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ABSTRACT. A theory of icicle growth is presented. It is 
shown that icicles elongate as hollow tubes of ice with 
liquid water trapped inside the tip. A time-dependent 
computer model based on the theory shows that the growth 
of an icicle is a complicated process, which is very 
sensitive to the atmospheric conditions and water flux. The 
shape and weight of icicles predicted by the model agree 
well with laboratory data. 

1. INTRODUCTION 

In cold areas of the world icicles are commonly seen. 
Wherever cold water flows from an overhang at freezing 
temperatures, icicles will form . They hang from the roofs 
of buildings, ledges, and tree branches after periods of 
snow melt or freezing rain, and as a result of water 
seepages. 

Icicles are nice to look at, and they are useful in that 
they can be used as a guide to the quality and movement 
of ground water (Reesman, 1973), and that their formation 
on buildings reveals thermal leaks. It is not always 
recognized that icicles are also a problem. They may fall 
on people and cause serious injuries. When hanging from 
the roof of a railway tunnel they may penetrate the 
windshield of a passing engine (Shinojima, 1973). Icicles 
also contribute to ice loads on trees and structures, such as 
power lines, masts , and ships. Formation of icicles on 
insulators of a power line may also cause flash-overs . 
Estimation of icicle formation is, therefore, necessary in 
many engineering applications. 

The general characteristics and crystal structure of 
icicles have been studied by Hatakeyama and Nemoto 
(1958), Lenggenhager (1978), Knight (1968, 1980), Geer 
(1981), Burt (1982), and Maeno and Takahashi (1984[b]). 
Suggestions for the growth mechanisms of icicles have also 
been made (Hatakeyama and Nemoto, 1958; Laudise and 
Barns, 1979), but the only quantitative study of icicle 
growth is that by Maeno and Takahashi (1958[a]), in which 
empirical relationships between icicle growth and 
environmental conditions were obtained by laboratory tests. 
In the present paper, a quantitative theory of icicle growth 
is developed . The theory can be used in simulating the 
evolution of the shape and mass of icicles . 

2. THE GROWTH MECHANISMS 

When there is a source of water at the root of the 
icicle, a liquid film forms on the icicle surface and flows 
towards the tip due to gravity or wind drag. Water spreads 
effectively on an icicle surface due to the high surface 
energy of ice. Therefore, the liquid water covers 
uniformally the entire icicle surface, unless the flux of 
water is extremely small. The thickness of the liquid film 
on the icicle surface during its growth is typically 
40-100 II.m (Maeno and Takahashi, 1 984[a)). 

While water flows down along the icicle surface, a part 
of it freezes but, if the water supply is sufficient, a 
pendant drop forms at the tip of the icicle. Only then can 
the icicle grow in length. The pendant drop grows until it 
reaches a certain size and then falls, whereafter another 
drop starts to grow. The shape of the pendant drop changes 
during its growth and its mean shape can be approximated 
by a hemisphere . Measurements under calm conditions show 
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that the diameter of the pendant drop , and the diameter of 
the tip of the icicle, is 4.8-5 .0 mm regardless of growth 
conditions (Maeno and Takahashi, I 984[a]). 

When an icicle grows, the latent heat of fusion released 
in the freezing of ice beneath the water film must be 
removed from the ice/water interface. The rate of heat loss 
from the surface to the environment, therefore, controls the 
growth rate of ice. The situation is analogous to "wet 
growth" of hailstones and spray ice. 

The heat loss from the surface to the air is mainly by 
thermal convection and by evaporation. Outgoing radiation is 
small and heat conduction to the interior of the icicle is 
negligible. The water film on the surface is supercooled 
only by less than 0 .02°C everywhere on the icicle walls 
(Hillig and Turnbull, 1956), so that changes in the film 
temperature do not significantly contribute to the heat 
balance. The pendant drop, on the other hand , may cool 
more significantly and may therefore release heat to the tip 
of the icicle. 

