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Abstract. In this paper, we study an exceptional theta correspondence, obtained by restricting the
minimal automorphic representation of the adjoint group of typeE7 and rank 3 overQ to the dual
pairG � PGSp6. HereG is the anisotropic form ofG2 overQ; using the correspondence, we lift
certain automorphic forms onG to holomorphic cusp forms onPGSp6. This lifting provides the first
step in a project to construct motives of rank 7 and weight 0 overQ with Galois group of typeG2.
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Introduction

Serre has asked if there are motivesM with motivic Galois group of typeG2 [Se3;
pg 386]. This paper is the first step in a project to construct such a motiveM , of
rank 7 and weight 0, over the base fieldQ.

LetGbe the anisotropic form ofG2 overQ, and let� = 
̂v�v be an automorphic
representation of the adelic groupG(A ). At almost all primesp, the local repre-
sentation�p is unramified and has Satake parametersp, a semi-simple conjugacy
class in the dual group̂G(C ) = G2(C ). Let V̂ be the irreducible 7-dimensional
representation of̂G(C ). The unramified representation�p is determined by the
characteristic polynomial ofsp on V̂:

L(�p; V̂;X) = det(1� spXjV̂)
�1:

By giving a rational structure on the space of modular forms forG, we show that
the coefficients of all the polynomials det(1� spXjV̂) lie in a totally real number
fieldE � C . Under the additional hypothesis that at least one local component of�
is the Steinberg representation, we conjecture the existence of a motiveM =M(�)
of weight 0 overQ with coefficients inE, whose localL-function at unramified
primesp is given by the formula

Lp(M; s) = L(�p; V̂; p
�s):
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154 B. H. GROSS AND G. SAVIN

The first step in our construction ofM is to lift � to an automorphic, cuspidal
representation�0 of the split groupG0 = PGSp6. Such a lifting, at least at the level
ofL-packets, is predicted by Langlands functoriality. Indeed, we have an inclusion
of dual groups

Ĝ(C ) = G2(C ) ,! Spin7(C ) = Ĝ0(C )

which realizesG2 as the stabilizer of a non-isotropic vector in the 8-dimensional
spin representation of Spin7. We are able to construct a lifting� ! �0 with the
property predicted by functoriality in many cases, using an exceptional theta-
correspondence. The groupG�G0 appears as a dual pair in the adjoint groupH
of typeE7 and rank 3 overQ.

The bulk of this paper is devoted to a study of the theta-correspondence which
results from the restriction of the minimal representation ofH to the subgroup
G � G0. The local results were suggested by the work of Huang, Pandžić, and
Savin [HPS] on the quaternionic form ofE7 of rank 4 overR. The global results
on cuspidality and non-vanishing were inspired by the work of Ginzburg, Rallis,
and Soudry [GRS2] in the split case.

The second step in our construction ofM is to use the lifted representation
�0 of G0 to define a motiveM 0 in the cohomology of a Siegel modular variety.
Specifically, assume that there is a finite, non-empty setS of primes such that
�p is unramified for allp 62 S, and�p is the Steinberg representation for all
p 2 S. Let X be the 6-dimensional Siegel modular variety overQ, classifying
principally polarized abelian varieties of dimension 3 with an Iwahori level structure
at all p 2 S. If �1 has highest weightk1!1 + k2!2, where!1 is the weight
of the 7-dimensional representation and!2 is the weight of the 14-dimensional
adjoint representation, letF be the local system onX corresponding to the rational
representation ofG0 with highest weight= (k1 + 2k2; k1 + k2; k2). Then the�0f -
isotypic componentM 0 � H6

c (X;F) (3) should have rank 8 and coefficients inE.
As �0 is lifted fromG,M 0 should decompose as the sum ofM and a Hodge class,
arising from Hilbert modular 3-folds inX. Several difficulties remain in proving
this, but we hope to treat these geometric questions in a future paper.

1. Spaces of modular forms

In this chapter we develop the arithmetic theory of modular forms for semi-simple
groups overQ with G(R) compact. At the end of this chapter we specialize to the
case whenG is of typeG2. In particular, we construct two interesting modular
forms for the anisotropic form ofG2. It will be shown in Chapter 5, that they lift
non-trivially toG0 = PGSp6.

1. Groups
Let G be a semi-simple algebraic group overQ with G(R) compact. To simplify
some of the exposition, we will further assume thatG is simply connected, and is
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MOTIVES WITH GALOIS GROUP OF TYPEG2 155

an inner form of a split group overQ. ThenG is split overQp for almost all primes
p, and�1 is an element of the Weyl group ofG. Also, the centerZ(G) is killed by
2.

LetW be an irreducible algebraic representation ofGoverQ, which is absolutely
irreducible (i.e. remains irreducible over�Q ). ThenW is orthogonal, and theG-
invariant symmetric bilinear form onW is definite overR. We fix aG-invariant,
positive-definite inner product

h; i : W �W ! Q; (1.1)

which is unique up to scaling byQ+ .

2. Modular forms
Let Q̂ = Q 
 Ẑbe the ring of finite ad̀eles ofQ, soA = R� Q̂ is the ring of ad̀eles.
Let K be an open compact subgroup of the locally compact groupG(Q̂ ). Since
G(Q)nG(Q̂ ) is compact ([B2]), the double coset space

G(Q)nG(Q̂ )=K (2.1)

is finite. Letfg�g represent the distinct double cosets, and for each�, define the
finite group

�� = G(Q) \ g�Kg
�1
�

= f
 2 G(Q)j
g�K = g�Kg: (2.2)

Associated toK � G(Q̂ ) and an irreducible representationW of G overQ, we
have a rational vector space

A = A(K;W )

= fF : G(Q̂ )=K !W jF (
g) = 
F (g); all 
 2 G(Q)g: (2.3)

This is the space of modular forms of ‘levelK ’ and ‘weightW ’ for G.
A functionF inA is clearly determined by the valuesF (g�) on the double coset

representatives, andF (g�) lies in the subspace ofW fixed by��. This observation
gives a proof of the following.

PROPOSITION 2.3.The spaceA is finite-dimensional and the map takingF to
the elementsF (g�) in W�� is a linear isomorphismA �= ��W

�� .

We can use the proposition to define an inner product onA with values inQ, by
the formula

hF; F 0iA =
X
�

w�1
� hF (g�); F

0(g�)i; (2.4)
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156 B. H. GROSS AND G. SAVIN

wherew� = Card(��). This is independent of the choice of coset representatives,
as the pairingh; i onW isG(Q)-invariant.

3. Hecke operators
The Hecke algebra ofK is the convolution algebra of locally constant, compactly
supported functions

HK = H(G(Q̂ )==K)

= ff : KnG(Q̂ )=K ! Qg (3.1)

using Haar measure givingK volume 1. This has, as additive basis, the character-
istic functions char(KtK) of double cosets, and actsQ-linearly onA as follows.
LetF 2 A. Writing

KtK = [itiK; (3.2)

where the number of single cosets is finite, we have the formula

char(KtK)jF (g) =
X
i

F (gti): (3.3)

The following adjoint formula shows thatA is a semi-simpleHK-module.

PROPOSITION 3.4.

hchar(KtK)jF; F 0iA = hF; char(Kt�1K)jF 0iA: (3.5)

Proof.This is standard. See, for example, [Shm].

Over the algebraically closed fieldC , the isotypic decomposition ofA
 C as an
HK
 C module is given by the theory of automorphic forms. Letm be an element
in

HomG(R)(W 
 C ; L2(G(Q)nG(A )=K)): (3.6)

If w is an element inW 
 C , the functionmw = m(w) is smooth. In particular, for
anyg in G(A ), the complex numbermw(g) is well defined. We define an element
F = F (m) in A
 C by the formula

hF (gf ); wi = mw(1� gf ); (3.7)

wheregf is inG(Q̂ ).

PROPOSITION 3.7.The mapm 7! F (m) gives a linear isomorphism ofHK
 C -
modules

HomG(R)(W 
 C ; L2(G(Q)nG(A )=K)) �= A
 C :
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Proof. We construct an inverse map. LetF be inA 
 C . If g is an element in
G(A ), write g = g1 � gf wheregf is in G(R), andgf is in G(Q̂ ). We define an
elementm = m(F ) in HomG(R)(W 
 C ; L2(G(Q)nG(A )=K)) by the formula

mw(g) = hg1w;F (gf )i:

The mapF 7! m(F ) is the inverse of the mapm 7! F (m).

4. Spherical operators
Assume thatK =

Q
Kp in G(Q̂ ). If

HKp = ffp : KpnG(Qp)=Kp ! Qg (4.1)

is the local Hecke algebra, we obtain a map ofQ-algebrasHKp !HK takingfp to
the functionf = fp
 char(

Q
l 6=pKl) onG(Q̂ ). In fact, we obtain an isomorphism

of the restricted tensor product of local algebras (with respect to the unit element)
andHK


̂pHKp
�= HK : (4.2)

We say the primep is unramified forK if G(Qp) is split andK \G(Qp) = Kp

is a hyperspecial maximal compact subgroup. In this case, the Satake isomorphism
gives an identification [Ct; pg. 148]

HKp 
Q Q[p
1=2] �= R(Ĝ)
ZQ[p

1=2]; (4.3)

whereĜ is the dual Langlands group andR(Ĝ) its representation ring. The half-
integral powers enter only in termsph�;�i, where� is a co-character of a maximal
torusT � G 
 Qp , and� is half the sum of the positive roots relative to a Borel
subgroup containingT . Since we have assumed thatG is simply connected,h�; �i
is always an integer, and the Satake transform gives an isomorphism ofQ-algebras

HKp
�= R(Ĝ)
 Q: (4.4)

LetT be the commutativeQ-subalgebra ofHK generated by the local algebras
HKp for all unramifiedp. Then by (4.4)

T �= 
̂punramR(Ĝ)
 Q: (4.5)

PROPOSITION 4.6.The elements ofT give commuting self-adjoint operators on
A.

Proof.We have

KtpK = Kt�1
p K;
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for all tp inG(Qp). Indeed, ifT is a split torus inG(Qp), thenG(Qp) = KpTKp, by
the Cartan decomposition. Since�1 is in the Weyl group ofG, there is an elementn
in Kl such thatntpn�1 = t�1

p . The proposition now follows from Proposition 3.4.

LetF be an eigenvector forT acting on the spaceA
 C . By (4.4),F gives rise
to an element

sp 2 Hom(R(Ĝ); C ); (4.7)

for all unramified primesp. But the spectrum ofR(Ĝ) 
 C consists of the set of
semi-simple conjugacy classes in̂G(C ). Thus we have shown

PROPOSITION 4.8.If F is an eigenvector forT in A
 C , the eigenvalues deter-
mine a collectionfspg of semi-simple conjugacy classes inĜ(C ), indexed by the
unramified primesp for K.

We note that by Proposition 4.6 each such eigenvector inA 
 C is actually
defined over a totally real number field.

5. The Steinberg subspace
Assume thatG is split and quasi-simple overQp , andKp a hyperspecial maximal
compact subgroup ofG(Qp). We now consider the spaceA = A(K;W ) of forms
of weight W and levelK in the special case whenK = Ip � K 0 where Ip
is an Iwahori subgroup ofG(Qp) contained inKp. The Iwahori Hecke algebra
HIp = H(G(Qp)==Ip) then has a distinguished rational character, corresponding
to the Steinberg representationStp of G(Qp). This character sends the standard
Iwahori-Matsumoto generators [Lu] ofHIp to�1.

Let

A(Stp) � A (5.1)

be theQ-subspace of modular forms on whichHIp acts by the Steinberg character.
This is anHK0-submodule ofA. Our aim in this section is to show it is a reasonably
large subspace ofA, so that there are many automorphic representations with local
componentStp. To first order, we will show that:

dimA(Stp)

dimA
= 1�

r + 1
p

+O

�
1
p2

�
; r = rank(G): (5.2)

The algebraHIp contains the finite sub-algebraH(Kp==Ip). Let �p be the
restriction toH(Kp==Ip) of the Steinberg character ofHIp. This character corre-
sponds to the Steinberg representation of the finite Chevalley groupG(p) [Ca]. The
spaceA(Stp) is contained in the subspace

A(�p) � A (5.3)

comp4262.tex; 13/10/1996; 12:16; v.7; p.6

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000456731715


MOTIVES WITH GALOIS GROUP OF TYPEG2 159

on which the finite algebra acts by the character"p. To first order, we will show
that

dimA("p)

dimA
= 1�

r

p
+O

�
1
p2

�
; r = rank(G): (5.4)

Let F be a maximal simplex in the building ofG overQp , which is fixed by
the Iwahori subgroupIp, and for each non-empty faceFi of F let Ip(i) � Ip be
the stabilizer ofFi. LetA(i) be the subspace ofA of forms of weightW and level
K(i) = Ip(i)�K 0.

Finally, we letA(1) be the subspace ofA corresponding to the trivial 1-
dimensional representation ofG. Then dimA(1) = 1 whenW = Q, and dim
A(1) = 0 otherwise.

PROPOSITION 5.5.In the Grothendieck group of finite-dimensionalHK0-modules

A(Stp) + (�1)rA(1) =
X
Fi

(�1)codimFiA(i)

A("p) =
X

Fi�F0

(�1)codimFiA(i);

whereFo is the hyperspecial vertex fixed byKp.

Proof.The first follows from the Kottwitz’s formula [Ko]

X
Fi

(�1)codimFi dim(�Ip(i)) =

8>><
>>:

1 � = Stp;

(�1)r � = 1;

0 otherwise;

for the Euler characteristic of the continuous cohomology of a unitary irreducible
representation�ofG(Qp). The second formula follows from the standard resolution
of the Steinberg character of the finite Chevalley groupG(p) [Ca; pg. 187]. Note:
if we include the empty faceF;, with the stabilizerK(;) = G, then the formula
for A(Stp) can be written without the correction termA(1).

We can compute dimA(i) if G(Q) acts freely onG(Q̂ )=Ip(i)�K 0. In this case

dimA = (Ip(i) : Ip)dimA(i): (5.6)

We say thatK 0 isp-neat ifG(Q) acts freely onG(Q̂ )=Ip(i)�K 0 for all i, and that it
is weakly neat ifG(Q) acts freely onG(Q̂ )=Ip(i)�K 0 for all Ip(i) � Ip(0) = Kp.
Proposition and (5.6) give a formula for dimA(Stp) and dimA("p):

COROLLARY 5.7.If K 0 is weakly neat, we have

dimA =
rY
i=1

pei+1� 1
p� 1

dimA(0)
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160 B. H. GROSS AND G. SAVIN

and

dimA("p) =
rY
i=1

pei dimA(0):

If K 0 is neat we also have

dimA(Stp) =
rY
i=1

(pei � 1)dimA(0)� (�1)r dimA(1):

Heree1; e2; : : : ; er are the exponents for the Weyl group ofG [Bu; pg. 118].

Proof.This is standard inclusion-exclusion [Se1; pgs 664–667]. For example

rY
i=1

pei+1� 1
p� 1

= (Kp : Ip) = (G(p) : B(p))

rY
i=1

pei = pdimU(p) =
X

Ip(i)�Kp

(�1)codimFi(Kp : Ip(i));

whereB(p) is a Borel subgroup ofG(p) andU(p) the unipotent radical ofB(p).

