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Autonomic computing is emerging as a significant new approach to the design of computer
services. Its goal is the development of services that are able to manage themselves with
minimal direct human intervention, and, in particular, are able to sense their environment
and to tune themselves to meet end-user needs. However, the impact on performance of
the interaction between multiple uncoordinated self-optimizing services is not yet well
understood. We present some recent results on a non-cooperative load-balancing game
which help to better understand the result of this interaction. In this game, users generate
jobs of different services, and the jobs have to be processed on one of the servers of a
computing platform. Each service has its own dispatcher which probabilistically routes jobs
to servers so as to minimize the mean processing cost of its own jobs. We first investigate
the impact of heterogeneity in the amount of incoming traffic routed by dispatchers and
present a result stating that, for a fixed amount of total incoming traffic, the worst-
case overall performance occurs when each dispatcher routes the same amount of traffic.
Using this result we then study the so-called Price of Anarchy (PoA), an oft-used worst-
case measure of the inefficiency of non-cooperative decentralized architectures. We give
explicit bounds on the PoA for cost functions representing the mean delay of jobs when
the service discipline is PS or SRPT. These bounds indicate that significant performance
degradations can result from the selfish behavior of self-optimizing services. In practice,
though, the worst-case scenario may occur rarely, if at all. Some recent results suggest
that for the game under consideration the PoA is an overly pessimistic measure that does
not reflect the performance obtained in most instances of the problem.

1. INTRODUCTION

Even small degradations in the performance and availability of modern computer services
can have a considerable business impact. These services usually require continuous operation
over time, always maintaining the response time below an acceptable threshold, in order
to avoid damage to brand reputation, lost revenue and reduced productivity. Yet, modern
computer services have reached a level of complexity where the human effort required to get
the systems up and running is becoming prohibitively expensive. Autonomic computing has
been proposed by IBM [20,30] as an approach for reducing the cost of operating complex
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computer systems, while at the same time improving their performance and availability.
Inspired by the autonomic nervous system of the human body, this approach aims at
enabling computer systems to manage themselves with minimal direct human intervention.

In particular, autonomic systems are self-optimizing systems that are able to sense their
environment and to tune themselves to meet end-user needs, for example, by dispatching
incoming jobs to the best available resources in order to maintain and improve the requested
quality of service (QoS) in response to dynamically changing workloads. An interesting
example is the approach for smart workload allocation to cloud servers presented in [52,53].
Inspired by the Cognitive Packet Network [13,23] adaptive routing protocol for packet net-
works, this paper investigates adaptive allocation algorithms that make measurement-based
fast online decisions to address QoS. Measurement data are collected by a controller which
uses a Random Neural Network (RNN) based [24] decision scheme, or a greedy scheme called
“sensible routing” [22] that probabilistically allocates successive tasks to hosts based on a
real-time estimate of the one that can give the best QoS. It is shown that when the hosts
have significantly different performance characteristics, the autonomic approach comes out
clearly better with respect to static allocation schemes (e.g., Round Robin scheme) because
of its use of on-line measurement data and of on-line adaptation.

Even if there is no doubt on the potential for Autonomic Computing to improve the
performance and availability of individual computer services, we lack the hindsight necessary
to understand the outcome of the interaction of many self-optimizing services. If multiple
self-optimizing services share the resources of a computing platform, each one seeking to
minimize the mean processing time of its own jobs without any coordination with the others,
does not it lead to an anarchic situation in which everyone will lose? In other words, is there
a significant price to pay in terms of performance for the lack of coordination of autonomic
services? The present paper addresses these issues by reviewing some recent results from
Game Theory which help to better understand the overall performance resulting from the
interaction of uncoordinated self-optimizing services.

Game Theory is a systematic framework to model, analyze, and solve decentralized
design problems involving multiple autonomous agents that interact strategically in a ratio-
nal and intelligent way [4,27,42]. In particular, non-cooperative Game Theory is used to
study and understand decentralized algorithms in which the autonomous agents behave
“selfishly”, that is each agent makes decisions so as to optimize its own performance,
without coordination with the other agents. In the past decade, Game Theory has found
applications in as diverse areas as load-balancing in server farms [2,5,9,10,15,18,28], power
control and spectrum allocation in wireless networks [14,25,26,35,38,39,43,44,51], congestion
control in the Internet [1,21,37,49,55] or decentralized routing in communication networks
[4,16,29,31,36,45].