Icicles are long spikes of ice. In order to form, their 
growth in length must be typically 10-30 times faster than 
their growth in width. When considering a cross-section of 
an icicle, there are two surfaces growing horizontally and 
one growing vertically. Therefore, the elongation rate of the 
tip of an icicle is typically 20-60 times the radial growth 
rate of the walls. As discussed above, the local ice-growth 
rate is proportional to the local heat loss from the icicle 
surface. Consequently, the heat loss from the tip of the 
icicle should be 20-60 times the heat loss from the walls. 
As cooling of the pendant drops releases heat to the tip of 
the icicle and thereby reduces its growth rate, it would 
have to be the convective and evaporative heat transfer to 
the air that is 20-60 times higher at the tip than on the 
walls. Any review of the literature on heat transfer from 
cylindrical bodies reveals that this is not possible; the 
vertical and horizontal heat-transfer rates from a cylindrical 
body are of the same order of magnitude. Yet, we know 
that icicles do grow much faster in length than in width. 

There is only one plausible explanation of the above­
mentioned paradox. As the observed vertical growth rate of 
an icicle is much higher than one based on heat loss, it 
must only be the vertical dimension of the tip of the icicle 
that is growing fast, not the mass of ice. In other words, 
the tip of the icicle must grow vertically as a thin cover of 
ice enclosing unfrozen water. By this mechanism, the 
surface area from which the heat loss takes place, i.e. the 
hemispherical surface of the pendant drop, is much bigger 
than the surface area of ice that is growing vertically and 
releasing latent heat of fusion. The situation is shown 
schematically in Figure 1. 

The proposed growth mechanism is consistent with the 
qualitative description by Maeno and Takahashi (1984[a]) 
and with observations that icicles grow as thin-walled tubes 
with liquid water trapped inside the icicle (Geer, 1981). The 
author has also made observations on growing icicles in the 
laboratory and in Nature, and found that liquid water 
extends several centimeters up into the interior of a 
growing icicle. In some cases, a wooden toothpick or a 
similar object can be pushed into the icicle from the tip 
upwards almost as far as to the root of the icicle. In agree­
ment with the theoretical concept, the observations showed 
that the liquid tube inside the icicle has a constant 
diameter, which is equal to the diameter of the icicle at the 
tip. 
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Fig . I . Schematic cross-sections oJ a growing icicle. Dark is 
liquid water and white is ice . Dimensions are exaggerated . 

It is noteworthy that the conclusion of the above 
analysis is not only that icicles can grow vertically as thin 
tubes of ice enclosing liquid water but also that they always 
must grow that way . An icicle that has a frozen interior at 
the tip is, therefore, not growing in length, i.e. the tip is 
dry or the icicle is melting. 

The liquid water in the interior of an icicle cannot be 
frozen by processes that transfer heat downwards or hori­
zontally , because there can be no temperature gradients in 
these directions , as the temperature of the walls and the tip 
of the icicle is at the freezing temperature. Therefore, the 
only mechanism by which the entrapped liquid water can be 
subsequently frozen is heat conduction upwards through the 
root of the icicle. By this process, the liquid water inside 
the icicle freezes slowly from the root downwards (Fig. I) . 
The downward penetration of the freezing front inside the 
icicle is much slower than the typical vertical growth rate 
of the tip of the icicle, leaving the interior of the tip of 
the growing icicle liquid . The conduction through the root 
of the icicle does not affect the icicle growth rate, as it 
does not contribute to the heat balance of the icicle surface. 
Only conduction determines how fast the interior of the 
icicle changes from liquid to solid . 

Once the thin cover of ice at the tip of an icicle has 
grown vertically, it also starts to grow horizontally outwards 
due to heat loss to the air at the icicle walls. The icicle 
then grows in width . As the ice on the walls grows beneath 
a supercooled water film, the ice/ water interface assumes a 
dendritic sub-structure (cf. Harrison and Tiller, 1963). This 
results in the growth of spongy ice, i .e . ice with liquid 
water entrapped in the ice matrix (Knight, 1968; Makkonen, 
1987). As for the liquid water in the interior, complete 
freezing of the spongy walls is possible only by slow con­
duction upwards through the root of the icicle, or by 
surface heat transfer once the ice growth on the walls has 
ended . Therefore, during the growth of an icicle, its walls 
consist of spongy ice, except possibly close to the root of 
the icicle (Fig . I). 

Makkollell : Model 0/ icicle growth 

3. MODEL DETAILS 

3.1. Growth in length 
For heat - transfer calculations, it is assumed that , 

averaged over its life-time, the pendant drop, i.e. the tip of 
the icicle, is hemispherical. Based on the data by Maeno 
and Takahashi (1984[a]), a droplet diameter, d, of 4.9 mm is 
adopted in the model. 

