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ORDER OF FUNCTIONS BOUNDED ON A SPIRAL

JOSEPH WARREN

Section 1. Introduction

The purpose of this paper is to improve a result of Schnitzer and
Seidel [6] and to continue an analogy between entire functions and the
class of functions which are holomorphic and unbounded in the unit
disk, but bounded on a boundary spiral. The existence of such functions
was established by Valiron [7].

The author wishes to thank Prof. W. Seidel for his help in this paper.
Throughout this paper the unit disk \z\ < 1 in the 2-plane shall be

denoted by D and the upper half-plane «/(ζ) > 0 in the ζ-plane shall be
denoted by H where J(ζ) and 3l(ζ) stand for the imaginary and real
part of ζ respectively. The maximum of the modulus of the function
f(z) on the circle \z\ = r shall be denoted by M(r,f).

DEFINITION 1. A spiral in D is a set S = {z(ί)|0 < t < 1} where
z(t) continuous and one-to-one on 0 < ί < 1, 0 < \z(t)\ < 1 on 0 < t < 1,
and lim \z(t)\ = 1. Moreover, for each branch, arg2(ί), of the argument

ί->l

of z(t), 0 < t < 1, it is required that either lim arg z(t) - +ooor lim arg
Z(t) = — oo.

The class of functions which are holomorphic and unbounded in D,
but bounded on the spiral S shall be denoted by rΓ(S).

Some analogies will now be given between the class i^(S) and the
class of entire functions.

Every non-constant entire function has infinity as an asymptotic
value. Valiron obtained the result that every function in i^(S) has
infinity as an asymptotic value [7].

The Picard theorem asserts that a non-constant entire function as-
sumes every complex number with at most one exception in each neigh-
borhood of the boundary point infinity. It is known that each / e
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192 J. WARREN

assumes every complex number infinitely often with at most one exception
in the disk D [2, Theorem 1]. It is true that / assumes every complex
number with at most one exception in each neighborhood of each bound-
ary point.

The analogies obtained in this paper will be between the order of
growth of functions in rΓ(S) and the order of growth of entire functions.
In particular, analogies to Wiman's theorem [3, p. 39] and the Ahlfors-
Denjoy Theorem are found [1]. Before stating these analogies it is
necessary to introduce some preliminary notions.

Let D be the unit disk and S be a spiral in D. Some assumptions
can be made about the spiral near 2(0) which are convenient. Let 2(0) = 0

Z-plane

Fig. 1
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ORDER OF FUNCTIONS 193

and let Iimarg2(£)— +cx> for each branch of the argument of z(t).

Let lim arg z(t) exist for each such branch. With these conventions let

the symbol ar g z(t) stand for that branch of the argument of z(t) for
which 0 < lim arg z(t) < 2π. In addition, suppose that arg z(t) > 0 for

t > 0. These assumptions are allowable because the shape of the initial
part of the spiral is irrelevant to the results in this paper.

Let S be a spiral in D with the above restrictions. The set D' =
D — S is a simply connected region. There is a largest interval (0, a),
a > 0, contained in D'. For any x on this segment let h(x) = 2π
+ i(—log x) where —log x is real. From this determination let s = h(z) =
—ίlogz be continued throughout Όf and a one-to-one conformal mapping
s = θ + iτ = h(z) is obtained. Let D* = hφ*). Denote the boundary
point of D* Λvhich corresponds to 0 under s = h(z) by +ioo and the
boundary point of D* which corresponds to the prime end of D;, \z\ = 1,
under s — h(z) by +oo (see Figure 1).

DEFINITION 2. Let D, S, D; and D* be defined as above. Let φθ

be the unique vertical straight line crosscut of D* above s = θ, θ > 2π,
which separates +ioo from +oo in the sense of Ahlfors [1, pp. 5-6].
Let kθ be the inverse image of φθ under s = h(z). Let k(θ) and ψ{θ) be
the lengths of the straight line segments kθ and φθ, respectively.

Throughout this paper the symbols just introduced shall retain their
meaning.

