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Abstract

We give a construction of the moduli space of stable maps to the classifying stack Bµr
of a cyclic group by a sequence of rth root constructions on M0,n. We prove a closed
formula for the total Chern class of µr-eigenspaces of the Hodge bundle, and thus of
the obstruction bundle of the genus-zero Gromov–Witten theory of stacks of the form
[CN/µr]. We deduce linear recursions for genus-zero Gromov–Witten invariants.

1. Introduction

This paper combines two notions of stable maps, twisted [AV02] and weighted [Has03], to produce
a formula for the genus-zero Gromov–Witten invariants of [CN/µr]. More precisely, we derive a
formula for the equivariant Euler class of the obstruction bundle on M0,n([CN/µr]) as a pull-back
of classes on M0,n. Our definition of weighted twisted stable maps is ad hoc, applying only to
genus-zero maps with target [CN/µr]. Nevertheless, there is a notion of obstruction bundle on
each of these spaces, and we have a wall-crossing formula relating their equivariant Euler classes.
When all except one of the weights is small, the equivariant Euler class is easy to compute, so
we deduce in this way our formula on M0,n([CN/µr]).

The starting point of this work is Theorem 2.5.2, which provides an explicit construction of
M0,n([CN/µr]) from M0,n via root constructions. This motivates the generalization to weighted
stable maps. They are defined by applying root constructions to the space of weighted stable
curves.

1.1 Introduction to [CN/µr]
The quantum cohomology of stack quotients of the form [CN/G] has recently seen a lot of
interest due to the crepant resolution conjecture (see [BG09]). However, they are also natural
objects of study by themselves: whenever a smooth N -dimensional stack X has a local orbifold
chart [U/G] where G acts with an isolated fixed point, part of the quantum cohomology of X
will be described by the quantum cohomology of [CN/G]. Moreover, if X has a torus action
which restricts to the natural torus action on the chart [CN/G], then the equivariant quantum
cohomology of [CN/G] is relevant for computing the quantum cohomology of X via localization.

The Chen–Ruan orbifold cohomology of [CN/µr] has a natural basis he for e ∈ µr. Consider
the moduli space M0,n(e1, . . . , en;Bµr) of twisted stable maps to the origin Bµr ∼= [0/µr]⊂
[CN/µr] in the sense of [AV02], where the branching behavior at the ith section is prescribed by
ei ∈ µr. The non-trivial equivariant Gromov–Witten invariants of [CN/µr] are given by integrals
over these moduli spaces. The normal bundle to the origin is CN , understood as a vector bundle
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on Bµr via the given µr-action. If we write the universal curve as π : C→M0,n(e1, . . . , en;Bµr),
and the universal map as f : C→Bµr, the obstruction bundle of the moduli space is R1π∗f

∗CN .
The Gromov–Witten invariant for he1 , . . . , hen is typically1 given by the integral of the
equivariant Euler class (with respect to the canonical action of the N -dimensional torus T on
CN ) of the obstruction bundle

〈he1 ⊗ · · · ⊗ hen〉[C
N/µr] =

∫
M0,n(e1,...,en;Bµr)

eT ([R1π∗f
∗CN ]). (1.1.1)

We call these integrals generalized Hurwitz–Hodge integrals, as the obstruction bundle is a
direct sum of µr-eigenspaces of the dual of the Hodge bundle, where the moduli space is to be
understood as a compactification of the Hurwitz space of µr-covers of P1 by admissible covers.

1.2 Our methods and results
The starting point of our work is the following explicit description of this moduli space of stable
maps to Bµr via the rth root construction of [Cad07]. Given a divisor D on a scheme X,
the rth root construction XD,r is a stack over X that is isomorphic to X outside of D, but
whose points over D are stacky with µr as automorphism group. For every proper subset
T ⊂ [n− 1] := {1, . . . , n− 1} having at least two elements, let rT be the order

∏
i∈T ei, and

let DT ⊂M0,n be the divisor consisting of curves having a node which separates the marking
labels 1, . . . , n into T and [n]\T .

Theorem. M0,n(e1, . . . , en;Bµr) is a µr-gerbe over the stack constructed from M0,n by
successively doing the rT th root construction at the boundary divisor DT ⊂M0,n for all proper
subsets T ⊂ [n− 1] having at least two elements.

We prove this in Theorem 2.5.2, and we also give an explicit description of the universal curve
and of the r-torsion line bundle defining the morphism to Bµr; see Definitions 2.3.1 and 2.5.1.
The root constructions along the boundary divisor introduce the additional automorphisms of
curves with stacky nodes, called ghost automorphisms.

Now assume that µr is acting linearly on CN with weights w1, . . . , wN . To determine a formula
for the Chern class of the obstruction bundle, we use a reduction guided by the notion of weighted
stable curves in [Has03] and weighted stable maps in [AG08, BM09, MM08]. Weighted stable
curves with n marked points depend on weight data a1, . . . , an, and yield many birational models
of the moduli space M0,n. Particular choices of weight data lead to an explicit presentation of
the moduli space M0,n by a series of blow-ups starting with Pn−3, such that each intermediate
blow-up step has an interpretation as a moduli space.

Motivated by this work and guided by Theorem 2.5.2, we make an ad hoc definition of a
‘moduli space of weighted stable maps to Bµr’ in § 3.3. When the weights are chosen such that
all fibers of the universal curve are irreducible, the obstruction bundle can easily be computed
from general facts about the rth root construction; we do this in § 3.4 for the weight data that
gives a moduli space isomorphic to Pn−3.

By a careful analysis of the wall-crossing for changing weights in § 4, we can lift this to
a closed formula for the equivariant top Chern class in (1.1.1) for the standard (non-weighted)
stable maps. We will now state this formula in the case of N = 1 and the standard representation
of µr.

1 The formula needs an additional factor in the case where there is a coordinate direction on which every ei acts
trivially.
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For 1 6 i6 n, let δi ∈ [0, 1) be the age of ei, i.e. e2πiδi = ei. For all subsets T ⊂ [n], let
δT =

∑
i∈T δi. Let 〈x〉 denote the fractional part of x if x is not an integer, and let 〈x〉= 1 if x

is an integer. For T ⊂ [n− 1], |T |> 2, let ψT be any class in H∗(M0,n) such that the restriction
DT · ψT is the ψ-class of the node over DT on the component corresponding to T ; e.g. we can
set ψT :=−ψn +

∑
[n−1])S)T D

S .

Theorem. The equivariant Euler class of the obstruction bundle for [C/µr] is given as

eT ([R1π∗f
∗C]) =

δ[n−1]−1∏
p=〈δ[n−1]〉

(t− pψn) ·
∏

T([n−1]
26|T |

δT−1∏
p=〈δT 〉

(
1 +

pDT

t+ pψT

)
.

The case of different weights follows by adjusting the ages in the above formula, and the case of
CN by multiplying the individual classes in H∗(M0,n); the full formula is given in Theorem 5.1.1.

In the appendix, it is shown that this class can be expressed as a continuous, piecewise-
analytic function from a real (n− 1)-dimensional torus to H∗T (M0,n, R) that encodes equivariant
top Chern classes for all stacks [CN/µr], where N , n, and the weights w1, . . . , wN are fixed,
and r and e1, . . . , en are arbitrary. See the discussion after the proof of Lemma A.1.1.

By a generalized inclusion–exclusion principle, the Chern class formula leads to linear
recursions for all Gromov–Witten invariants of [CN/µr] by a sum over partitions, where every
partition corresponds to a moduli space of comb curves. They are particularly nice for local
Calabi–Yau 3-folds [C3/µr]. We deduce an explicit formula for the non-equivariant invariants
of [C3/µ3]. These invariants are the integrals in (1.1.1) for which N = r = 3, n is a multiple of
three, and all ei = e2πi/3. The recursion we discovered for these numbers is

〈h⊗nω 〉
[C3/µ3]
0,n = (−1)n+1

((
n− 4

3

)
!
)3 1

3

+
(n−3)/3∑
p=1

∑
m

(−1)p+1

|Autm|

k∏
j=1

((
mj −

2
3

)
!
)3

M(n− 1, m)〈h⊗n−3p
ω 〉[C

3/µ3]
0,n ,

where the second sum is over all partitions m= (m1, . . . , mk) of p, M(n− 1, m) is the
multinomial coefficient

M(n− 1, m) =
(

n− 1
3m1 + 1, . . . , 3mk + 1, n− 1−

∑
j

(3mj + 1)

)
,

and x! =
∏x
p=〈x〉 p. The base case is 〈h⊗3

ω 〉
[C3/µ3]
0,3 = 1/3.

1.3 Relation to other work
The construction of the moduli space and the universal curve via rth roots has been described
locally by Abramovich in [Abr08, § 3.5]. The global description along with the explicit description
of the universal map to Bµr seems to be new.

Our approach is to describe maps to Bµr by r-torsion line bundles, which is particularly
convenient in combination with the rth root constructions. Of course, one can instead work
more geometrically with cyclic covers, which is the point of view adopted in [ACV03, CC09].

The Gromov–Witten theory of [CN/G] has recently generated a lot of interest due to
the ‘crepant resolution conjecture’; we refer the reader to [BG09] for an introduction to the
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conjecture and overview of the existing literature. When X is an orbifold that admits a crepant
resolution π : Y →X, Ruan first conjectured that the quantum cohomology rings of Y and
X are isomorphic [Rua02], and suggested that the q-variables for π-exceptional divisor classes
on Y need to be specialized to −1 [Rua06] to recover the orbifold cohomology ring of X.
In [BG09], the authors extended this conjecture: their claim can be formulated as a local
linear isomorphism between the Frobenius manifolds of the quantum cohomology of X and Y
(after analytic continuation). This isomorphism does not respect the natural origins of the two
Frobenius manifolds, which corresponds to Ruan’s specialization of q-variables. When the action
of G on CN leaves the volume form invariant, the stacks of the form [CN/G] yield many non-
trivial test cases for the conjecture. In this form it is only expected to hold for orbifolds satisfying
the strong Lefschetz theorem; a more general formulation can be found in [CIT09, § 5].

The results so far have been obtained by the use of one of the following two techniques:
either a combination of localization computations and use of the WDVV equations, or by using
Tseng’s computation of the Chern character of the obstruction bundle and Givental’s framework
for Gromov–Witten theory.

In [BGP08], the authors explicitly determined the genus-zero Gromov–Witten potential of
[C2/µ3] and verified the crepant resolution conjecture. In [BG09], the case [C2/µ2] was derived
from the Hodge integral computations of [FP00].

More generally, the case of An-singularities [C2/µn+1] was shown in [CCIT07, CCIT09] based
on the Chern character computation. Various other results have been announced in [BG09]. For
[C3/µ3], part of the potential was computed in [CCIT09], up to the problem of inversion of the
‘mirror map’. While their technique is completely different to ours, our results are surprisingly
close, as explained in §§ 3.5 and 6.4; our recursion can be interpreted as a combinatorial inversion
of the mirror map.

Different recursions for invariants of [C3/µ3] have been established by the second author and
Cavalieri in [CC09], using localization on the space of twisted stable maps to µ3-gerbes over P1.

While our results are quite general, we make no attempt at verifying the crepant resolution
conjecture.