The heat balance of the surface of the hemispherical 
tip of the icicle includes convective and evaporative cooling 
terms, qconv and q.vap' a radiation term, qrad' and terms 
related to temperature changes of the pendant drops, qdrip' 

and to latent heat released in the freezing process, qCr ••• : 

The terms of the heat balance can be parameterized as 
follows (cf. Makkonen, 1984). 

The convective heat transfer is 

where h is the convective heat-transfer coefficient, and ta 
is the air temperature. Calculation of the heat-transfer co­
efficient for the tip of the icicle is explained in Appendix 
A. 

Evaporative heat transfer is 

O.622Le 
h (e(O 0c) - R e(ta» 

cpPa 
(3) 

where Le is the latent heat of evaporation at O°C, e(O QC) 
and e(ta) are the saturation water-vapour pressures over 
water at 0 QC and at ta' respectively, R is the relative 
humidity, cp is the specific heat of water , and Pa is the air 
pressure . Long-wave radiation from the surface can be 
parameterized as 

(4) 

where a is the Stefan-Boltzmann constant and a = 8.1 x 

I07K3. In Equation (4), it is assumed that the emissivities of 
the surface and the environment are both unity. The Sun's 
radiation is excluded from the model, as it is generally un­
known, and non-existent under laboratory conditions. 

There is a fourth term in the heat balance of the tip 
of the icicle, which results from the fact that the pendant 
drop at the tip is generated from run-off water at wall 
temperature, but leaves the tip of the icicle at a slightly 
lower temperature. The flux of heat due to drop cooling , is 

(5) 

where Cw is the specific heat of water, W d is the mass flux 
of water to the tip, and I!.T is the temperature change of 
the pendant drops from the wall temperature to their 
temperature when they fall . In accordance with Equations 
(2)-(4), we can formulate the heat flux released due to 
drop cooling in terms of heat transfer per unit area of the 
surface. The mean surface area of the hemispherical pendant 
drop is equal to Tld 2/ 2. Hence, it follows from Equation (5) 
that the heat flux due to drop cooling per unit surface area 
of the tip of the icicle is 

(6) 

The mass flux W d depends on the water flux to the 
root of the icicle Wo (which is an input for the model) and 
the loss of water on the icicle walls due to freezing and 
evaporation . When the mean diameter of the icicle is 
denoted as D, the length of the icicle as L , and the 
evaporation is parameterized as in Equation (3) , the drip 
flux becomes 

[ 

I dD 
Wd = W - TlL D P - - + h o a2 dl 

0.622 Q ] 
-- (e(O C) - Re(ta» 
cpPa 

(7) 
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where Pa is the density of the icicle walls (cf. Equation 
(20». 

The crystal orientation on the icicle walls is such that 
the c-axis is perpendicular to the growth direction (Knight, 
1968; Laudise and Barns, 1979). The same is probably true 
at the tip of the icicle (Maeno and Takahashi, 1984[a]) . In 
such a situation, the ice-growth rate , v, (in cm/ s) is related 
to the degree of supercooling close to the ice/ water inter­
face Tsp (in 0c) by (Hillig and Turnbull, 1956) 

(8) 

Assuming that the thin liquid layer on the icicle wall 
is well mixed, the temperature, Ti ' of the run-off water 
entering the tip of the icicle can therefore be estimated as 

T. = _ [t dD/ dt ]0.588 

I 0. 16 
(9) 

Assuming further that the convection within the 
pendant drop is sufficiently effective to remove large 
temperature gradients, the temperature of the pendant drop 
in the mean, T M' is 

T = _ [dL / dt] 0.588 

M 0.16 
(10) 

It follo ws from Equations (9) and (10) that the temperature 
change, t;.T = Ti - T M' of water forming the pendant drop 
can be approximated as 

[

dL __ I dD ] 0.588 
t.T = 5.88 -

dt 2 elt 

where dD/ dt and dL / dt are in cm/ so 

(11 ) 

