holomorphic representatio®/gf(R), with K -types [WI]

"k, = ®nz0B(n, 20+ 12). (1.5)
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The annihilator ofT* in the enveloping algebra efis Joseph’s ideal. In particular,
the Gelfand—Kirillov dimension dfi ™ is the smallest amongst non-trivial modules.
There is also an anti-holomorphic module, contragredient tdI . By (1.5) the
center(+1) C Z(R) acts trivially onII~ andII*.

Let IT- andII* denote the unitary completion &f andII*. SinceH,.(R)
andH (R) are related by the exact sequence

1— (+1) = He(R) = H(R) — R /(R*)? = 1, (1.6)
it follows that there exist unique representatidrof H (R) such that
g, =0l 1.7)

It is precisely this representation that we call the minimal representatiéh &j.

2. Dual pairs
We now describe several dual pairsgjimsing Jordan algebras. Note that

zoy=3[[z,e ]yl (2.1)

gives a Jordan product @ri. Then(p*, o) is isomorphic to the exceptional Jordan
algebra of 3x 3 hermitian matrices

i 212 7213
Zip  d2 23 | (2.2)

213 223 d3

with coefficients in the octonion algebra overUnder this isomorphism, the 1-
dimensional root spaces2 (1 < i < 3) are given by diagonal matrices such that
d; = 01if j # i, and the 8-dimensional root spacgst v;, (i < j) are given by
off-diagonal matrices such that;, = 0if {k,{} # {i,j}.

Letq™ C p™ be a Jordan subalgebra containing Let

a= Ce(q+)- (2.3)

Assume, conversly, that" is the set of all elements isi” annihilated bya. Let
u=Ce(a),andq” C p suchthag™ = [e",[e",q ]]. Then

b=q Qudqt (2.4)

is the centralizer ofi in b. Obviously, the converse is also true, kex b is a dual
reductive pair.
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Some of the possible cases are:

dimg™ «a b u
1 sl(2) u(1) 05
3 0 sl(2) @sl(2)

osl2)  u(l) ®u(l)®u(l)
6 a2 sp(6) u(3),

where the subalgebkd is given respectively by X 3 scalar, diagonal and sym-
metric matrices with coefficients i@.

3. Correspondences
In this section we restrict the representatién to the dual pairsd(R) x B(R)
given by (2.5), withA(R) compact.

We start with A(R) = Fy4(R). The 27-dimensional modulg®™ decomposes
1+26, under the action df4(R). Let A the highest weight of the 26-dimensional
summand, and leF'(n) be the irreducible representation Bf(R) with highest
weightnA. By Thm. 6.1 in [HPS]

E(n) = @mgnF(m)- (3.1)
PROPOSITION 3.2Consider the dual paifis(R) x SLz(R). Then
H+|F4(R)><SI(2) = @n>0F(n) ® d(2n + 12),

whered(n) is the irreducible(sl(2), Z)-module corresponding to the holomorphic
discrete series dbL,(R) with the minimalZ-typen.
Proof.By (3.1) one can write

H+|F4(R)><SI(2) = @nx0l (n) @V,

whereV,, are certain(sl(2), Z)-modules. Since’(n) appears inE(k, 2k + 12)
only for k = n,n + 1,..., Z-types ofV,, are 2 + 12 2n + 14,... and are
one-dimensional. The proposition is proved.

Next, consider the cas€(R) = D4(R). ThenD4(R)-invariant subspaces pf
are precisely the root spaces. The three 8-dimensional root spaces are 3 different
fundamental 8-dimensional representation®gfR). Let \;, (1 < i < 3) be the
highest weight of the fundamental representation given by the root spacey,,
where{j, k} = {1,2,3} \ {i}. Let D(a1, az, a3) be the irreducible representation
of D4(R) with a highest weightiz A1 + a2\ + az)s.

PROPOSITION 3.3Consider the dual paiD4(R) x SLy(R)3. Then
I ) xst(2? = Parazasz0D (a1, az, az)®

d(az + az +4) ® d(a1 + az + 4) ® d(ay + az + 4),
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whered(n) is the irreduciblgsl(2), Z)-module corresponding to the holomorphic
discrete series of SI(R) with the minimalZ-typen.

Proof.We want to decompos&(n, 2n) with respect to the action db, x Z; x
Zy x Z3. Write

E(n,2n) = T(L%"),

where/ is a line bundle on the flag variety. Siné&1,2) = p*, we know how
to decomposé’(1,2). Letwv; € I'(L) be highest weight vectors of the three 8-
dimensional representations with the highest weightsetw; € I'(£) be nonzero
vectors with weights%. Leta; andr; (i = 1,2, 3), be nonnegative integers such
that

a1+ax+az+ri+ro+rz3=n.
Then
vitus?ugwitwitwy € LO"
generates #4-module isomorphic td (a1, az, a3), With aZ1 x Z, x Z3-type

(a2 + a3 + 2r1,a1 + a2 + 2rp, a1 + a2 + 2r3).

Note that different choices af andr; produce non-isomorphic modules. We claim
that these modules give a complete decompositiafi(af, 2n). Indeed, let

z=n+1-—(a1+ a2+ a3z).

SinceE(n) = @<, F(m) it follows from Proposition 4.7 that the multiplicity of
D(a1,a2,a3) in E(n,2n)is z(x + 1)/2. Since

z(z +1)

5 = #{(r1,r2,73)|r1 + r2+r3 =1z — 1},

the claim follows.
Write

1| pyr) xsk2) +5(2)+512) = Bay,az,a350D(a1, a2, a3) ® Vay ap,a5-

Taking into account the additional shift by 12, it follows that x Z, x Zs-types
of Viy,0z,05 @r€

(a2+a3+2r1+4,a1+ a3+ 2r2+4,a2 + az + 2r3 + 4),

and they are one-dimensional. The proposition is proved.
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Finally, we consider the casf(R) = G2(R). Letw; andw, be the fundamental
weights forG», such thatv; is the highest weight of the 7-dimensional representa-
tion. LetWW (k1, k2) be the irreducible representation®@$(RR) with highest weight
k1w1 + kows.

Note thatB(R) = Sp;(R), and the reduced root system Hf(R) restricts to
a root system of gR). Also, letU(3,R) be a maximal compact subgroup of
Sps(R) given by

U(3,R) = K.(R) N Sps(R). (3.4)

We identify irreducible representations of the grouig3, R) with their highest
weightsiiyi + loy2 + l3ys, (11 > l2 > [3) with respect to the maximal Cartan
subgroupZi(R) x Z2(R) x Z2(R).

THEOREM 3.5.Consider the dual paiZ2(R) x Sps(R). Then

17| Gy (@) x sp(6) = Phrkas0oW (K1, k2) @ d(ka, k2),

whered(k1, k2) is the irreduciblegsp(6), U (3))-module corresponding to the holo-
morphic discrete series representatiorSyf;(R) with infinitesimal character

(k14 2ky + 3)er + (k1 + k2 + 2)ea + (k2 + 1)es
and the minimal (3)-type
(k1 + 2k + 4)y1 + (k1 + k2 + 4)y2 + (k2 + 4)7s.

Proof. Write

H+|G2(R)><8p(6) = EB]C;[,/CzZOW(kL kZ) ® Vkl,kz'

By [HPS; Theorem 5.4] the infinitesimal charactef®f i, is (k1 + 2k2 + 3)e1+
(k14 k2 + 2)ea + (k2 + 1)es. Itis Z-admissible, with positiveZ-types. Hence it
is a direct sum of finitely many unitary lowest weight modules.

LEMMA 3.6. In addition tod(k1, k2) one has the following unitary lowest weight
modules with infinitesimal characté; +2k2+3)e1 + (k1+k2+2)ex+ (k2 +1)es:

(1) k2 = 0andky # 0. There is a module with the minim&ype2k; + 10.
(2) k1 = k2 = 0. There are three modules. Their mininkatypes ared, 6 and10.

Note that the minimak-type ofd(k1, k2) is 2k1 + 4k, + 12, hence it is strictly
bigger then the minima¥Z -type of any other modules with the same infinitesimal
character.

Proof. This follows from the classification of unitary lowest weight modules

[EHW].

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

180 B. H. GROSS AND G. SAVIN

By Proposition 4.8 (k1,0) does not appear i (a1, az, az) unlessk; <
a1 + ap + az. It follows from Proposition 4.2 that the minimal-type of V;, o
is greater then 2 + 12. It follows from the lemma that in all casés, ;, is
a finite multiple ofd(k1, k2). This implies that the minimak-type of V;, 4, is
2k1 + 4kp + 12, so by Proposition 3.3, W (k1, k2) is contained inD (a1, a2, as),
then

a1+ a2 + a3z > k1 + 2ko.
Hence, the multiplicity of

(k2 4+ 4)y1+ (k1 + k2 + 4)y2 + (k1 + 2k2 + 4) v,
the lowest weight of the minimdl (3)-type ofd(k1, k2) in Vi, 1, is equal to the
multiplicity of W (k1, k2) in D(k1 + k2, k2,0). And this is one by Proposition 4.8.
Hence the minimal/(3)-type appears with multiplicity one and this implies that
Vkl,kz gid(k]_, kz).