6. The caseG = Aut(O)
We work out some details of the theory presented in this chapter for the simplest
case of a groupG with a model overZwith G(R) compact, andG(Qp) split for all
p. NamelyG is the simple group of typeG2 overQ defined as the automorphism
group of Cayley’s octonion algebraO [J3]. We recall thatO is a non-associative
division algebra of rank 8 overQ

8>><
>>:
Q + Qe1 + Qe2 + Qe3 + Qe4 + Qe5 + Qe6 + Qe7;

e2
i = �1 all i;

ei � (ei+1 � ei+3) = (ei � ei+1) � ei+3 all i (mod 7):

(6.1)

The mapx = a0 +
P
aiei 7! �x = a0 �

P
aiei defines an anti-involution ofO ,

with fixed fieldQ.
OnO , we have the trace

Tr: O ! Q

x 7! x+ �x = 2a0; (6.2)

which isQ-linear, and the norm

N : O ! Q;
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x 7! x � �x = �x � x = a2
0 +

X
a2
i (6.3)

which satisfiesN(x � y) = N(x)N(y). Although the multiplication is neither com-
mutative nor associative, we have

Tr (x � y) = Tr(y � x)

Tr(x � (y � z)) = Tr((x � y) � z): (6.4)

We denote the latter rational number simply by Tr(xyz).
LetR (see [Co]) be theZ-lattice inO spanned by theei and the elements

8>>>>>><
>>>>>>:

1
2(1+ e1 + e2 + e4);

1
2(1+ e1 + e3 + e7);

1
2(1+ e1 + e5 + e6);

1
2(e1 + e2 + e3 + e5):

(6.5)

ThenR is stable under octonionic multiplication, andG = Aut(R) is the unique
model overZwith good reduction at all primes [Gr]. We writeG(p) for the finite
groupG(Fp) = Aut(R=pR).

The groups�� stabilizing the cosetsg�K (2.2) have orders dividing 26337
[Se2]. WhenK � G(Ẑ) they are all subgroups ofG(Z). The groupG(Z)has order
26337 = 12096, and is isomorphic toG(2) under reduction modulo 2 [A].

The irreducible representationsW of G considered in Section 1 of this chapter,
can all be constructed from the irreducible representationV on octonions with
trace 0. Namely, the 14-dimensional adjoint representationg of G is the kernel of
the map

^2V ! V;

v ^ w 7! v � w � w � v (6.6)

and fork1; k2 > 0 there is an irreducible representationW = W (k1; k2) of G
defined overQ which occurs as theG-submodule of highest weight inV 
k1
g


k2 .
W has dimension

(k1 + 1)(k2 + 1)(k1 + k2 + 2)(k1 + 2k2 + 3)(k1 + 3k2 + 4)(2k1 + 3k2 + 5)
120

: (6.7)

We fix the inner producth; i on W by taking hv; wi = Tr(�vw) on V , using
the second exterior power of this product ong � ^2V , and then taking the tensor
product of the previously defined inner products onW � V 
k1 
 g


k2 .
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162 B. H. GROSS AND G. SAVIN

LetKp = G(Zp). We make the Satake isomorphism (4.4)

HKp
�= R(Ĝ)
 Q;

completely explicit. LetT � B � G be a maximal split torus in a Borel subgroup,
all defined overZp. Let f�1; �2g be the corresponding root basis for the character
group ofT , where�1 long and�2 short, and let�!1 and�!2 be the dual basis for the
co-characters. We define(

t1 = char(Kp�!1(p)Kp);

t2 = char(Kp�!2(p)Kp)
(6.8)

in HKp. These have degrees (the number of singleKp-cosets)

8><
>:
d(t1) = pp

6�1
p�1 ;

d(t2) = p5p6�1
p�1 :

(6.9)

The elements�!1 and�!2 are the fundamental weights of the dual groupĜ(C ) =
G2(C ). Since �!1 is short and�!2 is long, �!1 corresponds to the 7-dimensional
representation̂V and�!2 corresponds to the 14-dimensional adjoint representationĝ.
Let�1 and�2 denote the characters of these representations, soR(Ĝ) = Z[�1; �2].

In the inverse of the Satake isomorphism

(
�1 maps to(t1 + 1)=p3;

�2 maps to(t2 + t1 + p4 + 1)=p5;
(6.10)

HenceHKp = Q[t1; t2]. If F in A
 R is an eigenvector forHKp with

(
t1jF = �1F;

t2jF = �2F;
(6.11)

then the semi-simple classs = sp(F ) in Ĝ(C ) has the following characteristic
polynomial onV̂

det(1� sT jV̂ ) = 1� a1T + a2T
2 � a3T

3 + a4T
4� a5T

5 + a6T
6� T 7; (6.12)

where

a1 = (�1 + 1)=p3;

a2 = (�2 + (p2 + 1)�1 + (p4 + p2 + 1))=p5;
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a3 = a2
1 + a1 � a2

andai = a7�i for i = 1; : : : ;6.
The Iwahori Hecke algebraHIp has generatorsT0, T1, T2 and relations

(Ti � p)(Ti + 1) = 0; i = 0;1;2;

T0T2 = T2T0;

T0T1T0 = T1T0T1;

(T1T2)
3 = (T2T1)

3: (6.13)

The subalgebraH(Kp==Ip) �= H(G(p)==B(p)) has generatorsT1 andT2.

7. Examples of modular forms onG = Aut(O)
We now do some explicit examples, whereK is a subgroup of finite index inG(Ẑ).
Let p be a rational prime, and letB(p) � G(p) be a Borel subgroup. We let

K(p) � K0(p) � G(Ẑ) (7.1)

be the subgroups reducing to 1 (modp) and toB(p) (mod p) respectively. Then
K(p) is a normal subgroup ofG(Ẑ), and the local component ofK0(p) at p is an
Iwahori subgroup. In particular, the spaces

A(Stp) � A("p) � A(W;K0(p)) (7.2)

are defined.
Consider first the case whenK = K(2) andW is arbitrary. SinceG(Q̂ ) =

G(Q)G(Ẑ), andG(Z) = G(2) [Gr],

G(Q̂ ) = G(Q) �K(2); (7.3)

so we have one double coset, with� = 1. Hence by (2.3)

A(W;K(2)) �=W (7.4)

asQ-vector spaces. This is actually an isomorphism ofG(2) = G(Z)-modules. By
(2.3) we obtain isomorphisms8<

:
A(W;K0(2)) �=WB(2);

A(W;G(Ẑ)) �=WG(2)
(7.5)

of Q-vector spaces. The former is an isomorphism ofH(G(Ẑ)== K0(2)) �=
H(G(2)==B(2))-modules.

comp4262.tex; 13/10/1996; 12:16; v.7; p.11

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000456731715


164 B. H. GROSS AND G. SAVIN

Consider the special case whenW = W (1;1) has dimension 64= 26. The
restriction ofW toG(Ẑ) is isomorphic to the Steinberg representationst2 ofG(2).
Hence

A("2) = A(W;K0(2)) (7.6)

is one-dimensional.

PROPOSITION 7.7.There exists a unique automorphic representation� ofG(A )
with�1 �=W (1;1)
C , �2

�= St2, the Steinberg representation,and�p unramified
for all p 6= 2.

Proof. The K0(2)-fixed vectors in such a� contribute a line to the space
A(St2)
 C , so we must show thatA("2) = A(St2).

The elementsT1 andT2 generate the Hecke algebraH(G(2)==B(2)). Since
T1 = T2 = �1 onA("2), andT0T1T0 = T1T0T1, we have�T 2

0 = T0 onA(�2), so
T0 must act as�1 also.

Finally, consider the case whenW =W (0;0) = Q is the trivial representation
of G andK = K0(p). From (7.2) we have an isomorphism ofQ-vector spaces

8<
:
A(Q;K0(p)) �= (IndG(p)B(p)Q)

G(Z);

A(Q;K0(p))("p) �= (stp)
G(Z):

(7.8)

Herestp is the Steinberg representation ofG(p). Its dimension isp6, and appears
with multiplicity one in the induced representation fromB(p).

Let d(p) = dim(stp)G(Z). For small primesp, we have the following table
(computed by D. Pollack and J. Lansky):

p 2 3 5 7 11 13 17 19

d(p) 0 0 1 13 142 416 1980 3931:
(7.9)

Forp 6= 2;3;7, K. Magaard has shown that

d(p) = (p6 � 56p3 + 315p2 + ap+ b)=12096; (7.10)

where the sign� is chosen so thatp � �1 (mod 3), and the coefficientsa andb
depend on the congruence ofp modulo 24:

p � 1(24) 5(24) 7(24) 11(24) 13(24) 17(24) 19(24) 23(24)

a 1932 �420 420 �1932 1932 �420 420 �1932

b 9792 �2304 3744 3744 3744 3744�2304 9792

(7.11)
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PROPOSITION 7.12.There is a unique automorphic representation� of G(A )
with �1 �= C , �5

�= St5, and�p unramified forp 6= 5.

Proof.We must show that

A(Q;K0(5))(St5)

is one-dimensional. To do this, we will compute the dimensions of the spaces
A(Q;K(i)), whereK(i) =

Q
p6=5G(Zp)� I5(i) andI5(i) is an arbitrary parahoric

at the prime 5. The parahorics are indexed by the facets of a 30-60-90 triangle (a
maximal simplex in the building, the white vertex is hyperspecial), and we will
find the dimensions

This gives dimA(St5) = 7� (3+ 3+ 4) + (1+ 1+ 3)� 1 = 1 by Kottwitz’s
formula (5.5). The dimensions

are easily computed by the above considerations, as the corresponding parahorics
I5(i) are contained inG(Z5). Now let I5(i) be the maximal parahoric whose
reduction (mod 5) is SL3(5). Using the mass formula [Gr], we find

X
G(Q)nG(Q̂)=K(i)

1
#��

=
1

253
:

Since every finite subgroup ofK(i) has order dividing 253, we find a single double
coset, with stabilizer of order 253, reducing to the normalizer of a maximal split
torus in SL3(5). Hence dimA(Q; K(i)) = 1, so we have obtained the dimensions:
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Since the normalizer of a split maximal torus in SL3(5) has precisely 3 orbits
onP2(5), we obtain the dimensions:

It remains to compute the dimension forK(i) with local componentI5(i)
maximal, whose reduction (mod 5) is split SO4(5). Here the mass formula yields

X
G(Q)nG(Q̂)=K(i)

1
#��

=
31

2632 :

Hence the number of double cosets is either 2 or 3. Since the order of a finite
subgroup ofK(i) divides 2632, and we cannot write the mass as a sum of two such
terms, the dimension is 3 as claimed.

2. Motives

In this chapter, we present a conjecture on motives of rank 7 overQ associated to
automorphic forms on the anisotropic formG = Aut(O) of G2. Since we hope to
construct these motives as the orthogonal complement of a Hodge class in a motive
of rank 8, we give local criteria which allow one to show that a subgroup� of SO8

is contained in either Spin7 orG2 = Spin7 \ SO7. Finally, we discuss the simply
connected form ofE7 of rank 3 overQ, its 56-dimensional representation, and the
dual pairG�G0 = Aut(O) � PGSp6 in the associated adjoint group.

1. A conjecture onG2-motives
Let G = Aut(R) be the form ofG overZ constructed in (6.2) in Chapter I, and
fix a finite, non-empty setS of primes. Forp in S, letKp � G(Zp) be an Iwahori
subgroup. Forp not inS, letKp = G(Zp).

Fix an irreducible representationW of G, and putK =
Q
pKp. Let A =

A(W;K) be the associated space of automorphic forms, and

AS = A(StS) � A; (1.1)

the subspace which is localized at the Steinberg representationStp, for all primes
p in S. ThenAS is a finite-dimensional inner product space overQ, with

dimAS �
dimW

12096

Y
p2S

(p5 � 1)(p� 1); (1.2)
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by (5.2) of Section 1.
The spherical Hecke algebrâ
p62SH(G(Qp)==G(Zp)) acts onAS , via self-

adjoint commuting operators. LetF be a simultaneous eigenvector, defined over
a totally real number-fieldE. ThenF corresponds to an irreducible automorphic
representation ofG(A )

� = 
̂�v; (1.3)

with �1 �= W 
 C , �p �= Stp for all p in S and�p spherical for all primesp not
in S.

CONJECTURE 1.4.Associated to the eigenvectorF inAS (or to the automorphic
representation�), there is a motiveM of rank 7 and weight 0 overQwith coefficients
in E. The motiveM enjoys the following local properties.
(1) AssumeW =W (k1; k2). The Hodge componentsMp;q ofMB 
 C have rank

1 overE 
 C for those(p; q) which satisfyp+ q = 0 and

p = 3+ k1 + 2k2

2+ k1 + k2

1+ k2

0

�(1+ k2)

�(2+ k1 + k2)

�(3+ k1 + 2k2):

OtherwiseMp;q = 0. The real FrobeniusF1 acts as�1 onM0;0.
(2) Assumep 62 S, so�p is spherical with Satake parametersp. Let� be a finite

prime ofE not dividingp. Then the�-adic representationM� of Gal(�Q=Q) is
unramified atp. If Fp is a Frobenius element, then

det(1� FpT jM�) = det(1� spT jV̂C )

has coefficients inE.
(3) Assumep 2 S, so�p �= Stp. Let � be a finite prime ofE not dividingp.

Then the�-adic representationM� of Gal(�Q=Q) is tamely ramified atp, and
isomorphic toSym6H1(X;E�)(3), whereX is a Tate elliptic curve overQp .

In particular, part (2) of the conjecture implies that the local components of
� are all tempered. This need not be true for arbitrary eigenvectorsF in A 
 C ,
but should be true for eigenvectors in the subspaceA(Stp) for anyp in S. Also,
we expect the spectrum of the spherical Hecke algebra to be multiplicity free on
AS 
 R.
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168 B. H. GROSS AND G. SAVIN

If the motive of Conjecture 1.4 exists, itsL-function at finite primes is given by
the Euler product

L(M; s) =
Y
p2S

(1� p�3�s)�1
Y
p62S

det(1� sp � p
�sjV̂)�1; (1.6)

which converges for Re(s) > 1. This is a Dirichlet series
P
n>1 ann

�s with
coefficients in the subfieldE of C . If (see [De], pg. 329)

L1(M; s) = �C (s+ (3+ k1 + 2k2))

��C (s+ (2+ k1 + k2))�C (s+ (1+ k2))�R(s+ 1) (1.7)

is the ArchimedianL-factor, then the product�(M; s) = L1(M; s)L(M; s)
should have an analytic continuation to the entires-plane, and satisfy the func-
tional equation

�(M; s) = N
1
2�s�(M;1� s);

with exponential factorN =
Q
p2S p

6.
The fact thatF1 = �1 onM0;0 implies thats = 0 ands = 1 are critical for

L(M; s), in the sense of Deligne [De; pg. 318]. IfM is realized as the complement
of a Hodge class in the orthogonal motiveM 0 of rank 8, as suggested in the
introduction, then(

L(M 0; s) = �(s)L(M; s);

L(M;1) = Ress=1L(M
0; s)ds:

(1.8)

2. Subgroups ofO8

As described in the introduction, we hope to constructM �M 0 � H6
c (X;F) (3),

whereM 0 is an orthogonal motive of rank 8. It is therefore useful to have criteria
which allow to conclude that the motivic Galois group ofM 0 is a proper subgroup
of the orthogonal groupO(M 0) = O8.

LetW be a non-degenerate quadratic space of dimension 8 overC , and lets be
a semi-simple conjugacy class inO(W ) = O8. Let

f(T ) = det(1� sT jW ) =
8X

k=0

(�1)k Tr(sj ^k W )T k (2.1)

be the characteristic polynomial ofs onW .