The final term in the heat balance of the icicle surface 
is the latent heat of fusion released in the freezing process. 
For the tip of the icicle this is 

dM 
Qfree. = Lf dt (1 2) 

where dM / dt is the mass growth rate of ice at the tip . As 
discussed in section 2, an icicle grows vertically as a thin­
walled tube. The inner diameter of this tube is about the 
same as that of the pendant drop, d, and the wall at the 
tip has a finite thickness 6. It follows from simple geo­
metrical considerations that the surface area of the vertically 
growing ice, Ai' is 

Ai = n6(d - 6). (13) 

It follows from Equations (12) and (13) that 

(14) 

where Pi is ice density and L is the length of the icicle . 
Hence, heat flux due to latent heat of fusion per unit sur­
face area of the hemispherical tip of the icicle is 

2Lf Pi 6(d - 6) dL 

d2 dt 
(IS) 

Using the parameterizations in Equations (2) , (3) , (4) , 
(6), and (15) and Equations (7) and (11) , the heat-balance 
Equation (I) reads 
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0.622Le ° 
- hta + h --- (e(O C) - R e(ta» - aata 

cpPa 

3.74cw [ [I dD 
--- W - nLD P - - + 

d 2 ° a 2 dt 

0. 622 ° 
+ h -- (e(O C) 

cpPa 
R e(t »]] [~ _ .!.~]0. 588 + 

a dt 2 dt 

2LfPi 6(d - 6) dL 
+ 

d2 dt 
(16) 

The elongation rate of the icicle, dL / dt, can now be 
solved from Equation (16) . In the model, Equation (16) is 
solved numerically and the necessary value of the growth 
rate of the icicle mean diameter , dD / dt , is for each time­
step obtained as explained in section 3.2. 

Equation (16) includes the initial wall thickness, 6, of 
the tube-like ice that is growing vertically. In order to use 
the model for calculating icicle growth , an estimate of 6 
must, therefore , be made. The pendant drop is supercooled , 
resulting in dendritic growth. Suppose there were several 
dendrites growing downwards , one within the other. Then, 
one of them would be the outer one in contact with the 
flux of supercooled water running down the icicle wall into 
the pendant drop. It is obvious that the ability of this 
dendrite to transfer latent heat of fusion to the environment 
at its tip would be much better than that of the dendrites 
growing in the inner parts of the wall. The dendrite at the 
outer surface would, therefore, grow much faster than the 
other dendrites. A conclusion of this is that the thickness of 
the wall of the ice tube growing vertically is that of a 
single dendrite. According to Harrison and Tiller (I963) , the 
width of the dendritic cells growing beneath supercooled 
water may depend on the growth conditions, but are in the 
range of 50-lOO /Lm . As more precise estimates of 6 are 
lacking, a value of 75 /Lm is used for 6 in the model. 

3.2. Growth ill width 
For heat-transfer calculations of the icicle walls , the 

icicle is approximated by a circular cylinder. In the model , 
the diameter D of the cylinder represents the mean diameter 
of the icicle. Thus, only one characteristic horizontal 
dimension is modelled . The mean diameter D is not 
necessarily equal to the diameter at L / 2, as the exact shape 
of the icicle is not pre-defined. 

The heat balance at the wall of the icicle is 

(17) 

Here it is assumed that the degree of supercooling of the 
water that comes to the root of the icicle is on average the 
same as that on the icicle walls, so that no term corres­
ponding to qdrip in section 3.1 is included in the heat 
balance. 

The heat of fusion term qfree. cannot be evaluated 
direc tly from the mass growth rate dM/ dt at the icicle wall. 
As noted in section 2, an ice surface grown under a film 
of supercooled water assumes a dendritic growth morphology 
and traps unfrozen water. The liquid water trapped within 
the ice matrix does not release heat of fusion to the icing 
surface. Hence the term qfree. becomes 

dM 
>..)­

dt 
(18) 

where A is the surface area and >.. is the liquid fraction of 
the growing icicle surface. Makkonen (1987) has suggested 
that the liquid fraction >.. has a value of approximately 0.26 
regardless of the growth conditions. Data by Lesins and 
others (1980) show particularly that >.. is independent of air 
temperature. The value of >.. = 0.26 is used for Equation 
(18) in the present model. 

