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The dynamics of sedimenting particles under gravity are surprisingly complex due to the
presence of effective long-ranged forces. When the particles are polar with a well-defined
symmetry axis and non-uniform density, recent theoretical predictions suggest that prolate
objects will repel and oblate ones will weakly attract. We tested these predictions using
mass polar prolate spheroids, which are composed of 2 mm spheres glued together. We
probed different aspect ratios (κ) and centre of mass variations (χ ) by combining spheres
of different densities. Experiments were done in both quasi-two-dimensional (2-D) and
three-dimensional (3-D) chambers. By optically tracking the motion of single particles,
we found that the dynamics were well described by a reduced mobility matrix model that
could be solved analytically. Pairs of particles exhibited an effective repulsion, and their
separation roughly scaled as (κ − 1)/χ0.39, i.e. particles that were more prolate or had
smaller mass asymmetry had stronger repulsion effects. In three dimensions, particles
with χ > 0 were distributed more uniformly than χ = 0 particles, and the degree of
uniformity increased with κ , indicating that the effective 2-body repulsion manifests for a
large number of particles.
Key words: sediment transport, Stokesian dynamics, particle/fluid flows

1. Introduction

Sedimentation is a longstanding and important problem in fluid dynamics. In its simplest
form, particles far from equilibrium settle in a fluid through some external forcing,
typically gravity, at low Reynolds number (Stokes 1851). Throughout its storied history,
one can observe a microcosm of physics problems that span multiple fields. Starting
from basic hydrodynamics, the long range velocity fields generated by sedimenting
particles lead to several interesting phenomena (Stokes 1851; Brady & Bossis 1988;
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Xue et al. 1992; Ramaswamy 2001; Guazzelli, Morris & Pic 2011). Examples include
unbounded velocity fluctuations (Caflisch & Luke 1985), chaotic behaviour (Brady &
Bossis 1988; Jánosi et al. 1997) and periodic orbits (Claeys & Brady 1993; Ekiel-Jeżewska
& Felderhof 2005; Jung et al. 2006; Chajwa, Menon & Ramaswamy 2019). Sedimentation
is found throughout nature; from silt and sand in a river to biogenic particles in the ocean
(Monroy et al. 2019). Most sedimentation work has been done on uniform particles or
particles with simple symmetries. However, within nature, most particles are not uniform.
They can be rough and polygonal, and they can be made of many different materials,
causing their mass to be distributed non-uniformly (Domokos et al. 2020). For example, it
has been found that some phytoplankton adjust their centre of mass to respond to external
environmental flows for better survival in turbulent environments (Sengupta, Carrara &
Stocker 2017).

Gravitational sedimentation at low Reynolds number (Stokes flow) is a special case of
the Navier–Stokes equation where inertia is negligible. Because of this, Stokes flow is
quasistatic and time reversible. For a single spherical particle of radius R and density ρp
settling in an unbounded fluid of density ρf and viscosity η, balancing the Stokes drag
force with gravitational and buoyant forces leads to the following expression for the steady
state terminal velocity:

UT = 2
9

ρp − ρf

η
gR2. (1.1)

Here, g is the gravitational acceleration. The addition of many other particles in the fluid
complicates this picture. To leading order, the fluid disturbance at a distance r from
a sedimenting sphere with velocity Us and radius R scales as UsR/r. In sedimenting
suspensions of many particles, these long range hydrodynamic interactions complicate
a local description of particle dynamics. Batchelor solved the problem of a diverging
mean sedimentation velocity (Batchelor 1972), but Caflisch and Luke pointed out that the
velocity fluctuations were still unbounded as the system size increases (Caflisch & Luke
1985).

To illustrate the Caflisch–Luke paradox, consider the variance of the sedimentation
velocity of a group of N particles contained in a volume of size L. The volume fraction
φ of particles is NVp/L3, where Vp = 4

3πR3 is the volume of a single particle. Within
this region, if the particles are randomly and independently distributed, the fluctuation in
particle number is simply

√
N. To find the velocity fluctuations, we can balance the total

change in the Stokes’ drag force over the suspension with the change in gravitational and
buoyant forces due to these number fluctuations: 6πηLΔv ≈ (ρp − ρf )Vpg

√
N. Solving

for Δv, we arrive at the fractional change in velocity, Δv/vo = L1/2
√

φR2/Vp. This would
indicate that the velocity fluctuations depend on the system size, L. Simulations agree with
these predictions in unbounded fluids (Koch 1993, 1994; Ladd 1996, 1997; Cunha et al.
2002; Mucha et al. 2004), while experiments generally observe a limit to the size of the
fluctuations (Ham & Homsy 1988; Xue et al. 1992; Nicolai & Guazzelli 1995; Segrè,
Herbolzheimer & Chaikin 1997).

To reconcile this paradox, several different physical mechanisms have been proposed.
The long-ranged interactions must be screened out by some large length scale, or
by changing the interactions themselves. For example, wall effects at the size of the
experimental container (Brenner 1999), correlated particle positions arising from a
pre-imposed structure factor (Koch & Shaqfeh 1989, 1991), polydispersity (Nguyen &
Ladd 2005), stochasticity in the concentration (Levine et al. 1998), stratification (Mucha
et al. 2004) or shape effects (Doi & Makino 2005; Krapf, Witten & Keim 2009;
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Goldfriend, Diamant & Witten 2017; Palusa et al. 2018; Chajwa et al. 2019, 2020; Witten
& Diamant 2020). The latter example is of particular interest since it is a local change to
particle interactions. Shape effects can be captured within Stokes flow using a response
matrix that only depends on particle geometry and couples to external forces and torques.