PROPOSITION 2.2.
(1) If s lives in the normal subgroupSO8 of elements withdet(s) = 1, then

f(T ) has the form

f(T ) = 1�AT +BT 2�CT 3 +DT 4� CT 5 +BT 6�AT 7 + T 8;
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where the coefficients(A;B;C;D) are (arbitrary) elements inC 4.
(2) If s lives in the subgroupSO7 � SO8 fixing a non-isotropic line, or in

the subgroupSO3 � SO5 � SO8 stabilizing an orthogonal decompositionW =
W3 �W5, then the coefficients(A;B;C;D) of f(T ) are (arbitrary) elements in
the hyperplane

2A� 2B + 2C �D � 2 = 0:

(3) If s lies in the subgroupSpin7 � SO8 embedded by the spin representation, or
in the subgroupSL2�Sp4=�h�1i �= Spin3�Spin5=�h�1i � SO8 embedded by
the tensor product of the two spin representations, then the coefficients(A;B;C;D)
of f(T ) are (arbitrary) elements in the hypersurface

A2(D + 2B + 1) = C2 + 2AC +A4:

(4) If s lies in the subgroupG2 = Spin7 \ SO7 � SO8 of Spin7 fixing a
non-isotropic line, or in the subgroupPGL3 � SO8 embedded by the adjoint
representation, then the coefficientsA andB of f(T ) are (arbitrary) elements of
C , and the coefficientsC andD are given by(

C = A2 �A;

D = 2(A2�B � 1):

Proof.(1) This is well-known. (2) Ifs lies in SO7, thenf(T ) = (T �1)g(T ), so
f(1) = 1. This gives the linear relation on coefficients. In fact,g(T ) = (T�1)h(T ),
although this gives no new relations. The same holds fors in SO3 � SO5, as
s = s1 � s2, wheres1 fixes a vector in the 3-dimensional representationW3, and
s2 fixes a vector in the 5-dimensional representationW5.

(3) In these two cases, the smallest degree invariant lies in^4W , where there is
a unique fixed line. The polynomial relation is computed from the representation
rings of the two groups.

(4) These equations are simply a combination of (2) and (3). They state that the
roots off(T ) have the formf1;1; �; �; 
; ��1; ��1; 
�1g with ��
 = 1. This is
also true for semi-simple elements in PGL3.

We say that a subgroup� � SO8 is locally contained in SO7 if the coefficients
of the characteristic polynomials of all elementss in � satisfy the equation in (2),
Proposition 2.2. Similarly, we say that� � SO8 is locally contained in Spin7 if
the coefficients of the characteristic polynomials of all elementss in � satisfy the
equation in (3), Proposition 2.2. Note that the group SO3�SO5 is locally contained
in SO7, even though it does not globally fix a line. Similarly, the group Spin3 �
Spin5=�h�1i is locally contained in Spin7. If we introduce regular unipotent
elements, we can eliminate these examples.

PROPOSITION 2.3.Let � � SO8 be a subgroup which acts semi-simply onW .
Assume that
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(1) � contains a regular unipotent elementu.
(2) � is locally contained inSO7.

Then� is contained inSO7.

Similarly, assume that

(1) � contains a regular unipotent elementu.
(2) � is locally contained inSpin7.

Then� is contained inSpin7.

Proof.We the fact that the connected, reductive subgroups of SO8 containing a
regular unipotentu form a chain:

whereG2 = SO7\ Spin7, and PGL2 is the principal subgroup of SO8 determined
by u.

Let C � SO8 be the Zariski closure of�. Then the connected componentC0

is reductive, as it has a faithful semi-simple representationW . It also contains
a regular unipotent element, so is one of the groups in the chain. If� is locally
contained in SO7, then so isC, hence

C0 = SO7; G2 or PGL2:

The normalizers of these in SO8 areC0� h�1i, but�1 is not locally contained in
SO7. HenceC is connected, and� is contained in SO7.

The same argument works when� is locally contained in Spin7, but nowC
can beG2 � h�1i or PGL2 � h�1i. Since these are both contained in Spin7, � is
contained in Spin7.

COROLLARY 2.4.Let � � SO8 be a subgroup which acts semi-simply onW .
Assume that

(1) � contains a regular unipotent elementu.
(2) � is locally contained inG2: the coefficients of the characteristic polynomial

of s 2 � satisfy the equations in Proposition2:2, part (4).

Then� is contained inG2.

Proof. This is a combination of the two results of Proposition 2.3, asG2 =
Spin7\ SO7 in SO8. The proof shows that the Zariski closure of� in O8 is either
G2, or the principal PGL2 in G2 determined byu.
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3. A form ofE7
As mentioned in the introduction, there is a (unique) formH of the split adjoint
group of typeE7, which has rank 3 overQ. This group is split overQp for all
primesp, and acts on the exceptional tube domain overR; it can be constructed
from the Cayley division algebraO [Fr]. We sketch such a construction of the
simply connected double coverHsc overQ, which lies in the exact sequence of
algebraic groups

1! �2 ! Hsc ! H ! 1: (3.1)

The constuction is based on the existence of a faithful representationW of dimen-
sion 56 overQ. We note that the only other simply-connected group of typeE7

admitting a 56-dimensional representation overQ is the split form.
LetJO be the exceptional 27-dimensional Jordan algebra of all 3�3 Hermitian

symmetric matrices overO

A =

0
BB@
a z �y

�z b x

y �x c

1
CCA ; (3.2)

wherea; b; c lie in Q andx; y; z lie in O. The Jordan multiplication is given by the
formula

A � B = 1
2(AB +BA): (3.3)

There is a cubic form det:JO ! Q, defined by

det(A) = abc+ Tr(xyz)� aN(x) � bN(y) � cN(z): (3.4)

Let (A;B;C) be the unique symmetric trilinear form such that [EG]

(A;A;A) = 6 det(A): (3.5)

Let M be the reductive algebraic group overQ of invertible linear mappings
m : JO ! JO which satisfy

det(m(A)) = �(m)det(A); (3.6)

for a similitude�(m) in Q� . The center ofM is Gm , acting by scalar matrices,
and the kernel of the morphism� : M ! Gm is a simply connected group of type
E6 and rank 2 overQ [CS]. On the center,�(a) = a3.

LetN be a unipotent Abelian group overQ, isomorphic toJO. InHsc we have
a maximal parabolic subgroup

Psc =MN; (3.7)
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where the conjugation action ofM onN is given by

mAm�1 = ��1(m)m(A): (3.8)

Note that this action has a kernel�2 (the center ofHsc).
We now define a representation ofPsc on the 56-dimensional module

W = Q � JO � J�O � Q
� ; (3.9)

whereJ�O = Hom (JO;Q), andQ� = Hom (Q;Q ) �= Q. The subgroupM acts on
W by

m(y; Y; Y �; y�) = (�(m)y;m(Y );m�(Y �); ��1(m)y�); (3.10)

wherem� is defined as follows; ifhX;Y �i is the pairingJO � J�O ! Q, we have
hmX;m�Y �i = hX;Y �i for all X 2 JO andY � 2 J�O. One can give complicated
formulas for the action ofN onW [Ki; pg. 143], but since we are in characteristic
0, it suffices to define the action of Lie(N) �= JO. This acts by

X(y; Y; Y �; y�) = (0; yX;X � Y; hX;Y �i): (3.11)

whereX � Y is the element ofJ�O mappingZ to (X;Y;Z).
Using (3.8), one can check that the formulas (3.10) and (3.11) define an action

of Psc onW , which preserves the natural symplectic form

f(x;X;X�; x�); (y; Y; Y �; y�)g

= (xy� � yx�) + (hX;Y �i � hY;X�i): (3.12)

The groupHsc � Sp(W ) is generated byPsc and an elementw of order 4, giving
a simple reflection in the Weyl group which normalizesM (a Levi factor ofPsc).

To definew in Sp(W ), we need to choose a polarizationI of JO with det(I) = 1
andI > 0 in JO 
 R [EG; Ch. 2]. SinceM acts transitively on polarizations over
Q, there is no loss of generality in takingI to be the identity matrix inJO. This
gives a positive-definite bilinear form onJO, defined by

hA;Bi = �(A;B; I) + (A; I; I)(B; I; I)=4: (3.13)

If I is the identity matrix, thenhA;Bi = Tr(AB) = Tr(A � B) = Tr(BA). This
form defines an identificationJO �= J�O. With this identification, we definew, which
depends onI and satisfiesw2 = �1, by

w(y; Y; Y �; y�) = (�y�;�Y �; Y; y): (3.14)

ThenHsc = hPsc; wi in Sp(W ). The elementw acts by inversion on the center
Gm of M , andw2 is an involution in the center ofM , which generates the center
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�2 of Hsc. In the quotientH = Hsc=�2, the image�w of w has order 2, and gives
the Cartan involution of Lie(H) overR.

The adjoint groupH has the maximal parabolic

P = Psc=�2 =MN; (3.15)

with isomorphic Levi factor (M=�2
�=M ), but with a different conjugation action

of M onN �= JO:

mAm�1 = m(A): (3.16)

Note that this action is faithful.
We can use the Coxeter orderR � O to give a model forHsc overZwith good

reduction at all primesp [Gr]. Let JR � JO be the lattice consisting of all elements
with a; b; c in Z, andx; y; z in R. Then

WZ= Z� JR � J�R � Z� (3.17)

is a lattice inW , whereJ�R = Hom(JR;Z) �= JR such that [EG], andZ� = Hom
(Z;Z) �= Z. The stabilizer ofWZgives a desired modelHsc(Z) � Sp56(Z). Then
Lie (Hsc=Z)�2 Lie(H=Z)as lattices in Lie(H). If we normalize the Killing form
so that the determinant of Lie(Hsc=Z) is 2, then Lie(H=Z) is the dual lattice.

4. Dual pairG�G0

We now give two constructions of the dual pairG�G0 = Aut(O) � PGSp6 in H
overQ. The first uses the relative root system, and the second our construction of
H as a group generated byP and �w.

OverQ, the simple groupH has index [Ti; pgs 59–60]

(4.1)

and relative root system� of typeC3. LetS be a maximal split torus of dimension
3 in H. The derived group of the centralizerC(S) (the semi-simple anisotropic
kernel) is isomorphic to the group (see [Gr])

Spin8(O) = f(
1; 
2; 
3) 2 GL(O)3jN(
ix) = N(x);

Tr(
1x � 
2y � 
3z) = Tr(xyz)g: (4.2)

The group has 3 orthogonal representationsV1; V2; V3 of dimension 8, via the action
of 
1; 
2; 
3 onO.
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The 6 long root spaces Lie(H)� (� = �2ei) for S have dimension 1, and
trivial action of Spin8(O). The 12 short root spaces Lie(H)� (� = �ei� ej) for S
have dimension 8, and Spin8(O) acts on Lie(H)�ei�ej by the representationVk,
(i 6= j 6= k).

From this viewpointG is the subgroup of all triples(
; 
; 
) in Spin8(O) with

 in Aut (O). Since
(1) = 1, the restriction of eachVi to G is isomorphic to
Q �V . Hence Lie(H)G� has dimension 1 for all� 2 �, and the centralizer ofG in
H is a split group of typeC3. Since the roots� give a basis for the character group
of S, G0 is of adjoint type, andG0 = PGSp6. Conversely, the centralizer ofG0 is
contained in Spin8(O), and fixes a vector in each 8-dimensional representationVi.
This shows that the centralizer ofG0 is contained inG, hence equal toG.

The following alternative construction of the closed subgroupG�G0 ofH uses
our construction in the previous section. The groupG = Aut(O) is a subgroup of
M � P , via the action on the matrix entriesx; y; z of A in JO. LetU � N be the
group fixed by this action, consisting of matrices with rational entriesx; y; z. Then
U has dimension 6 overQ. We have an embedding ofL = GL3 intoM given by

det(g)�1 gAgt; (4.3)

where det(g) andgt denote the determinant and the transpose of the 3� 3 matrix
g. Note that the restriction of� to L �= GL3 is det(g)�1. The image stabilizes the
subgroupU , and the semi-direct product

Q = LU (4.4)

is a subgroup ofP , commuting withG.
Assume that the polarizationI definingw has rational entries, (for example,

takeI the identity matrix). Then the image�w of w in H commutes withG and
normalizesL. Moreover,

G0 = PGSp6 = hQ; �wi (4.5)

in H. This gives the dual pairG�G0 in H.

3. Real correspondences

LetH(R) be the adjoint algebraic group of typeE7 whose connected component
is the group of conformal transformations of the exceptional symmetric domain.
We have the dual pair

G(R) �G0(R) = Aut(O 
 R) � PGSp6(R) (0.1)

in H(R) with G(R) the compact form ofG2.
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Let �̂ be the minimal representation ofH(R). In this chapter we show that

�jG(R)�G0(R) = �̂�� 
�(�); (0.2)

where the sum is taken over all finite dimensional representations ofG(R) and
�(�) is an irreducible representation whose restriction to Sp6(R) is a sum of
a holomorphic and an anti-holomorphic discrete series representation. The lift
� 7! �(�) is functorial for the inclusion of dual groupsG2(C ) ! Spin7(C ) (note
thatG2 is the stabilizer of a generic vector in the spin-module of Spin7).

1. Minimal representation ofHsc(R)
Let Hsc(R) be the simply connected group of typeE7;3 overR. Its real rank is
3 and the reduced root system isC3. Let ei � ej , (1 6 i < j 6 3) andei + ej ,
(1 6 i 6 j 6 3) be the standard set of positive roots. The root spaces corresponding
to ei+ej, (1 6 i < j 6 3) are 8-dimensional and can be identified withO
R. The
root spaces corresponding to strongly orthogonal 2ei are one-dimensional, hence
we have an embedding

SL2(R) � SL2(R) � SL2(R) � Hsc(R): (1.1)

ChooseKsc(R), a maximal compact subgroup ofHsc(R), such that

Z1(R) � Z2(R) � Z3(R) = Ksc(R) \ SL2(R) � SL2(R) � SL2(R) (1.2)

is a compact maximal Cartan subgroup of SL2(R) � SL2(R) � SL2(R). Let

Z(R) = Ksc(R) \ SL2(R); (1.3)

where SL2(R) � SL2(R)� SL2(R) � SL2(R) is diagonally embedded. Note that
Z(R) �=SO2(R) is the center ofKsc(R), andh�1i � Z(R) is the center ofHsc(R).

We henceforth denote byHsc, Ksc, Z... the complexifications ofHsc(R),
Ksc(R) Z(R)... Leth andk be the Lie algebras ofHsc andKsc. Then

h = p� � k� p+; (1.4)

wherep� are two fundamental 27-dimensional representations of the exceptional
Lie algebrae6 = [k; k] of typeE6. Under the action ofZ1�Z2�Z3, p+ decomposes
as a sum of root spaces
i + 
j , (1 6 i 6 j 6 3).

Let e�; z; e+ be a standard basis of sl(2)� sl(2)� sl(2)� sl(2)� h such that
z spans the Lie algebra ofZ, e� 2 p� ande+ 2 p+.

Let �+ be the highest weight of the irreduciblee6-modulep+. Let E(n) be
the irreducible representation ofe6 with highest weightn�+. Sincek = e6 � C z,
let E(n; k) be the representation ofk such that the restriction toe6 is isomorphic
to E(n) andz acts via the scalark. Let �+ be the irreducible(h;Ksc)-module
corresponding to a holomorphic representation ofHsc(R), withKsc-types [Wl]

�+jKsc = �n>0E(n;2n+ 12): (1.5)

comp4262.tex; 13/10/1996; 12:16; v.7; p.23

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000456731715


176 B. H. GROSS AND G. SAVIN

The annihilator of�+ in the enveloping algebra ofh is Joseph’s ideal. In particular,
the Gelfand–Kirillov dimension of�+ is the smallest amongst non-trivial modules.
There is also an anti-holomorphic module��, contragredient to�+. By (1.5) the
centerh�1i � Z(R) acts trivially on�� and�+.

Let �̂� and�̂+ denote the unitary completion of�� and�+. SinceHsc(R)
andH(R) are related by the exact sequence

1! h�1i ! Hsc(R) ! H(R) ! R�=(R�)2 ! 1; (1.6)

it follows that there exist unique representation�̂ of H(R) such that

�̂jHsc(R) = �̂+ � �̂�: (1.7)

It is precisely this representation that we call the minimal representation ofH(R).