Let d(k1,k2) be the contragradient af(k1, k2). It corresponds to an anti-

holomorphic representation of §®). Since

1— (£1) — Sps(R) — PGSps(R) — R* /(R*)? — 1, (3.7)

there exists unique irreducible discrete series representdiit, k,) of
PG Sps(R), which is the unitary completion of

d(k1, k2) @® d(k1, k2). (3.8)
This observation gives a proof of the following.

COROLLARY 3.9.LetII be the minimal representation &f(R). Then

11| () x PG Spe() = DPhr ko0W (K1, k2) @ D(k1, k2).
The lift
W (k1, k2) = D(k1, k2) (3.10)

is functorial for the inclusion of dual grougs, (C) — Spin;(C). This is shown in
[HPS].

4. Branching formulas
In this section we work out the branching laws used in the previous section. Let
(a1,...,a,) be the standard coordinates [Bu] for the root system of fpewith

a1 >...2a, >0 (4.2)
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a dominant Weyl chamber. Also, Iét1, ... ,b,) be the standard coordinates for
the root system of typ®,,, with

b1>...2by_1 > |bnl, (4.2)

a dominant Weyl chamber. Recall that in both cases a dominant weight represents
a highest weight of a finite dimensional representation if the coefficients é% in
but their differences are ia.

4.3BranchingB,, | D,,. Letw(\) be an irreducible representation &f,, with the
highest weight = (a1, ..., a,). Letn(x) be an irreducible representation éf,,
with the highest weight = (b1, ..., b,). Then the multiplicity ofr(x) in 7(X) is
Oorl. ltislifandonlyifa; — b; € Z and

a1>b1>az>ba> ... > an > |bal.

4.4BranchingD,, | B,_1. Letw()) be an irreducible representation @,, with
the highest weight = (as, ..., a,). Letw(u) be an irreducible representation of
By, —1 with the highest weight = (b1, ..., b,—1). Then the multiplicity ofr(x) in
m(A)isOor 1. Itis 1if and only ifa; — b; € Z and

ar>2bi1>a2>2bo> ... 2 b, 1> |anl

Let A be the highest weight of the 26-dimensional representatiof,of et
F(n) be the irreducible representation with the highest weight

4.5BranchingFy | Ba. The restriction of’'(n) to B4 decomposes with multiplic-
itiesO or 1. Itis 1 only for7(u) with

p=(y+zzz7)

and2z +y < n.

The branching laws 4.3 and 4.4 are well known, and 4.5 is in [Le; Thm. 8]. This
reference also contains proofs of 4.3 and 4.4.

Recall thatD,4 has three 8-dimensional representations. \gti = 1,2, 3,
be their highest weights. Ld? (a1, a2, a3) be the irreducible representation with
highest weighti1 A1 + a2X2 + azAs. In terms of (4.2) this highest weight is

a>»+ a3 ax+ a3z ax+ a3z ar» —as
a1+ .

2 ? 2 7 2 7 2 (4'6)

4.7 Branching F4 | Dj4. The representatiort’(n) decomposes as a sum of
D(aq, az, a3) with multiplicities

(n+1) — (a1 + a2 + a3).
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Proof. We know that the restriction of'(n) to Bs is a sum of representations
with highest weights

(y +x7x7x7x)’

2x + y < n. Restricting further down td4 we get a sum of all representations
with highest weight$u1, up, uz, u4) such that

Yytr>ur>c>ux> s >uz> s > |ugl

It follows thatu, = uz = x and the representation can be written as
D(u1 — z,x — ua, x + ua),

by (4.6). Now
D(u1 — z,x — ua,x + ua) = D(a1,az,a3)

implies that Z = ay + a3z andu; = a1 + z. Sincey + = > u1, we havey > as.
Hence the multiplicity ofD (a1, a2, a3) in F(n) is the number of integeng such
thaty > a1 andy + a2 + a3 < n. Clearly, this numberign + 1) — (a1 + a2 + a3).

PROPOSITION 4.8.

(1) The multiplicity ofW (k1, k2) in D (k1 + k2, k2,0) is 1.

(2) The multiplicity ofi¥ (k1,0) in D(az1, a2, a3), isOunlessa; + az + a3 > k.
Proof. Let p1, u2 and uz be the fundamental weights fdgs such thatus

is the highest weight of the standard 7-dimensional representatiopzisdthe

highest weight of the 8-dimensional spin-representation.R@t.1, m>, m3) be

the irreducible representation with highest weightu1 + mopuo + mapus. Interms

of (4.1), this highest weight is

m m m
<m1+m2+—3, 3 3).

2 "Mt g

LEMMA 4.9.

(1) The multiplicity of W (k1, k2) in B(j,0,k2), j < k1 + ko, isOor L. Itis 1
precisely when = kj + k.

(2) The multiplicity ofi¥ (k1, 0) in B(m1,m2,m3),isOor 1. Itis 1 precisely when

my1+ mo+ m3 > ki1 > m1+ mo.

Proof. These are two easy, special cases of the formula given by McGovern,
[MG; Thm. 3.4].
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By (4.6) the highest weight dD (k1 + k2, k2, 0) is

ka k2 kz k’z)

<kl+k2+?aiaia? :

The branchingDs | Bz implies thatD (k1 + k2, k2,0) decomposes as a sum of
representations with highest weights

. ko ko ko
(]+?7Ea?>a

with j < k1 + k2. These areB(j,0, k) with j < k1 + k2. The first statement
follows from the lemma.

Since the highest weight @ (a1, a2, a3) is given by (4.6), the restriction tB3
consists of representations with highest weidhtsy, z) such that

az +a az +a az +a ar— a
2 3>>2 3>>2 3>>2 3'

a1+ 2 z Tz 2 z2Yz 2 zZzz 2

It follows thaty = (a2 + a3)/2 and these are the representations

a2 +a3 a2+ a3
B — — 2,2z .
(:E 5 > Z, z)

The lemma implies that; < z + z, and sincer + z < a1 + a» + a3, the second
statement follows. The proposition is proved.
4. p-adic correspondences

Our goal in this chapter is to understand the restriction of the minimal representation
IT of H(Q,) to the closed subgrouf(Q,) x G'(Q,).

The minimal representation of a split, adjoint grabi§Q, ) of type D,, or E,,
is an unramified representation whose Satake parameter is

p1/2 0
Smin = @ 0 p_l/z ) (0-1)
whereyp is a map

@: SLy(C) — H(C) (0.2)

corresponding to the subregular unipotent orbitAifC) = H,.(C). The rep-
resentatioril restricts to the irreducible representation#f.(Q,) constructed
by Kazhdan and Savin in [KS]. On the space of Iwahori-fixed vectoi$, ithe
Iwahori—-Hecke algebra aff.(Q, ) acts via the reflection representation [Lu].
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1. Parameters

In this section, we give a conjectural decription of the irreducible representations
m®n' of G(Q,) x G'(Q,) which occur as quotients f. This description is given

in terms of the Langlands—Deligne—Lusztig—\VVogan parametrization of irreducible
representations, using admissible homomorphisms from Weil-Deligne group of
Q, to the dual group. Even though this parametrization is still conjectural, in the
next section we derive some implications which can be stated independently of the
parametrization. We check some of this implications in Section 3.

We first review the parametrization, fGrany semi-simple, split group of adjoint
type overQ,. Let G be the Langlands dual group, éi((c) is semi-simple and
simply-connected complex Lie group. The conjectural parameter of an irreducible,
admissible, complex representation@®fQ, ). is a pair(y, x), where

p: W' — G(C) (1.1)

is an admissible homomorphism of the Weil-Deligne gréitpof Q, [B1], andy
is an irreducible complex representation of a finite gréijpassociated tg.

We recall thaty is a continuous homomorphism of the Weil groidp taking
Frobenius elements to a semi-simple class, together with a nilpotent el@hient
§, the Lie algebra of(C), with Ad (w)(N) = ||w|N. By the Jacobson—Morozov
Theorem, giving a parameter as in (1.1) is equivalent to giving a continuous,
semi-simple representation

n: W x SLy(C) — G(C), 1.2)

B Jwl|*/2 0
p(w) =n | w, 0 ol 372
(1.3)
(1 1 1
o =a(1(, )

Associated tap, we have the finite group

with

A, = mo(Cent(n)), (1.4)

where Cerlt) is the algebraic subgroup 6fwhich centralizes the image gfand
mo denotes the corresponding group of connected compone#ig-Ifis the center
of G, the inclusionZ(G) C Cen{yp) induces a map (not necessarily injective)

Z(G) = A,. (1.5)
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The image is a normal subgroup, and we defihg as the quotient. Then an
irreducible representatianof G(Q,) should correspond to a pdip, x), wherey
is an irreducible representation Bf,.

If G = G2(Qy), thenG(C) = G2(C), andA, = B,. If G' = PGSps(Qy),
thené’((c) = Spin,(C) and B, is the quotient by the image ef1. The possible
finite groups which arise are given by the following. lgtdenote the cyclic group
of k" roots of 1, andS, the symmetric group oh letters.

PROPOSITION 1.6.

(1) If o1 W' — G2(C) is a parameter forG = G, then the groupB,, is
isomorphic tous, Sz, or uk, with0 < k < 3.

(2) If ¢ : W' — Spiny(C) is a parameter folG’ = PG Spe then the groupB,
is isomorphic tqu§, with 0 < k < 3. If a is the number of distinct orthogonal
representations in the decomposition of the semi-siipte SL,(C)-module
V = C’, andb is the dimension of the subspaceHsfm(1¥, +£1) spanned by
the determinants of the orthogonal summands jthenk = a — b — 1.