1.4 Notation and conventions

We write [n] for the set [n] = {1, 2, . . . , n}. We write 〈x〉= x− dxe+ 1 ∈ (0, 1] for the fractional
part of x, set to 1 if x is integral. At various places we will write

∏x
p=〈x〉 f(p) for the product∏

0<p6x,〈p〉=〈x〉 f(p). If x < 0, the notation
∏x
p=〈x〉 f(p) means that

∏〈x〉−1
p=x+1 1/f(p) (which is

consistent with
∏x
p=〈x〉 f(p) = f(x) ·

∏x−1
p=〈x〉 f(p) for all x ∈ R).

For x > 0, we write x! for the fractional factorial x! =
∏x
p=〈x〉 p.

We identify the rational Chow groups of the moduli stacks of twisted stable maps
M0,n(e1, . . . , en;Bµr) with those of their coarse moduli M0,n via pull-back, and similarly for all
other moduli stacks we construct. In the appendix, we introduce and explain some non-standard
notation for divisors on M0,n that is particularly well suited for our setting; most of it is only
used in § 5.2, the exception being

ψT :=−ψn +
∑

[n−1])S)T

DS

for any T ⊂ [n− 1].
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2. Moduli space of stable maps to Bµr via rth roots

In this section, we show how to construct a component of the moduli space of genus-zero stable
maps to Bµr from the moduli space M0,n of stable curves of genus zero by a series of rth root
constructions.

2.1 User’s guide to the rth root construction
Given an effective Cartier divisor D of a Deligne–Mumford stack X, and a positive integer r
which is invertible on X, the rth root construction of [Cad07] produces a DM stack XD,r with
the following properties.

(1) There is a canonical map π :XD,r→X that is an isomorphism over X\D.

(2) Every point in XD,r lying over D ⊂X has stabilizer µr.

(3) The preimage of D is an infinitesimal neighborhood of the µr-gerbe2 D over D
parameterizing rth roots of the fibers of OX(D)|D: this is the stack whose objects are triples
(f : S→D, L, φ), where f is a morphism, L is a line bundle on S, and φ : Lr→ f∗OX(D)|D
is an isomorphism. (Only when OX(D)|D is the rth power of a line bundle is D isomorphic
to D ×Bµr.)

(4) On XD,r, there is a line bundleOXD,r(D) with a section sD and an isomorphism φ :O(D)r→
π∗(O(D)) such that φ(srD) = π∗(sD). (Here sD ∈ O(D) is the tautological section vanishing
along D.)

The universality of the data in the property (4) is the defining property: giving a morphism
f : S→XD,r is equivalent to giving a quadruple (g, L, s, φ), where g = π ◦ f is a morphism to
X, L is a line bundle on S, s is a section, and φ : Lr→ g∗O(D) is an isomorphism sending sr

to g∗(sD).
Locally, when X = SpecA is affine and the divisor D is given by an equation (x= 0), the rth

root construction is given by a stack quotient [(SpecA[u]/(ur − x))/µr] of the cyclic µr-cover
branched at D, but of course globally such a cover may not exist.

To the best of our knowledge, the rth root construction was originally due to A. Vistoli and
spread as a rumor for quite some time. His notation is r

√
(X, D).

We call OXD,r(D) the tautological line bundle of the rth root construction at D. The zero
stack Z ⊂XD,r of srD is the preimage of D ⊂X. The zero stack of sD is the gerbe D. To simplify
notation, we write O(1/r)D to refer to O(D). More generally, if d ∈ (1/r)Z, we write O(dD) for
O(D)⊗dr. This notation is particularly nice to describe the push-forward of line bundles along π:

π∗O(dD) =O(bdcD). (2.1.1)

(This follows from [Cad07, Theorem 3.1.1].)
If X is an algebraic space, then the coarse moduli space of XD,r is X. When X is smooth

and D ⊂X is smooth, then XD,r is smooth. The construction commutes with base change for a
morphism f : Y →X such that f−1(D) is a Cartier divisor. (The construction can be generalized
a little to make it compatible with arbitrary base change: see X(L,s,r) in [Cad07].)

2 A gerbe over D is a stack D over D which étale locally admits a section and has the property that any two
local sections are locally 2-isomorphic. A gerbe D→D is a µr-gerbe if µr acts as the 2-automorphism group of
every section in a compatible way. In particular, D is étale locally over D isomorphic to the trivial stack quotient
[D/µr], but not necessarily globally.
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If D = (D1, . . . , Dn) is an n-tuple of Cartier divisors and ~r = (r1, . . . , rn), we can iterate
the root constructions to obtain a stack denoted by XD,~r. This stack can also be realized as the
n-fold fiber product over X of the root stacks XDi,ri . If X is smooth, each individual Di is
smooth, and the Di have normal crossing, then XD,~r is smooth, too. If di ∈ (1/ri)Z, we extend
the above notation by writing O(

∑
i diDi) for the tensor product of the line bundles O(Di)diri ,

where O(Di) is the tautological bundle corresponding to the root construction along Di.
It is instructive (and important for the construction of M0,n(Bµr) later on) to compare the

stacks XD,~r and XD,r in the case where n= 2, r = r1 = r2, and D =D1 ∪D2. On XD,r, the line
bundle O((1/r)(D1 +D2)) with section sD1 · sD2 defines an rth root of D, and thus there is a
natural map

XD,~r→XD,r. (2.1.2)

However, this is not an isomorphism if the divisors intersect, and one way to see this is by
looking at stabilizer groups of points of the two stacks. If x ∈D1 ∩D2, then the stabilizer group
of the point in XD,~r lying over x is µr × µr. On the other hand, the stabilizer group of any point
in the preimage of D in XD,r is µr. If X is smooth and D1, D2 are smooth with normal crossings,
then these stacks are also distinguished by the fact that XD,~r is smooth, while XD,r is singular
over D1 ∩D2.

2.2 Stable maps to Bµr

Consider the moduli space M0,n(Bµr) of balanced twisted stable maps of genus zero to Bµr in
the sense of [AV02], where we work over C. Such a map over a scheme S can be described by
the following data:

• a stacky nodal curve C over S, with n divisors Σ1, . . . , Σn in the smooth locus of C; and

• a line bundle L on C together with an isomorphism φ : Lr→OC .

These have to satisfy various properties:

• the stacky curve C is a scheme away from its nodes and the divisors Σi, and its nodes are
balanced ;

• each Σi is a cyclotomic gerbe over S;

• if C is the coarse moduli space of C, then the image of every divisor Σi ⊂ C in C is isomorphic
to the image of a section xi : S→ C, so that (C, x1, . . . , xn) becomes a stable curve of genus
zero with n marked points;

• the map C →Bµr induced by (L, φ) is representable.

The line bundle L is the pull-back of the line bundle on Bµr given by the canonical one-
dimensional representation of µr. Every point x ∈ Σi has an automorphism group isomorphic to
µp for some p dividing r. This identification is canonical if the representation of µp corresponding
to the fiber of the normal bundle OΣi(Σi) at x equals the standard representation. Let ω be
the primitive rth root of unity ω = e2πi/r. Then ωr/p acts on the fiber Lxi as multiplication
by ei for some ei ∈ µr. Equivalently, the map of stabilizer groups µp→ µr (which is injective by
representability of C →Bµr) sends the canonical generator of µp to ei. These group elements
e1, . . . , en are constant on every connected component of M0,n(Bµr).

From now on, we assume that we are given e1, . . . , en ∈ µr and restrict our attention to the
connected component M0,n(e1, . . . , en;Bµr). There is a natural map M0,n(e1, . . . , en;Bµr)→
M0,n induced by the coarse moduli space of the universal curve. Our theorem will describe this
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map explicitly via a series of root constructions. One explanation for these root constructions is
that twisted curves have ghost automorphisms for each twisted node (cf. [Abr08, § 3.5]).

2.3 Construction of the moduli space via root constructions
Let r and ei ∈ µr, i= 1, . . . , r be given. For convenience, we allow ei = 1, i.e. untwisted points;
then the universal curve is given by the forgetful morphism

π0,(e1,...,en) :M0,n(e1, . . . , en, 1;Bµr)→M0,n(e1, . . . , en;Bµr).

The component is empty unless
∏
i ei = 1.

Consider the universal stable curve of genus zero π0,n :M0,n+1→M0,n. The boundary divisors
of M0,n are indexed by subsets T ⊂ [n] such that 2 6 |T |6 n− 2 and n 6∈ T (see the appendix).
For every such T , let rT be the order of

∏
i∈T ei.

Definition 2.3.1. Let M
(1) be the stack constructed from M0,n by doing the rT th root

construction at every boundary divisor DT . We construct C(1) from M0,n+1 in the same way
after setting en+1 = 1.

(In particular, we take the rith root construction at every section si =D{i,n+1}, where ri is
the order of ei.)

Lemma 2.3.2. There is a canonical map π(1) : C(1)→M
(1)

.

Proof. Equivalently, we construct a map to the fiber product

C
(0) =M0,n+1 ×M0,n

M
(1);

then C(0) will be the relative coarse moduli space. Since π−1
0,n(DT ) =DT ∪DT∪{n+1} and the rth

root construction is compatible with such a base change, this fiber product can be constructed
from M0,n+1 by the rT th root constructions at all divisors DT ∪DT∪{n+1} for T ⊂ [n]. To

construct C(1), we instead took the rT th root construction at DT and DT∪{n+1} separately;
hence, the morphism C

(1)→ C
(0) is given by forgetting the root construction along all sections,

followed by a composition of morphisms as in (2.1.2) above. 2

Note that C(1) has additional automorphisms along the nodes of the curves lying over DT .
When we restrict this family to the µrT -gerbe in M

(1) lying over DT , the fibers become stacky
curves with a twisted node. The node is balanced because after base change to a scheme over the
base, the remaining automorphism group is the kernel of the multiplication µrT × µrT → µrT ,
which acts with opposite weights on the two branches. The so-called ‘ghost automorphisms’ are
accounted for by the additional automorphism introduced in the moduli space. We have thus
proved the following proposition.

Proposition 2.3.3. The morphism π(1) : C(1)→M
(1)

is a family of balanced twisted curves.

Note that we adapted [AV02, Definition 4.1.2] to a family over a Deligne–Mumford stack: all
conditions have to be checked after étale base change to a scheme covering M (1).

Each fiber of π(1) admits a morphism to Bµr having the correct restrictions to Σi (given by
e1, . . . , en). However, these morphisms do not in general glue to a morphism C

(1)→Bµr. They
will glue precisely when the µr-gerbe of Definition 2.5.1 is trivial.
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2.4 The universal line bundle
For T ⊂ [n], we will write always TC = [n]\T for its complement.

Lemma 2.4.1. Let C be a geometric fiber of π(1) and let

L=O
C

(1)

(
1
rT
DT∪{n+1}

)
.

(1) If there is no node x ∈ C such that one of the two connected components of C\{x} contains
exactly the markings of T (and the other those of TC), then L|C is trivial.