In the present article, we consider a non-cooperative routing game which was originally
introduced in the seminal paper of Orda, Rom and Shimkin [45]. In this game, users generate
jobs of different services, and the jobs have to be processed on one of the servers of a
computing platform. Each service has its own dispatcher which probabilistically routes jobs
to servers so as to minimize the mean processing cost of its own jobs. In the following,
since there is no central authority for dispatching jobs to servers, this routing scheme will
be referred to as a decentralized or non-cooperative load-balancing scheme (We shall use
the terms load-balancing and routing interchangeably). In this load-balancing scheme, the
optimal routing strategy of a dispatcher depends on the strategy of the others and the
dispatchers are therefore the players of a non-cooperative routing game. We can distinguish
two different settings depending on the number of dispatchers. If the number of dispatchers
is finite, then it is said that the game is “atomic” and a well-known equilibrium strategy is
given by the so-called Nash Equilibrium, that is, a routing strategy from which unilateral
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deviation does not help any dispatcher in improving the performance perceived by the jobs it
routes. When the number of dispatcher grows to infinity (every arriving job is handled by a
dispatcher and it takes its own routing decision) the game is referred to as a “non-atomic”
game and the corresponding equilibria is given by the notion of Wardrop Equilibrium.
In this case, the equilibrium point is characterized by the fact that the performance in
every (used) server is the same. In the present article we are mostly interested in the
“atomic” setting, and we refer to [2,15,28,54] for some related works in the “non-atomic”
setting.

The main issue we address in this paper is that of the performance of non-cooperative
load-balancing schemes. We first show that there always exists a unique Nash Equilibrium,
that is, a routing strategy from which no dispatcher has any incentive to deviate. We then
present a result on the worst-case traffic conditions for non-cooperative routing, which states
that the worst Nash Equilibrium occurs when the amount of traffic that every dispatcher
routes is exactly the same. One immediate consequence is that the routing game under
consideration belongs to a particular class of games known as Potential Games [41], which
implies in particular that equilibrium performance can be computed as the solution of a
standard convex optimization problem. We then compare the performance of the globally
optimal routing strategy with that given by the Nash Equilibrium, or in other words, the
performance when there is only one dispatcher which routes all the traffic so as to optimize
the performance of all jobs, and the performance when there are several dispatchers, each
one seeking to optimize the performance of its own jobs. In order to do so, we first look at the
Price of Anarchy (PoA) which was introduced by Koutsoupias and Papadimitriou [34]. The
PoA is a worst-case measure of the inefficiency of a non-cooperative scheme. It is defined as
the ratio between the performance obtained by the worst Nash Equilibrium and the global
optimal solution. We present explicit bounds on the PoA for cost functions representing the
mean delay of jobs when the service discipline is PS or SRPT. These bounds indicate that as
the number of dispatchers increases, the loss of efficiency may grow unboundedly, implying
that the “selfish” behavior of uncoordinated self-optimizing services can lead to significant
performance degradations. In practice, though, the worst-case scenario may occur rarely,
if at all. We review some recent results suggesting that for the game under consideration
the PoA is an overly pessimistic measure that does not reflect the performance obtained in
most instances of the problem.

The rest of the paper is organized as follows. In Section 2, we present the non-cooperative
load-balancing game under consideration. We then study the worst-case traffic conditions
for non-cooperative routing in Section 3. In Section 4, we explain how bounds on the PoA
are derived for cost functions representing the mean delay of jobs when the service discipline
is PS or SRPT. Section 5 is devoted to the analysis of a new measure, called the inefficiency,
for the comparison of the non-cooperative and centralized load-balancing schemes. Finally,
some conclusions are drawn in Section 6.

