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The effect of permeability heterogeneities and viscosity variations on miscible
displacement processes in porous media is examined using high-resolution numerical
simulations and reduced theoretical modelling. The planar injection of one fluid into
a fluid-saturated, two-dimensional porous medium with a permeability that varies
perpendicular to the flow direction is studied. Three cases are considered, in which
the injected fluid is equally viscous, more viscous or less viscous than the ambient
fluid. In general it is found that the flow in each case evolves through three regimes.
At early times, the flow exhibits the concentration evolves diffusively, independent
of both the permeability structure and the viscosity ratio. At intermediate times,
the flow exhibits different dynamics including channelling and fingering, depending
on whether the injected fluid is more or less viscous than the ambient fluid, and
depending on the relative magnitude of the viscosity and permeability variations.
Finally, at late times, the flow becomes independent of the viscosity ratio and
dominated by shear-enhanced (Taylor) dispersion. For each of the regimes identified
above, we develop reduced-order models for the evolution of the transversely averaged
concentration and compare them to the full numerical simulations.
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1. Introduction

Miscible displacement processes, in which a viscous fluid is injected into a
fluid-saturated porous medium, are relevant in a number of problems including
enhanced oil recovery (Lake 1989), carbon capture and storage (Huppert & Neufeld
2014) and subsurface contaminant transport (Abriola 1987). In many of these cases,
the goal is to optimize and control the displacement front and the amount of mixing
that occurs between the two fluids. The evolution of the displacement front is
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Miscible displacements in layered porous media 469

controlled by a number of factors; in this paper we will examine the combined
effects of both permeability heterogeneities and viscosity variations.

If the porous medium is homogeneous and the injected and ambient fluids have
different viscosities then, depending on the viscosity ratio, the displacement front can
be stable or unstable. If the injected fluid is more viscous, the interface is stable
and the fluid front moves uniformly, whereas if the injected fluid is less viscous the
displacement front can be unstable and lead to complex fingering patterns. Miscible
viscous fingering has been extensively studied using a number of different approaches
(for example Tan & Homsy 1986, 1987, 1988; Zimmerman & Homsy 1991, 1992;
Jha, Cueto-Felgueroso & Juanes 2011a,b; Chui, De Anna & Juanes 2015; Pramanik &
Mishra 2015b). Recently, Nijjer, Hewitt & Neufeld (2018) described the full lifecycle
of miscible viscous fingering: they identified the different regimes through which the
flow evolves and in each regime modelled the evolution of the flow. We take a similar
approach in this paper and look at the role of permeability heterogeneities on the
temporal evolution of the displacement front in the case of neutral, stable and unstable
displacements.

Most physically relevant porous media are not homogeneous but vary on a wide
range of length scales from the pore scale to the reservoir scale in both an ordered and
disordered manner (Weber 1986). A number of studies have considered the combined
effects of both randomly varying permeability fields and viscosity variations on
miscible displacements using theoretical (Welty & Gelhar 1991), numerical (Tan
& Homsy 1992; Waggoner, Castillo & Lake 1992; Chen & Meiburg 1998; Camhi,
Meiburg & Ruith 2000; Talon et al. 2004; Tchelepi et al. 2004; Nicolaides et al.
2015) and experimental (Jiao & Hotzl 2004; Tchelepi et al. 2004) approaches. These
studies have demonstrated that the flow exhibits a range of dynamical behaviour,
including dispersing, channelling and fingering, and highlight the complexity of the
flow patterns that arise.

In this work, we focus on large-scale permeability variations that are perpendicular
to the flow direction. This structure is widespread in nature, being characteristic
of geological formations consisting of different sedimentary sequences. Previous
work looking at the combined effect of permeability variations and an unstable
flow configuration found that adding permeability heterogeneities tends to cause
channelling; that is, flow predominantly along permeability layers rather than chaotic
fingering (De Wit & Homsy 1997b; Sajjadi & Azaiez 2013; Shahnazari, Maleka
Ashtiani & Saberi 2018). Loggia et al. (1996) found that when the injected fluid
is more viscous than the ambient channelling is observed when the viscosity ratio
is smaller than the ratio of permeabilities, and a single dispersive front is attained
when the viscosity ratio is larger than the ratio of permeabilities. While these studies
highlight some of the interesting qualitative behaviour that can be observed in
miscible displacement flows when heterogeneity and viscosity variations interact,
they do not provide a full overview of the different dynamical regimes that occur
and the temporal evolution of the flow between them. The aim of this work is to
identify the full lifecycle and evolution of stable and unstable miscible displacements
in layered porous media, and to develop reduced-order models for the spreading and
dispersion of the fluids, which can be used to quantitatively predict and up-scale flow
in heterogeneous porous media.