2. Dual pairs
We now describe several dual pairs inh using Jordan algebras. Note that

x � y = 1
2[[x; e

�]; y] (2.1)

gives a Jordan product onp+. Then(p+; �) is isomorphic to the exceptional Jordan
algebra of 3� 3 hermitian matrices

0
BB@
d1 z1;2 �z1;3

�z1;2 d2 z2;3

z1;3 �z2;3 d3

1
CCA ; (2.2)

with coefficients in the octonion algebra overC . Under this isomorphism, the 1-
dimensional root spaces 2
i, (1 6 i 6 3) are given by diagonal matrices such that
dj = 0 if j 6= i, and the 8-dimensional root spaces
i + 
j , (i < j) are given by
off-diagonal matrices such thatzk;l = 0 if fk; lg 6= fi; jg.

Let q+ � p+ be a Jordan subalgebra containinge+. Let

a = Ck(q
+): (2.3)

Assume, conversly, thatq+ is the set of all elements inp+ annihilated bya. Let
u = Ck(a), andq� � p� such thatq+ = [e+; [e+; q�]]. Then

b = q� � u� q+ (2.4)

is the centralizer ofa in b. Obviously, the converse is also true, i.e.a� b is a dual
reductive pair.
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Some of the possible cases are:

dimq+ a b u

1 f4 sl(2) u(1)

3 d4 sl(2)� sl(2)� sl(2) u(1)� u(1)� u(1)

6 g2 sp(6) u(3);

(2.5)

where the subalgebraq+ is given respectively by 3� 3 scalar, diagonal and sym-
metric matrices with coefficients inC .

3. Correspondences
In this section we restrict the representation�+ to the dual pairsA(R) � B(R)
given by (2.5), withA(R) compact.

We start withA(R) = F4(R). The 27-dimensional modulep+ decomposes
1+26, under the action ofF4(R). Let � the highest weight of the 26-dimensional
summand, and letF (n) be the irreducible representation ofF4(R) with highest
weightn�. By Thm. 6.1 in [HPS]

E(n) = �m6nF (m): (3.1)

PROPOSITION 3.2.Consider the dual pairF4(R) � SL2(R). Then

�+jF4(R)�sl(2) = �n�0F (n)
 d(2n+ 12);

whered(n) is the irreducible(sl(2); Z)-module corresponding to the holomorphic
discrete series ofSL2(R) with the minimalZ-typen.

Proof.By (3.1) one can write

�+jF4(R)�sl(2) = �n>0F (n)
 Vn;

whereVn are certain(sl(2); Z)-modules. SinceF (n) appears inE(k;2k + 12)
only for k = n; n + 1; : : :, Z-types ofVn are 2n + 12;2n + 14; : : : and are
one-dimensional. The proposition is proved.

Next, consider the caseA(R) = D4(R). ThenD4(R)-invariant subspaces ofp+

are precisely the root spaces. The three 8-dimensional root spaces are 3 different
fundamental 8-dimensional representations ofD4(R). Let �i, (1 6 i 6 3) be the
highest weight of the fundamental representation given by the root space
j + 
k,
wherefj; kg = f1;2;3g n fig. LetD(a1; a2; a3) be the irreducible representation
of D4(R) with a highest weighta1�1 + a2�2 + a3�3.

PROPOSITION 3.3.Consider the dual pairD4(R) � SL2(R)
3. Then

�+jD4(R)�sl(2)3 = �a1;a2;a3>0D(a1; a2; a3)


d(a2 + a3 + 4)
 d(a1 + a3 + 4)
 d(a1 + a2 + 4);
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whered(n) is the irreducible(sl(2); Z)-module corresponding to the holomorphic
discrete series of SL2(R) with the minimalZ-typen.

Proof.We want to decomposeE(n;2n) with respect to the action ofD4�Z1�
Z2� Z3. Write

E(n;2n) = �(L
n);

whereL is a line bundle on the flag variety. SinceE(1;2) �= p+, we know how
to decomposeE(1;2). Let vi 2 �(L) be highest weight vectors of the three 8-
dimensional representations with the highest weights�i. Letwi 2 �(L) be nonzero
vectors with weights 2
i. Let ai andri (i = 1;2;3), be nonnegative integers such
that

a1 + a2 + a3 + r1 + r2 + r3 = n:

Then

va1
1 v

a2
2 v

a3
3 w

r1
1 w

r2
2 w

r3
3 2 L
n

generates aD4-module isomorphic toD(a1; a2; a3), with aZ1 � Z2� Z3-type

(a2 + a3 + 2r1; a1 + a2 + 2r2; a1 + a2 + 2r3):

Note that different choices ofai andri produce non-isomorphic modules. We claim
that these modules give a complete decomposition ofE(n;2n). Indeed, let

x = n+ 1� (a1 + a2 + a3):

SinceE(n) = �m6nF (m) it follows from Proposition 4.7 that the multiplicity of
D(a1; a2; a3) in E(n;2n) is x(x+ 1)=2. Since

x(x+ 1)
2

= #f(r1; r2; r3)jr1 + r2 + r3 = x� 1g;

the claim follows.
Write

�+jD4(R)�sl(2)+sl(2)+sl(2) = �a1;a2;a3>0D(a1; a2; a3)
 Va1;a2;a3:

Taking into account the additional shift by 12, it follows thatZ1 � Z2 � Z3-types
of Va1;a2;a3 are

(a2 + a3 + 2r1 + 4; a1 + a3 + 2r2 + 4; a2 + a3 + 2r3 + 4);

and they are one-dimensional. The proposition is proved.
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Finally, we consider the caseA(R) = G2(R). Let!1 and!2 be the fundamental
weights forG2, such that!1 is the highest weight of the 7-dimensional representa-
tion. LetW (k1; k2) be the irreducible representation ofG2(R) with highest weight
k1!1 + k2!2.

Note thatB(R) = Sp6(R), and the reduced root system ofH(R) restricts to
a root system of Sp6(R). Also, letU(3;R) be a maximal compact subgroup of
Sp6(R) given by

U(3;R) = Ksc(R) \ Sp6(R): (3.4)

We identify irreducible representations of the groupU(3;R) with their highest
weightsl1
1 + l2
2 + l3
3, (l1 > l2 > l3) with respect to the maximal Cartan
subgroupZ1(R) � Z2(R) � Z2(R).

THEOREM 3.5.Consider the dual pairG2(R) � Sp6(R). Then

�+jG2(R)�sp(6) = �k1;k2>0W (k1; k2)
 d(k1; k2);

whered(k1; k2) is the irreducible(sp(6); U(3))-module corresponding to the holo-
morphic discrete series representation ofSp6(R) with infinitesimal character

(k1 + 2k2 + 3)e1 + (k1 + k2 + 2)e2 + (k2 + 1)e3

and the minimalU(3)-type

(k1 + 2k2 + 4)
1 + (k1 + k2 + 4)
2 + (k2 + 4)
3:

Proof.Write

�+jG2(R)�sp(6) = �k1;k2>0W (k1; k2)
 Vk1;k2:

By [HPS; Theorem 5.4] the infinitesimal character ofVk1;k2 is (k1 + 2k2 + 3)e1+
(k1 + k2 + 2)e2 + (k2 + 1)e3. It is Z-admissible, with positiveZ-types. Hence it
is a direct sum of finitely many unitary lowest weight modules.

LEMMA 3.6. In addition tod(k1; k2) one has the following unitary lowest weight
modules with infinitesimal character(k1+2k2+3)e1+(k1+k2+2)e2+(k2+1)e3:

(1) k2 = 0 andk1 6= 0. There is a module with the minimalZ-type2k1 + 10.
(2) k1 = k2 = 0. There are three modules. Their minimalZ-types are0;6 and10.

Note that the minimalZ-type ofd(k1; k2) is 2k1 + 4k2 + 12, hence it is strictly
bigger then the minimalZ-type of any other modules with the same infinitesimal
character.

Proof. This follows from the classification of unitary lowest weight modules
[EHW].
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By Proposition 4.8,W (k1;0) does not appear inD(a1; a2; a3) unlessk1 6

a1 + a2 + a3. It follows from Proposition 4.2 that the minimalZ-type of Vk1;0

is greater then 2k1 + 12. It follows from the lemma that in all casesVk1;k2 is
a finite multiple ofd(k1; k2). This implies that the minimalZ-type of Vk1;k2 is
2k1 + 4k2 + 12, so by Proposition 3.3, ifW (k1; k2) is contained inD(a1; a2; a3),
then

a1 + a2 + a3 > k1 + 2k2:

Hence, the multiplicity of

(k2 + 4)
1 + (k1 + k2 + 4)
2 + (k1 + 2k2 + 4)
3;

the lowest weight of the minimalU(3)-type ofd(k1; k2) in Vk1;k2, is equal to the
multiplicity of W (k1; k2) in D(k1 + k2; k2;0). And this is one by Proposition 4.8.
Hence the minimalU(3)-type appears with multiplicity one and this implies that
Vk1;k2

�= d(k1; k2).
Let �d(k1; k2) be the contragradient ofd(k1; k2). It corresponds to an anti-

holomorphic representation of Sp6(R). Since

1! h�1i ! Sp6(R) ! PGSp6(R) ! R�=(R�)2 ! 1; (3.7)

there exists unique irreducible discrete series representationD(k1; k2) of
PGSp6(R), which is the unitary completion of

d(k1; k2)� �d(k1; k2): (3.8)

This observation gives a proof of the following.

COROLLARY 3.9.Let �̂ be the minimal representation ofH(R). Then

�̂jG(R)�PGSp6(R) = �̂k1;k2>0W (k1; k2)
D(k1; k2):

The lift

W (k1; k2)! D(k1; k2) (3.10)

is functorial for the inclusion of dual groupsG2(C ) ! Spin7(C ). This is shown in
[HPS].

4. Branching formulas
In this section we work out the branching laws used in the previous section. Let
(a1; : : : ; an) be the standard coordinates [Bu] for the root system of typeBn, with

a1 > : : : > an > 0 (4.1)
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a dominant Weyl chamber. Also, let(b1; : : : ; bn) be the standard coordinates for
the root system of typeDn, with

b1 > : : : > bn�1 > jbnj; (4.2)

a dominant Weyl chamber. Recall that in both cases a dominant weight represents
a highest weight of a finite dimensional representation if the coefficients are in1

2Z

but their differences are inZ.

4.3BranchingBn # Dn. Let�(�) be an irreducible representation ofBn with the
highest weight� = (a1; : : : ; an). Let�(�) be an irreducible representation ofDn

with the highest weight� = (b1; : : : ; bn). Then the multiplicity of�(�) in �(�) is
0 or 1. It is 1 if and only ifai � bi 2 Z and

a1 > b1 > a2 > b2 > : : : > an > jbnj:

4.4BranchingDn # Bn�1. Let�(�) be an irreducible representation ofDn with
the highest weight� = (a1; : : : ; an). Let�(�) be an irreducible representation of
Bn�1 with the highest weight� = (b1; : : : ; bn�1). Then the multiplicity of�(�) in
�(�) is 0 or 1. It is 1 if and only ifai � bi 2 Z and

a1 > b1 > a2 > b2 > : : : > bn�1 > janj:

Let � be the highest weight of the 26-dimensional representation ofF4. Let
F (n) be the irreducible representation with the highest weightn�.

4.5BranchingF4 # B4. The restriction ofF (n) toB4 decomposes with multiplic-
ities 0 or 1. It is 1 only for�(�) with

� = (y + x; x; x; x)

and2x+ y 6 n.
The branching laws 4.3 and 4.4 are well known, and 4.5 is in [Le; Thm. 8]. This

reference also contains proofs of 4.3 and 4.4.
Recall thatD4 has three 8-dimensional representations. Let�i, i = 1;2;3,

be their highest weights. LetD(a1; a2; a3) be the irreducible representation with
highest weighta1�1 + a2�2 + a3�3. In terms of (4.2) this highest weight is

�
a1 +

a2 + a3

2
;
a2 + a3

2
;
a2 + a3

2
;
a2 � a3

2

�
: (4.6)

4.7 BranchingF4 # D4. The representationF (n) decomposes as a sum of
D(a1; a2; a3) with multiplicities

(n+ 1)� (a1 + a2 + a3):
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Proof.We know that the restriction ofF (n) to B4 is a sum of representations
with highest weights

(y + x; x; x; x);

2x + y 6 n. Restricting further down toD4 we get a sum of all representations
with highest weights(u1; u2; u3; u4) such that

y + x > u1 > x > u2 > x > u3 > x > ju4j:

It follows thatu2 = u3 = x and the representation can be written as

D(u1 � x; x� u4; x+ u4);

by (4.6). Now

D(u1 � x; x� u4; x+ u4) = D(a1; a2; a3)

implies that 2x = a2 + a3 andu1 = a1 + x. Sincey + x > u1, we havey > a1.
Hence the multiplicity ofD(a1; a2; a3) in F (n) is the number of integersy such
thaty > a1 andy+ a2+ a3 6 n. Clearly, this number is(n+1)� (a1+ a2+ a3).

PROPOSITION 4.8.

(1) The multiplicity ofW (k1; k2) in D(k1 + k2; k2;0) is 1.
(2) The multiplicity ofW (k1;0) in D(a1; a2; a3), is 0 unlessa1 + a2 + a3 > k1.

Proof. Let �1, �2 and �3 be the fundamental weights forB3 such that�1

is the highest weight of the standard 7-dimensional representation and�3 is the
highest weight of the 8-dimensional spin-representation. LetB(m1;m2;m3) be
the irreducible representation with highest weightm1�1+m2�2+m3�3. In terms
of (4.1), this highest weight is

�
m1 +m2 +

m3

2
;m2 +

m3

2
;
m3

2

�
:

LEMMA 4.9.
(1) The multiplicity ofW (k1; k2) in B(j;0; k2), j 6 k1 + k2, is 0 or 1. It is 1

precisely whenj = k1 + k2.
(2) The multiplicity ofW (k1;0) inB(m1;m2;m3), is0 or 1. It is 1precisely when

m1 +m2 +m3 > k1 > m1 +m2:

Proof. These are two easy, special cases of the formula given by McGovern,
[MG; Thm. 3.4].
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By (4.6) the highest weight ofD(k1 + k2; k2;0) is

�
k1 + k2 +

k2

2
;
k2

2
;
k2

2
;
k2

2

�
:

The branchingD4 # B3 implies thatD(k1 + k2; k2;0) decomposes as a sum of
representations with highest weights

�
j +

k2

2
;
k2

2
;
k2

2

�
;

with j 6 k1 + k2. These areB(j;0; k2) with j 6 k1 + k2. The first statement
follows from the lemma.

Since the highest weight ofD(a1; a2; a3) is given by (4.6), the restriction toB3

consists of representations with highest weights(x; y; z) such that

a1 +
a2 + a3

2
> x >

a2 + a3

2
> y >

a2 + a3

2
> z >

a2� a3

2
:

It follows thaty = (a2 + a3)=2 and these are the representations

B

�
x�

a2 + a3

2
;
a2 + a3

2
� z;2z

�
:

The lemma implies thatk1 6 x + z, and sincex+ z 6 a1 + a2 + a3, the second
statement follows. The proposition is proved.

4. p-adic correspondences

Our goal in this chapter is to understand the restriction of the minimal representation
� of H(Qp) to the closed subgroupG(Qp)�G0(Qp).

The minimal representation of a split, adjoint groupH(Qp) of typeDn or En
is an unramified representation whose Satake parameter is

smin = '

0
@ p1=2 0

0 p�1=2

1
A ; (0.1)

where' is a map

' : SL2(C ) ! Ĥ(C ) (0.2)

corresponding to the subregular unipotent orbit inĤ(C ) = Hsc(C ). The rep-
resentation� restricts to the irreducible representation ofHsc(Qp) constructed
by Kazhdan and Savin in [KS]. On the space of Iwahori-fixed vectors in�, the
Iwahori–Hecke algebra ofHsc(Qp) acts via the reflection representation [Lu].
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1. Parameters
In this section, we give a conjectural decription of the irreducible representations
�
�0 ofG(Qp)�G0(Qp) which occur as quotients of�. This description is given
in terms of the Langlands–Deligne–Lusztig–Vogan parametrization of irreducible
representations, using admissible homomorphisms from Weil–Deligne group of
Qp to the dual group. Even though this parametrization is still conjectural, in the
next section we derive some implications which can be stated independently of the
parametrization. We check some of this implications in Section 3.