DEFINITION 3. For / e ΛΓ(S) define Kiθ) = sup \f(z)\ and, for θ0 > 2π,

let

and

dt

It is easy to see that both λ(S) and p(S) do not depend on the lower
limit of the integral. The lemma below follows from straight forward
limit arguments and the fact that
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194 J. WARREN

From part (3) it follows that kit) in both expressions of Definition 3
may be replaced by φ(t).

LEMMA 1. For t > 2π, and for ψ(t) and k{t) defined as in Definition
2 relative to the spiral S in D, the following relations hold. If k(t) =
x — y, then ψit) — log x — log y and

(a) Ψ(t)>k(t), (1)

(b) l i m - ^ = l , ( 2 )
ί-oo ψ(t)

dt

(c) lim^f- = l. (3)
I (M

Lok(t)

If the lower order relative to S of a function / e i^(S) is defined
to be 1/2 λ(S) then it shall be proved in Section 2, Theorem 1 that the
lower order is not less than 1/2.

Wiman's theorem states that non-constant entire function which is
bounded on a half line has lower order not less than 1/2 [3].

Thus it is seen that the analogy of class i^(S) to entire functions
extends to notions of order.

In Section 3 the analogue to the Ahlfors-Denjoy theorem [1] will be
obtained. In Section 4 the analogue to the extension of the Ahlfors-
Denjoy theorem proved by Maclntyre [4] will be obtained.

Section 2 contains a proof that the theorem of Schnitzer and Seidel
follows from the analogue to Wiman's theorem. (See the corollary to
Theorem 1).

Section 2. Wiman's Theorem in ^(S).

All the notations and conventions developed in Section 1 shall be
freely used in this section. Two more conformal transformations are
needed.

Let z = giζ) be a conformal transformation mapping the upper half
plane H: <f(ζ) > 0 onto the region Df which is contained in the unit
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ORDSR OF FUNCTIONS 195

disk \z\ < 1. Let #(0) = 0 and the boundary point of H at infinity cor-

respond to the prime end, \z\ = 1, of D\ Although z = giζ) is not fully

normalized it is to be considered in any given situation as a fixed

mapping.

Map the half-plane H onto the strip K: 0 < J{Z) < π in the Z-plane

by the mapping Z = log τ. In the sequel the following notations shall

be adhered to. Let Pθ and Qθ be the images of kθ in H and K, respec-

tively, under the appropriate combined mappings (See Figure 1). For

θ > 2π, let

UM = Inf 9t(Z) . (4 )
zeQβ

It is now possible to prove the analogue to Wiman's theorem.

THEOREM 1. Let f e ^(S), then λ(S) > 1.

Proof. By Ahlfors' First Fundamental Theorem [1, p. 10], there

exists a θ' > 2π and a θ[ > θf such that for θ > θ[,

( 5 )
' φ(t)

Assume, contrary to the theorem, that λ(S) < 1. Suppose that β0 = θf

and, by Lemma 1, replace k(t) by φ(t) in the definition of λ(S). Then

l i m l o g l o g g ( f l < l t ( 6 )
θ dt

There exists a sequence Θ19Θ29 , with θ[ < θx < θ2 < , and a γ,

0<γ<l, such that

log log K{θn) < πrΓ-^r , n = 1,2, . . . ( 7 )

From (5)

π or < ^ i ( ^ ) ; w = l f 2 f . . ( 8 )
π < ^ i ( ^ ) ; w l f 2 f .

JO' φ{t)

Let Cw be the semicircle in the half-plane H: ./(ζ) > 0 with radius

exp 7r I "-—-- . By the continuity and normalization of the conformal
L JΘ' φ(t) J
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196 J. WARREN

transformations and (8), the set Pθn is outside of Cn and so Pθn tends
uniformly to oo as n-+ oo.

Let F(ζ) = figiζ)), then F(ζ) is holomorphic in i ϊ and is continuous
and bounded on the real axis J(Q = 0. It is clear that K(θn) = sup |F(ζ)|.

Let ζ be an arbitrary point of Pθn. Then, from (7) and (8),

\F(ζ)\< sup \F(ζO\ =

< exp {exp

<exp[|ζ|r].