(2) Otherwise, let C3, C4 be the two connected components of C after normalization at x, such
that C3 contains all the markings of T , and C4 those of TC, and let C1 ⊂ C3 and C2 ⊂ C4

be the two irreducible components of C meeting at x. Then

L|C1
∼= OC1

(
− 1
rT
x

)
, (2.4.1)

L|C2
∼= OC2

(
1
rT
x

)
, (2.4.2)

L|C′ ∼= OC′ , (2.4.3)

where C ′ is any irreducible component of C other than C1, C2.

Proof. The first statement is obvious, as C does not meet the divisor DT in that case.
In the second case, C3 = C ∩DT∪{n+1}, and so (2.4.2) is obvious, as is (2.4.3) for all C ′ ⊂ C4.

The claim then follows by symmetry and the fact that the restriction of O((1/rT )(DT +
DT∪{n+1})) to C is trivial, as it is the pull-back of the tautological line bundle O((1/rT )DT )
on M

(1). 2

Now choose di ∈ (1/r) · Z such that e2πidi = ei and
∑n

i=1 di = 0 (which is possible since∏n
i=1 ei = 1). For T ⊂ [n], let dT =

∑
i∈T di.

Lemma 2.4.2. Define the line bundle L1 on C
(1)

as

L1 :=O
( n∑
i=1

disi +
∑
T⊂[n]

26|T |6n−2
n6∈T

dTD
T∪{n+1}

)
. (2.4.4)

Then L1
r is the pull-back of a line bundle on M

(1)
:

L1
r = (π(1))∗(L2).

We write n 6∈ T to stress that this is for now just an arbitrary way to pick exactly one of
T, TC for all subsets T .

Proof. First note that Lr1 is pulled back from the coarse moduli space M0,n+1, since dT ∈ (1/r)Z
for all T . A line bundle on a family of nodal curves of genus zero over a smooth scheme is pulled
back from the base if and only if its degree on any irreducible component of every fiber is zero
(in which case it is the pull-back of its own push-forward to the base). Hence, it is sufficient
to check that the degree of L1

r (or, equivalently, the degree of L1) is zero on any irreducible
component C0 of any fiber C of π1 (in which case Lr1 is even pulled back from M0,n).
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Let x1, . . . , xm be the nodes of C contained in C0. Let Ti ⊂ {1, . . . , n}, 1 6 i6m, be the
markings contained in the irreducible components which are connected to C0 via the node xi,
and let T0 be the markings contained in C0. For every j with 1 6 j 6m, exactly one of
O(dTjD

Tj∪{n+1}) and O(dTC
j
DTC

j ∪{n+1}) will appear on the right-hand side of (2.4.4) defining
L1; by the previous lemma and dT =−dTC , both restrict to O(dTjxj) on C0. By the same lemma,
all other O(dTDT∪{n+1}) restrict trivially to C0. Hence,

L1|C0 =O
(∑
i∈T0

disi +
∑

16j6m

dTjxj

)
.

This line bundle has degree
∑m

j=0

∑
i∈Tj di = 0, since [n] is the disjoint union of all Tj . 2

2.5 Base change to the gerbe

Definition 2.5.1. Let M (2) be the µr-gerbe over M (1) of rth roots of L2. Let π(2) : C(2)→M
(2)

be the base change of π(1) : C(1)→M
(1) via M

(2)→M
(1), and let L1/r

2 be the universal line
bundle that is an rth root of L2.

By abuse of notation, we write L1 also for the pull-back of L1 to C
(2). The line bundle

L= L1 ⊗ π(2)∗L
−1/r
2 together with the obvious isomorphism Lr→O

C
(2) defines a morphism

C
(2)→Bµr.

Theorem 2.5.2. The following diagram:

C
(2) //

π(2)

��

Bµr

M
(2)

is a family of twisted stable maps over M
(2)

which defines an isomorphism

m :M (2)→M0,n(e1, . . . , en;Bµr).

Proof. We already showed that π(1) (and thus π(2)) is a family of balanced twisted curves.

The morphism C
(2)→M

(2) ×Bµr is representable: away from the sections and nodes, the
map π(2) is already representable and since, all nodes and sections do not intersect each other,
we can treat them separately. At a section si, the relative inertia group of π(2) is isomorphic to
Bµri ; since that group acts faithfully on L1 and thus on L, the map on inertia groups is injective.
A similar argument holds for all nodes.

We thus get a morphism m as claimed in the theorem. By Lemma 2.5.3, m is an isomorphism
if both stacks are smooth and the morphism is birational and a bijection of C-valued points which
induces isomorphisms of their stabilizer groups. Since M (2) is étale over M (1), which is a root
construction on M0,n at smooth divisors with transversal intersection, it follows that M (2) is
smooth. The first-order deformations of an n-marked, genus-zero twisted stable map to Bµr are
the same as those of the marked twisted curve, which has dimension equal to n− 3 (see [ACV03,
§ 3]). As this equals the dimension of M0,n(e1, . . . , en;Bµr), it is also smooth.

For bijectivity, note that C-valued points of M (2) are in bijection with C-valued points of
M0,n. Hence, it suffices to show for each n-marked genus-zero curve C that there is a unique
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twisted stable map to Bµr with coarse moduli space C and contact types e1, . . . , en. For C
irreducible, this uniqueness is shown in [CC08, 2.1.5]. Otherwise, one can show by induction
that the contact types at the nodes are uniquely determined by those at marked points. So, the
morphism is unique over each component of C, and it suffices to show that it glues uniquely
over the nodes. Since the morphism to Bµr is equivalent to a line bundle L and a non-vanishing
section of Lr, the gluing is clearly unique up to isomorphism.

It remains only to check the map on automorphism groups induced by m. If x is a closed
point of M (2), the automorphism group Gm(x) of m(x) in the moduli stack M0,n(e1, . . . , en;Bµr)

can be identified with the group of µr-automorphisms of the µr-cover C̃x of the fiber Cx of C(2)

over x. If S is the set of irreducible components of Cx, this identifies Gm(x) with the subgroup
of µSr that acts compatibly over every node; since the preimage of a node nT ∈ Cx in C̃x is
isomorphic to µr/µrT , we can identify Gm(x) with the kernel of the map

Σ =
∏
T

ΣT : µSr →
∏

T⊂[n−1]|x∈DT
µr/µrT ,

where ΣT is given by the quotient of the group elements corresponding to the two irreducible
components meeting in nT .

The µr-cover C̃x is given by the rth roots of unity inside the line bundle L|Cx ; hence, to
understand the map Gx→Gm(x), it is sufficient to look at how the automorphism group Gx of

x acts on L. By the construction of M (2), the automorphism group of x is

Gx = µr ×
∏

T⊂[n−1]|x∈DT
µrT .

By the definition of L, the first factor acts via L2 and thus diagonally, whereas µrT acts diagonally
on the irreducible components of DT∪{n+1} ∩ Cx (and trivially on all others) by its induced
action on O(DT∪{n+1}). Let C0 be the component of Cx which contains the nth marking.

Before showing that m :Gx→Gm(x) is an isomorphism, we introduce some notation.
For g ∈Gx, write g0 for the projection of g onto µr, and write gT for its projection onto µrT . For
each irreducible component Ci of Cx, let Cj0 , Cj1 , . . . , Cjki be the unique shortest path from Ci
to C0. That is to say, j0 = i, jki = 0, Cj` meets Cj`+1

in a node for each 0 6 `6 ki − 1, and there
are no repetitions in j0, . . . , jki . For 0 6 `6 ki − 1, let T` be the subset of [n− 1] determined by
the node joining Cj` to Cj`+1

. Then m(g) acts on the restriction of L to the component Ci by

g0

ki−1∏
`=0

gT` . (2.5.1)

Let g ∈Gx, and suppose that m(g) is trivial. Since m(g) acts on C0 by g0, it follows that g0 is
trivial. By induction on the number of nodes separating a given node from C0, and using (2.5.1),
it follows that gT is trivial for each T . Therefore, g is trivial.

Now suppose that h ∈Gm(x). Let g0 be the element of µr by which h acts on C0. By induction
over the nodes as in the previous paragraph, and using the fact that the irreducible components
of Cx form a tree, we can now define gT for each T in such a way that m(g) = h. Therefore,
m :Gx→Gm(x) is an isomorphism. 2

We remark that [ACV03, § 7] contains a careful treatment of automorphism groups for
G-covers.
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Lemma 2.5.3. Let X and Y be normal, separated, integral, Deligne–Mumford stacks of finite
type over an algebraically closed field k of characteristic zero. Let f : X →Y be a birational
morphism which induces an equivalence of categories between objects over Spec k. Then f is an
isomorphism.

Proof. Let V →Y be an étale surjective morphism from a scheme V and let U = V ×Y X . Then
U → V is separated and quasi-finite, and hence quasi-affine by [LM00, A.2]. Therefore, U is a
scheme. Let U ′ ⊆ U be a connected component and let V ′ ⊆ V be its image. The hypotheses of the
lemma imply that U ′ and V ′ are normal varieties and that U ′→ V ′ is a birational morphism which
is bijective on k-points. By Zariski’s birational correspondence theorem, it follows that U ′→ V ′ is
an isomorphism. Applying the argument to each connected component shows that U → V is an
isomorphism. It now follows from [LM00, 3.8.1] that X →Y is an isomorphism. 2

2.6 Comments on the construction
The pull-back of a one-dimensional Bµr-representation is a power of L. Hence, in order to
understand the Chern class of the obstruction bundle R1π∗CN , it is sufficient to understand the
Chern classes of the higher direct image R1π∗L

w of powers of L, and their products.
It is worth pointing out that while the ghost automorphism groups are isomorphic to µrT , this

isomorphism is not natural; the ghost automorphism group is naturally isomorphic to the relative
stabilizer group of the twisted node, and by choosing one of the two components DT∪{n+1} or
DTC∪{n+1} (and identifying the stabilizer group by its action on the corresponding tangent
bundle) one gets an isomorphism to µrT whose sign depends on this choice. In our construction,
this choice shows up in the definition of L1, for which we had to choose one of T and TC for all
divisors DT of M0,n. As L2 depends on that choice only up to an rth power, neither M (2) nor

the universal line bundle L depends on this choice. The map m :M (2)→M0,n(e1, . . . , en;Bµr)
does depend on it, however. Different choices can be related by a composition with a ghost
automorphism3 of the moduli stack.

3. Weighted stable maps to Bµr

3.1 Weighted stable maps
Let g be a non-negative integer, and A= (a1, . . . , an) be weight data, which means that
ai ∈Q ∩ [0, 1] satisfy 2g − 2 +

∑
i ai > 0.

In [Has03], Hassett introduced the notion of weighted stable curves: a weighted stable curve
of type (g,A) over S is a nodal curve π : C→ S of genus g with n sections si : S→ C such that:

(1) every section si with positive weight ai is contained in the smooth locus of π;

(2) the rational divisor KC/S +
∑

i aisi is π-relatively ample; and

(3) for any I ⊂ [n] such that the intersection
⋂
i si is non-empty, we have

∑
i ai 6 1.

We will summarize a few of his results, and refer the reader to [Has03] for details.
If ai = 1 for all i, then these are stable curves in the usual sense. The difference is that when

points si, i ∈ I, collide, then only when
∑

i ai > 1 does a new rational component bubble off.
This is enough to make the new rational component stable according to condition (3.1).