Proof. (1) Examples of subgroups Ifw) of G2(C) with the given groups3,,
are given by the following table:

Im (n) | By

G 1

SLs | w3

SG; | S3

SOy | p2

T x (£1) |
Tox (£1) | u3

HereT = GL? is a maximal torus]» the subgroup of” killed by 2, and—1 the
central element in the Weyl group f The latter caselt x (+1) = u3) can only
be the image of) whenp = 2. This list exhausts the possible groups, as we
will see in the proof of Proposition 1.10.

(2) Examples of subgroups Ifw’) of Spin;(C) with the given group$3,, are
given by the following table:

Im(n') | Ay | By
Spiny | (+1) 1
Spine=SLs | pa| p2
T'x(£1) | ud| w3

Tpx(£1) | p3| 43
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Again, T’ = GL3 is a maximal torusT?% the subgroup of” killed by 2, and—1
the central element in the Weyl groupBf. The last caseTfy x (+1) = u3) can
only be the image of’ whenp = 2.

To see that these are the only possibilitiesfgr, and to verify the formula for
k, we note that the representatibngives a parameter for gp

¢ W' — Spin,(C) — SO7(C).

We can compute the component gradip using the results in [GP; Cor. 7.7], and
find that

_ ~ ,a-1
Ap =By =5 7,

whereq is the number of distinct orthogonal summands in the semi-simple repre-
sentationl/. But we have an exact sequence [GP; pg. 983]

1— B, — By — Hom(W, +1),

T det(V“":‘l),
Sok = a — b — 1 as claimed.
Now let
f1G(0) = G2(C) — G'(C) = Spiny(C) (1.7)

be the inclusion, well defined up to conjugacy, that realizgsas the fixer of
a non-isotropic line in the 8-dimensional spin representation of;SHirp is a
parameter for7, then

o' =fop (1.8)

is a parameter fof’. Moreover,f induces a mag,: A, — A,. Sinced, = B,,
andB, is the quotient ofd,, by the image of-1, we get an induced map

fo: By, — By. (1.9)

PROPOSITION 1.10The mapf, (1.9) is surjective, with kernel the Sylo@
subgroup ofB,, (either1 or u3).

Proof. In the absence of the intelligent argument, we can prove this in a case
by case manner, considering the connected component of the image G5 (C),
which is a reductive subrouf. Considering possible normalizers@f and their
action onV’, we can compar&,, with B, computed in Proposition 1.6.

For example, assume that has rank 2, i.e. it contains the maximal toflis
ThenC' is determined by its root system which is contained in the root system of
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G>. Hence the possibilities faf’ are G, SLs, SOy, GLo 5, GLy;, and7’, where
SlLzis spanned by long roots

SO4 = SLZ,S X SL271/A<:|:1>

is a group spanned by a pair of perpendicular roots, one short and one long, and
GL,s and Glp; are Levi factors of maximal parabolic subgroups@j. The
corresponding group8,, andB, are

Im (77) B(p B(p/

Gy 1 1

SOy | p2 | p2
N(SLy) | 1| 1
Sls | w3 1

N(GLas) | p2 | pe
Glo, | 1| 1
N(GLzy) | p2 | p2
Gly | 1] 1
NT) | 1] 1

T xS3| us 1
Tx(2,2) | pa| pe
T % ug 1 1
T > pug | p3 1
Tx (+1) | 43| 13
Tx(2)s | p2| p2
Tx(2s | p2| p2
T 1 1

We leave the analysis when the connected component of the imagéas
rank 1 or O to the reader to check. The gralip = S3 arises only when the
image is SQ C SLs C Ga. In this case/ = 2C® @ C whereC? is the standard
representation of S In particular, it is an orthogonal representationlif of
determinant 1. Hencdj,, = uo, and the magss — u» is the sign character.

If ¢ is a parameter fotr7 andy’ = f o ¢, by Proposition 1.10 we have a
surjective map

fo: By = By = . (1.10)

If X' is an irreducible representation Bf, (i.e. a quadratic character), we obtain
a quadratic character

x=x o fo of By,. (1.11)
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We can now state the conjecture on the restrictiod of

CONJECTURE 1.13LetII be the minimal representation &f(Q,). The repre-
sentation

r@r =7(p,x) @7 (¢ x)

of G(Q,) x G'(Q,) is a quotient ofI if and only if
¢'=fop,
x=Xx"o fo.

In this caseHomg v (II, 7 ® 7') has dimensiod.

2.50me consequences
Letr be anirreducible representation®(Q, ) andr’ anirreducible representation
of G'(Q,). Define

O(m) (2.1)

to be the set of equivalence classes of irreducible representation&’(Q, ) such
thatr ® o' is a quotient ofI. Similarly, define

o(n') (2.2)
to be the set of equivalence classes of irreducible representatmins (Q, ) such
thato ® 7' is a quotient ofI. The conjecture 1.14 implies
CONJECTURE 2.3.

(1) Card©(m) < 1, with equality if the charactey of B, is quadratic.
(2) CardO(') < 1, with equality if the parametep’ has image in the subgroup
G2(C) of Spin,(C).

We write
T (2.3)
and say that corresponds ta’ if
O(m(p)) ={r(¢)} and O(r(p)) = {m(¢")}. (2.4)

In particular,r ® ' is a quotient of 1.

Recall that for each semi-simple conjugacy classG,(C), there is an unram-
ified representation (s) of G(Q,) with Satake parametet. Similarly, if s’ is a
semi-simple conjugacy class in Spif), there is an unramified representation
n(s") of G'(Q,) with Satake parametef.

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

MOTIVES WITH GALOIS GROUP OF TYPHZ, 189

CONJECTURE 2.5.

(1) If 8" = f(s), thenm(s) <> w(s'). In particular, the trivial representatiod of
G corresponds to the trivial representatidhof G'.

(2) CardO©(n(s")) = Ounlesss’ = f(s) for somes.

(3) The Steinberg representatidit of G corresponds to the Steinberg represen-
tation St’ of G'.

These predictions follow immediately from Conjecture 1.13. For (1) we note
that the parameter of (s) is a homomorphisnp: W' — G(C) with N = 0, ¢
trivial on the inertia subgroup ang(Frob,)= s. This hasB, = 1, sox = 1. It
follows thaty' is the parameter af (s').

The Satake parameter of the trivial representatiof(ig wherep is the co-
character given by half the sum of positive co-roots. Since the image of the principal
SLy in G2 under the magf: G, — Spiny, is the principal Sk in Spiry, we have
f o p=p'. Hence the trivial representation 1@fshould correspond to the trivial
representation’df G’. The same argument shows that the Steinberg representations
should correspond, as those parameters factor through the principal SL

The part (1) is true for tempered representations (recall that the representation
m(s) is tempered i lies in a maximal compact subgroup). This is shown in [MS].

In the next section we show thak2 1’, and we verify (2). We also obtain a partial
verification of (3). For example, we show thatSt') C {St}.

3. Some calculations
We first prove a statement slightly stronger then Conj. 2.5 (2):
PROPOSITION 3.1Letn(s") be an unramified representation@f(Q, ). If (s')
is a quotient oI, thens’ = f(s) for somes in G2(C).
We note that every unramified representatibnan be realized as a submodule
' C Indg o (3.2)

for some unramified representationof GLs. HereQ = LU, L = GLgs, is the
maximal parabolic subgroup 6f, opposite ta), defined in (3.20), Chapter II. Let

z1 O 0
5=pp|| 0 =z O in GL3(C) = GL3(C) (3.3)
0 0 =23

be the Satake parameter ®f Here| - | is a norm onQ,, such thatp| = 1/p.
The factor|p| enters through the normalization of the parabolic induction. The
corresponding modular functigr; of GL3 is

oy = |det. (3.4)
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Soif r' is contained in Ing'ﬁ, then the Satake parametermdfis

s’ =3|p|~! inGLs(C) C Spin,(C). (3.5)
The 8-dimensional spin representation of Sp@stricts to Gl(C) as
deta C @ (C°)* @ (dey*, (3.6)

whereC? is the standard representation of §6C), and+ denotes dual representa-
tions. Hence the parametéifixes a vector in the spin representation{5e- f(s)
for somes in G»(C)) if

z12223=1 or z; =1 forsome. (3.7)
By Frobenius reciprocity,
Hom (11, Ind3 ) = Homey, (115, 0), (3.8)

so it suffices to determine which representations o @ppear as a quotient of
1, the maximal/-invariant quotient ofI.

To describell; we need some notation. L&}, and Q2 be the two non-
conjugated maximal parabolic subgroups ofs@itersecting in the group of lower
triangular 3x 3 matrices, with Levi factors Glx GL, and GL, x GL; respectively.
Then

P1(91,92) = |g1| 7 [detgo|Y2  and  ph(ga, 1) = |detga| ~Y/2|gy] (3.9)

are their modular characters.