We start by considering the Navier–Stokes equation for an incompressible fluid in the
low Reynolds number regime:

∇P = η∇2v + f b, (1.2)

∇ · v = 0, (1.3)

where P is the pressure, η is the dynamic viscosity, v is the velocity field and f b are any
body forces per unit volume on the fluid, such as gravity. The linearity of these equations
allows us to write the equations of motion for a single particle suspended in the fluid and
subjected to an external force or torque as

v(t) = T vF · F + T vτ · τ , (1.4)

ω(t) = TωF · F + Tωτ · τ , (1.5)

which can be written in matrix form as(
v
ω

)
=

(
T vF T vτ

TωF T ωτ

)(
F
τ

)
. (1.6)

Here, ω is the angular velocity of rotation about the centre of geometry, and F and τ
are the external forces and torques, respectively. The convention we use is the same as
Witten & Diamant (2020). The shape dependent T matrices couple the velocities of the
particle to external forces and torques. In the fixed lab frame, the matrices depend on the
particle’s orientation to the imposed flow. We can also put restrictions on the matrices by
physical insight. The dissipated power of the object, F ·v + τ ·ω, must be positive, which
implies the diagonal blocks, T vF and T ωτ must be symmetric, and T vτ and TωF must be
transposes of each other but not necessarily positive or symmetric. Taken together, these
matrices comprise the mobility matrix T of an object. If you invert the relation, the matrix
is called the resistance matrix. As an illustration, for a uniform sphere in an unbounded
fluid, the mobility matrix is

(
v
ω

)
=

⎛
⎜⎝

1
6πηR

δij 0

0
1

8πηR3 δij

⎞
⎟⎠ (

F
τ

)
, (1.7)

where δij is the Kronecker delta.
The dynamics of a single particle are determined by the time evolution of T . As the

particle moves through the fluid, its orientation can change with respect to the centre
of mass velocity. The orientation of the particle relative to the force determines what T
looks like in the lab frame. Analogously, if we move to the body frame of the particle, T
becomes fixed and the force and torque become time dependent. The motion of the particle
cannot change the magnitude of the force, so only the force’s direction changes with time.
Depending on the symmetries of T , different classes of trajectories can be found. For a
comprehensive list of these trajectories and symmetries, refer to Doi & Makino (2005),
Krapf et al. (2009) and Witten & Diamant (2020).

In the case of gravitational sedimentation, asymmetric particles with mass distribution
polarity will undergo rotation in response to external forcing (Witten & Diamant 2020).
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This is because the total form and skin drag on the particle can apply a net torque when
the centre of mass is in a different location than the geometric centre of the particle.
Consequently, an external force leads to a net torque, and the particle will rotate so
that the external force is parallel to an eigendirection of TωF (Witten & Diamant 2020).
The response of a single particle can have important implications for the sedimentation
dynamics of many particles. Recent work has theoretically explored the sedimentation
of ‘mass polar’ prolate spheroids, whose centre of mass lies along the major axis away
from the geometric centre (Goldfriend et al. 2017). These particles are defined by two
parameters: the ratio of major to minor axes, κ , and the centre of mass offset from the
geometric centre, χ . Using a linear stability analysis of a uniform suspension of particles
in Stokes flow, they predicted a repulsive interaction for κ > 1 (prolate), and an attractive
interaction for κ < 1 (oblate). The effect is surprisingly enhanced for smaller values of χ .
These effects, over a large collection of particles, can either enhance particle clustering
and velocity fluctuations (κ < 1), or inhibit them (κ > 1).

Inspired by Goldfriend, Diamant & Witten (2015, 2016) and Goldfriend et al. (2017),
we experimentally tested these predictions by fabricating prolate, mass polar ‘dimers’
and ‘trimers’. The particles were composed of multiple spheres of varying materials
bonded together. Our experiments tracked the position and rotation of pairs of particles
in a quasi-2-D environment. First, we examined the motion of single particles to quantify
the mobility matrix. Using the symmetry properties of prolate spheroidal particles, we
derive an analytic solution for the particle dynamics that shows excellent agreement with
the experimental data. Then, by sedimenting pairs of particles in the same quasi-2-D
environment, we found that prolate particles experienced an effective repulsion that
increased with κ and decreased with χ , in agreement with Goldfriend et al. (2017). Finally,
we sedimented hundreds of particles in a 3-D container and analysed the distribution
of their post-sedimented positions. The inherent repulsion manifested as wider spatial
distributions of particles on the floor of the experimental apparatus. This shows local
changes in particle interactions have a large effect on global sedimentation patterns.