The function F(ζ) satisfies all the conditions of the Phragmen-Lindelδf
Principle [5] and so is bounded. But because / e i^(S), F(ζ) cannot be
bounded. This contradiction establishes Theorem 1.

COROLLARY. Schnitzer and Seidel [6]. Let r = a(t) be a continuous

strictly increasing function in 0 < t < oo such that 0 < a(t) < 1, α(0) = 0,

and lim a(t) = 1. Let a = λ(r) be the inverse function of r — a(t). Setting

S = {z(t)\z(t) = a(t)eu, 0 < t < oo} let fe^iS). Then the following re-

lation holds:

lim l o g l o g M ( r > ^ = oo
T^Ϊ λ(r)

Proof. With the notation and hypotheses of the corollary, k(θ) =
a(θ) — a(θ — 2π) is continuous and positive. Thus LΉospitaΓs rule ap-
plied to

Jθ dt

R(θ) = - A

implies

lim R(β) = oo .

Because fc^ is contained in \z\< a{0), the inequality M(r,f) > K(λ(r))
holds. These two facts and a direct elementary argument using Theorem
1 give the corollary.
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Remark. It is seen that Theorem 1 is a generalization of the co-
rollary in two ways. First, it applies to unrestricted spirals. Second,
in the case of spirals for which the corollary applies, Theorem 1 implies
the corollary.

Remark. The corollary states that the growth of M(r,f) depends
on the growth of λ(r). If r = a(θ) grows rapidly to 1, then λ(r) grows
slowly to oo and, consequently, M(r>f) is allowed to grow more slowly.
By considering the following example, and by applying Theorem 1, it
is seen that not only is the rate that r = a(θ) tends to 1 involved but
also the manner in which a{0) tends to 1.

EXAMPLE. Let εn be a sequence of positive numbers with lim εn — 0.

Let rn be an increasing sequence of positive numbers with lim rn = 1.

Suppose that rn + εn < rn+1. Let r(θ) be an arbitrary increasing con-
tinuous function, 0 < θ < oo, with the exceptions that

r(θ) =

rn , (An -2)π<θ< (An - 2)π + ~
4

rn + εn
εn , Ann < θ < 4nπ + ~ .

Let S = {r(θ)eίθ\0 <[θ < oo} be a spiral in D and suppose feir(S). If
k(t) is defined in terms of S, then

|.4». + «/. aτ ^ ^ 2
k(t) - A fcί εn

Given ε > 0 there exists by Theorem 1 an N such that for n> N,

KUnπ + — \ > exp {exp (1 - ε)Mn}.

By the arbitrariness of r(θ) in the intervals Anπ + π/A < θ < (An + 2)π
and the arbitrariness of the sequence εn one may construct a spiral
which grows extremely rapidly to \z\ = 1 while Mn9 and hence K(θ), is
forced to grow extremely rapidly.

Section 3. Ahlfors-Denjoy Theorem in

The methods Ahlfors used to prove the Den joy conjecture are used
here to prove a similar result in rΓ(S). The result is that an entire
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198 J. WARREN

function which tends to n different asymptotic values on n asymptotic

paths has order exceeding 2n. See Theorem 2 for the comparable result

in rT(S).

Some preliminary facts are needed.

LEMMA 2. [1, pp. 20, 21]. Let Tl9T2, -,Tn_x be n — 1 continuous

simple paths lying in H: «/(£) > 0 each of which connects the point 0

to oo. Suppose Ti Π Tj = {0} if i Φ j . The set H — [J^1 Tt is an open

set which consists of n simply connected components ΩUΩ2, -- ,Ωn. Let

ζ = ψj(z'), j = 1,2, ,n, be n conformal transformations each of which

maps the half-plane J(zf) > 0 onto Ωj such that ψj{ϋ) = 0 and ψj(oo) = oo.