Maximal parabolic subgroups @f(Q,) can be defined as stabilizers of non-
trivial nil subalgebras of0, = O ® @,. A nil subalgebra is a subspace ©Of
consisting of traceless elements with trivial multiplication (i.e. the product of any
two elements is 0). The possible dimensions are 1 and 2/F V>, a pair of nil-
subalgebras. TheR; and P, the stabilizers o¥; andV5, are two non-conjugated
maximal parabolic subgroups 6f, with P, N P, a Borel subgroup. In particular,

P, has a quotient GL= GL(V,). For P;, this quotient is isomorphic to the Levi
factor. The Levi factor of; is isomorphic to Gk = GL(V3/V1), where

Va={z€0|z=—-z and zV; =0} (3.10)

The action of Gk, the Levi factor of 1, on V1 is given by det. The respective
modular characters are

p1 = |det®? and p, = |det®?. (3.11)

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

MOTIVES WITH GALOIS GROUP OF TYPHZ, 191

We fix the above identifications, in particuldt, x Q,, » = 1,2, has a quotient
isomorphic to

GL, x GL,. (3.12)
PROPOSITION 3.13. [MS; Thm. 5.3]heG x GLz-modulell; has a filtration
0:VOCV1CV2CV3:HU,

such that

(1) Va/Vo = indgzﬁf?t;(ch(GLz)) ® |det?.

(2) Vo/Vq = mdPlxef(Cgo(GLl)) ® |det|2.

() Va/Va=1ly = 1I(M) ® |det @ 1 ® |def|?.

Here C2°(GL;) denotes the space of locally constant, compactly supported func-
tionsonGL,,r = 1, 2. Inboth casesl’,. x ), acts through the quotientisomorphic

to GL, x GL,. In (3), II(M) is the minimal representation af (the center of\/,
which coincides with the center GiL3, acts trivially onII(M)).

COROLLARY 3.14.The possible Satake parameters of unrami@td-quotients
of V;/V;_, are:

(1) |p|(Zl,Zz, 1) if 7 =1.

() |pl(z1, |p, 1) if i = 2.

(3) |p|(21, 22, z3) With 212023 = 1, or |p|(|p|% |p|, 1) if i = 3. The latter is the
parameter ofdet?.

Proposition 3.1 follows from Corollary 3.14.

Let 7 be an irreducible representation@fandr’ an irreducible representation
of G’. We now explain how Proposition 3.13 can be used to obtain an upper bound
onO(r') and a lower bound 08)().

Assume that’ is a submodule of Ing{ (), whereg is a representation of GL

If o is in ©(n’), then by the Frobenius reciprocity
HOITIGX(;/(H, o Indg' ((_7)) = HomeGLg,(HUa o 5), (313)

o ® o Is a quotient oflI;. Hence, if we can determine all representationsf
G such thatr ® & is a quotient ofll;, then we have an upper bound 6xir’).
Conversly, ifr @ & is a quotient of1;7, for somes, then©(n) is not empty, for it
contains a subquotient of Igdﬁ) by (3.13).

To illustrate this principle, we prove

PROPOSITION 3.16. + 1'.
Proof. We first prove the following lemma.
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LEMMA 3.17.

(1) ©(1) is not empty.
(2) ©(1) C {1}.

Proof. By Proposition 3.13, ® |det? is a quotient ofI;;. Hence by (3.159 (1)
is not empty. On the other hand

1 cIndd 1,
wherel is the trivial representation of GLIts Satake parameter is
pI”t 0 0 ip| 2 0 0
0 1 0| =|p < 0 Ip| 1 O) .
0 0 Iyl 0 0 1
Comparing with Corollary 3.14, we see that 1 can be only a quotient of
V1/Vo = ind552(C(GLz)) @ |det?.
SinceC® (GLy) is the regular representation of glo ® |def~? is a quotient of
Ind%, (1) ® Indg; (),

for some irreducible representationf GL,. Thisimplies that* = |det 3. Hence
7 = |det® = p3. Since 1 is unique quotient of

Ind%, (p3),

it follows thato = 1. The lemma is proved.
Let U, be the unipotent radical af,, the maximal parabolic aff, opposite to
P,. Sincell, is given by [MS; Thm. 7.6], we can prove a statement complementary
to Lemma 3.17.
LEMMA 3.18.

(1) ©(1') is not empty.
(2) ©(1) c{1'}.

The two lemmas combined imply the proposition.
We finish this section with a discussion on Steinberg representations.

PROPOSITION 3.190 (St) C {St}.
Proof. The representation 'S¢ unique submodule of

Indg' (Ste | det]?),
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whereSt is the Steinberg representation of SAgain, if c® St is a quotient of
I1, then by (3.15y ® (St® |det?) is a quotient ofil;;. However, it can not be a
quotient ofV3/V2, because the central character(8t® |det?) is | - |%, and the
central character dffj; ® |det? is | - [3. Also, it can not be a quotient 6f,/ V1,
because the Steinberg representation is generic. HegdSt® |det?) must be a
quotient oft;/Vo. So as in the proof of Lemma 3.17 ® St must be a quotient of

Ind%, (1) @ Indg;3 (1),

for an irreducible representation of GL,. It follows that 7* is the Steinberg
representation of GL. Hencer is also the Steinberg representation. Sistés
unique quotient of

Indgz(r),

the proposition follows.
Again, in the same fashion usiiily,, we can prove that i’ is aunitarizable
©-lift of St then

o~ St (3.20)

As we shall see in the next chapter, thdift of a form in A (Stg), (S not empty)
will be cuspidal, hence all its local components must be unitarizable. So (3.20)
implies that the lift is Steinberg at all placess$h

5. Global correspondences

Let H be the adjoint group of typ&7, defined and of rank three over Kim [Ki]
has constructed a square-integrable modular form on the exceptional hermitian
domain which gives an automorphic realization

0: ®, 11, — L*(H(Q)\H(A)) (0.1)

wherell, is the minimal representation &f(Q, ), andll, is the space oK -finite
vectors in the irreducible unitary representatibof H (R), studied in Chapter 3.

In view of the local results, it is of great interest to study the lift of automorphic
forms fromG to G’ via the kernel constructed by Kim. Lét= 6(®,f,) for some
Qpfp € ®pll,. Letw be an automorphic representation(ot= Aut(0). Leta be
a form inz. Definegs, a holomorphic form o’ by

Blg") = (99" )u(g) dg. (0.2)

/G(Q)\G(A)

The integral converges, because we are integrating two smooth functions over a
compact set.
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Letn’ be a cuspidal automorphic representatiozaf\We say thair’ is a© lift
of « if

/ o'(9)Blg) dy' 03
G(Q\G' (&)

is not zero for somer and«’ in «’. The integral (0.3) converges becauseds
rapidly decreasing at cusps, afids of moderate growth. Hence (0.2) and (0.3)
define a linear functional on

nere . (0.4)

If this functional is not trivial, then local componentsmoandr’ are related by the
local correspondences studied in Chapters 3 and 4.
The existence of’ depends on the affirmative answer to these two questions:

(1) Under which conditions is the forg cuspidal?
(2) Under which conditions is the forghnonzero?

To answer these questions we study the Fourier expansigh albng the
unipotent radicall of the Siegel parabolic subgroup@f = PG Sps. Note that the
Fourier coefficients are parametrized by ternary quadratic forms. The holomorphic
form G is cuspidal, if the Fourier coefficients corresponding to degenerate forms are
zero [An; pg. 78]. We show that is cuspidal if a local component afis generic,

i.e. it admits a nonzero Whittaker functional. For example; dorresponds to a
modular form inA(e,), (5.3) in Chapter 1, then the local component at the place
p has a nonzero Whittaker functional. This gives a fairly satisfactory answer to
(1). On the other hand,(Q)-conjugacy classed.(is the Levi factor of the Siegel
parabolic) of non-degenerate Fourier coefficients are parametrized by quaternion
algebras. LeD be a quaternion subalgebra®f(the class of Fourier coefficients

is zero if D @ R is not definite). LeC be the centralizer it of D. Itis isomorphic

to the group of norm one elementslin Then we show that the Fourier coefficient

of @ in the conjugacy class parametrizedBys nonzero if and only if the integral

of the forma overC is nonzero.

This result has a striking similarity to the following well known classical result
[Shn] and [Wa]: LetPD* be the automorphism group &f. Then one has a dual
pair

D* x Sl C Spy

and one can use the Weil representatiorsgj to lift automorphic forms from
PD* to SL,. The conjugacy classes of non-degenerate Fourier coefficietson
are parametrized by quadratic algebras. Kebe a quadratic subalgebra of.

Fix an automorphic form o@D *. The Fourier coefficients (the conjugacy class
parametrized by) of the lift are nonzero if and only if the integral of the form over
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the centralizer infPD* of K is nonzero. Again, the class of Fourier coefficients is
zero if K can not be embedded info.

We finish this chapter by showing that the two modular formgF@onstructed
in Chapter I lift non-trivially toG’.

1. Kim’s form

In this section we recall few results from [Ki]. L&, = O ® R and Iethoo be
the cone of positive definite matrices.Jg_ . The exceptional symmetric domain
DT is the set

Dt ={Z=X+iY| XinJo, and YinJj_}. (1.2)

The group of holomorphic transformation Bft is isomorphic toH.(R)/(£1),
the connected component Hf(R).

Let f2 be a nonzero vector in the one-dimensional minitatype in 117,
and Ietfl? (p is a finite prime) be the spherical vectorlily. Kim has constructed
a modular formF on D" of weight 4 and level 0, which correspondsi@, /).
Moreover, he has obtained a Fourier series decomposition

F(Z)=1+240 Y ap iTT2) (1.2)
TeJr

whereJy, is the set of4d in Jy with entries inR. A coefficientar is zero unless
the rank of" is 1, and it is in the closure of the cod@fw. In this case

ar =Yy d (1.3)

dle(T)

wherec(T) is the largest integer such thdf") ~7 is in J. In particularar > 0.