2. Experimental methods and particle fabrication

Composite particles were fabricated by gluing together smooth ball bearings using a
cyanoacrylate based glue. Each sphere had a diameter of 2 mm, and the material and mass
density of each sphere were chosen to produce various numerical values of χ . We used
the minimal amount of glue possible to adhere the spheres by applying a low-viscosity
glue instead of a viscous glue. The remaining thin layer of glue that extended away from
the contact point possibly affected the motion of the sedimentation of the particles, but the
repeatability of the experiments indicated that this has only a minimal effect. The materials
used were aluminium, stainless steel, copper, tungsten carbide, zirconium dioxide and
Delrin. Spheres were glued in either a dimer (κ = 2) or linear trimer (κ = 3) configuration.
The accessible range of χ was 0.0–0.43. To analytically calculate χ for any linear chain
of n spherical particles, we assumed all particles were ‘light’ with density ρl except for a
single ‘heavy’ particle with density ρh positioned at the end of the chain. The result is

χ = 1
n

(n − 1)|ρh − ρl|
ρh + (n − 1)ρl

, n ≥ 2. (2.1)

The centre of mass is displaced by a distance κχR, for a physical representation of κ and
χ , see figure 1.
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Figure 1. (a) Schematic diagram of our quasi-2-D experimental setup. The tank dimensions are 19 cm ×
15 cm × 0.4 cm. The top of the tank has a gating mechanism that allows us to drop multiple particles
simultaneously. The mechanism consists of a slotted piece of acrylic and a metal rod in a U shape. By moving
the prongs of the rod, the horizontal part can be rotated out of the plane, releasing the particles simultaneously.
(b) Schematic depicting a κ = 2 composite particle and coordinates in the lab frame. Here, θ is defined as the
angle between the composite particle’s major axis and the vertical direction. The orange sphere has a larger
mass density in this case, so the centre of mass is shifted away from the centre of geometry (black cross) to the
position indicated by the black cross. (c) Physical representation of κ and χ shown on an example particle. The
centre of mass of the particle is offset by an amount κχR. For all our experiments, R = 1 mm and the typical
Reynolds number is ∼ 10−4.

Two sets of experiments used a quasi-2-D tank made out of cast acrylic (figure 1). We
laser cut sheets of cast acrylic and used SCIGRIP 4 acrylic plastic cement to glue them
together to create a tank of dimensions 19 cm high, 15 cm wide, with a gap of thickness
4 mm. The tank was filled with pure silicone oil of kinematic viscosity 10 000 cSt and
density of 0.971 g cm−3. A gating mechanism was placed at the top of the chamber
consisting of a thin rectangle of acrylic with 2.5 mm holes spaced out evenly. The holes
helped to align the particles so that the initial orientations are fixed before sedimentation.
A thin metal rod held them in place and facilitated a simultaneous release of the particles
at the beginning of an experimental run.

After the particles were released, we imaged their sedimentation using a CCD camera
(Point Grey) at 6 frames per second with a spatial resolution of 12 pixels per mm. After
recording, we processed the images using ImageJ (Schindelin et al. 2012) for easier
detection of each sphere in a composite particle. Images were first binarized with a
brightness threshold, then each sphere was separated with a watershedding algorithm. The
resulting image was eroded, leaving us with easily trackable objects composed of white
pixels. Particle tracking and linking between frames were done with TrackPy (Allan et al.
2021). The resulting trajectories of the individual spheres were used to calculate various
quantities associated with the dynamics of the composite particles.

The second set of experiments were done in a cylindrical 3-D chamber of diameter of
12 cm and a height of 21 cm (see § 4). The chamber was fabricated from a cast acrylic tube
with wall thickness of 12 mm. The chamber was also filled with silicone oil of the same
viscosity (10 000 cSt). We placed 100 particles of a single κ and χ combination in the fluid
and sealed the chamber so that there were no trapped air bubbles. Particles were allowed to
sediment under gravity to the bottom of the chamber, and the distribution of particles was
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imaged from above. We then flipped the chamber and repeated the experiment 50 times
for each set of particles. Due to finite-size wall effects driving convection and particles
resting on top of one another, identifying the individual spheres from each particle was not
feasible, as was done in the 2-D experiments. Thus, images were cropped and binarized
and the spatial distributions of black pixels were analysed.

The quasi-2-D geometry allows us to easily track the position and rotation of particles,
but it also imposes a form of screening for the interactions between particles. The
divergence of velocity fluctuations in suspensions arises from the 1/r decay of velocity
around a sedimenting particle; however, in confined 2-D environments, the fluid flow
decays as 1/r2. A detailed discussion of the differences can be found in Beatus, Bar-Ziv
& Tlusty (2012). The faster decay allows convergence of the velocity fluctuations found in
three dimensions, meaning that the majority of the screening is provided by the confining
walls of our chamber. Although this is important for a statistically large number of
particles, our results show that mass polarity strongly affects sedimentation dynamics in
both 2-D and 3-D geometries.

3. Results and discussion

3.1. Single particle dynamics
After fabricating the composite, prolate particles, we observed the sedimentation of single,
isolated particles to better understand their dynamics and to extract the terms in the
mobility matrix (1.6). The response of a single particle to an external force or torque
informs its effective interactions with neighbouring particles (Goldfriend et al. 2017;
Witten & Diamant 2020). For example, a rod-shaped particle of uniform mass density
will sediment without a change in its initial angle (Ramaswamy 2001; Witten & Diamant
2020). This results in a diagonal drift. However, the mass polarity of our objects causes
them to align with the external gravitational field, meaning that a mass polar object will
rotate until its centre of geometry lies directly above its centre of mass (θ = 0). For our
experiments, mass polar particles were released from an initial angle of θ = π, so that they
rotated a total of π radians throughout the sedimentation process. A trajectory for a single
κ = 2 particle composed of Cu+St (see table 1) is shown in figure 2(a). Particles with
larger values of χ rotated much more rapidly due to the larger gravitational torque applied
to the geometric centre of the particle. This can be compared with an St–St particle in
figure 2(b), which shows no preference for rotations since it has no mass polarity (χ = 0).
For particles with χ = 0, we occasionally observed ‘fluttering’, or oscillations of angular
orientation during sedimentation. This was likely due to interactions with the walls of the
experimental chamber during slight rotations out of the quasi-2-D plane of the experiment
(Mitchell & Spagnolie 2014; D’Angelo et al. 2017).