We first review the parametrization, forGany semi-simple, split group of adjoint
type overQp . Let Ĝ be the Langlands dual group, sôG(C ) is semi-simple and
simply-connected complex Lie group. The conjectural parameter of an irreducible,
admissible, complex representation ofG(Qp). is a pair('; �), where

' : W 0 ! Ĝ(C ) (1.1)

is an admissible homomorphism of the Weil–Deligne groupW 0 of Qp [B1], and�
is an irreducible complex representation of a finite groupB' associated to'.

We recall that' is a continuous homomorphism of the Weil groupW taking
Frobenius elements to a semi-simple class, together with a nilpotent elementN in
ĝ, the Lie algebra of̂G(C ), with Ad (w)(N) = kwkN: By the Jacobson–Morozov
Theorem, giving a parameter' as in (1.1) is equivalent to giving a continuous,
semi-simple representation

� : W � SL2(C ) ! Ĝ(C ); (1.2)

with

8>>>>>><
>>>>>>:

'(w) = �

0
@w;

0
@ kwk1=2 0

0 kwk�1=2

1
A
1
A

exp(N) = �

 
1;

 
1 1

0 1

!!
:

(1.3)

Associated to', we have the finite group

A' = �0(Cent(�)); (1.4)

where Cent(�) is the algebraic subgroup of̂Gwhich centralizes the image of� and
�0 denotes the corresponding group of connected components. IfZ(Ĝ) is the center
of Ĝ, the inclusionZ(Ĝ) � Cent(') induces a map (not necessarily injective)

Z(Ĝ)! A': (1.5)
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The image is a normal subgroup, and we defineB' as the quotient. Then an
irreducible representation� of G(Qp) should correspond to a pair('; �), where�
is an irreducible representation ofB'.

If G = G2(Qp), thenĜ(C ) = G2(C ), andA' = B'. If G0 = PGSp6(Qp),
thenĜ0(C ) = Spin7(C ) andB'0 is the quotient by the image of�1. The possible
finite groups which arise are given by the following. Let�k denote the cyclic group
of kth roots of 1, andSk the symmetric group onk letters.

PROPOSITION 1.6.

(1) If ' : W 0 ! G2(C ) is a parameter forG = G2, then the groupB' is
isomorphic to�3; S3; or �k2, with 0 6 k 6 3.

(2) If '0 : W 0 ! Spin7(C ) is a parameter forG0 = PGSp6 then the groupB'0
is isomorphic to�k2, with 0 6 k 6 3. If a is the number of distinct orthogonal
representations in the decomposition of the semi-simpleW �SL2(C )-module
V = C 7, andb is the dimension of the subspace ofHom(W;�1) spanned by
the determinants of the orthogonal summands inV , thenk = a� b� 1.

Proof. (1) Examples of subgroups Im(�) of G2(C ) with the given groupsB'
are given by the following table:

Im (�) B'

G2 1

SL3 �3

SO3 S3

SO4 �2

T o h�1i �2
2

T2 o h�1i �3
2

HereT �= GL2
1 is a maximal torus,T2 the subgroup ofT killed by 2, and�1 the

central element in the Weyl group ofT . The latter case (T2 o h�1i �= �3
2) can only

be the image of� whenp = 2. This list exhausts the possible groupsB', as we
will see in the proof of Proposition 1.10.

(2) Examples of subgroups Im(�0) of Spin7(C ) with the given groupsB' are
given by the following table:

Im (�0) A'0 B'0

Spin7 h�1i 1

Spin6 = SL4 �4 �2

T 0 o h�1i �3
2 �2

2

T 02 o h�1i �4
2 �3

2

comp4262.tex; 13/10/1996; 12:16; v.7; p.33

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000456731715


186 B. H. GROSS AND G. SAVIN

Again,T 0 �= GL3
1 is a maximal torus,T 02 the subgroup ofT 0 killed by 2, and�1

the central element in the Weyl group ofT 0. The last case (T 02 o h�1i �= �4
2) can

only be the image of�0 whenp = 2.
To see that these are the only possibilities forB'0 , and to verify the formula for

k, we note that the representationV gives a parameter for Sp6

�'0 : W 0 ! Spin7(C ) ! SO7(C ):

We can compute the component groupA �'0 using the results in [GP; Cor. 7.7], and
find that

A �'0 = B �'0
�= �a�1

2 ;

wherea is the number of distinct orthogonal summands in the semi-simple repre-
sentationV . But we have an exact sequence [GP; pg. 983]

1! B'0 ! B �'0 ! Hom(W;�1);

x 7! det(V x=�1);

sok = a� b� 1 as claimed.
Now let

f : Ĝ(C ) = G2(C ) ! Ĝ0(C ) = Spin7(C ) (1.7)

be the inclusion, well defined up to conjugacy, that realizesG2 as the fixer of
a non-isotropic line in the 8-dimensional spin representation of Spin7. If ' is a
parameter forG, then

'0 = f � ' (1.8)

is a parameter forG0. Moreover,f induces a mapf' : A' ! A'0 . SinceA' = B'
andB'0 is the quotient ofA'0 by the image of�1, we get an induced map

f' : B' ! B'0 : (1.9)

PROPOSITION 1.10.The mapf' (1:9) is surjective, with kernel the Sylow3-
subgroup ofB' (either1 or �3).

Proof. In the absence of the intelligent argument, we can prove this in a case
by case manner, considering the connected component of the image of� inG2(C ),
which is a reductive subroupC. Considering possible normalizers ofC, and their
action onV , we can compareB' with B'0 computed in Proposition 1.6.

For example, assume thatC has rank 2, i.e. it contains the maximal torusT .
ThenC is determined by its root system which is contained in the root system of
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G2. Hence the possibilities forC areG2, SL3, SO4, GL2;s, GL2;l, andT , where
SL3 is spanned by long roots

SO4 = SL2;s � SL2;l=�h�1i

is a group spanned by a pair of perpendicular roots, one short and one long, and
GL2;s and GL2;l are Levi factors of maximal parabolic subgroups ofG2. The
corresponding groupsB' andB'0 are

Im (�) B' B'0

G2 1 1

SO4 �2 �2

N(SL3) 1 1

SL3 �3 1

N(GL2;s) �2 �2

GL2;s 1 1

N(GL2;l) �2 �2

GL2;l 1 1

N(T ) 1 1

T o S3 �3 1

T o (2;2) �2 �2

T o �6 1 1

T o �3 �3 1

T o h�1i �2
2 �2

2

T o (2)s �2 �2

T o (2)s �2 �2

T 1 1

We leave the analysis when the connected component of the image of� has
rank 1 or 0 to the reader to check. The groupB' = S3 arises only when the
image is SO3 � SL3 � G2. In this caseV = 2C 3 � C whereC 3 is the standard
representation of SO3. In particular, it is an orthogonal representation ofW of
determinant 1. Hence,B'0 = �2, and the mapS3 ! �2 is the sign character.

If ' is a parameter forG and'0 = f � ', by Proposition 1.10 we have a
surjective map

f' : B' ! B'0 �= �k2: (1.10)

If �0 is an irreducible representation ofB'0 (i.e. a quadratic character), we obtain
a quadratic character

� = �0 � f' of B': (1.11)
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We can now state the conjecture on the restriction of�.

CONJECTURE 1.13.Let� be the minimal representation ofH(Qp). The repre-
sentation

� 
 �0 = �('; �)
 �0('0; �)

ofG(Qp)�G0(Qp) is a quotient of� if and only if

'0 = f � ';

� = �0 � f':

In this caseHomG�G0(�; � 
 �0) has dimension1.

2. Some consequences
Let� be an irreducible representation ofG(Qp) and�0 an irreducible representation
of G0(Qp). Define

�(�) (2.1)

to be the set of equivalence classes of irreducible representations�0 ofG0(Qp) such
that� 
 �0 is a quotient of�. Similarly, define

�(�0) (2.2)

to be the set of equivalence classes of irreducible representations� of G(Qp) such
that� 
 �0 is a quotient of�. The conjecture 1.14 implies

CONJECTURE 2.3.

(1) Card�(�) 6 1, with equality if the character� ofB' is quadratic.
(2) Card�(�0) 6 1, with equality if the parameter'0 has image in the subgroup

G2(C ) of Spin7(C ).

We write

� $ �0 (2.3)

and say that� corresponds to�0 if

�(�(')) = f�('0)g and �(�(')) = f�('0)g: (2.4)

In particular,� 
 �0 is a quotient of�.
Recall that for each semi-simple conjugacy classs inG2(C ), there is an unram-

ified representation�(s) of G(Qp) with Satake parameters. Similarly, if s0 is a
semi-simple conjugacy class in Spin7(C ), there is an unramified representation
�(s0) of G0(Qp) with Satake parameters0.
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CONJECTURE 2.5.

(1) If s0 = f(s), then�(s) $ �(s0). In particular, the trivial representation1 of
G corresponds to the trivial representation10 ofG0.

(2) Card�(�(s0)) = 0 unlesss0 = f(s) for somes.
(3) The Steinberg representationSt ofG corresponds to the Steinberg represen-

tationSt0 ofG0.

These predictions follow immediately from Conjecture 1.13. For (1) we note
that the parameter of�(s) is a homomorphism':W 0 ! Ĝ(C ) with N = 0, '
trivial on the inertia subgroup and'(Frobp)= s. This hasB' = 1, so� = 1. It
follows that'0 is the parameter of�(s0).

The Satake parameter of the trivial representation is��(p) where �� is the co-
character given by half the sum of positive co-roots. Since the image of the principal
SL2 in G2 under the mapf :G2 ! Spin7 is the principal SL2 in Spin7, we have
f � �� = ��0. Hence the trivial representation 1 ofG should correspond to the trivial
representation 10 ofG0. The same argument shows that the Steinberg representations
should correspond, as those parameters factor through the principal SL2.

The part (1) is true for tempered representations (recall that the representation
�(s) is tempered ifs lies in a maximal compact subgroup). This is shown in [MS].
In the next section we show that 1$ 10, and we verify (2). We also obtain a partial
verification of (3). For example, we show that�(St0) � fStg.

3. Some calculations
We first prove a statement slightly stronger then Conj. 2.5 (2):

PROPOSITION 3.1.Let�(s0) be an unramified representation ofG0(Qp). If �(s0)
is a quotient of�, thens0 = f(s) for somes in G2(C ).

We note that every unramified representation�0 can be realized as a submodule

�0 � IndG
0

�Q �� (3.2)

for some unramified representation�� of GL3. Here �Q = L �U , L �= GL3, is the
maximal parabolic subgroup ofG0, opposite toQ, defined in (3.20), Chapter II. Let

�s = jpj

0
BB@
z1 0 0

0 z2 0

0 0 z3

1
CCA in ĜL3(C ) = GL3(C ) (3.3)

be the Satake parameter of��. Here j � j is a norm onQp , such thatjpj = 1=p.
The factorjpj enters through the normalization of the parabolic induction. The
corresponding modular function� �U of GL3 is

� �U = jdetj: (3.4)
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So if �0 is contained in IndG
0

�Q
��, then the Satake parameter of�0 is

s0 = �sjpj�1 in GL3(C ) � Spin7(C ): (3.5)

The 8-dimensional spin representation of Spin7 restricts to GL3(C ) as

det� C 3 � (C 3)� � (det)�; (3.6)

whereC 3 is the standard representation of GL3(C ), and� denotes dual representa-
tions. Hence the parameters0 fixes a vector in the spin representation (sos0 = f(s)
for somes in G2(C )) if

z1z2z3 = 1 or zi = 1 for somei: (3.7)

By Frobenius reciprocity,

HomG0(�; IndG
0

�Q ��) = HomGL3(� �U ; ��); (3.8)

so it suffices to determine which representations of GL3 appear as a quotient of
� �U , the maximal�U -invariant quotient of�.

To describe� �U we need some notation. LetQ1 andQ2 be the two non-
conjugated maximal parabolic subgroups of GL3 intersecting in the group of lower
triangular 3�3 matrices, with Levi factors GL1�GL2 and GL2�GL1 respectively.
Then

�01(g1; g2) = jg1j
�1jdetg2j

1=2 and �02(g2; g1) = jdetg2j
�1=2jg1j (3.9)

are their modular characters.
Maximal parabolic subgroups ofG(Qp) can be defined as stabilizers of non-

trivial nil subalgebras ofOp = O 
 Qp . A nil subalgebra is a subspace ofOp
consisting of traceless elements with trivial multiplication (i.e. the product of any
two elements is 0). The possible dimensions are 1 and 2. FixV1 � V2, a pair of nil-
subalgebras. ThenP1 andP2, the stabilizers ofV1 andV2, are two non-conjugated
maximal parabolic subgroups ofG, with P1 \ P2 a Borel subgroup. In particular,
Pr has a quotient GLr = GL(Vr). ForP2, this quotient is isomorphic to the Levi
factor. The Levi factor ofP1 is isomorphic to GL2 = GL(V3=V1), where

V3 = fx 2 O j �x = �x; and xV1 = 0g: (3.10)

The action of GL2, the Levi factor ofP1, on V1 is given by det. The respective
modular characters are

�1 = jdetj5=2 and �2 = jdetj3=2: (3.11)
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We fix the above identifications, in particular,Pr �Qr, r = 1;2, has a quotient
isomorphic to

GLr �GLr: (3.12)

PROPOSITION 3.13. [MS; Thm. 5.3]TheG�GL3-module� �U has a filtration

0 = V0 � V1 � V2 � V3 = � �U ;

such that

(1) V1=V0
�= indG�GL3

P2�Q2
(C1

c (GL2))
 jdetj2.

(2) V2=V1
�= indG�GL3

P1�Q1
(C1

c (GL1))
 jdetj2.
(3) V3=V2 = � �N

�= �(M)
 jdetj � 1
 jdetj2.

HereC1
c (GLi) denotes the space of locally constant, compactly supported func-

tions onGLr, r = 1;2. In both cases,Pr�Qr acts through the quotient isomorphic
to GLr�GLr. In (3),�(M) is the minimal representation ofM (the center ofM ,
which coincides with the center ofGL3, acts trivially on�(M)).

COROLLARY 3.14.The possible Satake parameters of unramifiedGL3-quotients
of Vi=Vi�1 are:

(1) jpj(z1; z2;1) if i = 1.
(2) jpj(z1; jpj;1) if i = 2.
(3) jpj(z1; z2; z3) with z1z2z3 = 1, or jpj(jpj2; jpj;1) if i = 3. The latter is the

parameter ofjdetj2.

Proposition 3.1 follows from Corollary 3.14.
Let� be an irreducible representation ofG and�0 an irreducible representation

ofG0. We now explain how Proposition 3.13 can be used to obtain an upper bound
on�(�0) and a lower bound on�(�).

Assume that�0 is a submodule of IndG
0

�Q
(��), where�� is a representation of GL3.

If � is in�(�0), then by the Frobenius reciprocity

HomG�G0(�; � 
 IndG
0

�Q (��)) �= HomG�GL3(� �U ; � 
 ��); (3.13)

� 
 �� is a quotient of� �U . Hence, if we can determine all representations� of
G such that� 
 �� is a quotient of� �U , then we have an upper bound on�(�0).
Conversly, if� 
 �� is a quotient of� �U , for some��, then�(�) is not empty, for it
contains a subquotient of IndG

0

�Q
(��) by (3.13).