2.Local theory

In this section all objects are ovey,. As in Chapter 2, Section 3, |t = M N

be the maximal parabolic subgroup&fsuch thatV/ is the group of isogenies of

the determinant form on the exceptional Jordan alggbjaandN = J,, as an

M-module. Let\ be the isogeny character &f defined by (3.5) in Chapter 2.
Let+ be a non-trivial character a@,. Let A be an element i/y,. Define a

characterp 4, of N by

$a(B) = 4(Tr(Ao B)), (2.1)

whereB € Jp, = N. Anonzero elemend in Jy, has rank 1 if
A% =Tr(A)A. (2.2)

Let © be the set of elements of rank 1. We will need the following result [MS;
Thm. 1.1].

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

196 B. H. GROSS AND G. SAVIN

PROPOSITION 2.3The minimal representatioll of H fits into the sequence of
P-modules

C2(Q) C 1L € C=(Q),

whereC°(2) denotes the space of locally constant functionf2amd C2°(£2) is
the subspace of compactly supported functions. Moroever
(1) if f € C*(£), then
II(n) f(X) = ¢x(n)f(X), n€N=Jy,
{ L(m) f(X) = [Am)Pf((m(X)), me M,
wheremn(X) is defined by
Tr(m(X) oY) =Tr(X om(Y)),
forall Y in Jg,.
) /G () = Iy,

wherell y is the maximalV-invariant quotient ofl.

Let(m, £) be a smoothV-module. Defind?y ,, to be the quotient of by the
subspace&’(N, ¥ 4) spanned by the elemenits (n)v — 4 (n)vin € N,v € E}.
Since the functol ~ Ey , is exact [BZ], Proposition 2.3 implies the following.

COROLLARY 2.4.Let A be a non-zero element ify,. Then
dim HN,wA <L

Itis 1if and only if the rank of4 is 1. In this case, the dual diiy 4, is spanned
by ‘evaluation atA’.

3. Fourier coefficients
Fix 1, a non-trivial character of/Q, with conducto[], Z,. Let A € Jy. Asiin
the previous section we define a charagtgrof N (A).

For a functiord = 6(®, f,), define the Fourier coefficieflty by

04(g9) = 0(ng)a(n) dn. (3.1)

/N(@)\N(A)
Corollary 2.3 implies thaf 4 (¢g) = 0 if A has rank> 1.

We consider the Fourier expansion®tlefined by (0.2) alon§/, the unipotent
radical of the Siegel parabolic @¥’. We identify U(Q) with the set of 3x 3
symmetric matrices with coefficients@ Let B be an element itV (Q).Then

Br(l) = 0(ug)a(g)ys(u) dg du. (3.2)

/U(Q)\U(A) /G(Q)\G(A)
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Write 6(g) = >-,,4<104(g) and substitute into the formula fgiz (1). Then
Bu(0) = | > dalale)dg (39
G(Q\G(8) " -1
Aluwy =Yg

LEMMA 3.4. The groupG(Q) acts transitively on the set of all rank-one elements
Ain Jp = N(Q) such that

balvw = V5

Proof. After conjugatingB with an element il (Q) = GL3(Q), we can assume
that B is given by a diagonal matrix:

a O
B=]10 b O
0 0 ¢
Let
d z vy
A=| =z e x|,
y z f

r=-x, Yy=-Y, Z=-—Z.

SinceA is rank-one, we haved? = Tr(A) A and this implies

P —bc, y2 = —ca, 2% = —ab,

yz = —ax, zr=—by, xy= —c=z.

We have four cases:

(1) a =b=c=0. Thenz? = y? = 22 = 0. Since0 is a division algebra, this
implies thatz = y = z = 0. Henced = 0 is the only possibility.

(2) @ # 0,b = ¢ = 0. Then again® = y> = 22 = 0, andA = —B is the only
possibility.
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(3) ab # 0 butc = 0. Thenz? = y? = 0. Thereforer = y = 0. Sincez? = —ab,

K = Q(z) isaquadratic subalgebra©f By a theorem of Jacobson [J8](Q)
acts transitively on the set of tracelessuch that? = —ab. The stabilizer of
a point is isomorphic t§U (K+) = SU. This form of Slg is compact over
R, quasi-split for all finite primes, and split by .

(4) abc # 0. In this caser,y and z are standard generators of a quaternion
subalgebra) of 0. By a theorem of Jacobson [J8}(Q) acts transitively on
the set of triplegz, y, z). The stabilizer of a point is isomorphic to the group
of norm one elements ib.

Finally, note that4 will exist only if B is a semi-definite matrix. The lemma is
proved.
Assume thaB = 0. The lemma implies that

Bo(1) = to(g)a(g) dg. (3.5)

/G(@)\G(A)
Sincefp(1) = 6o(m) for anym € [M(A), M(A)] (the Fourier coefficientg is
constant in the Kim’s formula), an@d(A) C [M(A), M (A)],

Bo(1) = (1) /G ey “9d (3.6)

RemarkGinzburg, Rallis, and Soudry have constructed in [GRS1] an automor-
phic representation of the split grouy 7(A), whose local components are the
minimal representations. Moreover, they have shown that the constant term along
the unipotent radical of th&s g-maximal parabolic is a sum of two automorphic
representations g/ (A), M (A)] = Ege(A): the trivial representation, and a rep-
resentation whose local components are the minimal representations. In the case of
E73(A), the latter summand can not appear, because the local compongm)
of [M(A), M (A)] has no minimal representation.

Now assume thaB # 0. Fix A’, a representative of the orbit. Sindéandn A’

(n € Z)are in the samé&(Q)-orbit, we shall assume that the entriesddfie in R,
the maximal order of). Let.4 be the composition algebra generated by the entries
of A'. Let

C(Q) = Cg(g)(A)- (3.7
Then

Bi(1) = 0.4 (g9)a(g) dg. (3.8)

/C(@)\G(A)
Recall that) = §(®, f,) and we fixf.,. The map
0 — 04(1) (3.9
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defines a linear functional 0lf, ® (®,..1L,) Which by the local uniqueness
(Corollary 2.3) must be a product of local functionals, i.e. evaluatiods.athere-
fore, there exists a nonzero constastich that

0.40(1) = c [ £o(4). (3.10)

PFOO

We have to say a word or two about the above ‘infinite’ product.ﬂf}% 11, be
the spherical vector. Note thﬁf(A’) # 0. This follows from the Kim’s formula,
which says tha#l 4/ (1) # 0 if f, = fz? for all p, and the coefficients af’ are in
R. We normalizefl? o] thatfl?(A’) = 1, hence the above product is always just a
finite product. X

Let g = gogy be an element id7(A), whereg, is in G(R) andg; in G(Q).
Arguing as before

04 (9) = clgoo) [] folgy H(A)), (3.11)

pFoo

wherec(go,) is a constant depending @g.. It follows thatf 4 (g) is C(Q)-left
invariant. Since it is alsa@(Q)-invariant, andC(Q)C(Q) is dense inC(4) by
the weak approximation [Kn], it follows tha@ty (g) is C'(A)-left invariant. Hence,

from (3.8)
Bu(V) = [ 0. (9)PE (g) dg, (3.12)
CNG(A)
where
PC(g) = / a(vg) dv. (3.13)
C\C(®)

4. Non-vanishing and cuspidality
We first give a criterion for non-vanishing of non-degenerate Fourier coefficients.
Every 3x 3 symmetric isL(Q)-conjugated to a diagonal matrix. Let

a 0 O
B=|0 b O inU(Q) (4.2)
0 0 ¢

be of rank three, i.eabc # 0. Let D be a quaternion algebra spanned by 1 and
traceless, y, andz, subject to the following relations

2?2 = —be, y?=—ca, 2°= —ab
(4.2)

yz = —azx, zxr=-—-by, xy= —cz.
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ReplacingB with another diagonal matrix in the same conjugacy class amounts to
rescaling and permuting the generatorg andz. In particular, generié (Q)-orbits
are parametrized by quaternion algebras.

Henceforth, we assume thét is contained inO (this is possible iffB is a
definite matrix). In particularr, y andz are traceless octonions. Then

a z ¥y
A=—-z b =z (4.3)
Yy T C

is a rank one matrix in/o such thatp |y = q,bgl. Again, there is no harm in
assuming that the entries df are inR, the maximal order i®.

Let 7 be an automorphic representationfafFix a formea in 7. Let S be a set
of finite places such that f € S, then

aisG(Zy)-invariant
D, is the algebra of % 2 matrices (4.4)
a, b, care not divisible by.
PROPOSITION 4.5Let C be the centralizer oD in G. Then the following are
equivalent:
(1) P¢ #0,and
(2) BB(1) # Ofor a choice ob = 6(®, f,), with f, = fl? forallp & S.
In particular, if PS¢ # 0, theng is unramified for allp ¢ S.

Proof. Obviously, if P¢ = 0 thengz (1) = 0 for any choice of), by (3.12).
Assume tha’¢ # 0, and let® = 0(®,f,), such that

(1) f = f2, avector in the minimalK -type’ of T .
(2) If p ¢ S, thenf, = f0 (H(Z,)-invariant vector).