This paper is laid out as follows. In § 2, we formulate the problem and outline
the numerical method we use to solve it. In § 3, we consider neutrally stable
displacements where the two fluids have the same viscosity. In § 4 we consider
the effect of small viscosity variations, both stabilizing and de-stabilizing. In § 5
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FIGURE 1. (Colour online) A schematic of the model geometry. The porous medium is
semi-infinite with width a and has a permeability structure that is only a function of the
transverse coordinate, y. The porous medium is initially saturated with a fluid of viscosity
µ2. Another fluid, with viscosity µ1, which is fully miscible with the first, is injected at
a constant flux Q.

we consider large stabilizing viscosity variations and in § 6 we consider large
de-stabilizing viscosity variations. In each of §§ 3–6 we discuss the time evolution of
the concentration field and the different regimes through which the flow evolves, and
derive reduced-order models for the evolution of the concentration field.

2. Problem formulation
A schematic of the problem geometry is given in figure 1. We consider a semi-

infinite, two-dimensional porous strip with finite width a. For simplicity, the porosity
of the medium, φ, is constant, but the permeability, k = k(y), varies in the direction
perpendicular to the flow. A fluid of viscosity µ1 is injected into the medium at
a constant volumetric flux Q, which is initially saturated with an ambient fluid of
viscosity µ2. The two fluids are fully miscible.

We assume that the flow obeys Darcy’s law everywhere, such that the pore-scale
Reynolds number is small, the flow is incompressible, and the concentration, c, of
the injected fluid evolves via advection and diffusion;

u=− k(y)
µ(c)
∇p, (2.1)

∇ · u= 0, (2.2)

φ
∂c
∂t
+ u · ∇c= φD∇2c. (2.3)

Here u = (u, v) is the Darcy velocity and p is the pressure, and D is the effective
diffusivity or dispersion coefficient between the two fluids, which in porous media
tends to be velocity dependent, but is here assumed, for simplicity, to be a constant.
The viscosity varies with the concentration of the injected fluid, and, following
previous work (e.g. Tan & Homsy 1986), we assume an Arrhenius-like dependence,

µ(c)=µ2e−Rc, (2.4)

where R= log(µ2/µ1).

2.1. Non-dimensionalization
We non-dimensionalize the governing equations by the width of the porous medium
a, the injection flux Q, the mean permeability k̄, viscosity µ2, pressure µ2Q/k̄ and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.190


Miscible displacements in layered porous media 471

convective time scale φa2/Q. We also change to a reference frame moving with the
average speed of the injected fluid by setting x̃= x−Qt/a and ũ= u−Q/a. Equations
(2.1)–(2.4) become

− (ũ+ 1)µ= k
∂p
∂ x̃
, −vµ= k

∂p
∂y
, (2.5a,b)

∂ ũ
∂ x̃
+ ∂v
∂y
= 0, (2.6)

∂c
∂t
+ ũ

∂c
∂ x̃
+ v ∂c

∂y
= 1

Pe

(
∂2c
∂ x̃2
+ ∂

2c
∂y2

)
, (2.7)

µ(c)= e−Rc. (2.8)

The system is described by two non-dimensional parameters, the Péclet number Pe=
Q/D, which characterizes the strength of advection to diffusion and the log-viscosity
ratio R, as well as the non-dimensional permeability, k(y). For notational convenience
we drop the tildes in all subsequent expressions.

We consider three different cases for the log-viscosity ratio: the neutrally stable case
R= 0, where the injected and ambient fluids have the same viscosity; the ‘stable’ case
R< 0, where the injected fluid is more viscous than the ambient; and the ‘unstable’
case R > 0, where the injected fluid is less viscous than the ambient. The Péclet
number provides a measures of the relative strength of advection and diffusion, and
in this work we will focus on the limit of large, but finite, Péclet number. This is the
typical limit in most geologic scenarios.