2. NON-COOPERATIVE LOAD-BALANCING GAME

We consider K computer services sharing the computing resources of S servers. Users gen-
erate jobs of each service, which have to be processed on one of the servers. We assume
that each service has its own job dispatcher which selects the best available server on which
to process each job so as to optimize the performance of its own individual jobs. In the
following, we let C = {1, . . . , K} be the set of dispatchers and S = {1, . . . , S} be the set of
servers (see Figure 1).
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Figure 1. Non-cooperative load balancing: each dispatcher controls a portion of the total
traffic intensity and probabilistically routes its jobs so as to minimize their own mean
processing cost.

Jobs arrive to the system according to independent Poisson processes and those received
by dispatcher i are said to be jobs of class i. They have class-independent generally dis-
tributed service times. In the following, we let λi be the traffic intensity of class i, and
λ̄ =

∑
i∈C λi be the total traffic intensity.

Server j ∈ S has capacity rj and a holding cost cj per job is incurred for each job sent
to this server. It will be assumed throughout the paper that the total capacity of the system
r =

∑
n∈S rn is such that λ̄ < r, which is the necessary and sufficient condition to guarantee

the stability of the system.
Dispatcher i uses a Bernoulli routing policy, that is, it probabilistically routes arrivals to

servers so as to optimize the performance of its own jobs (Routing policies where a dispatcher
has the memory of its previous routing decisions have also been considered in [6–8]). This
model follows from the assumption that routing decisions are made without observing the
queue lengths and that the dispatcher reacts to periodic performance measurements attained
from each server with the goal of minimizing the processing cost of its own jobs. Let xi =
(xi,j)j∈S denote the routing strategy of dispatcher i, with xi,j being the amount of traffic
it sends towards server j. Let

Xi =

⎧⎨
⎩xi ∈ IRS : 0 ≤ xi,j ≤ rj ,∀j ∈ S;

∑
j∈S

xi,j = λi

⎫⎬
⎭

denote the set of feasible routing strategies for dispatcher i. Given a vector x ∈ X =⊗
i∈C Xi, we let yj =

∑
i∈C xi,j be the total flow on server j and ρj = yj/rj be the uti-

lization rate of that server. We assume that the mean response time of server j depends
only on its utilization rate and has the form φ(ρj)/rj , where φ is a strictly increasing func-
tion of the load ρj (see below for some examples). Note that from Little’s law xi,j

rj
φ(ρj) is

the mean number of class-i jobs on server j, so that cj
xi,j

rj
φ(ρj) represents the mean cost

to be paid by dispatcher i for sending jobs to server j at rate xi,j .
Dispatcher i seeks to minimize its total cost Ti(x) for processing jobs, which is assumed

to be the sum of the costs incurred on all the servers. This optimization problem can be
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formulated as follows:

minimize Ti(x) =
∑
j∈S

cj
xi,j

rj
φ(ρj), (OPT-i)

subject to xi ∈ Xi.

In particular, when the holding cost is the same in every server, every dispatcher
independently seeks to minimize the mean response time of its own jobs. Since there is
no coordination between the dispatchers, which are in competition for the capacities of
the servers, we shall refer to this routing scheme as a non-cooperative routing scheme.
Note that the cost incurred by class i on server j depends not only on its amount of flow
xi,j on that server, but also on the total amount of flow yj through that server, which
determines the server performance. Hence, the optimal routing strategy of dispatcher i
depends on the routing strategies of other dispatchers, which means that the dispatchers
are involved in a non-cooperative routing game. A Nash equilibrium of this routing game is
a point x ∈ X from which no class finds it beneficial to deviate unilaterally, that is x ∈ X
is a Nash equilibrium point (NEP) if and only if

xi = arg min
z∈Xi

Ti(x1, . . . ,xi−1, z,xi+1, . . . ,xK), ∀i ∈ C.