To illustrate this principle, we prove

PROPOSITION 3.16. 1$ 10.
Proof.We first prove the following lemma.
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LEMMA 3.17.

(1) �(1) is not empty.
(2) �(10) � f1g.

Proof.By Proposition 3.13, 1
jdetj2 is a quotient of� �U . Hence by (3.15)�(1)
is not empty. On the other hand

10 � IndG
0

�Q
�1;

where�1 is the trivial representation of GL3. Its Satake parameter is

0
BB@
jpj�1 0 0

0 1 0

0 0 jpj

1
CCA = jpj

0
@ jpj�2 0 0

0 jpj�1 0
0 0 1

1
A :

Comparing with Corollary 3.14, we see that� 
 �1 can be only a quotient of

V1=V0 = indG�GL3
P2�Q2

(C1
c (GL2))
 jdetj2:

SinceC1
c (GL2) is the regular representation of GL2, � 
 jdetj�2 is a quotient of

IndGP2
(�)
 IndGL3

Q2
(��);

for some irreducible representation� of GL2. This implies that�� = jdetj�3. Hence
� = jdetj3 = �2

2. Since 1 is unique quotient of

IndGP2
(�2

2);

it follows that� �= 1. The lemma is proved.
Let �U2 be the unipotent radical of�P2, the maximal parabolic ofG, opposite to

P2. Since� �U2
is given by [MS; Thm. 7.6], we can prove a statement complementary

to Lemma 3.17.

LEMMA 3.18.

(1) �(10) is not empty.
(2) �(1) � f10g.

The two lemmas combined imply the proposition.
We finish this section with a discussion on Steinberg representations.

PROPOSITION 3.19.� (St0) � fStg.
Proof.The representation St0 is unique submodule of

IndG
0

�Q ( �St
 jdetj2);

comp4262.tex; 13/10/1996; 12:16; v.7; p.40

https://doi.org/10.1023/A:1000456731715 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000456731715


MOTIVES WITH GALOIS GROUP OF TYPEG2 193

where �St is the Steinberg representation of GL3. Again, if �
 St0 is a quotient of
�, then by (3.15)� 
 ( �St
 jdetj2) is a quotient of� �U . However, it can not be a
quotient ofV3=V2, because the central character of( �St
 jdetj2) is j � j6, and the
central character of�M 
 jdetj2 is j � j3. Also, it can not be a quotient ofV2=V1,
because the Steinberg representation is generic. Hence�
 ( �St
 jdetj2) must be a
quotient ofV1=V0. So as in the proof of Lemma 3.17,� 
 �St must be a quotient of

IndGP2
(�)
 IndGL3

Q2
(��);

for an irreducible representation� of GL2. It follows that �� is the Steinberg
representation of GL2. Hence� is also the Steinberg representation. SinceSt is
unique quotient of

IndGP2
(�);

the proposition follows.
Again, in the same fashion using� �U2

, we can prove that if�0 is aunitarizable
�-lift of St then

�0 �= St0: (3.20)

As we shall see in the next chapter, the�-lift of a form in A (StS), (S not empty)
will be cuspidal, hence all its local components must be unitarizable. So (3.20)
implies that the lift is Steinberg at all places inS.

5. Global correspondences

LetH be the adjoint group of typeE7, defined and of rank three overQ. Kim [Ki]
has constructed a square-integrable modular form on the exceptional hermitian
domain which gives an automorphic realization

�: 
p �p ! L2(H(Q)nH(A )) (0.1)

where�p is the minimal representation ofH(Qp), and�1 is the space ofK-finite
vectors in the irreducible unitary representation�̂ of H(R), studied in Chapter 3.

In view of the local results, it is of great interest to study the lift of automorphic
forms fromG toG0 via the kernel constructed by Kim. Let� = �(
pfp) for some

pfp 2 
p�p. Let � be an automorphic representation ofG = Aut(O). Let� be
a form in�. Define�, a holomorphic form onG0 by

�(g0) =

Z
G(Q)nG(A)

�(gg0)�(g) dg: (0.2)

The integral converges, because we are integrating two smooth functions over a
compact set.
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Let�0 be a cuspidal automorphic representation ofG0. We say that�0 is a� lift
of � ifZ

G0(Q)nG0(A)
�0(g0)�(g0) dg0 (0.3)

is not zero for some� and�0 in �0. The integral (0.3) converges because�0 is
rapidly decreasing at cusps, and� is of moderate growth. Hence (0.2) and (0.3)
define a linear functional on

�
 � 
 �0: (0.4)

If this functional is not trivial, then local components of� and�0 are related by the
local correspondences studied in Chapters 3 and 4.

The existence of�0 depends on the affirmative answer to these two questions:

(1) Under which conditions is the form� cuspidal?
(2) Under which conditions is the form� nonzero?

To answer these questions we study the Fourier expansion of� along the
unipotent radicalU of the Siegel parabolic subgroup ofG0 = PGSp6. Note that the
Fourier coefficients are parametrized by ternary quadratic forms. The holomorphic
form� is cuspidal, if the Fourier coefficients corresponding to degenerate forms are
zero [An; pg. 78]. We show that� is cuspidal if a local component of� is generic,
i.e. it admits a nonzero Whittaker functional. For example, if� corresponds to a
modular form inA("p), (5.3) in Chapter 1, then the local component at the place
p has a nonzero Whittaker functional. This gives a fairly satisfactory answer to
(1). On the other hand,L(Q)-conjugacy classes (L is the Levi factor of the Siegel
parabolic) of non-degenerate Fourier coefficients are parametrized by quaternion
algebras. LetD be a quaternion subalgebra ofO (the class of Fourier coefficients
is zero ifD
R is not definite). LetC be the centralizer inG ofD. It is isomorphic
to the group of norm one elements inD. Then we show that the Fourier coefficient
of � in the conjugacy class parametrized byD is nonzero if and only if the integral
of the form� overC is nonzero.

This result has a striking similarity to the following well known classical result
[Shn] and [Wa]: LetPD� be the automorphism group ofD. Then one has a dual
pair

PD� � SL2 � Sp6

and one can use the Weil representation of~Sp6 to lift automorphic forms from
PD� to ~SL2. The conjugacy classes of non-degenerate Fourier coefficients on~SL2

are parametrized by quadratic algebras. LetK be a quadratic subalgebra ofD.
Fix an automorphic form onPD�. The Fourier coefficients (the conjugacy class
parametrized byK) of the lift are nonzero if and only if the integral of the form over
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the centralizer inPD� of K is nonzero. Again, the class of Fourier coefficients is
zero ifK can not be embedded intoD.

We finish this chapter by showing that the two modular forms forG constructed
in Chapter I lift non-trivially toG0.

1. Kim’s form
In this section we recall few results from [Ki]. LetO1 = O 
 R and letJ+O1 be
the cone of positive definite matrices inJO1 . The exceptional symmetric domain
D+ is the set

D+ = fZ = X + iY j X in JO1 and Y in J+O1g: (1.1)

The group of holomorphic transformation ofD+ is isomorphic toHsc(R)=h�1i,
the connected component ofH(R).

Let f0
1 be a nonzero vector in the one-dimensional minimalK-type in�+

1,
and letf0

p (p is a finite prime) be the spherical vector in�p. Kim has constructed
a modular formF onD+ of weight 4 and level 0, which corresponds to�(
pf0

p).
Moreover, he has obtained a Fourier series decomposition

F (Z) = 1+ 240
X
T2JR

aT e2�iTr(T�Z); (1.2)

whereJR is the set ofA in JO with entries inR. A coefficientaT is zero unless
the rank ofT is 1, and it is in the closure of the coneJ+O1 . In this case

aT =
X
djc(T )

d3; (1.3)

wherec(T ) is the largest integer such thatc(T )�1T is in JR. In particular,aT > 0.

2. Local theory
In this section all objects are overQp . As in Chapter 2, Section 3, letP = MN
be the maximal parabolic subgroup ofH such thatM is the group of isogenies of
the determinant form on the exceptional Jordan algebraJOp , andN �= JOp as an
M -module. Let� be the isogeny character ofM defined by (3.5) in Chapter 2.

Let  be a non-trivial character ofQp . Let A be an element inJOp . Define a
character A of N by

 A(B) =  (Tr(A � B)); (2.1)

whereB 2 JOp
�= N . A nonzero elementA in JOp has rank 1 if

A2 = Tr(A)A: (2.2)

Let 
 be the set of elements of rank 1. We will need the following result [MS;
Thm. 1.1].
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PROPOSITION 2.3.The minimal representation� ofH fits into the sequence of
P -modules

C1
c (
) � � � C1(
);

whereC1(
) denotes the space of locally constant functions on
 andC1
c (
) is

the subspace of compactly supported functions. Moroever
(1) if f 2 C1(
), then(

�(n)f(X) =  X(n)f(X); n 2 N �= JOp

�(m)f(X) = j�(m)j2f(( ~m(X)); m 2M;

where~m(X) is defined by

Tr ( ~m(X) � Y ) = Tr(X �m(Y ));

for all Y in JOp .

(2) �=C1
c (
) = �N ;

where�N is the maximalN -invariant quotient of�.

Let (�;E) be a smoothN -module. DefineEN; A to be the quotient ofE by the
subspaceE(N; A) spanned by the elementsf�(n)v �  A(n)vjn 2 N; v 2 Eg.
Since the functorE  EN; A is exact [BZ], Proposition 2.3 implies the following.

COROLLARY 2.4.LetA be a non-zero element inJO. Then

dim�N; A 6 1:

It is 1 if and only if the rank ofA is 1. In this case, the dual of�N; A is spanned
by ‘evaluation atA’.

3. Fourier coefficients
Fix  , a non-trivial character ofA =Q , with conductor

Q
p Zp. LetA 2 JQ. As in

the previous section we define a character A of N(A ).
For a function� = �(
pfp), define the Fourier coefficient�A by

�A(g) =

Z
N(Q)nN(A)

�(ng) A(n) dn: (3.1)

Corollary 2.3 implies that�A(g) = 0 if A has rank> 1.
We consider the Fourier expansion of� defined by (0.2) alongU , the unipotent

radical of the Siegel parabolic ofG0. We identify U(Q) with the set of 3� 3
symmetric matrices with coefficients inQ. LetB be an element inU(Q).Then

�B(1) =
Z
U(Q)nU(A)

Z
G(Q)nG(A)

�(ug)�(g) B(u) dg du: (3.2)
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Write �(g) =
P
rkA61 �A(g) and substitute into the formula for�B(1). Then

�B(1) =
Z
G(Q)nG(A)

X
 AjU(A)= 

�1
B

�A(g)�(g) dg: (3.3)

LEMMA 3.4. The groupG(Q) acts transitively on the set of all rank-one elements
A in JO �= N(Q) such that

 AjU(A) =  �1
B :

Proof.After conjugatingB with an element inL(Q) �= GL3(Q), we can assume
thatB is given by a diagonal matrix:

B =

0
BB@
a 0 0

0 b 0

0 0 c

1
CCA :

Let

A =

0
BB@
d �z y

z e �x

�y x f

1
CCA ;

such that AjU =  �1
B . Then

d = �a; e = �b; f = �c;

x = �x; y = �y; z = �z:

SinceA is rank-one, we haveA2 = Tr(A)A and this implies

x2 = �bc; y2 = �ca; z2 = �ab;

yz = �ax; zx = �by; xy = �cz:

We have four cases:

(1) a = b = c = 0. Thenx2 = y2 = z2 = 0. SinceO is a division algebra, this
implies thatx = y = z = 0. HenceA = 0 is the only possibility.

(2) a 6= 0, b = c = 0. Then againx2 = y2 = z2 = 0, andA = �B is the only
possibility.
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(3) ab 6= 0 butc = 0. Thenx2 = y2 = 0. Thereforex = y = 0. Sincez2 = �ab,
K = Q(z) is a quadratic subalgebra ofO. By a theorem of Jacobson [J3],G(Q)
acts transitively on the set of tracelessz such thatz2 = �ab. The stabilizer of
a point is isomorphic toSU(K?) = SUK3 . This form of SL3 is compact over
R, quasi-split for all finite primes, and split byK.

(4) abc 6= 0. In this casex; y and z are standard generators of a quaternion
subalgebraD of O . By a theorem of Jacobson [J3],G(Q) acts transitively on
the set of triples(x; y; z). The stabilizer of a point is isomorphic to the group
of norm one elements inD.

Finally, note thatA will exist only if B is a semi-definite matrix. The lemma is
proved.

Assume thatB = 0. The lemma implies that

�0(1) =
Z
G(Q)nG(A)

�0(g)�(g) dg: (3.5)

Since�0(1) = �0(m) for anym 2 [M(A );M(A )] (the Fourier coefficienta0 is
constant in the Kim’s formula), andG(A ) � [M(A );M(A )],

�0(1) = �0(1)
Z
G(Q)nG(A)

�(g) dg: (3.6)

Remark. Ginzburg, Rallis, and Soudry have constructed in [GRS1] an automor-
phic representation of the split groupE7;7(A ), whose local components are the
minimal representations. Moreover, they have shown that the constant term along
the unipotent radical of theE6;6-maximal parabolic is a sum of two automorphic
representations of[M(A );M(A )] = E6;6(A ): the trivial representation, and a rep-
resentation whose local components are the minimal representations. In the case of
E7;3(A ), the latter summand can not appear, because the local componentE6;2(R)
of [M(A );M(A )] has no minimal representation.

Now assume thatB 6= 0. FixA0, a representative of the orbit. SinceA0 andnA0

(n 2 Z) are in the sameL(Q)-orbit, we shall assume that the entries ofA0 lie inR,
the maximal order ofO. LetA be the composition algebra generated by the entries
of A0. Let

C(Q) = CG(Q)(A): (3.7)

Then

�B(1) =
Z
C(Q)nG(A)

�A0(g)�(g) dg: (3.8)

Recall that� = �(
pfp) and we fixf1. The map

� 7! �A0(1) (3.9)
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defines a linear functional onC f1 
 (
p6=1�p) which by the local uniqueness
(Corollary 2.3) must be a product of local functionals, i.e. evaluations atA0. There-
fore, there exists a nonzero constantc such that

�A0(1) = c
Y
p6=1

fp(A
0): (3.10)

We have to say a word or two about the above ‘infinite’ product. Letf0
p 2 �p be

the spherical vector. Note thatf0
p (A

0) 6= 0. This follows from the Kim’s formula,
which says that�A0(1) 6= 0 if fp = f0

p for all p, and the coefficients ofA0 are in
R. We normalizef0

p so thatf0
p(A

0) = 1, hence the above product is always just a
finite product.

Let g = g1gf be an element inG(A ), whereg1 is in G(R) andgf in G(Q̂ ).
Arguing as before

�A0(g) = c(g1)
Y
p6=1

fp(g
�1
p (A0)); (3.11)

wherec(g1) is a constant depending ong1. It follows that�A0(g) is C(Q̂ )-left
invariant. Since it is alsoC(Q)-invariant, andC(Q)C(Q̂ ) is dense inC(A ) by
the weak approximation [Kn], it follows that�A0(g) isC(A )-left invariant. Hence,
from (3.8)

�B(1) =
Z
C(A)nG(A )

�A0(g)P
C
� (g) dg; (3.12)

where

PC� (g) =

Z
C(Q)nC(A)

�(vg) dv: (3.13)

4. Non-vanishing and cuspidality
We first give a criterion for non-vanishing of non-degenerate Fourier coefficients.
Every 3� 3 symmetric isL(Q)-conjugated to a diagonal matrix. Let

B =

0
BB@
a 0 0

0 b 0

0 0 c

1
CCA in U(Q) (4.1)

be of rank three, i.e.abc 6= 0. LetD be a quaternion algebra spanned by 1 and
tracelessx, y, andz, subject to the following relations

x2 = �bc; y2 = �ca; z2 = �ab

yz = �ax; zx = �by; xy = �cz:
(4.2)
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ReplacingB with another diagonal matrix in the same conjugacy class amounts to
rescaling and permuting the generatorsx; y andz. In particular, genericL(Q)-orbits
are parametrized by quaternion algebras.