The radial growth rate of the icicle wall t dD / dt is 
related to the growth rate of mass by 

dM 

dt 

I dD 
pA-­
a 2 dt 

(19) 

where PI! is the density of the icicle wall . Since the ice 
matrix Includes liquid water, the wall density Pa in 
Equations (I9) and (17) is different from the density Pi of 
pure ice. 
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where Pw is the density of water. 
Equations (18) and (19) result in the following equation 

for the term qfreez in Equation (17) 

dD 
)..)-. 

dt 
(21) 

For the heat-transfer terms on the left-hand side of 
Equation (17), the same parameterizations as for the tip of 
the icicle can be used, providing that the proper heat­
transfer coefficient h is chosen. Determination of hw for 
the icicle walls is given in Appendix B. 

Inserting Equations (2)-(4) and (21) into Equation (17) 
and solving dD / dt results in the following equation for the 
growth rate of the mean diameter of an icicle: 

dD 

dt 

(22) 

Equation (22) is a simple equation in that it can be 
solved analytically. It should be noted, however, that the 
heat-transfer coefficient hw depends on both the icicle 
diameter D and icicle length L (see Appendix B). 
Therefore, dD / dt is time-dependent, and solving Equation 
(22) requires simultaneous solution for L. 

3.3 . Features of the computer model 
The theory in sections 3.1 and 3.2 has been 

programmed into a micro-computer. The flow diagram of 
the computer model is shown in Figure 2. 

The icicle growth is initiated by a single drop, and 
therefore the initial values of Land Dare L = d / 2 and 
D = d. The model simulation proceeds at time steps of 
2 min. 

For the first time step, no supercooling or loss of 
water on the walls is allowed and the growth rate in length 
is solved from Equation (16) by iteration . Then the growth 
rate in width is calculated from Equation (22) using the 
heat-transfer coefficient based on the initial icicle diameter 
D = d and the new value of L. The time step is completed 
by calculating the loss of water on the walls and the 
resulting new drip rate from Equation (7) as well as the 
new diameter D. These values and dD/ dt are then used in 
Equation (16) in calculating the new dL / dt. This results in 
a new icicle length L , which is again used in Equations 
(B I) and (B4) in order to calculate dD/ dt for the next time 
step. The process goes on over the time period set by the 
user of the model. 

A possible mode of icicle growth is such that all the 
available water is lost on the walls, no drip occurs and, 
therefore, there is no growth in length. The icicle diameter, 
however, grows as long as there is water supply to the root 
of the icicle. In this case, all the supply water, except the 
small amount that evaporates, freezes on the icicle. 
Therefore, the growth rate in width is obtained simply from 
Equation (7), noting that the drip rate W d = 0 when the 
tip of the icicle is dry. 

The mass of the icicle is in many applications the most 
interesting output of the model. The mass, M , is calculated 
simply by 

M (23) 

4. RESULTS AND DISCUSSION 

Examples of icicle-growth simulations by the model are 
shown in Figures 3 and 4. The results in Figure 3 
demonstrate that the growth rate of icicle length decreases 
with water-supply rate, Wo' while the growth rate of icicle 
width is only slightly affected by Wo' The net result is that 
the mass of an icicle decreases with increasing water-supply 
rate, providing that the water supply is all the time 

Ma!.:kol/cl/: Model of icicle g rowth 

AIR PROPERTIES 

Fig . 2. Simplified block diagram of the icicle growth model . 

sufficient for the icicle to elongate. This result is contrary 
to what one might intuitively expect, but it is in 
accordance with data from laboratory tests (Maeno and 
Takahashi, 1984[a]). As mentioned in section 3.1, the 
explanation of decreasing elongation rate with increasing 
water supply is the warming caused by drip water as the 
pendant drop leaves the tip more supercooled than what it 
is when it reaches the tip. The very small effect of Wo on 
the growth rate of icicle width also agrees with observations 
by Maeno and Takahashi (l984[a]). That there is any 
noticeable effect of Wo on dD / dt in Figure 3 is because 
icicle length indirectly affects dD/ dt through the heat­
transfer coefficient (Appendix B). 