3 By which we mean, in this context, an automorphism covering the identity on the coarse moduli space.
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All the moduli spaces Mg,A with |A|= n are birational. More precisely, assume that the
weight data A= (a1, . . . , an) and B = (b1, . . . , bn) satisfy ai > bi for all i, and ai > bi for at
least one i (we will write A> B from now on). Then there is a birational reduction morphism
ρB,A :Mg,A→Mg,B. (It is induced by B-stabilizing the family of curves over Mg,A.) There is a
chamber decomposition of [0, 1]n by a finite number of walls such that the moduli space Mg,A
only depends on the chamber in which the weight data A lies: the walls are associated to subsets
T ⊂ [n] and given as

wT =
{
ai

∣∣∣∣∑
i∈T

ai = 1
}
. (3.1.1)

Further, the contraction morphism for crossing a single wall is given as a smooth blow-up.
It is somewhat convenient to allow at least one weight to be zero, because Mg,A∪{0} is by

definition the universal curve over Mg,A.
This notion has been extended to weighted stable maps in [AG08, BM09, MM08]. In

particular, in [AG08, BM09] it was shown that Gromov–Witten invariants can be computed for
any choice of weights, yielding identical GW invariants, and [AG08] gave wall-crossing formulae
for the full Gromov–Witten potential including gravitational descendants.

3.2 M0,n as a blow-up of Pn−3

As an example that will be important later, consider for given n the weights Ak =
(1/k, . . . , 1/k, 1) (with n− 1 entries of 1/k) for k = 1, . . . , n− 2. The moduli space M0,An−2

is isomorphic to Pn−3, and the universal curve is the blow-up Blx Pn−2 of Pn−2 at a point x;
the universal map is the projection of Pn−2 to Pn−3 ∼= PTx from x. If we pick x away from the
coordinate hyperplanes, then the image of the special section with weight 1 is the exceptional
divisor, while the remaining sections can be given as the coordinate hyperplanes. (The special
section cannot intersect with any other, while the only condition on the remaining sections is
that they may not all coincide.)

The moduli space M0,An−3 is the blow-up of M0,An−2 at the n− 1 points that are the images
of the intersections of n− 2 of the n− 1 coordinate hyperplanes. When we successively increase
the first n− 1 weights from 1/(n− 2) to 1, one gets a description of M0,n by successive blow-ups
from Pn−3. This is also explained in [Has03, § 6.2]; the description of M0,n as a blow-up of Pn−3

is equivalent to the description by de Concini and Procesi in [dP95].

3.3 The moduli spaces of weighted stable maps to Bµr via rth roots

We sidestep the question of defining a moduli problem of weighted stable maps to a stack in
general. Instead, we give a direct construction of the moduli stacks via rth root constructions,
guided by the construction in the non-weighted case in § 2.

Given r, weight data A> 0, and E = (e1, . . . , en) ∈ µnr , we want to construct a stack which
would resemble M0,A(e1, . . . , en;Bµr) if it were to exist. Choose di ∈ (1/r)Z with e2πidi = ei
and

∑n
i=1 di = 0 as before. Boundary divisors on M0,A are given as Dσ for A-stable 2-partitions

σ = (T, TC) of [n]; A-stable means that the condition |T |, |TC|> 2 is replaced by
∑

i∈T ai > 1 and∑
i∈TC ai > 1. (This of course means that a corresponding rational curve with two components

is A-stable.)

Let M (1)
0,A be the stack obtained from M0,A by taking the rT th root at every divisor DT such

that (T, TC) is A-stable (where rT is defined as before as the order of
∏
i∈T ei). To obtain C(1)

0,A
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from C0,A =M0,A∪{0}, we start with the same construction, but additionally construct the rith
root at every section si.4 The same proof as in Lemma 2.3.2 shows the following.

Lemma 3.3.1. There is a canonical map C
(1)
0,A→M

(1)
0,A.

This is a stacky curve with balanced nodes, but it can have points (in the relative smooth
locus of the coarse moduli space) with automorphism group µ

|I|
r for curves where si, i ∈ I, are

identical; so, this is not a twisted stable curve in the sense of [AV02].

Proposition 3.3.2. Let L1,A be the line bundle on C
(1)

defined by

L1,A :=
n⊗
i=1

O(si)di ⊗
⊗
T

O(DT∪{n+1})dT , (3.3.1)

where the second tensor product goes over all subsets T ⊂ [n] with n 6∈ T such that (T, TC) is

A-stable. Then Lr1,A = π∗L2,A for some line bundle L2,A on M
(1)

.

Again, this has the same proof as before.

Let Mµr
0,A,E be the µr-gerbe over M (1)

0,A of rth roots of L2,A, and let Cµr0,A be the base change

of C(1)
0,A to Mµr

0,A,E . The line bundle LA := L1,A ⊗ π∗L−1/r
2,A on CA has trivial rth power and thus

defines a map f : Cµr0,A→Bµr.

However, again f : Cµr0,A→Bµr is not a twisted stable map in the sense of [AV02]; most
importantly, f is not representable (not representable even after a base change to a scheme
S→M

µr
0,A,E).

3.4 Pn−3-weight data
For any weight w of a one-dimensional µr-representation, we call

Hw
A =R1π∗L

w
A

the generalized dual Hodge bundle on M
µr
0,A,E for the weight data A.

Our computation of the Chern class builds up from a direct computation for the weight data
A= (1/(n− 2), . . . , 1/(n− 2), 1), which yields M0,A ∼= Pn−3 (see § 3.1). Given w, let δwi ∈ [0, 1)
be the age of the line bundle Lw at the ith section; it is determined by e2πiδwi = ewi . For any
subset T ⊂ [n], we let δwT =

∑
i∈T δ

w
i .

Proposition 3.4.1. The generalized dual Hodge bundle Hw
A has the following class in the

K-group:5

[Hw
A] =

δw
[n−1]

−1∑
p=〈δw

[n−1]
〉

[O(−pH)].

Proof. The moduli space is a µr-gerbe over Pn−3, and the universal curve is constructed from
Blx Pn−2 by the rith root construction at the section si for all i, and the base change to the
µr-gerbe.

4 In the case of M0,n, the section si is equivalent to the boundary divisor given by T = {i, n+ 1}; however, this
does not yield an A-stable 2-partition and hence we need to list them separately.
5 See 1.4 for other notation conventions used in this formula.
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We choose di such that di ∈ [0, 1) for i= 1, . . . , n− 1 and dn =−
∑n−1

i=1 di. Then L2,A can
be computed by L2 = s∗n(L1,A)r =O(−rdn), and so by the projection formula Hw

A =O(wdn)⊗
R1π∗L

w
1,A. To compute the higher direct image of Lw1,A, we break up π into the composition

π = π2 ◦ π1 of the map π1, forgetting the roots along the sections, with the map π2 that is the
base change of the natural projection Blx Pn−2→ Pn−3 to the µr-gerbe.

The push-forward along π1 follows easily from (2.1.1). Using −wdn = δw[n−1] +
∑n−1

i=1 bwdic,
we get (where we write E for the exceptional divisor of Blx Pn−2)

(π1)∗Lw1,A =O
( n∑
i=1

bwdicsi
)

=O((−wdn − δw[n−1])H + bwdncE).

The relative canonical bundle of π2 is −H − E, and the pull-back of the hyperplane class on
Pn−3 is H − E. Hence,

R1(π2)∗(π1)∗Lw1,A = ((π2)∗O((wdn + δw[n−1] − 1)H + (−bwdnc − 1)E))∨

= O(−〈δw[n−1]〉 − wdn)⊗ ((π2)∗O((dδw[n−1]e − 2)H))∨,

where we used

wdn − bwdnc= {wdn}= 1− 〈−wdn〉= 1− 〈δw[n−1]〉

and

δw[n−1] − 〈δ
w
[n−1]〉= dδw[n−1]e − 1.

Applying (π2)∗ to the short exact sequences O((a− 1)H)→O(aH)→O(aH)|H , and using
(π2)∗O =O, implies that in the K-group,

[R1(π2)∗(π1)∗Lw1,A] =

dδw
[n−1]

e−2∑
p=0

[O(−〈δw[n−1]〉 − wdn − p)].

Tensoring this with O(wdn) and re-indexing yields the statement of the proposition. 2

Since the hyperplane class of Pn−3 agrees with the ψ-class of the nth marking (which is
special by having weight 1), this implies the following corollary.

Corollary 3.4.2. In the situation of the previous proposition, the Chern class of H2
A is given as

c(Hw
A) =

δw
[n−1]

−1∏
p=〈δw

[n−1]
〉

(1− pψn).

(Note that ψn denotes the pull-back of the corresponding class in M0,A by our convention
for the rational Chow groups of the moduli stacks.)

3.5 Relation to the twisted I-function

In Givental’s formalism for Gromov–Witten theory [CCIT09, CG07, Giv01, Giv04], the so-called
J-function plays an essential role. Let X = [CN/µr], where µr acts diagonally with weights
w1, . . . , wN . The Chen–Ruan orbifold cohomology of X is H =H∗CR(X) =

⊕
e∈µr C · he, and
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the J function is a map H →H[z][[z−1]] defined by the following formula:

JX(z, t) = z + t+
∑
n>0

∑
e∈µr

1
n!

〈
t, . . . , t,

he
z − ψ

〉X
0,n+1

· rhe−1

= z + t+
∑
n>0

∑
e∈µr

∑
k>0

1
n!zk+1

〈t, . . . , t, ψknhe〉X0,n+1 · rhe−1 . (3.5.1)

For example, by the results of [JK02], the J-function of Bµr is given as

JBµr(z, t) = z + t+ z
∑

k=(k0,k1,...,kr−1)

r−1∏
j=0

t
kj
j

kj !z|kj |
· h∏

j(ω
j)kj

,

where we wrote t=
∑r−1

j=0 tjhωj . The idea of [CCIT09] (and Givental’s formalism in general),
specialized to our setting, is to determine the J-function X from the J-function of Bµr; the
former is called the twisted J-function in [CCIT09].

As an approximation to the twisted J-function, Coates et al. defined a twisted I-function in
[CCIT09, § 4]; specialized to our case, and translated into our notation, it is given by6

Itw(z, t) = z + t+
∑

(e1,...,en)

J (e1,...,en) ·M(e1,...,en)(z).

Here

J (e1,...,en) = z−n+2δ1,
∏
i ei
· he−1

n

is the part of the J-function of Bµr that comes from invariants computed on
M0,n(e1, . . . , en;Bµr), and M(e1,...,en)(z) is defined by

M(e1,...,en)(z) =
N∏
a=1

δwa
[n−1]

−1∏
p=〈δwa

[n−1]
〉

(1− pz).

To show that Itw has the desired properties,7 Tseng’s Grothendieck–Riemann–Roch computation
of the Chern character of the obstruction bundle was used in [Tse10].

We can define a weighted J-function of X by

JX;weighted(z, t) = z + t+
∑
n>0

∑
e∈µr

1
n!