Henceforth, we assume thatD is contained inO (this is possible iffB is a
definite matrix). In particular,x; y andz are traceless octonions. Then

A0 = �

0
BB@
a z �y

�z b x

y �x c

1
CCA (4.3)

is a rank one matrix inJO such that A0 jU =  �1
B . Again, there is no harm in

assuming that the entries ofA0 are inR, the maximal order inO.
Let � be an automorphic representation ofG. Fix a form� in �. LetS be a set

of finite places such that ifp 62 S, then

8>><
>>:
� isG(Zp)-invariant;

Dp is the algebra of 2� 2 matrices;

a; b; care not divisible byp:

(4.4)

PROPOSITION 4.5.LetC be the centralizer ofD in G. Then the following are
equivalent:

(1) PC� 6= 0, and
(2) �B(1) 6= 0 for a choice of� = �(
pfp), with fp = f0

p for all p 62 S.

In particular, if PC� 6= 0, then� is unramified for allp =2 S.

Proof. Obviously, if PC� = 0 then�B(1) = 0 for any choice of�, by (3.12).
Assume thatPC� 6= 0, and let�0 = �(
pfp), such that

(1) f1 = f0
1, a vector in the minimal ‘K-type’ of�+

1.
(2) If p 62 S, thenfp = f0

p (H(Zp)-invariant vector).

LEMMA 4.6. Let QS =
Q
p2S Qp . If g 2 G(A ), we writeg = g1gSg

S where
g1 2 G(R), gS 2 G(QS ) and gS 2

Q
p62S G(Qp). Then there exists a nonzero

constantc, such that for everyg 2 G(A )

�0
A0(g) = cfS(g

�1
S (A0))

Y
p62S

�p(gp);

wherefS = 
p2Sfp, and�p is the characteristic function ofC(Zp)nG(Zp) where
C(Zp) = C(Qp) \ G(Zp). Note that, sinceDp is split,C(Qp) is isomorphic to
SL2(Qp).
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Proof.By (3.11) we have

�0
A0(g) = c

Y
p6=1

fp(g
�1
p (A0)):

In this case, however, the constantc does not depend ong1 becausef0
1 isG(R)-

invariant.
Let gp 2 G(Qp) such thatf0

p (g
�1
p (A0)) 6= 0. Letx0; y0; z0 be the off-diagonal

terms ofg�1
p A0. Sincef0

p is N(Zp)-invariant, it follows from Proposition 2.3 (1)
thatf0

p is supported inJRp = JR 
 Zp, hencex0; y0; z0 2 Rp.
ConsiderR=pR, the octonion algebra overZ=pZ. The projections of(x; y; z),

the off-diagonal terms ofA0, and(x0; y0; z0) ontoR=pR areG(p)-conjugated by the
theorem of Jacobson. It follows from Hensel’s lemma that(x; y; z) and(x0; y0; z0)
areG(Zp)-conjugated. Therefore, the function

gp 7! f0
p (g

�1
p (A0))

is supported inC(Zp)nG(Zp) � C(Qp)nG(Qp). Sincef0
p isG(Zp)-invariant,

f0
p (g

�1
p (A0)) = f0

p(A
0) = 1

for gp in G(Zp). The lemma follows.
Let Y be a finite collection of elementsni in N(R), together with a collection

of numbersci. Define

�Y (g) =
X
i

ci�
0(gni):

Obviously

�YA0(g) =
X
i

ci A0(g1nig
�1
1 )�0

A0(g
1):

Furthermore, recall that x(y) =  (Tr(x � y)) =  y(x), so

�YA0(g) =
X
i

ci ni(g
�1
1 (A0))�0

A0(g
1);

and

�YA0(g) = c
X
i

ci ni(g
�1
1 (A0))fS(g

�1
S (A0))

Y
p62S

�p(p)

by Lemma 4.6.
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In general,�Y is not a ‘K-finite’ vector. Still, it is a smooth function on
H(Q)nH(A ), and we can use it to define a function� on G0 using the formu-
la (0.2). By (3.12)

�B(1) =
Z
C(A)nG(A )

�YA0(g)P
C
� (g)dg:

Substituting the expression for�YA0 , and using thatPC� isG(Zp)-invariant for every
p 62 S,

�B(1) = c

Z
C(R�QS)nG(R�QS)

X
i

ci ni(g
�1
1 (A0))fS

(g�1
S (A0))P�(g1gS) dg1 dgS

Y
p62S

�p;

where

�p =

Z
SL2(Qp)nG2(Qp)

�p dgp =
#G2(p)

#SL2(p)p11 = (1� p�6):

The infinite product is��1
S (6), and therefore nonzero. Letp be a prime inS. By

Proposition 2.3,fp can be any compactly supported, locally constant function on
the set of rank one matrices inJOp , hence the integral overC(QS )nG(QS ) will
be nonzero for a suitable choice offS . SinceS(R)nG(R), theG(R)-orbit of A0,
is compact, by the Stone–Weierstrass theoremf

P
i ci nig is a dense family of

continuous functions. Hence the integral overC(R)nG(R) can be arranged to be
non-zero, too.

Since

�Y =
X
n2Z

�Yn

in locally uniform convergence of smooth functions onH(Q)nH(A ) where�Yn
belongs to then-th ‘K-type’ of �1, at least one of these summands has to produce
a nonzero�, with a non-trivial Fourier coefficient atB. The proposition is proved.

Next, let

B =

0
BB@
a 0 0

0 b 0

0 0 0

1
CCA in U(Q) (4.7)

be of rank two, i.e.ab 6= 0. LetK = Q(z) be a quaternion subalgebra ofO, such
thatz is traceless andz2 = �ab.

PROPOSITION 4.8.LetC be the centralizer ofK in G. Then the following are
equivalent:
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(1) PC� 6= 0, and
(2) �B(1) 6= 0 for a choice of�.

Proof.Analogous to the proof of Proposition 4.5. One also needs non-vanishing
of a special value of the zeta-function��, where� is the character ofA � corre-
sponding toK via class-field theory. This is provided in [EG].

COROLLARY 4.9Let� = 
̂v�v � L2(G(Q)nG(A )) be an irreducible automor-
phic representation. Assume that:

(1) �1 �= W (k1; k2) 
 C , with k2 6= 0, or there exists a finite primep such that
�p has a Whittaker functional.

(2) There exists� 2 � andD, a quaternion subalgebra ofO , such thatPC� 6= 0.

Then�(�) contains a non-trivial cusp form onG0, unramified at all placesp 62 S,
whereS is given by(4.4).

Proof.The second condition and Proposition 4.5 imply that� is non-zero, and
unramified outsideS.

To show cuspidality we need to show that�B = 0 for anyB of rank less then
or equal to 2. Assume that the rank is 0 or 1. The first condition implies that the
� is not isomorphic to the trivial form onG. Hence the period overG is 0. This
implies that�B is also 0, by (3.6) and (3.12).

To show vanishing forB of rank 2, we have to show that SU3-periods vanish,
by Proposition 4.8. Assume not. Then each local component of� has a non-
trivial SU3-invariant functional. This means that�1 has anSU3(R)-fixed vector,
and by the Frobenius reciprocity,(�p)�, the contragredient of�p, is a quotient of
C1
c (G(Qp)=SUK3 (Qp)). By the branching lawG2 # A2 [Sa2], the representation

W (k1; k2) has an SU3(R)-fixed vector iffk2 = 0. Also, a genericp-adic represen-
tation can not be a quotient ofC1

c (G(Qp)=SUK3 (Qp)), in view of the following.

LEMMA 4.10.LetF be ap-adic field, andK � O
F a quadratic subalgebra. Let
SU(K?) = SUK3 be the centralizer ofK inG = Aut(O 
F ). Then theG-module

C1
c (G=SUK3 )

does not have a Whittaker functional.
Proof. Let B � G be a Borel subgroup. The spaceC1

c (G=SUK3 ) has aB-
invariant filtration with succesive quotientsC1

c (O), whereO runs over the finite
set ofB-orbits onG=SUK3 . We need to show that each of the subquotients does
not have a Whittaker functional, so our task is to computeB-orbits onG=SUK3 , or
equivalently, SUK3 -orbits onG=B.

LetM2(F ) be the algebra of 2� 2-matrices overF , with involution 
a b

c d

!
=

 
d �b

�c a

!
:
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ThenO 
 F is isomorphic to the algebraM2(F )�M2(F ) with multiplication

(a; b)(a0; b0) = (aa0 +�b0b; b0a+ b�a0):

Using this realization ofO
F , it is easy to compute SUK3 -orbits onG=B. Assume,
for example, thatK �= F �F , the subalgebra of diagonal matrices inM2(F ). Then
SUK3 = SL3(F ). LetV be the space of traceless elements inO 
 F , then

V = V3 � V �
3 �K0;

under the action of SL3(F ). HereV3 is the standard representation of SL3(F ), and
K0 = K \ V . The setG=B can be identified with partial flags

V1 � V2 � V

consisting of 1 and 2-dimensional spaces with trivial octonion multiplication. We
note thatV2 is always contained in the 3-dimensional space

V1� = fx 2 V jx � V1 = 0g:

We have three different cases.

(1) The group SL3(F ) acts transitively on partial flagsV1 � V2 such thatV1 � V3.
Indeed, SL3(F ) acts transitively on lines inV3, and the stabilizer of a lineV1

is a maximal parabolic subgroup. Its Levi factor GL2(F ) acts transitively on
the 2-dimensional space

V1�=V1:

By the same argument, SL3(F ) acts transitively on partial flags such that
V1 � V �

3 .
(2) The group SL3(F ) acts with two orbits on partial flagsV1 � V2 such that

V1 � V3 � V �
3 , but not contained inV3 or V �

3 . Indeed, in this case

V1 = F (x+ y) � V3 � V �
3 ;

wherex2 = xy = y2 = 0, and we have two orbits, depending whether

V2 = Fx+ Fy = V1� \ (V3 � V �
3 )

or not.
(3) The group SL3(F ) acts transitively on partial flagsV1 � V2 such thatV1 is not

contained inV3 � V �
3 . Indeed, SL3(F ) acts transitively on suchV1, and the

stabilizer is SL2(F ), which acts transitively on the 2-dimensional space

V1�=V1:

Next, letB be a Borel subgroup fixing a partial flagV1 � V2. Its short simple
root group acts byx 7! x+b onV2=V1 and its long simple root group byx 7! x+b
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onV1�=V2. Now, it is a simple matter to check that in each caseB0 = B\SL3(F )
will contain 1-dimensional subgroup acting byx 7! x + b onV2=V1 or V1�=V2.
Hence,C1

c (B=B0) does not have a Whittaker functional, and this implies the
lemma.

5. Examples
We prove the non-vanishing of the�-lifts of the automorphic representations�
constructed in Proposition 7.7 and Proposition 7.12 of Chapter 1.

LetD be a definite quaternion algebra overQ. Then theQ algebraD�Dv with
multiplication

(a+ bv)(a0 + b0v) = (aa0 � �b0b) + (b0a+ b�a0)v (5.1)

is a definite octonion algebra, hence it is isomorphic to the Cayley’s octonion
algebraO . ThusD embeds inO = D�D?, and if we fix an elementv inD? with
v2 = �1, we get an isomorphism of the subgroupC ofG = Aut(O) fixingD with
D�
N=1, the group of norm-one elements inD

d(a+ bv) = a+ (db)v; d �d = 1: (5.2)

The subgroup SO4(D) = f(d; d0) 2 D� �D� j Nd = Nd0g=�Q� of G acts
onO as follows

(d; d0)(a+ bv) = d0s(d0)�1 + (db(d0)�1)v: (5.3)

In particular, it stabilizesD � O , and containsC as the subgroupf(d;1)g. The
group SO4(D) is the centralizer inG of the involutioni(a+ bv) = a� bv of O.

Now supposeD is the algebra of Hamilton’s quaternions, ramified at 2 and1.
We will show the following.

PROPOSITION 5.4.There is an embedding ofD into O such that

C(A ) = C(Q) � C(R) � (C(Q̂ ) \K(2));

whereK(2) is the subgroup of elements inG(Ẑ) congruent to1 mod 2.
Proof.First some facts about Hamilton quaternions, independent of octonions.

It has the maximal orderR defined by Hurwitz

R = Zi� Zj� Zk� Z

�
1+ i+ j + k

2

�
;

with unit group

R� =

�
�1;�i;�j;�k;

�1� i� j � k

2

�
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of order 24. This order gives a model forC overZ, with C(Z) = R� and bad
reduction at 2. Forp odd,C(Zp) is isomorphic to SL2(Zp).

Forp = 2, letR2 = R
 Z2 be a maximal order inD2 = D 
 Z2. Then

C(Z2) = (R�2 )N=1 = C(Q2) = (D�
2 )N=1:

The element$ = (1+ i) is a uniformizing element inR2, and we have a filtration
by normal subgroups:

(R�2 )N=1 �3 (1+$R2)N=1 �(2;2) (1+$2R2)N=1 �2 (1+$3R2)N=1 �(2;2) : : : ;

where�(2;2), for example, denotes that the quotient is isomorphic to the Klein
four-group.

We have

R� \ (1+$R2)N=1 = h�1;�i;�j;�ki;

R� \ (1+$2R2)N=1 = h�1i;

R� \ (1+$3R2)N=1 = 1:

Since the global units lie in distinct cosets of(R�2 )N=1=(1+ $3R2)N=1, and
the latter group has order 24, we obtain a direct product decomposition

C(Z2) = R� � (1+$3R2)N=1:

The mass formula (of Eichler) gives

C(A ) = C(Q)(C(R) � C(Ẑ));

with intersectionC(Z). Hence we have a direct product

C(A ) = C(Q) �

0
@C(R) � (1+$3R2)N=1�

Y
p6=2

C(Zp)

1
A :

To finish the proof of the proposition, we need to find an embedding ofD in O

such that

C(Q̂ ) \K(2) = (1+$3R2)N=1�
Y
p6=2

C(Zp):

LetR be the ring of integral octonions constructed by Coxeter, soK(2) is the
subgroup of Aut(R
 Ẑ) which acts trivially onR=2R. We embed the HurwitzR
into the CoxeterR via i 7! e1, j 7! e2, k 7! e4. If we takev = e3 then

O = D �D? and R �(2;2) R�R?
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The general element ofR has the form

1
2(a+ be3);

with a; b in $R,$ = (1+ i) = (1+ e1). If we write

a = $�;

b = $�;

then for the above to lie inO, we need the congruence

� � ��(mod$R):

It is now a simple matter to check that(1+$R2)N=1�
Q
p6=2C(Zp) is the sub-

group ofG(Ẑ) fixingD. Similarly, (1+$3R2)N=1�
Q
p6=2C(Zp) is the subgroup

fixing D and acting trivially onR=2R. The proposition is proved.

PROPOSITION 5.5.Let� be the automorphic representation ofG given in Propo-
sition7:7 in Chapter I.(�1 is isomorphic to the irreducible64-dimensional repre-
sentation ofG(R) of highest weight�, �2 is the Steinberg representation ofG(Q2)
and�p is unramified for allp 6= 2). Then� lifts to a cusp form�0 onG0, with:

(1) �01 is a holomorphic discrete series representation with infinitesimal character
(6;4;2).

(2) �0p, for p 6= 2 is unramified with Satake parameter inG2(C ) � Spin7(C ).
(3) �02 is the Steinberg representation.