The effect of wind on the growth of icicles is 
significant as shown in Figure 4. The air flow on the icicle 
surface changes from natural to forced at very low wind 
speeds (of the order of 0.05-0.5 m S-l depending on air 
temperature and icicle dimensions) , resulting in much more 
effective heat transfer and icing. At high wind speeds, long 
icicles can, however, seldom grow, because the water 
flowing on the icicle walls freezes before it reaches the 
icicle tip. In an extreme situation, this results in ice growth 
only at the root of the icicle and produces an ice accretion 
that is more like a cover of ice on the supporting structure 
than an icicle. The model results, therefore, indicate that 
long icicles grow only when there is almost no wind or 
when the water supply is very high (e.g. spray icing). 

The effect of ai r temperature, ta' on icicle growth is 
such that both dL / dt and dD / dt depend linearly on ta' The 
effect of the relative humidity of air is much smaller than 
that of ta' but it is significant close to the freezing point. 
The effect of long-wave radiation on the model results is 
small. In Nature, however, the Sun's short-wave radiation 
under clear skies may heat the icicle walls and reduce 
dD/ dt. 
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Fig. 3. Examples 0/ model predictions 0/ the icicle length L 
and icicle width D at two air temperatures and various 
water- supply rates. Air humidity 0/ 80% and no wind are 
assumed. The values 0/ Land D are the dimensions after 
1 h 0/ icicle growth . 

400 

300 

~ 200 
u 
u 

100 

00 

INO DRIP 

I 
I 
I 
I 

5 rnls 

o rnls 

3 

Fig. 4. Examples 0/ model simulations 0/ the icicle mass at 
various wind speeds. Air temperature 0/ - 5 ° C. humidity 0/ 
80%. and water-supply rate 0/ 50 mg/s are assumed. 

Model simulations point out that the growth rate of 
and icicle is time-dependent. The elongation rate increases 
with time under fixed atmospheric conditions and 
water-supply rate. This is mainly due to the decreasing drip 
rate as more of the supply water is frozen on the walls the 
bigger the icicle. The growth rate in width slowly decreases 
with time mainly because the heat-transfer coefficient 
decreases with increasing icicle diameter. Under fixed 
conditions, the growth rate of icicle mass considerably 
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increases with time , until the icicle grows so big that there 
is no drip and no growth in length. By that time all the 
supply water is collected by the icicle, and the mass-growth 
rate is a constant. 

The model suggests no upper limit for the size of an 
icicle if conditions for its continuous growth prevail. 
Under natural conditions there are , however, several factors 
that limit the icicle size. If the water-supply rate, Wo' is 
high , the icicle initially grows very slowly and is unlikely 
to grow big. On the other hand, if Wo is low, then the 
icicle soon ceases to elongate due to no flow to the icicle 
tip. Really big icicles can, therefore, form only under 
conditions in which the water-supply rate is at first small 
and continuousl y increases. 

Other factors that may, under some conditions, limit 
the size of an icicle are the adhesion of ice to the substrate 
at the icicle root and the strength of the icicle in tension . 
Since the temperature of the supply water for the icicle is 
close to 0 ° C, it tends to warm the root of the icicle and 
the supporting substrate. Close to O°C, the adhesion strength 
of ice and the structural strength of the icicle are quite low 
which may result in break-up when the icicle grows very 
heavy. 

The mechanism of icicle growth presented in this paper 
is significantly different from the one proposed by Laudise 
and Barns (1979). It has not only been suggested in this 
paper that icicles elongate as hollow thin-walled tubes but it 
has been shown that icicles cannot form by any other 
means. The growth mechanisms proposed are in accordance 
with the observed structure of growing icicles (Geer, 1981 ; 
Maeno and Takahashi, I 984[a]). 

The laboratory experiments carried out by Maeno and 
Takahashi (1984[a)) make it possible to verify quantitatively 
the present model. These experiments were made in a cold 
room under calm conditions, varying the air temperature 
between -4 .9 ° and -20.3°C, and water-supply rate between 
4 and 30 mg/ s. The test duration was between 2 and 5 h. 
The relative humidity and exact test duration were not 
reported by Maeno and Takahashi (1984[a]). In the model 
simulations, a relative humidity of 80% was assumed and 
the test duration was estimated from the figures by Maeno 
and Takahashi (1984[a]). Measured and modelled growth 
rates of icicle length are compared in Figure 5. A 
corresponding comparison for the growth rate in width is 
presented in Figure 6. 