LEMMA 4.6. Let Qs = [[,c5 Q. If g € G(A), we writeg = gogs5g° where

9o € G(R), g5 € G(Qs) andg® € [],45G(Q,). Then there exists a nonzero
constant, such that for every € G(A)

0% (9) = cfs(95*(A) T] xp(9p),
PES

wherefs = ®,cs fp, andy, is the characteristic function af'(Z,)\G(Z,) where
C(z,) = C(Q,) N G(Zy). Note that, sinceD,, is split, C(Q,) is isomorphic to
SL(Qy).
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Proof.By (3.11) we have

014’ —Cpr

PF 00

In this case, however, the constartoes not depend apn,, because? is G(R)-
invariant.

Letg, € G(Q,) such thatfp( 1(A") # 0. Letz',y/, 2’ be the off-diagonal
terms ofg, 14, Slncefp is N(Z ) invariant, it follows from Proposition 2.3 (1)
that /0 is supported infz, = Jg ® Zj, hencer',y', 2’ € R,,.

ConsiderR/pR, the octonion algebra oveér/pZ. The projections ofz, y, z),
the off-diagonal terms od’, and(z’, v/, 2’) ontoR /pR areG(p)-conjugated by the
theorem of Jacobson. It follows from Hensel's lemma thay, z) and(2’, v/, 2’)
areG(Zy)-conjugated. Therefore, the function

9p = fplgy H(A)

is supported irC(Z,)\G(Z,) C C(Q,)\G(Q,). Sincefy is G(Z,)-invariant,

ooy (A) = f(A) =1

for g, in G(Z,). The lemma follows.
LetY be a finite collection of elemenis in N(R), together with a collection
of numbers;. Define

Z c;0 gnz
Obviously

0 (9) =D cipar (9oonigc )05 (9%)-

i

Furthermore, recall that, (y) = ¢ (Tr(z o y)) = ¢y (z), SO

0% (9) = citbn; (920 (A")0% (5,

i
and

OA’ = Czczwnl goo (A, fS gS H Xp

pES

by Lemma 4.6.
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In general,ey is not a ‘K-finite’ vector. Still, it is a smooth function on
H(Q)\H(A), and we can use it to define a functiBnon G’ using the formu-
la (0.2). By (3.12)

Bp(1) = 0% (9)Ps (9)dg.

/C (4)\G(4)

Substituting the expression f8},, and using thaP¢ is G(Z,)-invariant for every

pES,
1 — / ) ] -1 AI
BB( ) c C(RXQS)\G(RXQS);CZ/‘pnl(gOO( ))fS
(9§1(A'))Pa (googS) dg dgs H Hp,
pES
where

#G2(p) -6
fip = / Xpd9p = gy = (L—p7).
P Isk@naae,) T #Ske(p)ptt ( )

The infinite product i$§1(6), and therefore nonzero. Lptbe a prime inS. By
Proposition 2.3 f, can be any compactly supported, locally constant function on
the set of rank one matrices ify,,, hence the integral over'(Qs)\G(Qs ) will
be nonzero for a suitable choice ff. SinceS(R)\G(R), the G(R)-orbit of A’,
is compact, by the Stone—\Weierstrass theofén) c;vyy,, } is a dense family of
continuous functions. Hence the integral o&iR)\G(R) can be arranged to be
non-zero, too.

Since

oY => "0y

nez

in locally uniform convergence of smooth functions A{Q)\H(A) wheref?
belongs to thex-th ‘K-type’ of 1, at least one of these summands has to produce
a honzerg3, with a non-trivial Fourier coefficient &. The proposition is proved.

Next, let
a 0 O
B=|(0 b O inU(Q) 4.7)
0O 0 O

be of rank two, i.eab # 0. Let K = Q(z) be a quaternion subalgebra®@f such
thatz is traceless ane? = —ab.

PROPOSITION 4.8Let C be the centralizer oK in G. Then the following are
equivalent:
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(1) PY #0,and
(2) Bp(1) # 0Ofor a choice ob.

Proof. Analogous to the proof of Proposition 4.5. One also heeds non-vanishing
of a special value of the zeta-functigg, wherey is the character oA* corre-
sponding toK via class-field theory. This is provided in [EG].

COROLLARY 4.9Lett = ®,m, C L?(G(Q)\G(A)) be an irreducible automor-
phic representation. Assume that:

(1) 7o = W (k1, k2) ® C, with k2 # 0, or there exists a finite primg such that
mp has a Whittaker functional.
(2) There existsr € 7 and D, a quaternion subalgebra @f, such thatP # 0.

ThenO®(r) contains a non-trivial cusp form off’, unramified at all placep ¢ S,
whereS' is given by(4.4).

Proof. The second condition and Proposition 4.5 imply thas non-zero, and
unramified outsidé.

To show cuspidality we need to show thgs = O for any B of rank less then
or equal to 2. Assume that the rank is O or 1. The first condition implies that the
7 IS not isomorphic to the trivial form ony. Hence the period over is 0. This
implies thatgp is also 0, by (3.6) and (3.12).

To show vanishing foB of rank 2, we have to show that Seriods vanish,
by Proposition 4.8. Assume not. Then each local component b&s a non-
trivial SUz-invariant functional. This means that, has anSUs(R)-fixed vector,
and by the Frobenius reciprocityy,)*, the contragredient af,, is a quotient of
C>(G(Q,)/SUS (Q,)). By the branching lawi, | A, [Sa2], the representation
W (k1, k2) has an SY(R)-fixed vector iffk, = 0. Also, a generig-adic represen-
tation can not be a quotient 6f°(G(Q,)/SUS (Q,)), in view of the following.

LEMMA 4.10.LetF be ap-adic field, andX’ C O® F' a quadratic subalgebra. Let
SU(K ) = SUX be the centralizer ok in G = Aut(0 ® F). Then theG-module

Ce(G/SU5)

does not have a Whittaker functional.

Proof. Let B C G be a Borel subgroup. The spac€°(G/SUY) has aB-
invariant filtration with succesive quotient&*(0O), whereO runs over the finite
set of B-orbits onG/SUZ . We need to show that each of the subquotients does
not have a Whittaker functional, so our task is to comggrerbits onG' /SUY, or
equivalently, SYf -orbits onG/ B.

Let M,(F) be the algebra of 2 2-matrices oveF’, with involution

(-7
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ThenO ® F'is isomorphic to the algebtdl>(F') & Mo (F') with multiplication
(a,b)(a’,b') = (aa’ + b'b,bt'a + ba').

Using this realization ob® F, itis easy to compute S{Forbits onG/ B. Assume,
for example, thall’ = F & F, the subalgebra of diagonal matrices\ifa(F'). Then
SUK = SL3(F). LetV be the space of traceless element®i® F, then

V=VsaVseKP

under the action of S§(F'). HereV3 is the standard representation ofsGE), and
K° = K nV.The setG/B can be identified with partial flags

1cVv,CcV

consisting of 1 and 2-dimensional spaces with trivial octonion multiplication. We
note thatl; is always contained in the 3-dimensional space

V1A = {:E S V|:E-V1:0}.

We have three different cases.

(1) The group Sk(F') acts transitively on partial flagg C V, suchthat; C Vs.
Indeed, Sk(F') acts transitively on lines ifr3, and the stabilizer of a lin&;
is a maximal parabolic subgroup. Its Levi factor £§6E') acts transitively on
the 2-dimensional space

ViA/ V.
By the same argument, $(F) acts transitively on partial flags such that
Vic Vs

(2) The group Sk(F') acts with two orbits on partial flagg; C V> such that

V1 C V3@ V3, but not contained iz or V5", Indeed, in this case
Vi=F(z+y) CVa Vg,

wherez? = zy = y? = 0, and we have two orbits, depending whether
Vo=Fzx+ Fy=ViAnN (Vad V3)

or not.

(3) The group Sk(F) acts transitively on partial flagg C V> such that/ is not
contained inV3 @ V3. Indeed, Sk(F') acts transitively on suck?, and the
stabilizer is Sk(F’), which acts transitively on the 2-dimensional space

ViA/ VA

Next, let B be a Borel subgroup fixing a partial flag C V». Its short simple
root group acts by — x+bonV,/V; and its long simple root group by— z+b
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onV1A/Va. Now, itis a simple matter to check thatin each cBSe- BN SLs(F)

will contain 1-dimensional subgroup acting by— = + b on V2/Vi or V1A / V5.
Hence,CS°(B/B') does not have a Whittaker functional, and this implies the
lemma.

5. Examples
We prove the non-vanishing of th@-lifts of the automorphic representations
constructed in Proposition 7.7 and Proposition 7.12 of Chapter 1.

Let D be a definite quaternion algebra o@IThen theQ algebraD & Dv with
multiplication

(a+bv)(a' +bv) = (aa’ —b'b) + (b'a + ba')v (5.1)

is a definite octonion algebra, hence it is isomorphic to the Cayley’s octonion
algebraD. ThusD embedsirD = D @ D, and if we fix an element in D+ with

v? = —1, we get an isomorphism of the subgraiipf G = Aut(0) fixing D with
D{_,, the group of norm-one elementsiin

d(a + bv) = a + (db)v, dd = 1. (5.2)

The subgroup S@D) = {(d,d') € D* x D* | Nd = Nd'}/AQ* of G acts
on O as follows

(d,d")(a + bv) = d's(d')~* + (db(d) " )v. (5.3)

In particular, it stabilized) C 0, and containg’ as the subgroup(d, 1)}. The
group SQ(D) is the centralizer it of the involutioni(a + bv) = a — bv of O.