The existence of a unique NEP can be established under some assumptions on the func-
tion φ (see Theorem 2.1 in [45]). More precisely, we shall assume that φ : [0, 1) → [1,∞) is
a continuously differentiable, strictly increasing and convex function whose second deriva-
tive φ

′′
exists, and such that φ(0) = 1 and limρ→1− φ(ρ) = +∞. Typical examples are the

M/G/1/PS function φ(ρ) = 1
1−ρ , or the M/G/1/FCFS function φ(ρ) = 1 + ρ

1+c2
b

2 (1−ρ) when
all job classes have the same squared coefficient of variation c2

b of job sizes. Another interest-
ing example is the delay function of the M/Pareto/1/SRPT queue in heavy-traffic, which
is given by 1

(1−ρ)m , where m depends on the shape parameter of the Pareto distribution [15].
The main issue addressed in the present paper is that of the performance guarantees

that can be obtained for non-cooperative routing schemes. To this end, we compare the
performance at the Nash equilibrium with that of a globally optimal routing strategy. An
optimal strategy is that of a centralized routing scheme, with a single dispatcher controlling
all the traffic (i.e., K = 1 and λ1 = λ̄) and routing jobs so as to optimize the performance of
all jobs. An optimal routing strategy is given by x∗

i,j = λi

λ̄
y∗

j , where the y∗
j are the optimal

solution of the following optimization problem:

minimize
∑
j∈S

cj ρj φ(ρj), (OPT)

subject to ∑
j

yj = λ̄,

yj ≥ 0, ∀j ∈ S.

The quantity D(x) =
∑

j∈S cj ρj φ(ρj) represents the mean processing cost of all jobs
in the routing strategy x ∈ X , and is known as the social cost of this routing strategy. In the
following, the optimal value D(x∗) of the social cost will be denoted by D1(λ̄, r, c) in order
to make explicit its dependence on the total traffic intensity λ̄ and on the vectors r = (rj)j∈S
and c = (cj)j∈S of server capacities and costs. When there are K > 1 dispatchers, the social
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cost DK(λ, r, c) = D(x) at the NEP x corresponds to the sum of individual player costs,
that is, DK(λ, r, c) =

∑
i∈C Ti(x), and it depends in addition on the traffic vector λ, that is

on the precise amount of traffic controlled by each dispatcher. In order to better understand
the performance degradation resulting from the selfish behavior of the dispatchers, we shall
compare the social costs of the decentralized and centralized routing schemes. We first start
by studying the worst-case traffic conditions for the non-cooperative routing.

Remark 1: Apart from the performance of non-cooperative routing schemes, another impor-
tant issue is related to the convergence to the Nash equilibrium. Do uncoordinated routing
agents converge to a Nash equilibrium, and, if so, how long do they need? This issue is not
addressed in this paper, but interested readers may refer to, for example, [3,12,17,40,45].

3. WORST-CASE TRAFFIC CONDITIONS

As noted in Section 2, the performance of the non-cooperative routing scheme depends
on the precise amount of traffic controlled by each of the K dispatchers. In general, the
evaluation of the social cost at the Nash equilibrium for an arbitrary traffic vector λ is
difficult. It turns out that this evaluation becomes simpler under the worst-case traffic
conditions. In this section, we present a result describing the traffic conditions under which
the worst-case performance is obtained and discuss some implications of this result.

We start by comparing the optimality conditions for the decentralized and centralized
settings. Let λ be a traffic vector and consider the associated NEP x. Denote by y and ρ
the vectors of offered traffics and utilization rates at that NEP, respectively. In the non-
cooperative routing scheme, each and every dispatcher i minimizes its private cost Ti(x).
According to the Karush–Kuhn–Tucker (KKT) optimality conditions, this implies that at
the NEP x each player i sends a positive amount of traffic only to those servers having a
minimal marginal private cost for that player. Formally, it means that there exist multipliers
μ1, μ2, . . . , μK , such that

∂Ti

∂xi,j
(x) =

cj

rj

[
φ(ρj) +

xi,j

rj
φ′(ρj)

]
≥ μi, ∀j ∈ S,∀i ∈ C, (1)

with equality if xi,j > 0. This is in contrast to the optimality conditions for the centralized
routing scheme, which states that at an optimal routing solution x∗ only those servers
having a minimal marginal social cost receive a positive amount of traffic. This implies that
there exists a multiplier μ∗ such that at point x∗

∂D

∂yj
(x∗) =

cj

rj

[
φ(ρ∗j ) +

y∗
j

rj
φ′(ρ∗j )