Then, given δ > 0, there exists among the numbers 1,2, >,n an index

ζ-plane 2f-plane

2-plane

K.0< .'<'{Z) < -

Fig. 2
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v and a sequence {aty of simple arcs lying in the upper half-plane <f(zf)

> 0 which possess the following properties. Each a't connects a point

of the positive real zf-axis to a point of the negative real z'-axis. As ί

tends to oo the sets a\ tend uniformly to oo. For each i and zf e a'i9

|p,(sO|<|sT ( n + β ) (9)

Figure 2 gives a picture of the situation in Lemma 2 and is referred

to in the proof of Theorem 2.

Although the proof which is essentially the same as that given by

Ahlfors [1] shall be omitted, some of the notation is presented for the

computations which follow. For a given δ > 0 there exists the corre-

sponding v from Lemma 2. The function Z = log ζ mapping H: ./(ζ) > 0

onto the strip K: 0 < J(Z) < π, also maps the region Ωv of the lemma

onto a simply connected strip region in K which will be denoted by By.

The sequence of sets {a[) in J{zf) > 0 determined by the given δ and

defined in the statement of Lemma 2 correspond (in the proof of the

lemma) under the mapping Z = log φv(z') to a sequence of vertical straight

line crosscuts of Bv, each of which separates the point +oo from the

point — oo in the sense of Ahlfors [1]. The crosscut corresponding to

a[ will be denoted by at. The segment at lies above a point on the real

axis which will be denoted by σ{ (See Figure 2). That is for each i

Zeat. (10)

The proof of Lemma 2 shows that

lim Gi = oo . (11)
ΐ-»o

THEOREM 2. Let f(z) be holomorphic in D, S19 S2, , Sn be spirals

in D as defined in Section 1, and let a19 a2, , an, be distinct finite

complex numbers. If f(z) —> at as \z\ —> 1 with ze Si9 ί = 1,2, , n ,

then p(Si) > n, i = 1,2, , n.

Proof. It may be assumed that St ΓΊ Sj = {0} if ί ψ j. Assume the

contrary of the theorem for some spiral which is taken to be S = Sn.

Define φ(θ), z = g(ζ), k(θ), Pθ, Qθ and U^θ) as in Section 1 with

respect to the spiral S = Sn.

According to the proof of Theorem 1 there exists a θ0 such that for

all sufficiently large θ,
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VM>*\'-^. (12)
J θ0 φ{t)

By the mapping z = g(ζ) the spirals S19S29 -,Sn_ί are transformed

into sets T19 T2, , Tn_1 in H: J(ζ) > 0 which satisfy the hypotheses of

Lemma 2. Let δ be any positive number.

According to the lemma there is a sequence {αj} and a y e {1,2, , n)

such that the inequalities (9) hold. There is also the sequence {σt} of

real numbers with lima* = oo satisfying (10).

Consider the function

G{0) = πt$ d t

G(θ) is a continuous increasing function with limG(0) = oo. By the

intermediate value theorem, there exists a sequence {0J with lim θi = oo

such that for some positive integer N1 and i > N19

d t σt. (13)

With each θi9 there are the sets k9t9 Pθi, and Qβ< in D'9 H and

if: 0 < J(Z) < 7r, respectively. Now the crosscut at of β υ above σt lies

in Ey which lies in K. The reader is referred to Figures 1 and 2.

Define ct = Q .̂ Π β v and bt to be the straight line crosscut of Bv above

the real number U^θi) of (4). By definition of Z7j(^), ct lies entirely to

the right of bt. But by (12) and (13), α* lies to the left of 6ΐβ Under the

mapping zf — ψ~\ez), α is the image of α4 as mentioned above. Let fy

and c$ be the images of bt and ci9 respectively, under this same mapping.

The set b[ divides the half-plane J(z') > 0 into regions H1 and H2 which

are bounded and unbounded, respectively. By the normalization of the

conformal transformations, af

t lies in H1 and c[ lies in H2.

Define w = F(zf) = f(g(φv(z'))), J?{zf) > 0, where φ£z') is to be taken

as the extension of the mapping of J{zf) > 0 into H to the boundary.

The function F(z') tends to different limits as zf —» + oo and zf —> — oo

with z; real by the hypotheses of the theorem so that by a well known

theorem of Lindelof it is unbounded in J{zr) > 0. This unboundedness

is what shall be contradicted.