〈
t, . . . , t,

he
z − ψ

〉X;weighted

0,n+1

· rhe−1 ,

where the invariant with superscript ‘weighted’ denotes the invariant computed by the moduli
of weighted stable maps M

µr
0,A,E considered in the previous section, i.e. for A= (1/(n−

2), . . . , 1/(n− 2), 1). Then the result of the previous section can be formulated as

JX;weighted(z, t) = z + t+
∑

(e1,...,en)

J (e1,...,en) · M̃(e1,...,en)(z),

where M̃(e1,...,en)(z) is the truncation of M(e1,...,en)(z) by zn−2 = 0: when the Euler class of the
obstruction bundle for (e1, . . . , en) is given as a polynomial P (ψn) in ψn, then the contribution

6 The formula on p. 9 of this reference defining the ‘modification factor’ Mθ(z) has to be applied with si specialized

such that es(ch) for the Chern character ch of some bundle E gives the Euler class of −[E].
7 It has the same image as the twisted J-function, a subset of Givental’s Lagrangian cone LX .
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to the J-function is the ψn−3
n -coefficient of P (ψn)(1/(z − ψn)). This coefficient is given by z−n+2

times the truncation of P (z).
Independently of n, this shows that JX;weighted is obtained from Itw by removing all terms

of non-negative degree in z except the first two; such terms would correspond geometrically to
a negative number of ψn-insertions.

4. Weight change

The goals of this section are the wall-crossing Theorems 4.3.1 and 4.3.2.

4.1 Preparations
We begin with several lemmas we will need in the proof.

Lemma 4.1.1. Let D1, D2 be two smooth divisors with transversal intersection on a smooth
Deligne–Mumford stack X. Let X̃ be the blow-up of X at their intersection, with exceptional
divisor E and proper transforms D̃1 and D̃2. On the other hand, consider the rth root
construction X(D1,r),(D2,r) and its blow-up Z at the intersection of the two gerbes D1 and
D2 lying over D1 and D2, respectively. Then Z is isomorphic to the rth root construction
X̃

(D̃1,r),(D̃2,r),(E,r)
.

Proof. Let D̃i and E be the gerbes in X̃
(D̃1,r),(D̃2,r),(E,r)

lying over D̃i and E, respectively. The

line bundles O(D̃i ⊗ E) with their canonical sections are rth roots of the pull-backs of Di ⊂X,
determining a morphism

f : X̃
(D̃1,r),(D̃2,r),(E,r)

→X(D1,r),(D2,r).

The pull-back of the ideal sheaf of the intersection D1 ∩ D2 along f is the ideal sheaf of E : this is
easy to see locally, where we can assume that Di is cut out by an equation (si = 0); its pull-back
f∗si cuts out E ∪ D̃i. Since E is Cartier, the universal property of blow-ups yields a map

g : X̃
(D̃1,r),(D̃2,r),(E,r)

→ Z.

To go the other way, we first show that Z→X lifts to X̃. The preimage of D1 ∩D2 in
X(D1,r),(D2,r) is Dr1 ∩ Dr2. One can check after étale base change to a scheme that the preimage
of this in Z is r times the exceptional divisor and hence is Cartier. So, the universal property of
blow-ups gives us a morphism Z→ X̃. The preimage of E under this morphism is r times the
exceptional divisor of Z, and it follows that the preimage of D̃i is r times the proper transform
of Di. This gives us a lifting to

h : Z→ X̃
(D̃1,r),(D̃2,r),(E,r)

.

As neither Z nor X̃
(D̃1,r),(D̃2,r),(E,r)

has non-trivial automorphisms over the identity of X,
both gh and hg must be (2-isomorphic to) the identity. 2

Lemma 4.1.2. Let X, Y be Deligne–Mumford stacks, and let f :X → Y be a composition of
rth root constructions and blow-ups at regularly embedded centers (i.e. the normal sheaf of the
center is a vector bundle). Then Rf∗Lf∗F = F for any quasi-coherent sheaf F on Y .

Proof. By the projection formula, it is enough to prove that Rf∗OX =OY . For rth root
constructions, it is obvious that the higher direct images vanish and, by [Cad07], f∗OX =OY .
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For blow-ups, this is well known in the case of schemes. Since blow-ups are representable, one
can reduce to the case of schemes by taking an étale base change to a scheme covering Y . 2

Lemma 4.1.3 (Base change). Let

Y ′
h //

f ′

��
2

Y

f

��
X ′ g

// X

be a 2-cartesian square of Deligne–Mumford stacks, whereX is quasi-compact, f is quasi-compact
and quasi-separated, and Y and X ′ are tor-independent over X. Let E ∈Db(Y ) be a complex
having quasi-coherent cohomology. Suppose either that g has finite tor-dimension or that E has
flat, finite amplitude relative to f . Then there is a natural isomorphism

Lg∗Rf∗E → Rf ′∗Lh∗E .

We will apply this in the case where f is flat and E is a line bundle on Y .

Proof. The existence of a natural morphism Lg∗Rf∗E → Rf ′∗Lh∗E follows from the adjointness of
pull-back and push-forward. Indeed, the natural morphism E → Rh∗Lh∗E determines a morphism

Rf∗E → R(fh)∗Lh∗E = R(gf ′)∗Lh∗E ,

which is equivalent to the morphism above by adjointness of Rg∗ and Lg∗.
For schemes, the proposition is the same as [BGI71, IV, 3.1.0], and the reduction to the case

of schemes is identical to the proof of [LM00, 13.1.9]. 2

Lemma 4.1.4. Let τ : X̃ →X be the blow-up of a smooth Deligne–Mumford stackX at a smooth
center Z ⊂X of codimension two, with normal bundle N and exceptional divisor E. Then, for
n> 0,

[R1τ∗O(n · E)] =
n−2∑
k=0

[Λ2N ⊗ Symk N ].

Proof. As a blow-up is representable, it is sufficient to check this for schemes. Due to the short
exact sequences O((n− 1) · E)→O(nE)→OE(−n) on X̃, it follows from induction if we show
that R1π∗OE(−n) = [Λ2N ⊗ Symn−2 N ]. This is easily checked by Serre duality, since

R0π∗OE(n) = Symn(N∨)

and the relative dualizing sheaf of τ |E is OE(−2)⊗ τ∗(Λ2N)−1. 2

4.2 Constructing the reduction map
Consider two weight data A> B; then there is a reduction morphism ρB,A :M0,A→M0,B.
Further, we assume the following property.
There is exactly one 2-partition σ = (T0, T

C
0 ) of [n] such that σ is A-stable but B-unstable. (∗)

In other words, there is just one wall between A and B in the chamber decomposition of the
set of weight data discussed in § 3.1. Specifically, this means that

∑
i∈T0

ai > 1 but
∑

i∈T0
bi 6 1,

and that T0 is the only such subset of [n].
Then ρB,A :M0,A→M0,B is the blow-up of M0,B at the locus ZT0 of curves where all si, i ∈ T0

agree; the exceptional divisor is DT0 . The universal curve CA is obtained from CB in two steps.
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(1) Blowing up at the preimage π−1ZT0 of ZT0 , i.e. taking the base change for ρB,A; we denote
the resulting family over M0,A by CB/A.

(2) Blowing up at the preimage (with respect to the previous blow-up) of the common image
si(ZT0) for any i ∈ T0. (See [BM09, Remark 3.1.2].)

There is a canonical map

ρ
(1)
B,A :M (1)

0,A→M
(1)
0,B.

This follows from the fact that the pull-back of any boundary divisor DS ⊂M0,B is just the
corresponding divisor DS ⊂M0,A, and that the rth root construction commutes with such base
change.

A matching map C(1)
A → C

(1)
B does not exist in general, for the following reason: the preimage

of a section si ⊂ CB with i ∈ T0 is the union of the corresponding section si ∈ CA with the
exceptional divisor DT0∪{n+1} of the second blow-up step in the construction of C0,A above.
However, for example when

∏
i∈T0

ei = 1, there is no root construction along the divisor

DT0∪{n+1} in the construction of C(1)
A at all, and so an rith root of the pull-back of si ⊂ C0,B

does not exist.
In order to compare the Hodge bundles, we will later construct some auxiliary spaces to

overcome this problem.
For simplicity, we make the following additional assumption.

We assume that for T0 as in (∗), we have n 6∈ T0. (∗∗)

(This simplifies the computation with respect to our choice of L1,A in the definition (3.3.1)
and, on the other hand, always holds when we start with the Pn−3-weight data used in § 3.4.)

Lemma 4.2.1. Assuming (∗) and (∗∗), we have ρ∗B,AL2,B = L2,A.

This is immediate from L2,A = s∗n(L1,A)r, as sn does not meet any of the divisors appearing
in the definition (3.3.1) of L1,A, except itself. As a consequence, we have the following corollary.

Corollary 4.2.2. There is a well-defined reduction map

ρB,A :Mµr
0,A,E →M

µr
0,B,E .

4.3 Weight change and Hodge bundles
We continue with the assumptions (∗) and (∗∗) from the previous section. We want to compare
ρ∗B,AH

w
B and Hw

A in the K-group of Mµr
0,A,E where, due to the projection formula, Hw

A can be
computed by

Hw
A =R1π∗L

w
1,A ⊗ (L2,A)−w/r.

We will introduce several auxiliary spaces; the goal is to have a reduction map as a smooth
blow-up between spaces that are very close to the universal curves. This is achieved in the map
τ below.

Let AA be the intermediate space obtained from C
µr
0,A by forgetting the root construction

along all sections. In other words, it is constructed from the universal curve CA by the rT th root
construction for every divisor DT , where T ⊂ [n+ 1] and T isA ∪ {0}-stable, followed by the base
change along Mµr

0,A,E →M
(1)
0,A. Let νA : Cµr0,A→AA be the induced map, and π′A :AA→M

µr
0,A,E

the projection to the moduli space.
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Then

νA∗(L
w
1,A) =O

( n∑
i=1

bwdicsi +
∑

T⊂[n−1]

(T, TC) is A-stable

wdT ·DT∪{n+1}
)
. (4.3.1)

Now let AB/A be the base change of AB→M
µr
0,B,E along ρB,A. While a map AA→AB/A

exists, we prefer not to use it and instead consider two more additional spaces: pick any section
sj0 with j0 ∈ T0 and let A′A = (AA)sj0 ,rT be the stack obtained from AA by adding the rT th root
construction at the j0th section. We define A′B/A analogously.

C
µr
0,A

νA

!!CC
CC

CC
CC

A′A

εA

��

τ // A′B/A

εB/A

��

C
µr
0,B

νB
{{ww

ww
ww

ww
w

AA

π′A ""FF
FF

FF
FF

F
AB/A

ρB,A //

π′B/A
��

AB

π′B
��

M
µr
0,A,E

ρB,A // M
µr
0,B,E

Applying Lemma 4.1.1 to the divisors sj0 and π−1DT on the coarse moduli space of AB/A,
we see that the map τ is the blow-up at the intersection of the tautological gerbes over sj0 and
(π′B/A)−1DT0 in A′B/A.