Now supposé is the algebra of Hamilton’s quaternions, ramified at 2 and
We will show the following.

PROPOSITION 5.4There is an embedding @f into O such that
C(4) = C(Q) x C(R) x (C(Q) NK(2)),
whereK (2) is the subgroup of elementsdZ) congruent tal mod 2.

Proof. First some facts about Hamilton quaternions, independent of octonions.
It has the maximal ordeR defined by Hurwitz

1+itj+k
RzZiEBZj@Zk@Z(%),

with unit group

ldidjt
RX:<j:1,j:i,j:j,j:k,—Z J k>

2
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of order 24. This order gives a model f6r over Z, with C'(z) = R* and bad
reduction at 2. Fop odd,C(Z,) is isomorphic to Sk(Z,).
Forp = 2, letRy, = R ® Z, be a maximal order ith, = D ® Z,. Then

C(Zp) = (Ry )n=1 = C(Q) = (D3 )n=1.

The elements = (1+ i) is a uniformizing element ik, and we have a filtration
by normal subgroups:

(Ry)n=1 D3 (1+ wR2)n=1 D22 1+ szz)N:]_ D2 (14 w3R2)N:1 D@22 -

where D, 5, for example, denotes that the quotient is isomorphic to the Klein
four-group.
We have

R* N (1+ wRy)n=1 = (1, i, 5, +k),
R* N (1+ @”Ry)y=1 = (+1),
R*N(1+ @ Ry)n-1 = 1.

Since the global units lie in distinct cosets @} )n-1/(1 + @>Rz)x-1, and
the latter group has order 24, we obtain a direct product decomposition

C(Zy) = R* x (1+ ngz)N:L
The mass formula (of Eichler) gives
C(8) = C(Q(C(R) x C(2)),

with intersectionC'(Z). Hence we have a direct product

p#2

C(A) = C(Q) x (C(R) x (1+ @®Ra)uer x [[ 0(zp)> .

To finish the proof of the proposition, we need to find an embedding iof O
such that

CQ NK(2) = (1+ @ Ro)n=1 x [[ C(2y).
p#2

Let R be the ring of integral octonions constructed by Coxetef($8) is the
subgroup of Au{R ® Z) which acts trivially orR /2R. We embed the Hurwit®
into the CoxeteR viai + e1, j — ea, k — ey. If we takev = e3 then

O0=D&D" and RDpy R®R"
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The general element @& has the form
%(a + bes),

with a,bin wR, w = (1+1i) = (1 + e1). If we write
a = wa,
b=wp,

then for the above to lie i@, we need the congruence

a = pf(modwR).

Itis now a simple matter to check thidt+ w R2)n=1 X ][], ., C(Zy) is the sub-
group ofG(Z) fixing D. Similarly, (14 @*R2)n=1 x [1,.2 C(Z,) is the subgroup
fixing D and acting trivially oriR /2R. The proposition is proved.

PROPOSITION 5.5.et7 be the automorphic representation®@fgiven in Propo-
sition7.7 in Chapter |.(7, is isomorphic to the irreducibl&4-dimensional repre-
sentation of5(R) of highest weighp, 7 is the Steinberg representation@{Q»)
andm, is unramified for allp # 2). Thenr lifts to a cusp formr’ on G’, with:

(1) =, isaholomorphic discrete series representation with infinitesimal character
(6,4,2).

(2) m,, for p # 2is unramified with Satake parameterdy(C) C Spin;(C).

(3) w4 is the Steinberg representation.

Proof.We will show that the period ove&r given by Proposition 5.4 is non-zero
for a K (2)-fixed function inw. Using the direct product decomposition

GQ\G(A) = G(R) x K(2),

one identifies the space &f(2)-fixed vectors inr with the space of matrix coeffi-
cients of onG(R). By Proposition 5.4 we have to show that there exists a matrix
coefficient of W such that its integral ove¥(R) is not zero.

Every finite-dimensional representation@{R) has aC(R) = SU,(R)-fixed
vector. Indeed, we have a chain of groups

SU, c SU; C G,
where S is the stabilizer irG of a quadratic subalgebra &f, for exampleQ(7).

Since it is true that every representation ofs&&) has SY(R)-fixed vectors, the
same is true fo6(R).
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Let w be aC(R)-fixed vector inW. Obviously, the matrix coefficierw, gw)
has non-vanishing integral ovéX(R). Hence the Fourier coefficient at

1 0 O
B=(0 1 O
0 0 1

is not zero. The proposition follows from Corollary 4.9. The information about the
local components af’ follows from Corollary 3.9 of Chapter 3 and Proposition 3.1
of Chapter 4.

We now assume thd® is the definite quaternion algebra ramified at 5 and

PROPOSITION 5.6There is an embedding d? into O and a Borel subgroup
B(5) C G(5) such that

C(A) = C(Q) x C(R) x (C(Q) N Ko(5)),

whereK(5) is the subgroup of elementsdZ) reducing toB (5) (mod 2).

Proof. Let R be a maximal order irD, which is unique up td>*-conjugacy.
We haveR* = ug. The orderR gives a model of” overZ, with bad reduction
at 5. The units lie in the 6 distinct cosets for the subgréup- wR), where Tr
(w) = 0 andN(w) = 5. Hence we obtain a direct product

C(A) =C(Q) x (C(R) X (1+ wRs)n=1 X H C’(Zp)> .
p#5

Let R be the Coxeter’s order i@. There is an embedding — R, which is
unique up to conjugacy by AGR) = G(z).Let R+ be the orthogonal complement
of R in R; again we find that

R& }%L C(575) R

and that the subgroup 6f(Z) fixing R®Zis precisely( 14w Rs)n=1x 1,25 C(Zy).
Since (1 + wRs)y—1 iS @ 5-group, its reduction i/ (5) is contained in the
unipotent radical of some Borel subgroi(5). ThereforeC(Q) N Ko(5) =
(1 + wRs)n=1 X 1,5 C(Zp), which completes the proof.
In Section 7 of Chapter 1, we showed that the space

S =G(Q\G(4)/G(R) x Ko(5) (5.7)

had 7 elements. We also showed that there was a nonzero furfcibnr> Q,
unigque up to scaling, in the Steinberg subspdig:= — f for the three generators
Ty, T4, T of the Iwahori—-Hecke algebra at 5.
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The functionf determines a 1-dimensional subsp&gg in the automorphic
representation of Proposition 7.12. The period &f overC(Q)\C(A) is nonzero
if and only if f(e) # 0, wheree is the identity double coset & (e is the image of
C(A), by the Proposition 5.6). A computer calculation, performed by D. Pollack
and J. Lansky, showed th#te) # 0. Hence we obtain

PROPOSITION 5.8Let7 be the automorphic representation®@fgiven in Propo-
sition7.12in Chapterl. (7, = 1, 75 is the Steinberg representation@{Qs) and
m, is unramified for allp # 5). Thennr lifts to a cusp formr’ on G’, with

(1) = isaholomorphic discrete series representation with infinitesimal character
(3,2,1).

2 w;,,_forp # 5_is unramified with _Satake parameter@y(C) C Spin,(C).

(3) mg is the Steinberg representation.

The automorphic representatiari corresponds to a classical holomorphic form
of weight4 and levels.

6. Periods

As we indicated in the introduction, the complement of the matia M’ should

be given by the classes of Hilbert modular 3-folds. If so, the form&/booming

from G should be characterized as those having non-zero periods over the cycles
given by the Hilbert modular 3-folds. We give an affirmative answer to this question
in the local setting.

1. A see-saw dual pair i,

We letF' be ap-adic field,E a separable cubic extensionfofandH a split adjoint
group overF of type Eg, E7 or Eg. Let H = H x T be the semi-direct product
of H with its group of outer automorphisns Note thatl® = 7 /2% for Eg, and is
trivial otherwise. The see-saw pair i is

o OT &—0—O
(1.1)

where all groups are quasi-split ove; Df is a twist of the simply connected
group of typeD4 by GalF/F') — Ss, the group of outer automorphisms bf,
and the subgroups’ andC/, are tabulated below.

Type of H G’ CY;
EBs  PGLxT (Rg/pGm/Gy)x T (1.2)

E7 PGS ps R r Ska/p2
Eg Fy Df.
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The center ofG’ is trivial, and the pailG, x G’ is a maximal subgroup off’,
whereas the center 6f}; is

Kg = (Rgjpp2)/p2 = DY N C, (1.3)

a twist of the Klein groupKy, and the subgroup}’ x C%,/AKY is not maximal,
for it is contained in the centralizer i’ of any non-trivial element ok}’

In the following section, we will characterize the irreducible representatibns
of G’ (F') which appear as quotients of the minimal representatidi’¢f'); these
are the representations with a nonzerf;invariant linear functional, for somg.

LetTr: E — F be the trace form. SincE is separable, the pairing x £ — F
given by (v, w) = Tr(vw) is non-degenerate. Lév1, vp, v3} be a basis foF over
F, and consider thé'-linear embeddingZ — J(F)

a— Ay = (Tr(a - vvj)), (1.4)
whereJ(F') is the 6-dimensional space of symmetris 3 matrices ovef#'. The
matrix

e=A1 = (Tr(viuj)) (15)

has defe) # 0, by the non-degeneracy of the pairing.