Since a\ tends to infinity uniformly by Lemma 2, it is seen that
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sup|F(2')| exceeds the bound of \F(z')\9 for zf on the real axis, provided
z'Gα

i exceeds some positive integer N2. By the maximum principle, for

i > max(N19N2)9

Max|F(z')| < Max \F(z')\ < Max|F(z') | .
2'Gα z 'e&ί 0 ' e c ί

Since ct c Qθ.

Max|F(«0| < Max |F(^) | = Max|/(«)| = K(θi).

Thus

Max IF(z') I < K(θt), if i > max (iVx, N2) . (14)

By assumption, p(S) = A < n, and by (3) of Lemma 1, k(t) may be

replaced by φ(t). The value of θ0 obtained in inequality (12) may be

used in the definition of p(S). Then

- A <? Ύ) (ΛK\

0 φ(t)

Therefore, given any ε < 0, there exists an N3 such that if i > N3, then

K{θt) < exp jexp \{A + ε)πΓ-^-]\ . (16)
I L Jθo φ(t) J J

Let z' ea/t be an arbitrary point and let N = Max(N19N29N3). Ap-

plying inequalities (14), (16), and (12) together with (13), for i>N one

has

|F(^) |<exp[expσ, ]^ + ε . (17)

Let α" be the image in Ωv of α under the mapping ζ = ^(z') (See

Figure 2). Then α^ is also the image of the straight line segment α<

under the mapping ζ = ez. Since ^(Z) = σ* for Z e ai9 one obtains for

the arbitrary point zf e o!i9

\ψv{zf)\ = expσ*.

That is for ί > N, (17) becomes

F ( ^ 0 | 4 + £ } . (18)
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But Lemma 2, inequality (9), holds for zr e at and φ£z'). Hence,

for ί > N,

| i *V) | < exp |^|(v»+ί)(4+o # ( 1 9 )

Since zr e a[ was an arbitrary choice, the inequality (19) holds for every

zf e α , provided only that i> N.

Since A < n, choose ε and δ such that (A + ε)(l/n + δ) = γ < 1. Then

one obtains the sequence {αj} and the N such that

\F(zf)\ < e x p | s ' | r , z'ea'i, i>N.

Since lίXzOI is bounded on the real axis, it is a bounded function by

the Phragmen-Lindelδf Principle. But F(z') has already been shown to

be unbounded. This contradiction establishes Theorem 2.

Section 4. Maclntyre's extension in

Maclntyre [4] proves the following theorem: If f(z) is entire and

is bounded on n disjoint arcs each connecting zero to infinity and if /

is unbounded in all the regions bounded by these arcs then the lower

order of / exceeds n/2. Theorem 3 is the comparable result in

THEOREM 3. // f{z) is in ^(S*), i = 1,2, ,n where S19S2, -,Sn

are spirals in D such that Si Π Sj = {0} if ί Φ j , and if f(z) is un-

bounded in each of the regions of D — ^Jf=1 Si9 then

The proof of this theorem, which follows Lemmas 3 and 4, uses

results of Ahlfors and Maclntyre.

LEMMA 3. [4]. Let f(z) be holomorphic and \f(z)\ < M in a simply

connected region G which is contained in the sector 0 < arg z < π/p,

\z\ < R, where p > 1/2. Suppose that part of the boundary of G is on

\z\ = R and that \f(z)\ < m in some neighborhood of each point of the

part of the boundary of G which is in \z\ < R. Then for any point

reiθ in G,

log\f(reίθ)\ < 2/τrjlogm Arctan 1

2(r/R)p

logMArctan ^ ζ ^ } • (20)
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Maclntyre proves this lemma for the case R = 1 in the reference

cited. The lemma is obtained by considering f(Rw) in \w\ < 1.