Proof.We will show that the period overC given by Proposition 5.4 is non-zero
for aK(2)-fixed function in�. Using the direct product decomposition

G(Q)nG(A ) = G(R) �K(2);

one identifies the space ofK(2)-fixed vectors in� with the space of matrix coeffi-
cients ofW onG(R). By Proposition 5.4 we have to show that there exists a matrix
coefficient ofW such that its integral overC(R) is not zero.

Every finite-dimensional representation ofG(R) has aC(R) �= SU2(R)-fixed
vector. Indeed, we have a chain of groups

SU2 � SU3 � G;

where SU3 is the stabilizer inG of a quadratic subalgebra ofD, for exampleQ(i).
Since it is true that every representation of SU3(R) has SU2(R)-fixed vectors, the
same is true forG(R).
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Letw be aC(R)-fixed vector inW . Obviously, the matrix coefficienthw; gwi
has non-vanishing integral overC(R). Hence the Fourier coefficient at

B =

0
BB@

1 0 0

0 1 0

0 0 1

1
CCA

is not zero. The proposition follows from Corollary 4.9. The information about the
local components of�0 follows from Corollary 3.9 of Chapter 3 and Proposition 3.1
of Chapter 4.

We now assume thatD is the definite quaternion algebra ramified at 5 and1.

PROPOSITION 5.6.There is an embedding ofD into O and a Borel subgroup
B(5) � G(5) such that

C(A ) = C(Q) � C(R) � (C(Q̂ ) \K0(5));

whereK0(5) is the subgroup of elements inG(Ẑ) reducing toB (5) (mod 2).
Proof. Let R be a maximal order inD, which is unique up toD�-conjugacy.

We haveR� = �6. The orderR gives a model ofC overZ, with bad reduction
at 5. The units lie in the 6 distinct cosets for the subgroup(1+ $R), where Tr
($) = 0 andN($) = 5. Hence we obtain a direct product

C(A ) = C(Q) �

0
@C(R) � (1+$R5)N=1�

Y
p6=5

C(Zp)

1
A :

Let R be the Coxeter’s order inO. There is an embeddingR ! R, which is
unique up to conjugacy by Aut(R) = G(Z).LetR? be the orthogonal complement
of R in R; again we find that

R�R? �(5;5) R

and that the subgroup ofG(Ẑ) fixingR
Ẑis precisely(1+$R5)N=1�
Q
p6=5C(Zp).

Since(1 + $R5)N=1 is a 5-group, its reduction inG(5) is contained in the
unipotent radical of some Borel subgroupB(5). ThereforeC(Q̂ ) \ K0(5) =
(1+$R5)N=1�

Q
p6=5C(Zp), which completes the proof.

In Section 7 of Chapter 1, we showed that the space

S = G(Q)nG(A )=G(R) �K0(5) (5.7)

had 7 elements. We also showed that there was a nonzero functionf :S ! Q,
unique up to scaling, in the Steinberg subspace:Tif = �f for the three generators
T0; T1; T2 of the Iwahori–Hecke algebra at 5.
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The functionf determines a 1-dimensional subspacehF i in the automorphic
representation� of Proposition 7.12. The period ofF overC(Q)nC(A ) is nonzero
if and only if f(e) 6= 0, wheree is the identity double coset ofS (e is the image of
C(A ), by the Proposition 5.6). A computer calculation, performed by D. Pollack
and J. Lansky, showed thatf(e) 6= 0. Hence we obtain

PROPOSITION 5.8.Let� be the automorphic representation ofG given in Propo-
sition7:12 in Chapter1. (�1 �= 1,�5 is the Steinberg representation ofG(Q5) and
�p is unramified for allp 6= 5). Then� lifts to a cusp form�0 onG0, with

(1) �01 is a holomorphic discrete series representation with infinitesimal character
(3;2;1).

(2) �0p, for p 6= 5 is unramified with Satake parameter inG2(C ) � Spin7(C ).
(3) �05 is the Steinberg representation.

The automorphic representation�0 corresponds to a classical holomorphic form
of weight4 and level5.

6. Periods

As we indicated in the introduction, the complement of the motiveM inM 0 should
be given by the classes of Hilbert modular 3-folds. If so, the forms onG0 coming
from G should be characterized as those having non-zero periods over the cycles
given by the Hilbert modular 3-folds. We give an affirmative answer to this question
in the local setting.

1. A see-saw dual pair inEn
We letF be ap-adic field,E a separable cubic extension ofF , andH a split adjoint
group overF of typeE6; E7 or E8. LetH 0 = H o � be the semi-direct product
of H with its group of outer automorphisms�. Note that� �= Z=2Z for E6, and is
trivial otherwise. The see-saw pair inH 0 is

(1.1)

where all groups are quasi-split overF , DE
4 is a twist of the simply connected

group of typeD4 by Gal(F=F ) ! S3, the group of outer automorphisms ofD4,
and the subgroupsG0 andC 0

E are tabulated below.

Type ofH G0 C 0
E

E6 PGL3 o � (RE=F Gm=Gm ) o �
E7 PGS p6 RE=F SL2=�2

E8 F4 DE
4 :

(1.2)
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The center ofG0 is trivial, and the pairG2 � G0 is a maximal subgroup ofH 0,
whereas the center ofC 0

E is

KE
4 = (RE=F�2)=�2 = DE

4 \ C 0
E; (1.3)

a twist of the Klein groupK4, and the subgroupDE
4 �C 0

E=�K
E
4 is not maximal,

for it is contained in the centralizer inH 0 of any non-trivial element ofKE
4 .

In the following section, we will characterize the irreducible representations�0

ofG0(F ) which appear as quotients of the minimal representation ofH 0(F ); these
are the representations with a nonzero,C 0

E-invariant linear functional, for someE.
Let Tr:E ! F be the trace form. SinceE is separable, the pairingE�E ! F

given by(v; w) = Tr(vw) is non-degenerate. Letfv1; v2; v3g be a basis forE over
F , and consider theF -linear embeddingE ! J(F )

� 7! A� = (Tr(� � vivj)); (1.4)

whereJ(F ) is the 6-dimensional space of symmetric 3� 3 matrices overF . The
matrix

e = A1 = (Tr(vivj)) (1.5)

has det(e) 6= 0, by the non-degeneracy of the pairing.
Now let D � O 
 F be anF -subalgebra, on which the norm form is non-

degenerate and represents 0. LetJ(D) be theF -vector space of 3� 3 Hermitian
symmetric matrices overD. We then have a chain of subspaces

Fe � E � J(F ) � J(D) � JO 
 F: (1.6)

Let L0 be the algebraic group of all invertible linear maps onJ(D) which
preserve the determinant form det:J(D) ! F . These groups are tabulated below
[EG]

D J(D) L0

F + F M3(F ) (SL3 � SL3=��3) o �

M2(F ) ^2F 6 SL6=�2

O 
 F JO 
 F E6

(1.7)

where we have identifiedJ(D) with a more familiarL0-module. Note that the
center ofL0 is �3.

Let l be the Lie algebra ofL0, andV3 the standard 3-dimensional representation
of SL (3). In [Sa2] it is shown that the direct sum

h = (sl(3)� l) � (V3 
 J(D)) � (V3 
 J(D))� (1.8)
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has the structure of a simple, split Lie algebra of typeEn, (n = 6;7;8), with a
Z=3Z-gradation given by the action of the center of the subgroup

SL3 � L0=��3; (1.9)

of H 0.
It can be checked that the centralizer ofe in L0 � H 0 isG0, and the centralizer

of G0 in H 0 has Lie algebra

g2 = sl(3) � (V3 
 Fe) � (V3 
 Fe)�; (1.10)

of typeG2.
Let E0 � E be the kernel of the trace map Tr:E ! F . The centralizer of

E � J(D) in L0 isC 0
E , and the centralizer ofC 0

E in H 0 has Lie algebra

dE4 = (sl(3)�E0) � (V3 
E) � (V3 
E)�; (1.11)

of typeD4, split byE [Ru]. This gives a construction of the see-saw pair.

2. Periods
The minimal representation�, defined in Chapter 4, can be easily extended toH 0;
more precisely, the polarization used in [KS; pg 212] is�-invariant, and by taking
the structural coefficients to be�-invariant, the representation extends toH 0 in an
obvious way.

Consider the decomposition (1.8) ofh. Let t be the Cartan subalgebra of sl (3),
consisting of diagonal traceless matrices. Let

h =

0
BB@

1 0 0

0 0 0

0 0 �1

1
CCA 2 t � sl(3) � h: (2.1)

Define

h(k) = fx 2 hj[h; x] = kxg: (2.2)

Since the eigenvalues ofh on the standard 3-dimensional representationV3 of sl(3)
are�1;0;1, the decomposition (1.8) implies thath(k) 6= 0 for k = �2;�1;0;1;2.
For example,

h(0) = J(D)� � t� h� J(D): (2.3)

Write g = �n� m� n where8>><
>>:

m = h(0);

n = h(1)� h(2);

�n = h(�1)� h(�2):

(2.4)
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Thenp = m � n is a maximal parabolic subalgebra. The nilpotent radicaln is a
two-step nilpotent (Heisenberg) Lie algebra, with the centerz = h(2). Analogous
statements are true for the opposite algebra�p = m��n. Under the action oft�l � m,
we have direct sum decompositions

(
n=z �= h(1) = F � J(D)� J(D)� � F �;

�n=�z �= h(�1) = F � � J(D)� � J(D)� F:
(2.5)

Let P 0 = M 0N be the ‘Heisenberg’ maximal parabolic subgroup ofH 0, with
Lie algebrap. LetZ be the center ofN . The quotient ofN byZ is commutative and
N=Z �= n=z asM -modules. Let�P 0 =M 0 �N be the parabolic subgroup opposite to
P 0, and �Z be the center of�N . The Killing form onh, the Lie algebra ofH, defines a
non-degenerate pairingh; i betweenN=Z and �N= �Z. In terms of the identifications
(2.5) this pairing is

h(x; u; u�; x�); (y�; v�; v; y)i = xy� + hu; v�i+ hv; u�i+ yx�: (2.6)

Let 
 be the smallest non-trivialM 0-orbit in N=Z. It is simply the orbit of a
highest weight vector.

PROPOSITION 2.7.(p 6= 2 if G = E8) Let� be the minimal representation ofH 0.
Let �Z be the center of�N as above. Let� �Z and� �N be the maximal�Z-invariant
and �N -invariant quotients of�. Then

0! C1
c (
)! � �Z ! � �N ! 0;

whereC1
c (
) denotes the space of locally constant, compactly supported functions

on
. The action of�P 0 onC1c (
) is given by

�(�n)f(x) =  (hx; �ni)f(x); �n 2 �N;

�(m)f(x) = jdet(m)js=df(m�1xm); m 2M 0;

where is a non-trivial addititive character ofF , det is the determinant of the
representation ofM 0 on �N= �Z, d is the dimension ofN=Z. The values are given by
the following table.

G s d

E6 4 20

E7 6 32

E8 10 56
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Proof.This is a simplified version of [MS; Thm 6.1].
We are now ready to prove the main result of this section. Lete be an element

in J(D), such that(e; e; e) = 6, and letG0 � L0 � H 0 be the centralizer ofe in L0.

PROPOSITION 2.8.Let�0 be a representation ofG0 with a nonzeroC 0
E-invariant

functional. Then(�0)� (the contragredient of�0) is a quotient of�.
Proof. If we compare the construction (1.10) of the dual pairG2�G0 with the

definition ofP 0, we find that

G2 \ P
0 = P2 = GL2U2

is the ‘Heisenberg’ parabolic ofG2. Note thatZ � U2, and in terms of the
identification (2.5)

U2=Z �= F � Fe� Fe� � F � � F � J(D)� J(D)� � F � �= N=Z;

wheree� is aG0-fixed element ofJ(D)�, normalized byhe�; ei = 3.
The action of GL2, the Levi factor ofP2, onU2=Z is isomorphic to Sym3(F 2)


det�1, and this was studied in [Wr]. Generic GL2-orbits correspond to cubic sepa-
rable extensions ofF as follows. A point(a; b; c; d) in U2=Z defines a binary cubic
form

ax3 + bx2y + cxy2 + dy3:

The corresponding GL2-orbit is generic if and only if the form has three different
solutions inP(�Qp). Assume thata = 6. This just means that(6;0) is not a solution
of the cubic form. Then

E = F [x]=(x3 + bx2 + cx+ d)

is the cubic separable algebra.
The pairingh; i restricts to a non-degenerate pairing betweenU2=Z and �U2= �Z.

Therefore, the point(a; b; c; d) and the additive character define a character E
of �U2.

LEMMA 2.9. Let� �U2; E
be the maximal quotient of� such that�U2 acts as the

character E on it. Then

� �U2; E
= C1

c (G0=C 0
E):

Proof.Proposition 2.8 and (2.6) imply that

� �U2; E
= C1

c (
) �U2; E
= C1

c (
E);
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where


E = f(6; u; u�; d) 2 
jhu; e�i = b and he; u�i = cg:

We need to show thatG0 acts transitively on
E. Let q � m be a maximal
parabolic subalgebra given by

q = (t� h)� J:

Let Q0 be the corresponding subgroup ofM 0, and letU �= J be the unipotent
radical ofQ0. The groupQ0 preserves the partial flag inN=Z

F � J(D)� J(D)� � F � � J(D)� J(D)� � F � � J(D)� � F � � F �:

By [MS; Lem. 7.5],Q0 has 4 orbits on
, given by the position of a point in
,
relative to the flag. Hence,
E is in theQ0-orbit of (6;0;0;0). Moreover, by (2.5)
the Levi factor ofQ0 preserves the line through(6;0;0;0), hence
E is contained
in theU -orbit of (6;0;0;0).

This action ofU is given by (3.11) in Chapter 2. In particular, ifz is an element
in U �= J , then

z(6;0;0;0) = (1;6z;3z � z; (z; z; z)):

So, if (6; u; u�; d) is an element in
E, then

8>><
>>:
u = 6z;

u� = 3z � z;

d = (z; z; z)

and, sincee� = 1
2e� e,

8>><
>>:
b = 3(z; e; e)

c = 3(z; z; e)

d = (z; z; z):

Hence, the characteristic polynomial ofz is

6 det(�� z) = (�� z; �� z; �� z)

= (e; e; e)�3 � 3(z; e; e)�2 + 3(z; z; e)� � (z; z; z)

= 6�3 � b�2 + c�� d:
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The groupG0 acts transitively on the set of such elements. In the first case,L0

acts transitively on 3� 3 matrices with determinant 1, so we can assume thate is
the identity matrix. Hence
E is the set of all 3�3 matrices with the characteristic
polynomial (in the usual sense)

6�3� b�2 + c�� d;

i.e. it is a regular, semi-simple conjugacy class of 3� 3 matrices. This implies
the lemma in the first case. The general case can be reduced to this [J2; Thm. 10,
pg 389]. The lemma is proved.

The proposition follows from Lemma 2.9 and the Frobenius reciprocity.

COROLLARY 2.10.LetE be a cubic separable algebra overF . Let�(s0) be an
unramified representation ofPGSp6(F ) with a non-trivialC 0

E-functional. Then
s0 = f(s) for some semisimple conjugacy classs inG2(C ). If, in addition,�(s0) is
tempered, then the converse is also true.

Proof.Note that every unramified representation ofPGSp6is self-contragredient.
So, if �(s0) has a non-trivialC 0

E-invariant functional,�(s0) is a quotient of� by
Proposition 2.8. Hences0 = f(s) for somes in G2(C ) by Proposition 3.1 of
Chapter 4.

Now assume that�(s0) is tempered ands0 = f(s). Then�(s) 
 �(s0) is a
quotient of� by [MS; Thm. 5.4]. Since�(s) is a fully induced representation [Ke],
it follows that�(s) �U2; E

6= 0. By Lemma 2.9

� �U2; E
= C1

c (G0=C 0
E);

so the second statement follows from Frobenius reciprocity.
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