]
≥ μ∗, ∀j ∈ S, (2)

with equality if y∗
j > 0. The latter condition is not necessarily satisfied at the NEP. In

particular, it is proven in [11] that the lower the cost per unit capacity of a server, the
greater is its marginal social cost at the NEP, that is

cn

rn
≤ cm

rm
=⇒ ∂D

∂yn
(x) ≥ ∂D

∂ym
(x), (3)

with strict inequality if yn > ym. Hence, it is possible that at the NEP two servers with
different marginal social costs receive a positive amount of flow, which contradicts the
optimality conditions of the social cost. Property (3) of the NEP has been used in [11] to
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Figure 2. Evolution of the social cost at the NEP in the case K = 2 as a function of the
amount of traffic controlled by class 2.

prove that the worst-case performance is obtained when all dispatchers control the same
amount of traffic.

Theorem 1 ( [11]): Let

Λ(λ̄) =

{
λ ∈ IRK

+ :
∑
i∈C

λi = λ

}
,

be the set of all feasible traffic vectors, and let λ= = λ̄
K e be the symmetric vector, where

e is the all-ones vector. The social cost DK(λ, r, c) achieves its maximum when λ = λ=,
that is,

sup
λ∈Λ(λ̄)

DK(λ, r, c) = DK(λ=, r, c).

This result is illustrated in Figure 2 in the case of K = 2 classes where we plot the ratio
DK(λ, r, c)/D1(λ̄, r, c) as a function of the amount of traffic λ2 controlled by dispatcher
2. When λ2 is 0 or λ̄, the ratio of social costs is 1, implying that the non-cooperative
routing scheme is optimal. The worst performance of this routing scheme is achieved for the
symmetric game, that is when λ2 = λ1 = λ̄

2 .
The key idea of the proof of Theorem 1 is to show that, starting from an arbitrary

traffic vector λ, the symmetric traffic vector λ= can be reached in a finite number of
steps R by a sequence {λn}n≥0 such that λ0 = λ and DK(λn+1) ≥ DK(λn). Such a
sequence is obtained by considering a certain transformation λ → λ̂ of the traffic vec-
tor, which amounts to transferring traffic from the most loaded dispatchers to the least
loaded ones, thus reducing the heterogeneity of the traffic vector. It is shown in [11]
that the load on the most attractive servers (those with the smaller cost per unit capac-
ity) cannot decrease under this transformation. However, since, according to (3), those
servers are precisely those with the greatest marginal social cost, the convexity of the
social cost DK() implies that it cannot be reduced under the transformation, so that
DK(λ, r, c) = DK(λ0, r, c) ≤ DK(λ1, r, c) ≤ · · · ≤ DK(λR, r, c) = DK(λ=, r, c).

An important consequence of Theorem 1 is that, for the worst-case analysis of non-
cooperative routing, we can restrict ourselves to the symmetric game. It is well known that
in this case the non-cooperative routing game is a potential game [41] (see e.g. Theorem
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4.1 in [16]). In other words, although each and every dispatcher independently optimizes its
own cost function, they collectively solve a standard convex optimization problem. This is
formally stated in Proposition 1.

Proposition 1 ( [11]): If the vector ρ is a global optimum of the following convex
optimization problem

minimize
ρ

∑
j∈S

cjρjφ(ρj) + (K − 1)
∫ ρj

0

cj φ(z)dz

s.t. ∑
j∈S rjρj = λ̄,

0 ≤ ρj < 1, ∀j ∈ S,

then the routing strategy x such that xi,j = rj
ρj

K , ∀i ∈ C, ∀j ∈ S, is the NEP of the
symmetric game.

Note that when K = 1, the above problem reduces to the global optimization problem
solved by the centralized scheme. When K → ∞, the equivalent problem states the common
function that is jointly optimized by an infinite number of players and is characteristic of the
Wardrop equilibrium. As we shall see in the following, the fact that the worst-case analysis
of the non-cooperative routing scheme reduces to the analysis of a convex optimization
problem considerably simplifies the comparison with the centralized routing scheme.

