ON THE NORMALISER OF A GROUP
IN THE CAYLEY REPRESENTATION

Prabir Bhattacharya

Let G be a p-group of order n and embed G into S_n by the Cayley representation. If X is a group such that $G < X \leq S_n$ and $C_X(G) = G$, then it is proved that G is properly contained in $N_X(G)$.

1.

Let R be the Cayley representation (that is, the right regular representation) of a group G given by $R(g) = (x^g)$ for all $g \in G$ and $x \in G$. Under the mapping R, the group G is embedded into a subgroup $R(G)$ of the symmetric group S_n where n is the cardinality of G. We identify G with $R(G)$. It is not hard to see that the centraliser of G in S_n consists of precisely the elements of the form (x/gx).

Suppose that the group G is non-abelian. If X is a group containing a permutation of the form (x/gx) for some $g \in G \setminus Z(G)$ such that the property

(*)

$G < X \leq S_n$

holds then it follows that $N_X(G)$ contains G properly. However, it is

Received 10 August 1981.
easy to see that any element of \(S_n \) which normalises \(G \) is not always a permutation of the form \((x_{gx}) \). For example, take \(G = S_3 \) and embed it into \(S_6 \) by the Cayley representation. If \(\alpha = (12) \), \(\beta = (13) \), \(\gamma = (23) \) are elements of \(S_3 \) and \(x = (\alpha\gamma\beta) \), then one can check that \(x \) lies outside \(S_3 \) (in its embedding) and \(x^{-1}S_3x = S_3 \) but \(x \) does not centralise \(S_3 \).

When the group \(G \) is abelian, the permutations \((x_{gx}) \) all lie in \(G \) and so \(G \) is self-centralising in \(S_n \). (This can also be seen by using the fact that \(G \) is transitive and applying Wielandt [3], Theorem 4.4.) So when \(G \) is abelian one cannot obtain by the above method a group \(X \) satisfying (*) such that \(N_X(G) \) contains \(G \) properly.

However, we have

Theorem 1. Let \(G \) be a finite p-group and \(X \) be such that

\[
(*) \quad G \leq X \leq S_n
\]

where \(n = |G| \) and \(G \) is embedded in \(S_n \) by the Cayley representation. Assume that the centraliser of \(G \) in \(X \) is \(G \) itself (such a situation will happen when for example, \(G \) is abelian). Then \(G \) is properly contained in \(N_X(G) \).

When \(G \) is an elementary abelian p-group then \(N_X(G) \) is clearly the group of all "affine transformations" on \(G \) regarded as a vector space over \(\text{GF}(p) \). So from Theorem 1 we derive

Corollary 2. If \(G \) is an elementary abelian p-group then there is no subgroup of \(S_n \) containing \(G \) which fails to intersect \(N_{S_n}(T) \setminus T \).

It is also interesting to study the problem in the case when \(G \) is an infinite group. A celebrated theorem of Higman, Neumann and Neumann [2] states that if \(G \) is a group then there is a group \(H \) containing \(G \) properly such that any two elements of \(H \) of the same order are conjugate. The proof involves first embedding \(G \) into an uncountable group and then
use the Cayley representation inductively.

2.

Proof of Theorem 1. Suppose that \(X \) is a group satisfying (\(*\)) such that \(N_X(G) = G \). Then \(G \) must be the Sylow \(p \)-group of \(X \) because if \(G \) is contained properly in a Sylow \(p \)-subgroup of \(X \) then there would be an element of \(X \setminus G \) that normalises \(G \) which contradicts the above assumption. By Burnside transfer theorem (see for example, Hall [1], Theorem 14.3) \(X \) has a normal \(p \)-complement \(H \) say. Now \(X \) operates transitively on the set \(G \). Let \(X_0 \) be the stabiliser of some "point" of the set \(G \). Then we have

\[
\bigcap_{x \in X} x^{-1}X_0x = \text{identity}
\]

since the permutation action map \(X \to \text{Perm}(G) \) is injective. Further we have \(|X_0| = |X|/|G| = |H| \). But considering the composite of group homomorphisms,

\[
X_0 \to X \to X/H \cong G,
\]

where the first homomorphism is the natural embedding, we see that the image of \(X_0 \) must be the identity because \(|X_0| \) and \(|G| \) are co-prime. Thus \(X_0 = H \) which contradicts (1). This completes the proof of Theorem 1.

REMARK. If \(G \) is any group (abelian or non-abelian) and \(X \) is a group satisfying the property (\(*\)) then it is not hard to see that a minimal such \(X \) with the property \(N_X(G) = G \) must be of the form \(X = GU \) where \(U \) is a perfect group.

References

Department of Mathematics,
St Stephen's College,
University of Delhi,
Delhi 110007,
India;

Department of Mathematics,
University of Manitoba,
Winnipeg,
Canada R3T 2N2.