Setting Lw1,B/A = ρ∗B,AνB∗L
w
1,B, we have

(ρB,A)∗Hw
B = (ρB,A)∗R1(π′B)∗νB∗L

w
1,B ⊗ L

−w/r
2,B

= R1(π′B/A)∗ρ∗B,AνB∗L
w
1,B ⊗ (L2,A)−w/r (Lemma 4.1.3)

= R1(π′B/A)∗Lw1,B/A ⊗ (L2,A)−w/r

= R1(π′B/AεB/Aτ)∗(εB/Aτ)∗Lw1,B/A ⊗ (L2,A)−w/r (Lemma 4.1.2) (4.3.2)

on the other hand,

Hw
A = R1(π′A)∗νA∗L

w
1,A ⊗ (L2,A)−w/r

= R1(π′AεA)∗ε∗AνA∗L
w
1,A ⊗ (L2,A)−w/r (Lemma 4.1.2)

= R1(π′B/AεB/Aτ)∗ε∗AνA∗L
w
1,A ⊗ (L2,A)−w/r. (4.3.3)

Now, for any T ⊂ [n− 1] such that (T, TC) is B-stable, it is also A-stable, and

(ρB,AεB/Aτ)∗(DT∪{n+1}) = ε∗A(DT∪{n+1}).

The pull-back of the divisor class of sections is given by

(ρB,AεB/Aτ)∗(si) =

{
si if i 6∈ T0,

si +DT0∪{n+1} if i ∈ T0.

Using these formulae and (4.3.1) for A and B, respectively, yields

(εA)∗νA∗L
w
1,A = (εB/Aτ)∗Lw1,B/A ⊗O

(∑
i∈T0

(wdi − bwdic) ·DT0∪{n+1}
)
.
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Note that δwT0
=
∑

i∈T0
(wdi − bwdic). The projection formula yields

R(εB/Aτ)∗(εA)∗νA∗L
w
1,A = Lw1,B/A ⊗ R(εB/Aτ)∗O(δwT0

·DT0∪{n+1}). (4.3.4)

Combining (4.3.2), (4.3.3), and (4.3.4), and using R0(εB/Aτ)∗O(δwT0
·DT0∪{n+1}) =O, it follows

that

[Hw
A] = [ρ∗B,AH

w
B ] + [(π′B/A)∗(R1(εB/Aτ)∗O(δwT0

DT0∪{n+1})⊗ Lw1,B/A)⊗ L−w/r2,A ]. (4.3.5)

Write δwT0
as the fraction p0/r0, where r0 = rT0 . The exceptional divisor of τ is DT0∪{n+1} =

(1/r0)DT0∪{n+1}; so, by Lemma 4.1.4,

[R1τ∗O(δwT0
·DT0∪{n+1})] =

p0−2∑
k=0

[Λ2N ⊗ Symk N ], (4.3.6)

where N is the normal bundle to the center of the blow-up τ . To compute the right-hand side, we
introduce additional normal bundles. Let Ns j0

be the normal bundle to the gerbe sj0 over sj0 in
A′B/A, let NDT0 be the normal bundle to the gerbe DT0 over DT0 in Mµr

0,A,E , and let Nsj0
be the

normal bundle to sj0 in AB/A (equivalently, Nsj0
is the relative tangent bundle of π′B/A restricted

to sj0). Then Ns j0
is the restriction of the tautological bundle of the r0th root construction εB/A

at the section sj0 to the gerbe, and

(εB/A)∗Nk
s j0

=

{
N
k/r0
sj0

if r0 divides k,
0 otherwise.

(4.3.7)

The section sj0 induces a splitting of the tangent bundle of AB/A along sj0 into the relative
tangent bundle and the push-forward of the tangent bundle of Mµr

0,A,E along sj0 . This induces a
splitting of N as

N = ((εB/Aπ
′
B/A)∗NDT0 ⊕Ns j0

)|ZT0
.

Applying this splitting to (4.3.6), we obtain

[R1τ∗O(δwT0
·DT0∪{n+1})] =

p0−2∑
k=0

∑
a+b=k

[N b+1
s j0
⊗ (εB/Aπ

′
B/A)∗Na+1

DT0
].

We can rewrite the summation as
∑p0−2

b=0

∑p0−b−2
a=0 or, equivalently,

∑p0−1
b=0

∑p0−b−2
a=0 . By (4.3.7),

only the terms with mr0 = b+ 1 for some m ∈ Z are surviving the push-forward along εB/A,
which yields

[R1(εB/Aτ)∗O(δwT0
·DT0∪{n+1})] =

dδwT0
e−1∑

m=1

p0−r0m−1∑
a=0

[Nm
sj0
⊗ (π′B/A)∗Na+1

DT0
].

Combining this with (4.3.5) yields the wall-crossing theorem in the K-group.

Theorem 4.3.1. The generalized dual Hodge bundles Hw
A and Hw

B can be related in the
K-group of M

µr
0,A,E as follows:

[Hw
A] = [ρ∗B,AH

w
B ] +

dδwT0
e−1∑

m=1

p0−r0m∑
a=1

[Na
DT0
⊗ s∗j0N

m
sj0
⊗ s∗j0L

w
1,B/A ⊗ L

−w/r
2,A ], (4.3.8)

where sj0 is the section sj0 :Mµr
0,A,E →AB/A.
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Let α be the first Chern class of the line bundle s∗j0νB∗L
w
1,B ⊗ L

−w/r
2,B on Mµr

0,B,E . The first Chern
class of s∗j0Nsj0

on M
µr
0,B,E is −ψj0 , and so the first Chern class of K := s∗j0N

m
sj0
⊗ s∗j0L

w
1,B/A ⊗

L
−w/r
2,A is ρ∗B,A(α−mψj0).

Tensoring the short exact sequences

0→O
(

1
r0
DT0

)a−1

→O
(

1
r0
DT0

)a
→Na

DT0
→ 0

with K yields Chern classes for all summands of the right-hand side of (4.3.8), and thus the
following formula relating the Chern classes of the dual Hodge bundles:

c(Hw
A) = ρ∗B,A(c(Hw

B )) ·
dδwT0
e−1∏

m=1

p0−r0m∏
a=1

1 + (a/r0)DT0 + ρ∗B,A(α−mψj0)
1 + ((a− 1)/r0)DT0 + ρ∗B,A(α−mψj0)

= ρ∗B,A(c(Hw
B )) ·

dδwT0
e−1∏

m=1

1 + (δwT0
−m)DT0 + ρ∗B,A(α−mψj0)
1 + ρ∗B,A(α−mψj0)

= ρ∗B,A(c(Hw
B )) ·

dδwT0
e−1∏

m=1

(
1 +

(δwT0
−m)DT0

1 + ρ∗B,A(α−mψj0)

)
.

Equation (4.3.8) implies that this formula does not depend on α itself but only on its
restriction α · ZT0 to the center of the blow-up part of ρB,A. The Chern class of L1,B on C

µr
0,B is

by construction equal to the Chern class of π∗BL
1/r
2,B. Hence, α can be computed as the difference

of the Chern classes of νB∗Lw1,B and Lw1,B, which is given by
∑n

i=1(bwdic − wdi)si =−
∑n

i=1 δ
w
i si.

Pulling this back via sj0 , and ignoring everything that restricts as zero to ZT0 , gives α=
−
∑

i∈T0
δwi (−ψj0) = δwT0

ψj0 .

We claim that the restriction of ρ∗B,Aψj0 to DT0 is the ψ-class of the node on the component
corresponding to the complement of T0. To see this, note that the irreducible component over
DT0 corresponding to TC

0 is the pull-back of the family over ZT0 , with sj0 being pulled back to
the node.

Since in the final formula, after expanding the fraction using a geometric series, ρ∗B,Aψj0 only
appears in monomials that also have a factor of DT0 , we can replace ρ∗B,Aψj0 by ψT0 ; here ψT0

is for now any divisor on that restricts as the ψ-class of the node to DT0 (but see (A.1.4) for a
somewhat canonical global definition). So the formula simplifies further.

Theorem 4.3.2. Assume that there is a single wall wT0 as defined in (3.1.1) between the two
weight data A> B. The Chern classes of the generalized dual Hodge bundles can be related on
M

µr
0,A,E as follows:

c(Hw
A) = ρ∗B,A(c(Hw

B )) ·
δwT0
−1∏

p=〈δwT0
〉

(
1 +

pDT0

1 + pψT0

)
.
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5. Chern class formula

5.1 Main theorem

Theorem 4.3.2 and Corollary 3.4.2 immediately give a closed formula for the equivariant Euler
class of the generalized dual Hodge bundle.

Assume that µr is acting diagonally on CN with weights w1, . . . , wN . Given e1, . . . , en ∈ µr,
let δ(a)

i ∈ [0, 1) be the age of ei acting on the ath coordinate direction, i.e. e2πiδ
(a)
i = ewai . For all

subsets T ⊂ [n], let δ(a)
T =

∑
i∈T δ

(a)
i .

Theorem 5.1.1. On the connected component M0,n(e1, . . . , en;Bµr) of the moduli space of
twisted stable maps M0,n(Bµr), the equivariant Euler class of the obstruction bundle is given as

eT ([R1π∗f
∗CN ]) =

N∏
a=1

δ
(a)
[n−1]

−1∏
p=〈δ(a)

[n−1]
〉

(ta − pψn) ·
∏

T([n−1]
26|T |

δ
(a)
T −1∏

p=〈δ(a)T 〉

(
1 +

pDT

ta + pψT

)
.

Proof. If we start with weight data A= (1/(n− 2), . . . , 1/(n− 2), 1) as in § 3.4, we can choose a
path in [0, 1]n leading to A= (1, 1, . . . , 1) such that we pass every wall wT = {ai |

∑
i∈T ai = 1}

for T ( [n− 1], |T |> 2 exactly once, and only one wall at a time. By Theorem 4.3.2, we pick
up exactly the factor in the above product corresponding to DT when we cross the wall wT ,
after we set ta = 1. To get the equivariant Euler class from the total Chern class, we just have to
multiply the ith Chern class of the higher direct image of the ath coordinate direction C⊂ CN

with trk−ia , as the torus is acting trivially on the moduli space, and linearly with multiplication
by ta on the fibers of the vector bundle. 2

5.2 Remarks on the formula

Using the notation D[n−1] =−ψn, Di =−ψi and ψ[n−1] = 0 as explained in the appendix, the
formula can be written in more compact form:

eT ([R1π∗f
∗CN ]− [R0π∗f

∗CN ]) =
N∏
a=1

t
δ
(a)
[n]
−1

a

∏
∅6=T⊆[n−1]

δ
(a)
T −1∏

p=〈δ(a)T 〉

ta + pψT + pDT

ta + pψT
. (5.2.1)

Here δ
(a)
[n] − 1 is the virtual dimension of the contribution from the ath coordinate direction

C⊂ CN to obstruction bundle.

The convenience of this formulation is that it remains correct (up to an overall power of ta)

as long as δ(a)
{i} is any real number such that ewai = e

2πiδ
(a)
{i} (if we still define δ(a)

T =
∑

i∈T δ
(a)
{i}).

This is shown in the appendix; see Lemma A.1.1.

This version of the formula also gives the correct answer for the necessary localization com-
putation in the case where all ei act trivially on one of the coordinate directions, that is if ewai = 1
for some a and all i. In that case, M0,n(e1, . . . , en;Bµr) is the fixed point locus of
M0,n(e1, . . . , en; [CN/µr]) (instead of being isomorphic to it). The factor of 1/ta we get in the
above formula is the contribution of the ath coordinate direction to the inverse of the equivariant
Euler class of the normal bundle of the fixed point locus.
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6. Recursions for Gromov–Witten invariants

6.1 Inclusion–exclusion principle

The formula gives particularly nice recursions when the invariants are (almost) non-equivariant.
To expand the formula, we use the following fact, which we think of as a generalized inclusion–
exclusion principle.