4. WORST-CASE PERFORMANCE ANALYSIS

In this section, we compare the performance of the global optimum with that given by the
Nash equilibrium, or in other words, the performance when there is only one dispatcher
which routes all the traffic, and the performance when there are several dispatchers each
one seeking to optimize its own performance. In order to do so we look at the PoA which
was introduced by Koutsoupias and Papadimitriou [34]. The PoA is an oft-used measure of
the inefficiency of a decentralized scheme, which for our model is defined as

PoA(K) = sup
λ,r,c

DK(λ, r, c)
D1(λ̄, r, c)

.

Note that the PoA lies in the interval [1,∞). We have seen in Theorem 1 that the
worst-case performance is obtained when all dispatchers control the same amount of traffic.
Therefore,

PoA(K) = sup
r,c

DK(λ=, r, c)
D1(λ̄, r, c)

.

Several recent works have shown that non-cooperative load-balancing can be very inef-
ficient in the presence of non-linear delay functions, see, for example, [9,10,15,28]. The PoA
has been analyzed both in the so-called non-atomic scenario where every arriving job can
select the server in which it will be served, and in the atomic scenario considered in this
paper where each player controls a non-negligible amount of flow. For the non-atomic sce-
nario, Haviv and Roughgarden have shown in [28] that the PoA corresponds to the number
of servers, implying that, in a server farm with S servers, the mean response time of jobs
can be as high as S times the optimal one! For the atomic scenario, we present below
bounds on the PoA obtained in the case of M/G/1/PS queues [9], and in the case of
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M/Pareto/1/SRPT queues [11], which prove that the PoA can grows unboundedly with
the number of dispatchers K. The fact that the Nash equilibrium can be very inefficient
has paved the way to a lot of research on mechanism design that aims at architecting Nash
equilibria so that they are efficient with respect to the centralized setting [32,33,46].

4.1. Bounds on the PoA for M/G/1/PS queues

Let us first assume that the servers on which jobs are processed are modeled as M/G/1/PS
queues, in which case we have φ(ρ) = 1/(1 − ρ). Note that since we have assumed Poisson
arrivals of jobs at the dispatchers and Bernoulli routing, the assumption of Poisson arrivals
at the servers is consistent. The following lower and upper bounds on the PoA have been
established in [9].

Theorem 2 ( [9]): For a system with two or more servers,

K

2
√

K − 1
≤ PoA(K) ≤

√
K.

This result states that the PoA is of the order of
√

K independently of the number of
servers. In other words, in the worst-case scenario, the performance degradation with K
self-optimizing services can be of order

√
K.

The proof of the upper bound is based on the observation that for φ(ρ) = 1/(1 − ρ) the
potential function of Proposition 1 takes the simple form,

∑
j∈S

1
K

[
ρj

1 − ρj
+ (K − 1) log

(
1

1 − ρj

)]
,

from which an explicit solution of the symmetric game can be obtained. This explicit solution
is used in [9] to establish that:

• The distributed scheme with K dispatchers uses only a subset of the servers used
by the centralized scheme. In other words, if S∗(K) denotes the set of servers used
at the NEP of the symmetric game with K dispatchers, we have S∗(K) ⊂ S∗(1).

• If yj(K) represents the offered traffic in equilibrium in the K player symmetric
game, then

yj(K)
rj − yj(K)

≤
√

K
yj(1)

rj − yj(1)
, ∀j ∈ S∗(1).

The upper bound on the PoA is then obtained as follows:

DK(λ=, r, c) =
∑

j∈S∗(K)

cj
yj(K)

rj − yj(K)
≤

∑
j∈S∗(1)

cj
yj(K)

rj − yj(K)
≤

√
KD1(λ̄, r, c).

The lower bound is established in [9] by exhibiting an example of a symmetric game for
which DK(λ=, r, c) ≥ K/(2

√
K − 1)D1(λ̄, r, c). The procedure for obtaining this example is

as follows: using the KKT conditions, define the parameters λ̄, r and c such that for K > 1
only the least costly server is used, whereas for K = 1 more than one server is used. For
such a symmetric game, by splitting the traffic over several servers, the centralized setting
does much better than the decentralized one.
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4.2. Bounds on the PoA for M/Pareto/1/SRPT queues

Let us now assume that job sizes follow a class-independent power law probability distri-
bution, and that the servers use the shortest-remaining-processing-time (SRPT) scheduling
discipline [48]. This scheduling discipline, which preemptively runs the job with shortest
remaining processing requirement, is known to be optimal with respect to mean response
time [47,50]. Although no simple closed form formula is known for the mean response time
of M/Pareto/1/SRPT queues, it is shown in [15] that in heavy-traffic conditions the mean
delay has the form φ(ρ) = 1/(1 − ρ)m, where m depends on the shape parameter of the
Pareto distribution.