To quantitatively capture the coupling between the external force and dynamics of
single particles, we applied the mobility matrix formalism (1.6). Because we are using
a quasi-2-D geometry, the complexity of the problem is reduced since the particle can
only rotate in the plane. However, the mobility coefficients will be different from those
measured in an unbounded, 3-D fluid. With two planar walls, our experimental setup is
most similar to a Hele-Shaw cell, where the mobility matrix formalism has already been
successfully implemented (Bet et al. 2018) and tested (Georgiev et al. 2020). Because
we are considering symmetric prolate particles, the mobility matrix in the body frame
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Material combinations ρl (g cm−3) ρh (g cm−3) κ χ

St+St 7.82 7.82 2 0
Cu+St 7.82 8.92 2 0.033
St+ZrO2 5.68 7.82 2 0.080
Cu+ZrO2 5.68 8.92 2 0.11
Al+Pl 1.42 2.79 2 0.16
Tc+St 7.82 15.63 2 0.17
St+Al 2.79 7.82 2 0.24
Cu+Pl 1.42 8.92 2 0.36
Cu+St+St 7.82 8.92 3 0.030
Tc+Cu+Cu 8.92 15.63 3 0.11
St+Al+Al 2.79 7.82 3 0.18
Cu+Pl+Pl 1.42 8.92 3 0.25
St+St+St 7.82 7.82 3 0

Table 1. The different types of particles used in our experiments along with their corresponding κ and χ

values. Materials used are steel (St), aluminium (Al), copper (Cu), Delrin plastic (Pl), tungsten carbide (Tc)
and zirconium dioxide (ZrO2). Values of χ are kept to two significant digits.
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Figure 2. Two representative examples of the particle trajectories in our single particle experiments. Here,
x = 0 is defined as the geometric centre of the particle at the earliest time. (a) Particle with χ > 0 (Cu+St, see
table 1). The left part of the panel is a composite image of the particle during the length of the experiment.
The right graph shows the corresponding particle orientations, with the arrows pointing from the heavier
sphere (Cu) to the lighter sphere (St). The colour bar represents time. Gravity points downward in all pictures.
(b) Particle with χ = 0 (St+St).

(indicated by superscript b) is reduced to

⎛
⎜⎜⎝

vb
x

vb
y

ωb
z

⎞
⎟⎟⎠ = 1

6πηR

⎛
⎜⎝

at 0 0
0 bt 0

0 0
3ar

4R2

⎞
⎟⎠

⎛
⎜⎜⎝

Fb
x

Fb
y

τ b
z

⎞
⎟⎟⎠ , (3.1)
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where vb
x and vb

y are the translational velocities in the body frame and ωb
z is the angular

velocity perpendicular to the plane of motion. Here, Fb
x and Fb

y are the components of the
gravitational force in the body frame, and τ b

z is the external torque from gravity about
the particle’s centre of geometry (see figure 1). The dimensionless translational mobility
coefficients bt and at represent mobility along the major and minor axes of the particle
(bt > at). The dimensionless rotational mobility coefficient is ar. These coefficients
should be identical for all of our particles with the same κ and R, regardless of the internal
density distribution (χ ). They characterize the drag from the external flow, which applies
stress on the surface of the particle.

Our experimental data, however, are collected in the lab frame. Thus, we first rotate all
vectors and the mobility matrix by an angle θ (figure 1) to obtain the equations of motion
in the lab frame:

Ω =
⎛
⎝ cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎞
⎠ , (3.2)

Ω ·

⎛
⎜⎜⎝

vb
x

vb
y

ωb
z

⎞
⎟⎟⎠ =

⎛
⎜⎝Ω · 1

6πηR

⎛
⎜⎝

at 0 0
0 bt 0

0 0
3ar

4R2

⎞
⎟⎠ · Ω−1

⎞
⎟⎠ Ω ·

⎛
⎜⎜⎝

Fb
x

Fb
y

τ b
z

⎞
⎟⎟⎠ . (3.3)

After multiplying and collecting terms, we use the substitutions 2c1 = at + bt, 2c2 =
bt − at and c3 = 3ar/4 to write the result in the following form:

⎛
⎝vx

vy
ωz

⎞
⎠ = 1

6πηR

⎛
⎜⎝

c1 − c2 cos(2θ) c2 sin(2θ) 0
c2 sin(2θ) c1 + c2 cos(2θ) 0

0 0
c3

R2

⎞
⎟⎠

⎛
⎝ 0

Fy
τz

⎞
⎠ . (3.4)

We have chosen this parametrization out of convenience. For example, in the case of a
perfect sphere, bt = at, thus c1 = 1, c2 = 0 and c3 = 3/4 (1.7). We have dropped the
superscript since we are referring to the lab frame where the gravitational force only points
in the y-direction.