The comparisons in Figures 5 and 6 show very good 
agreement between model predictions and observations. The 
linear correlation coefficient is 0.96 for dL/ dt and 0 .95 for 
dD/ dt. Considerable success in predicting dD/ dt was 
expected, since modelling of ice growth on icicle walls is 
fairly straightforward and the theory for wet-growth icing 
has previously been well verified (Gates and others, 1986). 

That the model successfully predicts dL/ dt is more 
remarkable. It indicates not only that the proposed 
elongation mechanism is correct but also that the assumed 
values of the model parameters are sufficiently accurate. It 
is particularly noteworthy that the assumption of the initial 
thickness of the downward-growing ice tube being a 
constant at a width of a single dendritic cell results in good 
agreement with observed icicle growth. 

The data in Figures 5 and 6 show that the model can 
readily be used in predicting icicle growth over a large 
range of air temperature and water-supply rate. At present 
there are no data to verify the model under windy con­
ditions. The growth mechanisms are, however, likely to be 
the same, so that there is no particular reason to expect 
worse model performance under windy than under calm 
conditions . Nevertheless, the model parameters may require 
some modification at high wind speeds due to icicle 
bending (see Maeno and Takahashi , 1984[b]) and a change 
in the shape of the vertical cross-section of the icicle, and 
possibly in the mean size of the pendant drop. 

When applying the model in the marine environment 
one should also note that salt in the water affects the heat 
balance of an icing surface (Makkonen, 1987). Sea spray 
impinging directly on the icicle walls may also alter the 
heat balance. Furthermore, salinity affects the viscosity of 
water and may thereby change the size of the pendant drop 
from the one assumed in the model for fresh water. The 
importance of these effects on icicle growth should be 
studied. 
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APPENDIX A 

HEA T - TRANSFER COEFFICIENT FOR THE TIP OF THE 
ICICLE 

The heat-transfer coefficient ht in Equation (16) can 
be written in terms of the Nusselt number Nu as 

(AI) 

where ka is the thermal conductivity of air. 
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For free convection, it is assumed in the model that 
the Nusselt number for the tip of the icicle, i.e . the mean 
Nusselt number of the pendant drop, is equal to that of a 
sphere. The following parameterization is used (Sparrow and 
Stretton, 1985): 

Nu r = 1.83 + 0.398GrtO.252. (A2) 

Here Grt is the Grashof number 

Gr t = 

u2(ta + 273.15°C) 
(A3) 

where g is the acceleration of gravity and u is the kine­
matic viscosity of air. 

For forced convection, the equation of Knudsen and 
Katz (1958) is used 

Nur = 2.0 + 0.538RetO.5. (A4) 

Here Re t is the Reynolds number 

Ud 
(A5) 

u 

where U is the wind speed. 
The model calculates both Nur and Nur, and the one 

that is higher is set to be the Nusselt number of the tip of 
the icicle in Equation (A I). 

APPENDIX B 

HEA T - TRANSFER COEFFICIENT FOR THE WALLS OF 
THE ICICLE 

The mean heat-transfer coefficient hw in Equation (22) 
for the walls of the icicle is 

(BI) 

where L is the length of the icicle. 
For free convection, the Nusselt number of the walls is 

first calculated from (cf. Schlichting, 1979) 

NUN L = 0.478GrO.25 
w, (B2) 

and then a correction for curvature is made using the 
equation (Knudsen and Katz, 1958) 

Nu~ 
0.9SNu~,L 

(B3) 
In(1 + 0.9S) 

where 

2L 
S (B4) 

DNu~,L 

For forced convection , Hilbert's equations (cf. Incropera and 
DeWitt, 1985) for a smooth cylinder are used 

Nu~ 0.881Rew 
0.330 for 0.4 < Rew ~ 4 (B5) 

Nu~ 0.811Rew 
0.385 for 4 < Rew ~ 40 (B6) 

Nu~ 0.608Rew 
0.466 for 40 < Rew ~ 4000 (B7) 

Nu~ 0.I72RewO.618 for 4xl03 < Rew ~ 4xl04 (B8) 

Nu~ = 0.024Rew 0.805 for 4 x 10· < Rew ~ 4 x 105 (B9) 

where Rew is the cylinder Reynolds number 

UD 
(BIO) 

u 

The higher one of the Nusselt numbers Nu~ and Nu~ 
is used in Equation (B I) to calculate the heat-transfer co­
efficient of the icicle walls . 
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