Suppose T19 T2, , Tn+1 are in H: J(ζ) > 0, where T2, T3,'-,Tn are

simple arcs each of which connects 0 to oo, TΊ is the positive real axis,

Tn+1 is the negative real axis, and Tt Π Ts = {0}, i Φ j . Then H - UίU Γv

is open and has n simply connected components Ω19Ω29 '-',Ωn. Fix the

order by supposing that Tv U Tv+1 bounds Ωv, v = 1,2, -,n. The reader

is referred to Figure 3. Let v be any of the numbers 1,2, ,w. Given

β > 1, Tv has a last intersection with |ζ | = 1 and a first intersection

with |ζ | = R which shall be denoted by Av and Bv, respectively. Let T'v
be that part of Tv between Av and Bv, γv the arc of |ζ | = 1 between Ay

and Av+1 (in ί ί), and Γv the arc of |ζ | = R between Bv and Bv+1 (in ί ί) .

Denote by DV(R) the region bounded by T[ U Γ, U ΓJ+1 U ^.

By means of conformal transformations and the Schwarz-Christoffel

^-plane

w-plane

Gn(R)

./(!(•) > 0

Fig. 3
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204 J. WARREN

transformation the region DV(R) can be mapped onto a set GV(R) which

is a sector of the annulus 1 < \w\ < R/ for some R'. The arc Γv can

be made to correspond to that part of the boundary of GV(R) which lies

on \w\ = R'. The sets GV(R), v = 1,2, •- >,n, can be arranged so that

they do not overlap and the union of their closures is 1 < \w\ < R',

J(w) > 0. See Maclntyre [4] for details. The n conformal transfor-

mations so obtained shall be denoted as one by ζ = ψR(w). The number

R/ will henceforth be referred to as the number associated with R.

LEMMA 4. Given R > 1, the number R' associated with R satisfies

Rf>R. (21)

A proof of this lemma and a discussion of the formation of the

sets GV(R) above can be found in Maclntyre [4].

Proof of Theorem 3. It is first proved that for any θ0 > 2ττ,

lim 1KJ* £ ^ υ > > o , (22)
'" Λa dt 1

*φ(t)\

where K{0) and ψ{0) are defined in terms of any one of the spirals

S19S2, * ,Sn. Assume that this inequality is false for some θ0 > 2π

and some S€ which is taken for convenience to be S = Slu Then there

is a sequence {e<} with e< > 0 and lim e< = 0, and a sequence {θt} with

lim θi = oo such that
i-

log K(θi) < ei exp LwΓ'-^-l , % = 1,2, . . , (23)
L Jotφ(t) J

where K(θ) and φ(θ) are defined as usual relative to S. With z = g(ζ)

defined as in Section 1 relative to S, Pθi is the image of the kθi in H:

y(ζ) > 0 under g. By Ahlfors' Theorem [1] again, there exists θ'o > θ0

such that if i is sufficiently large say i> N, then Pθ. lies outside the

circle

Setting
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βj = ε, exp Γ J Γ P - ^ Γ I ' i = 1,2, , (24)
L Jίoφ(t) J

and

JB« = exp \π\ l—-— \, i > N , (25)

L J β'Q φ(t) J

inequalities (23) becomes

log K(0i) <. e'tR? , ί > N . (26)

During the proof of this theorem there will be several occasions
when it is convenient to extract subsequences having certain properties
from the original sequence {θt}. Each such subsequence has the limit
infinity and this is the only property which is essential to the proof.
Thus to keep the notation simple, it shall always be assumed that the
subsequence is renumbered to be the original sequence. For example,
Pθ. lies outside Ct and inequalities (26) shall hold for every i. Under
z = g(ζ) the spirals S19S2ySz, ,Sn correspond to n + 1 paths in H
which satisfy Lemma 3. With the notation of Lemma 4, for each
Ri > 1 of (25) there is the associated R[ which, by (21), satisfies

ili > Kί , I = 1, Δ, . (4()

For i fixed, consider the sets GV(R), v = 1,2, —,n, defined in the
discussion following Lemma 3. These sets lie in the half annulus 1 <
\w\ < R'i* S(w) > 0. Since each of the n sets GV(R) is a sector of this
half annulus, there is a vt such that Gy<(/2t) lies in a sector of opening
smaller than or equal to π/n.