One of the main difficulty in the analysis of the PoA in this case is that, in contrast to
the case of M/G/1/PS queues, a closed-form solution of the optimization problem stated in
Proposition 1 cannot be obtained. This turns out to be a major obstacle for the derivation
of an upper bound on the PoA. Nevertheless, a lower bound can be obtained by following
the same procedure as that used for M/G/1/PS queues.

Proposition 2 ( [11]): For φ(ρ) = 1
(1−ρ)m ,

PoA(K) ≥ K

(1 + m)K1/(m+1) − m
. (4)

Note that this lower bound on the PoA is independent of r and c. It proves that,
for M/Pareto/1/SRPT queues, the PoA grows at least as fast as O(K

m
m+1 ) as K grows.

Hence, as the number of dispatchers K → ∞, the performance degradation with respect
to the centralized setting tends to infinity. Although we do not have an upper bound for
PoA as in the M/G/1/PS case, it is conjectured in [11] that the lower bounds constructed
using the above procedure give the right order of the PoA, just as was proved for the case
of M/G/1/PS delay functions.

5. IS THE POA THE RIGHT MEASURE OF INEFFICIENCY?

In Section 4, the lower bounds on the PoA have been established by computing the system
parameters in such a way that in the decentralized setting only the least costly server is
used, whereas more than one server is used in the centralized setting. Similarly, in the non-
atomic scenario considered in [28], the worst-case architecture has one server whose capacity
is much larger (tending to infinity) compared to that of the other servers. It is doubtful that
such asymmetries will occur in data-centers where processors are more than likely to have
similar characteristics. This suggests that the worst-case analysis of the inefficiency of selfish
routing is overly pessimistic and that high PoAs are obtained in pathological instances that
hardly occur in practice.

In [19], the authors adopt this point of view. Assuming that the holding cost is the
same in every server (that is, c = e), which is equivalent to assuming that each dispatcher
seeks to minimize the mean processing time of its own jobs, they propose a new measure,
called the inefficiency, to compare the non-cooperative routing scheme with K dispatchers
and S servers and the centralized one. This new measure is defined as follows

IS
K(r) = sup

λ∈Λ(λ̄),λ̄<r

DK(λ, r)
D1(λ̄, r)

. (5)

The rationale for this definition is that in practice the system administrator controls
neither the total incoming traffic nor how it is split between the dispatchers, whereas the
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number of servers and their capacities are fixed. Therefore, it makes sense to consider
a fixed data-center architecture under the worst traffic conditions for the inefficiency of
selfish routing (provided the system is stable). As is true of the PoA, inefficiency can take
values between 1 and ∞. A higher value of inefficiency indicates a worse performance of
selfish routing compared to centralized routing. As opposed to the PoA, the inefficiency
depends on the parameters (the server speeds and the number of servers in our case) of the
architecture. By calculating the worst possible inefficiency, one retrieves the PoA, that is,
PoA(K,S) = supr IS

K(r).
It follows from Theorem 1 that

IS
K(r) = sup

λ̄<r

DK( λ̄
K e, r)

D1(λ̄, r)
, (6)

so that, as for the PoA, the inefficiency depends only on the total traffic intensity and not
on individual traffic flows to each of the dispatcher.

The setting considered in [19] is similar to the one introduced in Section 2, but the
authors restrict themselves to the case of two classes of servers, which are modeled as
M/G/1/PS queues: there are S1 “fast” servers of capacity r1, and S2 = S − S1 “slow”
servers, each one of capacity r2 < r1. Let β = r1

r2
≥ 1 be the ratio of server capacities, α =

S1
S2

> 0 be the ratio of the numbers of servers of each type, and define

λ̄OPT = S1r1

(
1 − 1√

β

)
, (7)

and

λ̄NE = S1r1

(
1 − 2√

(K − 1)2 + 4Kβ − (K − 1)

)
> λ̄OPT . (8)

The following lemma gives the conditions on λ̄ under which the centralized setting and
the decentralized one use only the fast class of servers, or both classes, and describes the
evolution of the ratio DK( λ̄

K e, r)/D1(λ̄, r).