Lemma 6.1.1. Let S be a partially ordered set. Let U(S) be the set of non-empty subsets
I ⊂ S such that no two elements of I are comparable. For every subset I ⊂ S, let C(I)⊂ S be
the ‘ordered complement’ of I: the set of elements of S that are not less than or equal to any
element of I. Then ∏

T∈S
(1 + xT ) = 1 +

∑
I∈U(S)

(−1)|I|+1
∏
T∈I

xT
∏

T∈C(I)

(1 + xT ). (6.1.1)

Proof. For any subset J ⊂ S, the monomial
∏
T∈J xT appears on the right-hand side of the above

product whenever I is a subset of the set of minimal elements of J . It is easily checked that it
overall has coefficient 1. 2

We use this for S being the set of subsets T ⊂ [n− 1] with 2 6 |T |6 n− 2, ordered by
inclusion, and

xT = −1 +
N∏
a=1

δ
(a)
T −1∏

p=〈δ(a)T 〉

(
1 +

pDT

ta + pψT

)

=

∏
a,p(1− t−1

a pψTC)−
∏
a,p(1 + t−1

a pψT )∏
a,p(1 + t−1

a pψT )
,

where ψTC =−DT − ψT (see Appendix A). Then xT is a class with support on DT . Thus, if
T, T ′ are not comparable, then xTxT ′ can only be non-zero if T and T ′ are disjoint; hence,
the expansion of Lemma 6.1.1 reduces to a sum over a combination of pairwise disjoint subsets
T1, . . . , Tk ⊂ [n− 1]. Since every Ti has size at least two, the datum of {T1, . . . , Tk} can be
identified with a partition P of [n− 1]. Given P, we write P>2 for the sets in P that have size
at least two, recovering the list of the Ti, and we write |P>2|=

∑
i|Ti| for the total size of their

union. We can similarly simplify the second product of (6.1.1) to a product over T which are
either disjoint from or fully contain Ti, for all i; in other words, we can identify T with a subset
of the quotient set [n− 1]/(P) having at least two elements. Thus,

eT (R1π∗f
∗CN )

=
(

1 +
∑
P

(−1)|P>2|+1
∏

T∈P>2

xT
∏

T([n−1]/(P)
26|T |

(1 + xT )
) N∏
a=1

δ
(a)
[n−1]

−1∏
p=〈δ(a)

[n−1]
〉

(ta − pψn), (6.1.2)

where the sum goes over all non-trivial partitions P of [n− 1] (excluding the partitions of sizes
one and n− 1), and we identify a subset T ⊂ [n− 1]/(P) with its preimage in [n− 1].

The class associated to the partition P in the above expansion has support on
⋂
T∈P>2

DT ,
which explains why we call it an inclusion–exclusion principle. This intersection is a moduli space
of comb curves as in Figure 1.
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Figure 1. Comb for n= 30, p= 7, and m= (1, 1, 2, 3).

6.2 Non-equivariant recursions for [C3/µr]

Let µr act non-trivially on C3 so that it leaves the volume form of C3 invariant. Up to isomorphism
of µr, we may assume that the generator is acting with age 1; then the weights w1, w2, w3 of the
one-dimensional representations satisfy w1 + w2 + w3 = r. The age of the action of a non-trivial
group element ei is given by age(ei, C3) = age(ew1

i ) + age(ew2
i ) + age(ew3

i ). In this section, we will
develop recursions for invariants of the form

〈he1 ⊗ · · · ⊗ hen−1 ⊗ ψνnhen〉
[C3/µr]
0,n , (6.2.1)

where e1, . . . , en−1 ∈ µr are group elements of age 1, and en is arbitrary, and also the only
element for which we allow insertion of a ψ-class. (This implies that δ(1)

T + δ
(2)
T + δ

(3)
T = |T | for

all T ⊂ [n− 1].)

We want to determine the integral of a summand on the right-hand side of (6.1.2) related
to a partition P of [n− 1], after inserting an additional ψ-class at the nth marked point. Let
T1, . . . , Tk be the elements of P>2.

ψνn · c(P) = ψνn ·
k∏
i=1

xTi
∏

T([n−1]/(P)
26|T |

(1 + xT )
N∏
a=1

δ
(a)
[n−1]

−1∏
p=〈δ(a)

[n−1]
〉

(ta − pψn).

This term is supported on the intersection DT1 ∩ · · · ∩DTk , isomorphic to M0,T1∪{∗} × · · · ×
M0,Tk∪{∗} ×M0,[n]/(P); so, in order to determine the integral of c(P) · ψνn, we will write it as a
product of DT1 · · ·DTk with factors that are pulled back from one of the components above.

The numerator of xTj is the only factor that has terms coming from M0,Tj∪{∗}, while its
denominator involves ψTj , which is the ψ-class of the node corresponding to the marking Tj on
M0,[n]/(P). To examine the numerator more closely, we first factor out DTj :∏

a,p

(1− t−1
a pψTC

j
)−

∏
a,p

(1 + t−1
a pψTj ) =

∑
k>0

βk((−1)kψk
TC
j
− ψkTj )

= DTj ·
∑
k>0

βk

k−1∑
`=0

(−ψTC
j

)`ψk−1−`
Tj

.
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The largest power of ψTC
j

which appears in the last expression is

3∑
a=1

(δ(a)
Tj
− 〈δ(a)

Tj
〉)− 1 = |Tj | − 1−

3∑
a=1

〈δ(a)
Tj
〉.

As the dimension of M0,Tj∪{∗} is |Tj | − 2, the expression only has a term in the top degree if∑3
a=1〈δ

(a)
Tj
〉= 1, which means that eTj =

∏
i∈Tj ei acts with age 1 on C3 and acts non-trivially

in each coordinate direction. By the balancing condition, eTj is prescribing the monodromy of

the node as seen from the component corresponding to [n]/(P). As the integral of ψ|Tj |−2

TC
j

is 1, the

integral of the above product on M0,Tj∪{∗} is
∏3
a=1 t

−dδ(a)Tj
e

a (δ(a)
Tj
− 1)! if the condition on eTj is

satisfied, and 0 otherwise.

On M0,[n]/(P), we are left with the following product:

ψνn ·
3∏

a=1

t
−1+δ

(a)
[n]

a

∏
∅6=T⊆[n−1]/(P)

δ
(a)
T −1∏

p=〈δ(a)T 〉

ta + pψT + pDT

ta + pψT
.

Here we used the same conventions as for formula (5.2.1), applied to the set [n− 1]/(P) (so
for example D{Tj} is identified with −ψ{Tj}, which is the ψ-class of a single marking ; the term
related to Tj in the above product is the denominator of xTj ); and we extended δ(a)

T in the obvious
way from subsets of [n− 1] to subsets of the quotient set [n− 1]/(P). Now, by the remarks in
§ 5.2, based on Lemma A.1.1, this product computes the Chern class of the obstruction bundle
on M0,[n]/(P)((ei)i∈[n]/(P);Bµr). Its integral is thus given by the equivariant Gromov–Witten
invariant 〈 ⊗

i∈[n−1]/(P)

hei ⊗ ψνnhen
〉[C3/µr]

0,[n]/(P)

.

This proves the following recursion.

Proposition 6.2.1. For an equivariant Gromov–Witten invariant of [C3/µr] as in (6.2.1) with
the assumptions above, let S be the set of non-trivial partitions P of [n− 1] such that for
every T ∈ P>2, the group element eTj =

∏
i∈Tj ei acts with age 1 on C3, and is non-trivial in every

coordinate direction. Then the following recursive formula holds:

〈he1 ⊗ · · · ⊗ hen−1 ⊗ ψνnhen〉
[C3/µr]
0,n = 〈he1 ⊗ · · · ⊗ hen−1 ⊗ ψνnhen〉

[C3/µr];weighted
0,n

+
∑
P∈S

(−1)|P>2|+1
∏

T∈P>2

3∏
a=1

(δ(a)
T − 1)!

〈 ⊗
i∈[n−1]/(P)

hei ⊗ ψνnhen
〉[C3/µr]

0,[n]/(P)

.

Here the invariant with superscript ‘weighted’ means the invariant as computed by using the
moduli space of weighted stable maps instead of the ordinary moduli space, with weight data
chosen as in § 3.4. These invariants are given, up to a multiplication with a monomial in the ta,
by the (n− 3− ν)th elementary symmetric function of the variables

t−1
a (δ(a)

[n−1] − 1), t−1
a (δ(a)

[n−1] − 2), . . . , t−1
a 〈δ

(a)
[n−1]〉 for a= 1, 2, 3.
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6.3 Recursions for [C3/µ3]
The recursion of Proposition 6.2.1 simplifies further in the case [C3/µ3] for the diagonal
representation of µ3. The only group element of age 1 is ω = e2πi/3. We have δ(a)

T = |T |/3 for
all T ⊂ [n− 1] and a= 1, 2, 3. The set S contains the partitions P of [n− 1], so that every T ∈ P
has size 3mT + 1 for some mT ∈ Z>0. The summand for P in the formula of Proposition 6.2.1
depends only on the sizes of the subsets, not on the actual subsets; if we set p=

∑
T mT , we can

thus reduce the above sum to a sum over partitions m= (m1, . . . , mk) of p, for all p> 1 with
n− 3p> 3. For any such partition, let M(n− 1, m) be the multinomial coefficient

M(n− 1, m) =
(

n− 1
3m1 + 1, . . . , 3mk + 1, n− 1−

∑
j

(3mj + 1)

)

counting the ways to distribute n− 1 markings on the different components.

Proposition 6.3.1.

〈h⊗n−1
ω ⊗ ψνnhen〉

[C3/µ3]
0,n = 〈h⊗n−1

ω ⊗ ψνnhen〉
[C3/µ3];weighted
0,n

+
b(n−3)/3c∑

p=1

∑
m

(−1)p+1

|Autm|

k∏
j=1

((
mj −

2
3

)
!
)3

M(n− 1, m)〈h⊗n−1−3p
ω ⊗ ψνnhen〉

[C3/µ3]
0,n .

The superscript ‘weighted’ means the same as before; if en = ω and ν = 0, this weighted Gromov–
Witten invariant is just given as (−1)n+1((1

3(n− 4))!)3 1
3 ; otherwise, it is an elementary symmetric

function.
A Maple program implementing some of these recursions is available from the authors upon

request. The numbers match the calculations of [ABK08, CC09, CCIT09].
As the recursions are linear, it is not hard to invert the matrix and obtain a direct formula.

Let I` = 〈h⊗3`+3
ω 〉[C

3/µ3]
0,3`+3 . Proposition 6.3.1 implies that∑̀

p=0

(−1)pCp,`I`−p = (−1)`
((

`− 1
3

)
!
)3 1

3
,

where C0,` = 1 and, for 0< p6 `, Cp,` is the sum over partitions m= (m1, . . . , mk) of p, with
k 6 3(`− p) + 2, of the quantity

1
|Autm|

k∏
j=1

((
mj −

2
3

)
!
)3

·
(

3`+ 2
3m1 + 1, . . . , 3mk + 1, 3(`− p) + 2− k

)
.