The matrix multiplication above gives us the following equations of motion for our
particles in the lab frame:

vx = ẋ = c2 sin(2θ)

6πηR
Fy, (3.5)

vy = ẏ = c1 + c2 cos(2θ)

6πηR
Fy, (3.6)

ωz = θ̇ = c3

6πηR3 τz. (3.7)

The dotted variables denote differentiation with respect to time. Similar simplified
equations for single-particle dynamics in quasi-2-D geometries have been derived by Bet
et al. (2018) and Ekiel-Jeżewska & Wajnryb (2009). In our experiments, the net force and
torque on a particle will depend on the values of κ and χ . For κ = 2 particles, the net
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gravitational force and torque about the centre of geometry are

Fy = −4
3πR3(ρh + ρl − 2ρf )g, (3.8)

τz = −4
3πR4(ρh − ρl)g sin θ. (3.9)

Equations (3.5)–(3.7) are coupled through θ , and can be solved analytically. However, the
solution can be generalized by making the equations dimensionless. We used the sphere
radius R for a characteristic length scale and τ = R/UT for the characteristic time scale,
where UT is the terminal velocity of the lighter sphere (1.1). This non-dimensionalization
results in the following equations of motion, where all variables are considered
dimensionless for clarity of notation:

ẋ = −K1c2 sin(2θ), (3.10)

ẏ = −K1(c1 + c2 cos(2θ)), (3.11)

θ̇ = −K2c3 sin(θ), (3.12)

K1 = ρh + ρl − 2ρf

ρl − ρf
, (3.13)

K2 = ρh − ρl

ρl − ρf
. (3.14)

Equation (3.12) can be immediately solved since it is independent of the other equations.
The result is

cot
(

θ(t)
2

)
= cot

(
θ0

2

)
eK2c3t, (3.15)

where θ0 is the initial value of θ at t = 0. Plugging this back into (3.10) and (3.11) and
simplifying algebraically, we get

x(t) = x0 + 4c2FK1 cot(θ0/2)

c3K2 − c3F2K2 cot(θ0/2)2 − 2c2K1 sin(θ0)

c3K2
, (3.16)

y(t) = y0 − K1

K2c3

⎛
⎜⎜⎝(c1 + c2)c3K2t + 2c2

⎛
⎜⎜⎝cos(θ0) +

1 − F2 cot2
(

θ0

2

)

1 + F2 cot2
(

θ0

2

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠ , (3.17)

where F = eK2c3t is a function of time, and used here for compactness. In the limit of
particles with uniform mass density (K2 → 0, χ → 0), these functional forms simplify to

θ(t) = θ0, (3.18)

x(t) = x0 − c2K1t sin(2θ0), (3.19)

y(t) = y0 − K1t(c1 + c2 cos(2θ0)). (3.20)

Equations (3.18) and (3.19) verify the prediction that for polar particles of uniform density,
the angle of inclination does not change, and the particle drifts laterally in the x-direction
(Ramaswamy 2001).

After taking the inverse cotangent of (3.15) and using standard least-squares nonlinear
regression, we can fit these analytic forms to the experimental data with very
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Figure 3. Data for five experiments with a single Al+Pl particle (table 1). Only 5 % of points are plotted for
clarity. Initially, the heavy aluminium sphere begins above the lighter Delrin sphere. Open symbols represent
data, and curves are model fits from (3.15)–(3.17). Different symbols and colours are separate experiments.
Inset shows the residual difference between the model fit ym and the data y for the vertical position of the
particle.

good agreement. Figure 3 shows five identical experiments and their corresponding fits.
For θ(t), there are only two fitting parameters, c3 and θ0. Once they are determined by
the fit, then x(t) can be fit for the parameters c2 and x0. Finally, y(t) can then be fit for c1
and y0. The curves are compared to each other by assigning t = 0 when the particles are
completely horizontal, i.e. θ = π/2. We also moved the x and y origin to correspond to
t = 0. Open symbols represent data and curves are the fits to (3.15)–(3.17). The fits for the
x-position show more systematic deviation from the data, yet the overall displacement is
also much smaller. For example, as shown in the inset in y versus t, the residuals of these
fits are comparable to the variability in x versus t, which is a fraction of a particle radius
in displacement. Although the source of the systematic asymmetry is unclear, we suspect
that when particles are released from the gating mechanism, they are not perfectly parallel
with the walls of the quasi-2-D chamber. If a particle’s alignment varies during the rotation
from θ = π to θ = 0, we would expect variations in the mobility coefficients (i.e. c2) due
to wall effects (Brenner 1999; Mitchell & Spagnolie 2014), resulting in an asymmetry
in x(t) about θ = π/2. Additionally, we do not expect errors in particle tracking to lead
to systematic asymmetry even though the x-motion is of the order of the particle size.
Tracking errors would manifest more as random noise rather than systematic deviations
from theory. The data for θ , x and y can also be fit simultaneously using a global least
squares regression for all parameters, since parameters appear in multiple equations. We
found less than 5 % difference in the fitted parameter values using this method, so we
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Figure 4. Best-fit parameters versus χ from (3.15)–(3.17) for single particle sedimentation experiments with
κ = 2. The material combinations used were circle, St+St; diamond, Cu+St; plus, St+ZrO2; right triangle,
Cu+ZrO2; square, Al+Pl; star, Al+St (see table 1). Each data point is the weighted mean of five different
trials with error bars representing the standard error of the mean. (a–c) Parameters c1–c3 directly computed
from the nonlinear regression of data in the lab frame. (d– f ) Body frame coefficients: at, bt and ar . Here, St+St
is missing from c3 and ar because of the limiting form of θ(t) when χ = 0 (3.18), which has no dependence on
c3.

have only chosen to report the results of the sequential fitting. Similar analytic solutions
and quality of fits were recently found in the alignment of mirror-symmetric particles in a
microfluidic device (Bet et al. 2018; Georgiev et al. 2020).