Lemma 1 ( [19]):

1. If λ̄ ≤ λ̄OPT , both settings use only the “fast” servers, and the ratio of social costs
is equal to 1,

2. if λ̄OPT ≤ λ̄ ≤ λ̄NE, the decentralized setting uses only the “fast” servers, while the
centralized one uses all servers, and the ratio of social costs is strictly increasing,

3. if λ̄NE < λ̄ < r, both settings use all servers, and the ratio of social costs is strictly
decreasing.

This behavior of the ratio of social costs is illustrated for K = 2 and K = 5 in Figure 3
in the case of a server farm with S1 = 100 fast servers of capacity r1 = 100, and S2 = 300
slow servers of capacity r2 = 10.

Since the ratio DK(λ̄, r)/D1(λ̄, r) is a continuous function of λ̄ over the interval [0, r),
a direct consequence of Lemma 1 is the following Theorem.

Theorem 3 ( [19]): The inefficiency is worst when the total arriving traffic intensity equals
λ̄NE, namely,

IS
K(r) =

DK( λ̄NE

K e, r)
D1(λ̄NE , r)

, (9)
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Figure 3. Evolution of the ratio of social costs for K = 2 and K = 5 as the utilization
rate ranges from 0 to 100%.

Figure 4. Evolution of the inefficiency as a function of α and β for K = 5 dispatchers
and S = 1000 servers.

Theorem 3 fully characterizes the worst case traffic conditions for a server farm with
two classes of servers. It states that the worst inefficiency of the decentralized setting is
achieved when (a) each dispatcher controls the same amount of traffic and (b) the total
traffic intensity is such that the decentralized setting only starts using the slow servers.

The analysis of the symmetric game obtained for λ̄ = λ̄NE can be done with Proposi-
tion 1. This allows to obtain an explicit expression for the inefficiency of selfish routing for
data-centers with two classes of PS servers [19]:

IS
K(r) =

1
2

√
(K − 1)2 + 4Kβ − (K + 1)

( 1
α +

√
β)2

1
α + 2β√

(K−1)2+4Kβ−(K−1)

− ( 1
α + 1)

, (10)

where we recall that β = r1
r2

≥ 1 and α = S1
S2

> 0. Note that the inefficiency IS
K(r) does

not depend on the total number of servers S, but only on the ratio of server capacities and
on the ratio of the numbers of servers of each type. In Figure 4, we plot the inefficiency
IS
K(r) of the non-cooperative routing scheme with K = 5 dispatchers and S = 1000 servers

as the parameters α and β change from 1
S−1 to 2 and from 1 to 1, 000, respectively. It can

be observed that even for unbalanced scenarios (α small and β large), the inefficiency is
always fairly close to 1, indicating that, even in the worst case traffic conditions, the gap
between the NEP and the optimal routing solution is not significant.
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6. CONCLUSION

Self-optimizing services are able to use on-line measurements to dispatch incoming jobs to
the best available computing resources in order to maintain and improve the QoS in response
to dynamically changing workloads. The interaction between uncoordinated dispatchers can
however result in significant performance degradations. We have seen that the worst-case
traffic conditions occur when all dispatchers control the same amount of traffic. We have
also presented explicit bounds on the PoA for cost functions representing the mean delay
of jobs when the service discipline is PS or SRPT. These bounds indicate that as the
number of dispatchers increases, the loss of efficiency may grow unboundedly, implying
that the “selfish” behavior of uncoordinated self-optimizing services can lead to significant
performance degradations. It is nevertheless important to keep in mind that these bounds
are obtained for worst-case scenarios, which do not necessarily occur in practice. In data-
centers where processors are more than likely to have similar characteristics, no significant
performance degradation is observed with respect to a globally optimal routing strategy.
However, more work is needed to confirm or contradict this observation.
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