Let Dp,` = C`−p,`. By inverting the matrix, we obtain the formula

3(−1)`I` =
∑

S⊆[0,`−1]
S={x0,...,xq}

(−1)|S|
((

x0 −
1
3

)
!
)3

Dx0,x1 · · ·Dxq−1,xqDxq ,`,

where [0, `− 1] = {0, 1, . . . , `− 1} and it is assumed that x0 < x1 < · · ·< xq. For S = ∅, the
summand is taken to be ((`− 1/3)!)3.

6.4 Inversion of the ‘mirror map’
The recursion in this case can also be derived from the results in [CCIT09]. We explained above
in § 3.5 that the I-function Itw(t) is almost identical (up to high powers of z) to the ‘weighted
J-function’ JX;weighted.
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From general principles of Givental’s formalism, it was deduced that for the coordinate change
τ(t) :H →H, called the ‘mirror map’, given by

τ(t0h1 + t1hω) = t0h1 +
∑
k>0

(−1)3k(t1)3k+1

(3k + 1)!

((
k − 2

3

)
!
)3

hω,

the twisted I-function and the twisted J-function can be related after setting the dual coordinate
of hω2 equal to zero:

Itw(t0h1 + t1hω, z) = JX(τ(t0h1 + t1hω), z).

Our recursive formula can be recovered by comparing coefficients of these two power series; in
other words, the sum over partitions P in Proposition 6.3.1 is a combinatorial inversion of the
mirror map τ(t).

More precisely, given any two power series A(t0h1 + t1hω, z), B(t0h1 + t1hω, z) related by

A(t0h1 + t1hω, z) =B(τ(t0h1 + t1hω), z),

we can recursively recover the coefficients of B by comparing coefficients of powers of t1. If we
write A(t1h1) =

∑
k(ak/k!)tk1 and B(t1h1) =

∑
k(bk/k!)tk1 with ak, bk ∈H[[z−1]], the recursion

will look exactly as Proposition 6.3.1 with the ‘weighted invariants’ replaced by ak and the actual
invariants replaced by bk. In particular, setting A to the identity power series A(t0h1 + t1hω) =
t0h1 + t1hω yields an inversion of the mirror map that can also be interpreted as a sum over
comb curves.

6.5 Equivariant recursions

The methods of this section are sufficient to produce a linear recursion for the equivariant
descendant Gromov–Witten invariants of [CN/µr]. However, this requires one to allow ψ-classes
at every marked point. As in § 6.2, one can use Lemma 6.1.1 to expand the equivariant Euler
class of the obstruction bundle, and to each partition of [n− 1] one should associate a comb as
before, where the nth marked point is on the head of the comb. For each tooth of the comb, we
can write the numerator of xT as

DT ·
∑
k>0

βk

k−1∑
`=0

(−ψTC)`ψk−1−`
T ,

just as in § 6.2. The exponent of ψTC which leads to a non-zero integral is determined by the
descendant exponents chosen for the marked points in T . The integral over the tooth can then
be computed using the well-known formula∫

M0,n

ψa1
1 · · · ψ

an
n =

(
n− 3

a1, . . . , an

)
.

We are left with a polynomial in ψT , the ψ-class of the node on the main component (and hence
our method does not yield a recursion for non-descendant invariants only).

In summary, for each partition of [n− 1], one gets a linear combination of equivariant
Gromov–Witten invariants with fewer marked points, each with a combinatorial factor. These
must be summed together and added to the weighted invariant, just as in § 6.2.
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Appendix A. Combinatorics of divisors on M0,n

A.1 Notation for divisors

This section reviews notation for divisors on M0,n, some of which is introduced in this paper.
The standard relations are reviewed, and a combinatorial proof of a key simplifying relation,
used in § 6, is worked out.

First recall the vital divisor DT , introduced by Keel [Kee92], where T is any subset of [n]
having at least two and at most n− 2 elements. This divisor is the locus of curves having a node
which separates the markings into T and TC. Here complements are always taken within [n]. To
make this into a correspondence, assume throughout this appendix that S and T are subsets of
[n− 1]. It is natural to define D[n−1] to be −ψn, which comes from the work of de Concini and
Procesi [dP95]. From their point of view, D[n−1] is the pull-back of minus the hyperplane class
under a sequence of blow-ups producing M0,n from Pn−3. This sequence of blow-ups is the same
one discussed in § 3.2 in the context of weighted stable maps. Under this blow-up description of
M0,n, DT is the exceptional divisor of the blow-up in the proper transform of the linear space
generated by the points labeled by [n− 1]\T .

The ring H∗(M0,n) is generated by the divisors DT for T ⊆ [n− 1], |T |> 2, with relations
given by

DSDT if S and T are incomparable and S ∩ T 6= ∅, (A.1.1)∑
i,j∈T

DT for every i 6= j ∈ [n− 1] [dP95]. (A.1.2)

Geometrically, the first relation is due to the fact that the exceptional divisors DS and DT are
disjoint, and the second is due to the fact that the preimage of the hyperplane in Pn−3 generated
by all points except i and j consists of the proper transform Di,j together with all the exceptional
divisors DT for i, j ∈ T . Fix T ( [n− 1] and choose i /∈ T and j ∈ T . Then the relations (A.1.1)
and (A.1.2) imply that

DT
∑
S:i∈S
S⊃T

DS = 0. (A.1.3)

For any non-empty subset T ⊆ [n− 1], we introduce the notation

ψT :=
∑
S)T

DS . (A.1.4)

If T = {i}, then this recovers the ψ-class at the ith marked point. Indeed, we have for any distinct
j, k different from i (recalling the convention n /∈ T ),

ψi =
∑
j,k∈T
i/∈T

DT +
∑
i∈T
j,k/∈T

DT =−
∑

i,j,k∈T
DT +

∑
i∈T
j,k/∈T

DT +
∑
i,j∈T

DT +
∑
i,k∈T

DT = ψ{i},
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the last equality following from an inclusion–exclusion argument. By definition, ψ[n−1] = 0, and
we also set Di =−ψi for 1 6 i6 n− 1. Finally, we define

ψTC :=−DT − ψT

for T ⊆ [n− 1], which we found useful in § 6.

The Chern class formula of Theorem 5.1.1 can now be expressed as

c=
∏

∅6=T⊆[n−1]

δT−1∏
p=〈δT 〉

(
1 + p(DT + ψT )

1 + pψT

)
, (A.1.5)

where δT =
∑

i∈T δi and δi are chosen so that 0 6 δi < 1. The following lemma shows that if
every δi > 0, this expression is periodic in each δi with period one; so, it defines a continuous,
piecewise-analytic function from an (n− 1)-dimensional real torus into the cohomology of M0,n

with real coefficients. This is used in § 6 to produce recursions for the Gromov–Witten invariants.

Lemma A.1.1. Let δ1, . . . , δn−1 be real numbers and, for any subset T ⊆ [n− 1], define δT =∑
i∈T δi. Then ∏

1∈T

1 + δT (DT + ψT )
1 + δTψT

= 1. (A.1.6)

Proof. For 1 6 k 6 n− 1, let

Ek =
n−1∑
i=2

δi
∑

1,i∈T
|T |>k

DT + δ1

∑
1∈T
|T |>k

DT ,

and let

Ak = (1 + Ek)
∏

1∈T⊆[n−1]
|T |6k

1 + δT (DT + ψT )
1 + δTψT

.

Then it must be shown that An−1 = 1. As En−2 = δ[n−1]D
[n−1], it follows that An−2 =An−1.

Moreover, E1 = δ1ψ1, so that A1 = 1. It remains to show that Ak =Ak−1 for 1< k < n− 1.

Note that for any divisors x, y, z,

(1 + x)(1 + y)
1 + z

= 1 + x+ y − z if (x− z)(y − z) = 0. (A.1.7)

Fix T with 1 ∈ T and |T |= k, and let x be any expression of the form Ek +
∑

S∈σ αSD
S , where σ

is a collection of subsets S ⊆ [n− 1] with |S|= k and 1 ∈ S 6= T . Then DT (x− δTψT ) = 0 by the
following argument. For any S ∈ σ, 1 ∈ S ∩ T and |S|= |T |, so DSDT = 0. Moreover,

Ek − δTψT =
∑
i:i/∈T

δi
∑
S:i∈S
T⊆S

DS +
∑
|S|>k
S 6⊃T
1∈S

δSD
S .

Since DT annihilates the first term on the right-hand side by (A.1.3) and annihilates the second
by (A.1.1), it follows that DT (Ek − δTψT ) = 0, completing the verification of the claim.

1319

https://doi.org/10.1112/S0010437X10004793 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004793


A. Bayer and C. Cadman

It follows that one can iterate through all sets T with |T |= k to eliminate those factors from
the expression for Ak and apply the relation (A.1.7) at each step. Since

Ek +
∑
1∈T
|T |=k

δTD
T = Ek−1,

it follows that Ak =Ak−1, completing the proof. 2

If, in (A.1.5), one were to add 1 to δ1 (and thus add 1 to each δT for 1 ∈ T ), then one would be
multiplying c by the left-hand side of (A.1.6). Therefore, c does not change after the translation
δi 7→ δi + 1. Using the notational conventions of § 1.4, the formula for c makes sense for negative
values of δi, and the same argument shows that it remains invariant under integer translations.
It seems natural to regard δ1, . . . , δn as coordinates on (R/Z)n satisfying

∑n
i=1 δi = 0.

A.2 Restricting to DT

It is a standard fact that for any proper subset T ⊂ [n− 1] containing at least two elements,
DT ∼=M0,|T |+1 ×M0,n−|T |+1, with the node counting as an extra marked point on each factor.
The restrictions of divisors DS and ψS to DT are easily computed if one uses subsets of T for the
divisors on the first factor and subsets of the quotient set [n− 1]/T for divisors on the second
factor. So, on the first factor, the node counts as the extra marked point that all sets must avoid.
For sets S ⊂ T , we use DS

∗ and ψ∗S to denote divisors on M0,|T |+1 and we likewise use DS
• and ψ•S

for divisors on M0,n−|T |+1. Now the following formulae hold for any non-empty set S ⊆ [n− 1].

DS |DT =



DS
∗ ⊗ 1 if S ( T

1⊗DS
• if S ∩ T = ∅

1⊗DS/T
• if S ) T

DT
∗ ⊗ 1 + 1⊗DT/T

• if S = T

0 otherwise

(A.2.1)

ψS |DT =


ψ∗S ⊗ 1 if S ( T

1⊗ ψ•S if S ∩ T = ∅
1⊗ ψ•S/T if S ⊇ T .

(A.2.2)

Note that the fourth line of (A.2.1) is another way of writing the standard fact that the restriction
of −DT to DT is the sum of the ψ-classes at the node on the two components. Moreover, the
third line of (A.2.2) shows that ψT restricts to DT as the ψ-class of the node on the component
corresponding to TC. So, our definition of ψC

T as −DT − ψT ensures that ψC
T restricts to the

ψ-class of the node on the other component.
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