One of the major assumptions of our model was that all coefficients are independent
of χ , and only depend on the shape of the composite, prolate particles. This is evident
from (3.1), since at, bt and ar are dimensionless coefficients that only depend on the
particle shape, not the density distribution. We confirmed this prediction using all fits
of single particle experiments with κ = 2, as shown in figure 4(a–c). The coefficients
c1, c2 and c3 are computed directly from nonlinear least-squares regression of the data
(3.10)–(3.12). For particles with χ = 0 (uniform density), we used (3.18) and (3.19) to fit
the data. In this form, there is no torque from gravity, so c3 cannot be determined and
is not shown. However, c1 and c2 can be determined, but are not very reliable because
of experimental artefacts that affect the angle (and thus translational velocity) during
sedimentation. These artefacts include small differences in the distribution of glue used
between the particles, rotations out of the quasi-2-D plane and other 2-D confinement
effects such as ‘fluttering’ (Brenner 1999; Mitchell & Spagnolie 2014; D’Angelo et al.
2017). For finite χ , the particles rotate significantly due to gravitational torque, and c1,
c2 and c3 can be determined reliably. There appears to be some small systematic trend in
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c1, but the overall variation is small and the data for all parameters is consistent with a
constant value over the range 0 < χ < 0.25.

Using 2c1 = at + bt, 2c2 = bt − at and c3 = 3ar/4, we computed the shape-dependent
drag coefficients of our symmetric particles in the body frame, as shown in figure 4(d,e).
Here again, ar cannot be determined from the χ = 0 data, and data with finite χ are
most reliable. The average values of these mobility coefficients with χ > 0 are shown
by the dashed lines: āt = 0.328 ± 0.018, b̄t = 0.404 ± 0.012 and ār = 0.221 ± 0.008. We
suggest that these experimental values for the mobility coefficients can be compared
directly to simulations of particles composed of spheres (Garcia de la Torre & Carrasco
2002). In comparison to sedimentation in an unbounded, 3-D fluid, we expect our
measured values of at, bt and ar to be somewhat smaller since the particles experience
a larger drag due to the confining walls.

3.2. Sedimenting particle pairs
Goldfriend et al. (2017) theoretically examined a sedimenting suspension of mass polar
spheroids using a continuum linear stability analysis. To briefly summarize their results,
they considered a suspension of particles settling due to an external body force F in the
direction of gravity in a fluid of viscosity η. A sinusoidal concentration perturbation was
applied in a direction perpendicular to the force with amplitude c(x) and a characteristic
wavelength λ. These fluctuations in the concentration create velocity fluctuations, U(x).
Balancing the change in gravitational force of the suspension versus the change in the
drag force gives cλF ≈ Uη/λ. By solving for the amplitude U, we see that U ∼ cλ2F/η.
The indefinite scaling of U with λ is a demonstration of the Caflisch–Luke paradox
described in the introduction. These slabs of particles will also experience vorticity of the
magnitude U/λ ∼ cλF/η. For uniform spheres, this will cause a rotation of the sphere, but
no drift. However, self-aligning objects will be tilted away from their preferred alignment.
This causes a drift in the x-direction with velocity ∼ γ RcF/η, where γ = γ (κ, χ) is a
proportionality constant determined by the shape and mass distribution of an individual
particle. For positive γ , which requires κ > 1 (Goldfriend et al. 2017), the relative velocity
of the particles is positive, meaning they drift away from each other. This is the screening
mechanism that stabilizes the suspension. For negative γ , which requires κ < 1, they drift
towards each other, leading to unbounded growth of the instability.

In our experiments, we examined the particle-level interactions by measuring the
relative separation of pairs of prolate (κ > 1) particles as they repel each other during
sedimentation. We placed two particles heavy-side down in adjacent slots of the plastic
gate so that their initial separation was 3.3 mm. Each experiment was conducted five
times for reproducibility. Figure 5 shows a representative selection of settling trajectories
for various values of κ and χ . These are composite images of the particles during
sedimentation, spaced 3.33 s apart. The arrows to the right of each panel show the
orientations of each particle during sedimentation and the colour represents time. First,
particles with χ = 0 heavily influenced each other. Their dynamics were typically
characterized by one of the particles rotating or flipping completely. This particle often
lagged behind the other one, which did not flip, but followed a curved trajectory. This
can be seen in both figures 5(a) and 5(d). The particles did not preferentially align to
gravity, and instead produced a variety of dynamics. For example, the periodic variation
in separation visible in figure 5(d) is reminiscent of Kepler orbits observed in sedimenting
pairs of disks (Chajwa et al. 2019). In fact, a periodic variation in the relative position
between adjacent, sedimenting prolate particles was theoretically predicted by Claeys &
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Figure 5. Experimental trajectories of two-particle interaction experiments. In each alphabetic panel, the
image shows a composite of the particles’ trajectories during sedimentation. The graph shows the orientation of
the particles with arrows pointing from the heavier particle to the lighter particle(s). The colour is used to show
when two arrows are at the same time during their transit. Here, x = 0 is defined as the halfway point between
the particle centres on the first frame. Panels (a–c) are κ = 2 particles, panels (d– f ) are κ = 3 particles. Panels
(a) and (d) show particles with χ = 0. Panels (b) and (e) show particles with the smallest χ , Cu+St (see
table 1). Panels (c) and ( f ) show particles with the largest χ , Cu+Pl (see table 1).

Brady (1993) (see their figure 4). On average, we did not observe a net repulsion or
attraction between our particles with a uniform mass distribution (χ = 0).