As i varies, a sequence {vj is obtained, each number of which is
selected from the finite set {1,2, -,n}. Thus there is among these
numbers an index i/ and a subsequence {ik} of {i}, such that each Gv,(Rh)
lies in a sector of opening less than or equal to π/n. As decided above,
it is assumed that Gv,(Ri) has this property for every i. With this i/,
consider Ωv, and the function f(g(ζ)) restricted to Ωv>. This function is
bounded on the boundary of Ωv. and bounded in \ζ\ < 1. Without loss
of generality it can be assumed that the bound in both cases is 1.

With each Ri9 there is the "function" ζ = ψR.(w) which maps the
region Gv>(Ri) onto the region !)„,(#*). For simplicity let Gt = Gv,(Ri)>
Dt — Dv,(Rί) and xt = ψΛi, since ι/ is now fixed.

https://doi.org/10.1017/S0027763000015804 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015804


206 J . WARREN

Define Ft(w) = f(g(χi(w))), w e Gίy ί = 1,2, . It should be recalled
that the boundary arc of Gt on \w\ = R[ corresponds under ζ = ψt(w) to
the boundary arc Γv,9 of Dt on |ζ| = i?i# Hence, for the remaining part
of the boundary of Gi9

Moreover,

and

K(θd= sup 1/(0(0)1. (29)

sup \Ft(w)\ = sup|/(flr(0)|, (28)
|w|=.R£ KI=Si

The set P,t lies outside of |ζ| = Ri9 by definition (25) of Rt and ap-
plication of Ahlfors' Theorem. Moreover sup 1^(^)1 exceeds 1 for all

sufficiently large i (assume these facts for every i). Thus it follows
from (28) and (29) that

sup|F,(w)|<m). (30)
\w\=Ri

wβGi

Let ζ0 e Ωv,9 with |ζo| > 1. With G = G<, v = n, R = R'i9 m = 1, and
M = UL(0ί) apply Lemma 3. Inequality (20) becomes

log \FtwJI < — log K{θd Arctanlog K{θd Arctan
π 1 -

where w< is defined to be the image of ζ0 in Gi9 under ζ = ψi(w). That
the sequence ŵ  has a bounded subsequence can be shown using normal
families. It is, of course, assumed that

\Wi\ < Mo < oo , i = 1,2, . .

There is an Mλ < oo such that

log IFΛw,)I < Mx log K(βdR'i-n (3D

But i^ > β^ so that (31) becomes

log \FMI < Mx log K(0i)Rr . (32)

Using inequality (26) and equality (25) of the definition of Ri9 it follows
that for every i9
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loglFMl^Mώ. (33)

But Fi(Wi) = /(flr(ζo)) is a constant which by (33) must satisfy \f(g(ζo))\ < 1

since lim ej = 0. This means that f(g(ζ)) is bounded in Ωv>. Clearly,

from the hypotheses of the theorem, f(g(ζ)) is not bounded in Ωv,. This

contradiction yields (22).

It has now been established, that for some a > 0,

lim l o g*0> > α > 0 ,
*" " dt 1

with K(θ) and p(0) defined for any of the spirals St in the statement of

Theorem 3 and θ0 > 2π arbitrary. Thus, for large enough θ,

log log K(θ) >loga + nπ\
J θ 0 φ(τ)

or,

dt

log log K{0) log a J ̂ o φ(t)
Jθ

hok(t) J*k(t) J*ok(f)

By (3) of Lemma 1, it follows that

f

where Jk(ί) and X(β) are defined relative to Si9 i = l,2, « ,n. This

completes the proof of Theorem 3.

COROLLARY. Theorem 3 implies both Theorem 1 (w = 1) and Theorem

2.

It should be remarked that for / e f (S) neither p(S) nor λ(S) are

guaranteed to be finite. It is expected that there are functions for

which they are finite for two reasons. The first reason is that the

"right" results are obtained and the second reason is that the estimates

of the Phragmen-Lindelof principle and Ahlf ors' Theorem may be asymp-

totically sharp in the case of some spirals. By right results is meant

the analogies between class i^(S) and entire functions.
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