Now let D C O ® F be anF-subalgebra, on which the norm form is non-
degenerate and represents 0. IIéD) be theF-vector space of X 3 Hermitian
symmetric matrices ovdp. We then have a chain of subspaces

FeCECJ(F)CJ(D)CJo®F. (1.6)

Let L' be the algebraic group of all invertible linear maps H{D) which
preserve the determinant form dé{:D) — F. These groups are tabulated below

[EG]
D J(D) r
F+F M3(F) (SLg X SL3/AM3) x I (1_7)
My(F) A°F® Sls/p2
OQF Jog®F Eg

where we have identified (D) with a more familiarZ'-module. Note that the
center ofL' is u3.

Let! be the Lie algebra of’, andV;; the standard 3-dimensional representation
of SL (3). In [Sa2] it is shown that the direct sum

h=(sl3) @) @& (Va®J(D)) & (Va® J(D))* (1.8)
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has the structure of a simple, split Lie algebra of typg (n = 6,7, 8), with a
Z./ 3Z-gradation given by the action of the center of the subgroup

SL3 X L,/A,u,g, (19)

of H'.
It can be checked that the centralizerah L' Cc H' is G’, and the centralizer
of G' in H' has Lie algebra

g2=>5l(3) & (V3@ Fe) & (Va® Fe)*, (1.10)

of typeGo.
Let Eop C E be the kernel of the trace map TE. — F. The centralizer of
E C J(D)in L'is CY, and the centralizer af'}, in H' has Lie algebra

W =(sl3) @ Ey) @ (VzRE) @& (Va® E)*, (1.11)

of type Dy, split by E [Ru]. This gives a construction of the see-saw pair.

2. Periods
The minimal representatidi, defined in Chapter 4, can be easily extendeHtp
more precisely, the polarization used in [KS; pg 212igwariant, and by taking
the structural coefficients to Beinvariant, the representation extends£6in an
obvious way.

Consider the decomposition (1.8)pfLet t be the Cartan subalgebra of sl (3),
consisting of diagonal traceless matrices. Let

1 0 0
h=[0 0 0 [etcCsi(3)Ch. (2.1)
0O 0 -1
Define
h(k) = { € b|[h, z] = ka}. (2.2)

Since the eigenvalues bfon the standard 3-dimensional representaitipof sl(3)
are—1,0, 1, the decomposition (1.8) implies thgk) # Ofork = —2,—1,0, 1, 2.
For example,

hO) =JD)" @teha J(D). (2.3)
Write g = 1 @ m @ n Where
=5(0),
(1) ®n(2), (2.4)
(-1) @5(-2).

m
n
n

b
b
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Thenp = m @ n is a maximal parabolic subalgebra. The nilpotent radicial a
two-step nilpotent (Heisenberg) Lie algebra, with the cepterp(2). Analogous
statements are true for the opposite alggbram®n. Under the action ofb [ C m,

we have direct sum decompositions

{u/agh(l):F@J(D)GBJ(D)*@F*v (2.5)

/32 h(-1) = F* ® J(D)* ® J(D) & F.

Let P’ = M'N be the ‘Heisenberg’ maximal parabolic subgrouptof with
Lie algebra. Let Z be the center aV. The quotient ofV by Z is commutative and
N/Z = /3 asM-modules. Let”’ = M'N be the parabolic subgroup opposite to
P',andZ be the center a. The Killing form onp, the Lie algebra off, defines a
non-degenerate pairing) betweenV/Z andN/Z. In terms of the identifications
(2.5) this pairing is

((@,u,u®, 2%), (y", 0", 0,9)) = 2y" + (u,0%) + (v, u®) +ya'. (2.6)

Let Q be the smallest non-trivialZ’-orbit in N/Z. It is simply the orbit of a
highest weight vector.

PROPOSITION 2.7(p # 2if G = Eg) LetII be the minimal representation &F .
Let Z be the center ofV as above. Leil; andIly be the maximak-invariant
and N-invariant quotients ofl. Then

0—CrQ) =1I; =1y —0,

whereC2°(2) denotes the space of locally constant, compactly supported functions
on (2. The action ofP’ onC2°(Q2) is given by

I(n)f(z) = $((z,n))f(z), nEN,
(m)f(z) = |detm)[*/? f(m tam),  me M,
wheret) is a non-trivial addititive character of”, detis the determinant of the

representation oM’ on N/Z, d is the dimension aV/Z. The values are given by
the following table.

E; 6 32
Eg 10 56
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Proof. This is a simplified version of [MS; Thm 6.1].
We are now ready to prove the main result of this sectionellst an element
in J(D), suchthate,e,e) = 6,and letz’ C L' C H' be the centralizer ofin L'.

PROPOSITION 2.8Letn’ be a representation @’ with a nonzera’y-invariant
functional. Ther(=')* (the contragredient of') is a quotient oflI.

Proof. If we compare the construction (1.10) of the dual gairx G’ with the
definition of P/, we find that

GonN P = P, = GLyU,

is the ‘Heisenberg’ parabolic off,. Note thatZ C Uy, and in terms of the
identification (2.5)

U/Z=2F@dFedFe*®@F"  CFaJ(D)o J(D)* @ F"~N/Z,
wheree* is aG’-fixed element of/ (D)*, normalized bye*, e) = 3.
The action of Gk, the Levifactor ofP», onUz/Z is isomorphic to Syr?(FZ) ®
det™!, and this was studied in [Wr]. Generic Gbrbits correspond to cubic sepa-

rable extensions df' as follows. A point(a, b, ¢, d) in Uz/Z defines a binary cubic
form

az> + bx?y + cxy® + dy>.

The corresponding Gl-orbit is generic if and only if the form has three different

solutions inP(Q, ). Assume that = 6. This just means th#6, 0) is not a solution
of the cubic form. Then

E = Flz]/(z> + bz? 4 cx + d)
is the cubic separable algebra. o
The pairing(, ) restricts to a non-degenerate pairing betw&enZ andU,/Z.
Therefore, the pointa, b, ¢, d) and the additive charactérdefine a charactefy
of Uz.

LEMMA 2.9. Letll, . be the maximal quotient af such thatl, acts as the
charactery on it. Then

Mg, = C°(G'/CR).
Proof. Proposition 2.8 and (2.6) imply that

HUZ#&E = CSO(Q)UZ#&E = 0= (2p),
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where
Qp ={(6,u,u”,d) € Q{u,e*) =b and (e,u”) = c}.

We need to show that’ acts transitively oM2z. Let ¢ C m be a maximal
parabolic subalgebra given by

g=(tdh) d J.

Let ' be the corresponding subgroup &f', and letU = J be the unipotent
radical of@Q’. The groupl’ preserves the partial flag iN/Z

F& J(D)® J(D) & F* > J(D)& J(D) & F* > J(D) ®F* > F*,

By [MS; Lem. 7.5],Q)" has 4 orbits orf2, given by the position of a point ife,
relative to the flag. Hencé) is in the@'-orbit of (6, 0, 0, 0). Moreover, by (2.5)
the Levi factor of@Q’ preserves the line throudB, 0, 0, 0), hence g is contained
in theU-orbit of (6,0, 0, 0).

This action ofU is given by (3.11) in Chapter 2. In particularziis an element
inU = J, then

2(6,0,0,0) = (1,62,3z x z, (2, 2, 2)).
So, if (6, u, u*, d) is an element ifg, then

u = 6z,
u* =3z X z,

d=(z,2,2)

and, since* = 3e x e,

b=3(ze,¢)
c=3(z,z2,€)
d=(z,22).

Hence, the characteristic polynomialzois

6deth —2) = A=z, A —2,A—2)
(e,e,e)\3 = 3(z,e,e)A% + 3(2, 2, )\ — (2, 2, 2)

=6\ — b2+ —d.

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000456731715

MOTIVES WITH GALOIS GROUP OF TYPHZ, 215

The groupG’ acts transitively on the set of such elements. In the first dase,
acts transitively on X 3 matrices with determinant 1, so we can assumedimat
the identity matrix. Henc@g is the set of all 3« 3 matrices with the characteristic
polynomial (in the usual sense)

6% — DA% + X — d,

i.e. it is a regular, semi-simple conjugacy class ot 3 matrices. This implies
the lemma in the first case. The general case can be reduced to this [J2; Thm. 10,
pg 389]. The lemma is proved.

The proposition follows from Lemma 2.9 and the Frobenius reciprocity.

COROLLARY 2.10.Let E be a cubic separable algebra oveér. Letn(s') be an
unramified representation d?G Spe(F') with a non-trivial C'j;-functional. Then
s' = f(s) for some semisimple conjugacy clasa G»(C). If, in addition,n(s') is
tempered, then the converse is also true.

Proof.Note that every unramified representatio®df Spg s self-contragredient.
So, if 7(s") has a non-trivialC';-invariant functionals (s’) is a quotient oflI by
Proposition 2.8. Hence’ = f(s) for somes in G2(C) by Proposition 3.1 of
Chapter 4.

Now assume that(s) is tempered and’ = f(s). Thenn(s) ® (s’ is a
quotient oflI by [MS; Thm. 5.4]. Sincer(s) is a fully induced representation [Ke],
it follows that(s)g, ., # 0. By Lemma 2.9

g, = C°(G'/Cp),

so the second statement follows from Frobenius reciprocity.
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