For particles with χ > 0, there was an immediate rotation and repulsion between the
particles leading to a horizontal separation that grew with time. Eventually the particles
would align with the external gravitational field, and the separation saturated. This is
shown in figure 5(b,c) for κ = 2 and figure 5(e, f ) for κ = 3. The finite width of the
quasi-2-D chamber, 4R, introduced a length scale that could potentially set an upper limit
on the range of the repulsive interaction. However, we observed that the final separation
between the particles could be as much as 30R (figure 5e) for smaller values of χ . The
repulsive effect was most prominent for particles composed of materials with closely
matched densities (i.e. copper and steel). Although this may seem counter-intuitive at first,
particles with 0 < χ � 1 can rotate away from vertical more easily, and thus experience a
larger repulsion and horizontal drift. As χ → 0, we expect one of the particles to be able
to flip entirely if they are close enough to interact strongly, leading to the periodic type of
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Figure 6. Graphs of our experimental response parameter, ΔH, versus κ . Here, ΔH is defined as the difference
between the final and initial horizontal separation. The colours and shapes represent different material
combinations of the composite particles. By order of increasing χ , they are Cu+Pl (upright triangle), Al+St
(upside down triangle), Tc+St (star) and Cu+St (circle) (see table 1). Panel (a) is the raw data, with each data
point being an average over five runs and error bars representing one standard deviation. Panel (b) is the same
data collapsed using the best fit parameters obtained from (3.21).

interactions observed for χ = 0 (figures 5a and 5d). In this limit, the eventual behaviour
of the sedimenting particles should be determined both by χ and by the initial separation.

The inverse relationship between χ and the mutual repulsion was also predicted by
Goldfriend et al. (2017). The authors found that the growth rate of the horizontal velocity
fluctuations scaled as γ = κ2/3/3χ for highly prolate particles (κ � 1). To quantify this
effect in our experiments, we chose to measure the total change in horizontal separation,
ΔH, between the particles’ geometric centres in each experiment. This is plotted in
figure 6(a) as a function of κ . Generally, the separation increased with κ . However, to
compare between each set of experiments that corresponded to different values of χ , we
multiplied the final separation by χα , where α was determined by simultaneous fitting of
all the data to the following form:

χα ΔH
2R

= A(κ − 1), (3.21)

where we have imposed the requirement that there be no repulsion for κ = 1 (i.e. single
spheres). The fit was performed by subtracting the left- and right-hand sides of (3.21),
squaring the difference and summing over all data points. The best fit values for the
parameters were α = 0.39 ± 0.05 and A = 1.28 ± 0.20, where the errors represent one
standard error. The fit shows very good agreement with the data, as plotted in figure 6(b).

In general, the predictions from Goldfriend et al. (2017) are in excellent qualitative
agreement with our experiments, yet the scaling, α ∼ 0.39, is quite different than that
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(a) (b)

Figure 7. Series of three sequential images of 29 particles sedimenting in our quasi-2-D chamber. (a) (χ = 0)
shows St+St particles and (b) (χ = 0.24) shows St+Al particles (table 1). The top row shows images at the
same vertical position near the top of the experimental chamber at early times, the middle row shows the same
particles later in time and the bottom row shows the particles near the end of the experiment, at the bottom of
the chamber.

predicted by Goldfriend et al. (2017): α ∼ 1. There are a few reasons that can explain
this discrepancy. (1) γ represents an instantaneous response for an initially uniform
concentration of particles. Here we are using the final separation, ΔH, which is essentially
an integral of the repulsion between the particles in time. (2) The quasi-2-D environment
should screen the long-ranged, 1/r hydrodynamic interactions (Beatus et al. 2012), so one
may expect a different theoretical scaling between γ and χ based purely on geometry.
(3) Our quasi-2-D chamber may introduce other effects that depend on the thickness
of the chamber, for example, it is well known that the net viscous drag force on a
sedimenting particle can be dependent on the distance to a nearby wall (Brenner 1999;
Mitchell & Spagnolie 2014). (4) Our particles are not perfect examples of the prolate
and oblate ellipsoids discussed by Goldfriend et al. (2017). Despite these differences, the
experimental data with different values of κ and χ can be reasonably collapsed using the
dependence listed in (3.21).

Lastly, we verified that this mutual repulsion led to more uniformly distributed
suspensions of many particles. We filled our quasi-2-D chamber with 29 particles with
κ = 2. The left column of figure 7 shows that for particles with χ = 0, there is no
preferential alignment to gravity, resulting in a large spread of particle separations, both
vertically and horizontally. Particles can flip very easily and often come into contact.
Some of the particles experienced small rotations out of the plane as well. The right
column of figure 7 illustrates that particles with χ = 0.24 followed a more uniform spatial
distribution. All particles tended to align with gravity, resulting in a mutual repulsion.
When particles are in close proximity, they tilted away from the vertical and drifted apart,
similar to figure 5. Surprisingly, the particles with χ = 0.24 did not spread as much in the
vertical direction as χ = 0, suggesting that vertical fluctuations in concentration may be
suppressed for χ > 0. An intuitive explanation for this behaviour stems from the variations
in vertical velocities of particles. For χ = 0, particle rotations lead to a spread in vertical
terminal velocities (3.17), whereas particles with χ > 0 are mostly aligned to gravity and
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χ = 0.18χ = 0

5 cm 5 cm

(a)

(b) (c)

Figure 8. (a) Experimental procedure for 3-D sedimentation. The sealed chamber was repeatedly flipped and
imaged, as described in § 2. (b) Sample image from the side during a single sedimentation experiment of
particles with χ = 0 and κ = 3 (St+St+St). (c) Sample image during sedimentation of particles with χ = 0.18
and κ = 3 (St+Al+Al).

sediment at the same rate. Although vertical fluctuations were not directly addressed by
Goldfriend et al. (2017), we hypothesize that the mutual repulsion in mass polar particles
also suppresses the ‘clumping instability’ observed in uniform suspensions (Chajwa et al.
2020) that leads to large vertical separations between particles.

4. 3-D particle suspensions

Although the effective repulsion between our prolate particles is apparent in a confined,
quasi-2-D environment, it is possible that the dynamical evolution of these particles in
three dimensions could hinder the repulsion since the particles have more motional degrees
of freedom. Figure 8 illustrates the experimental procedure, described in § 2, where
particles are sedimented repeatedly and their resulting spatial distribution is imaged after
each repeated experiment. For χ = 0, particles tended to cluster during sedimentation,
resulting in a rapid increase in their velocity due to mutual drag reduction at finite
distances. For χ = 0.18, there is a visible alignment of particles to the direction of gravity
(vertical), and a broader spatial distribution with less clustering.

To quantify the post-sedimentation spatial distribution of particles, one would ideally
extract the centre of mass position of each particle and calculate the radial distribution
function of their positions. However, after sedimentation, we found that particles often
overlapped by stacking in the vertical direction, making identifying the centre of mass
impossible. Instead, we choose to threshold the images so that particles became black
pixels, and the background became white. Samples of these images are shown in figure 9.
We then calculated the radial distribution function of the positions of the black pixels.
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Figure 9. (a) Sample images of particles resting on the bottom of the 3-D chamber after sedimentation. The
left column shows κ = 2 particles with χ = 0 (St+St; top) and χ = 0.24 (St+Al, bottom). The right column
shows κ = 3 particles with χ = 0 (St+St+St; top) and χ = 0.18 (St+Al+Al, bottom). We quantified the radial
distribution of black pixels at a different radii r from the centre of the sedimented pattern, as indicated by the
magenta arrow. (b) Radial probability density function (PDF) of black pixels from the images. The radius has
been normalized by rrms for χ = 0 (4.1). The legend indicates the values of κ and χ for the different PDFs.
Each curve was produced using data from 50 post-sedimented images.

This was done by first finding the centre of mass of all black pixels, corresponding to
r = 0 in each image, and then binning pixel positions radially along r. We divided the
number of pixels in each bin range by the area of the annulus associated with the bin. To
compare between κ = 2 and κ = 3, we also normalized the radial positions by the root
mean squared radius of the data for χ = 0, calculated by

rrms =
√

1
N

∑
r

r2. (4.1)

Here, the sum runs over every black pixel in all 50 images associated with χ = 0, and N
is the sum total of all black pixels from all images with χ = 0.

The resulting distribution functions are shown in figure 9. After normalizing the radial
position, we see that all data for χ = 0 collapses onto the same distribution (dashed lines).
As expected, when χ > 0 (solid lines), these distributions broaden due to the net repulsion
between the particles. Furthermore, particles with larger κ and smaller non-zero χ should
experience a larger repulsion, as predicted by (3.21). This is consistent with our data,
since the distribution for κ = 3, χ = 0.18, is broader than for κ = 2, χ = 0.24. We note
that because the initial state of each round of sedimentation was set by the final state of the
previous one, the sequential images of the final sedimentation pattern were not statistically
independent. Nevertheless, we do not expect these effects to qualitatively change our
results, and taken together, figures 8 and 9 confirm that the effective pairwise repulsion
between mass polar particles also suppresses clumping in three dimensions.

5. Conclusion

Particles with mass polarity are forced to align with the direction of gravity during
sedimentation. This alignment arises because the centre of mass is displaced from the
geometric centre of each particle, resulting in a net torque imposed by the fluid flow.
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Our work examined the motion of single particles sedimenting in a viscous fluid, and
we derived a simple analytic expression for the their motion in a quasi-2-D environment.
Fitting trajectories of the individual particles allowed us to reconstruct the parameters of
the mobility matrix. When two or more prolate particles are present, we showed that they
experience a mutual repulsion, as first described by Goldfriend et al. (2017). Surprisingly,
this repulsion is strongest for small values of χ , i.e. when the centre of mass is only slightly
displaced from the centre of geometry. The repulsion also increases as the particles become
more asymmetric (more prolate, large κ). We also showed that this overall repulsion
persists in 3-D experiments with hundreds of particles.

There are still many open questions facilitated by this work. First, Goldfriend et al.
(2017) showed that there should be a mutual attraction between particles for κ < 1. We
found that our particle fabrication method, i.e. gluing individual spheres together, did
not easily lend itself to making oblate particles with κ < 1. Such particles would cluster
rapidly during sedimentation, and may dramatically increase the overall sedimentation
rate of a suspension of particles. Additionally, Goldfriend et al. (2017) predicted the
existence of hyperuniformity in the density distribution of a sedimenting suspension. Our
experimental results in three dimensions demonstrate a net repulsion and a more uniform
concentration, yet we would need many more particles with accurate tracking in three
dimensions to quantify hyperuniformity. One alternative route could be simulating many
particles efficiently with a parametrized interaction based on our results. We hope our
simplified mobility matrix may serve as a starting point for such idealized simulations of
many interacting particles.
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