2.2. Choice of permeability
In this paper, we consider only layered heterogeneous media for which k = k(y). In
fact, for all the numerical results presented here, we further restrict our attention
to log-permeabilities which vary sinusoidally (De Wit & Homsy 1997a,b; Sajjadi &
Azaiez 2013), such that

ln(k)=−σ cos(2πny)− ln (I0(σ )), (2.9)

where I0 is the modified Bessel function of the first kind, which ensures a unit
average dimensionless permeability. This simplification retains the dominant physics
of permeability heterogeneities in the form of layering, while being able to be
described by two parameters instead of the infinite space of possible permeability
functions. These two parameters are the log-permeability variance σ and wavenumber
n, which measure the strength and inverse of the length scale of the permeability
variations, respectively. While some of our results are presented for general k(y), all
of the numerical simulations in this paper use this form for the permeability structure.

In the absence of hydrodynamic instabilities, as described in §§ 3–5, there is no
mechanism for dynamic interactions between layers and so n can be scaled out of
the system. This is done by introducing rescaled variables ŷ= ny, x̂= nx, t̂= n2t, in
which case the flow evolves exactly as it would with n=1, but with an effective Péclet
number P̂e= Pe/n2. For clarity, we therefore limit our analysis in §§ 3–5 to the case
where n = 1. If however the flow is unstable, as in § 6, there can be a competition
between the evolving wavelength of the viscous fingering and the imposed wavelength
of the permeability structure, resulting in rich intermediate-time dynamics for which
the value of n can be important. We therefore explicitly consider the dependence of
the flow on the number of layers in § 6.
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2.3. Boundary and initial conditions
Following previous work (e.g. Tan & Homsy 1986; Nijjer et al. 2018), we consider
flows that are periodic in the transverse (y) direction,

c(x, 0, t)= c(x, 1, t), (2.10)

u(x, 0, t)= u(x, 1, t), v(x, 0, t)= v(x, 1, t). (2.11a,b)

The upstream and downstream fluxes are zero (in the moving frame) and the
transverse velocity vanishes in the far field so that,∫ 1

0
u dy→ 0 as x→±∞, (2.12)

∂c
∂x
→ 0 as x→±∞, (2.13)

v→ 0 as x→±∞. (2.14)

We initialize the concentration field to have a step jump,

c(x, t= 0)= c0(x)=H(−x), (2.15)

where H(x) is the Heaviside function.

2.4. Diagnostic quantities
In order to investigate how the macroscopic features of the flow evolve we focus,
in the following analysis, on the evolution of the transversely averaged concentration
c(x, t) = ∫ 1

0 c dy and the mixing length h(t), defined below. To understand how c
evolves, we start by decomposing the advection–diffusion equation (2.7), into two
coupled equations for the transversely averaged concentration and the deviations c′ =
c− c,

∂c
∂t
+ ∂uc′

∂x
= 1

Pe
∂2c
∂x2

, (2.16)

and
∂c′

∂t
+ ∂uc′

∂x
+ ∂uc
∂x
− ∂uc′

∂x
+ ∂vc′

∂y
= 1

Pe

(
∂2c′

∂y2
+ ∂

2c′

∂x2

)
, (2.17)

where f = ∫ 1
0 f dy denotes the transverse average of the quantity f . These equations

are obtained by averaging the advection–diffusion equation in the transverse direction
and by subtracting the averaged equation from the unaveraged one. We return
to this decomposition when describing the evolution of the transversely averaged
concentration.

The region over which the two fluids have spread, the ‘mixing length’ h(t),
is a measure of the streamwise extent of interpenetration of the two fluids. The
mixing length provides a global measure of dispersion or spreading, and, while other
quantities can give more direct measurements of the total amount of mixing (e.g. the
scalar dissipation rate; Jha et al. 2011a), the mixing length provides a clear and
physically useful measure of the region over which the two fluids have spread and
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are mixing. Here we define the mixing length to be the variance in concentration
about the initial condition c0(x) (2.15),

h(t)=

√√√√√√√
∫ ∞
−∞

x2(c− c0)
2 dx∫ ∞

−∞
(c− c0)

2 dx
. (2.18)

Note that we use this measure instead of the more common definition, h∗ =
x|c=0.01− x|0.99, because it more accurately captures the spreading behaviour when the
concentration field has long tails (see appendix A).

Throughout this paper we make reference to the interface between the two fluids.
Since the two fluids are fully miscible, there is no precise boundary. Instead, where
we refer to the interface, we loosely mean the region around the c= 1/2 contour over
which the concentration varies significantly.

2.5. Numerical method
We briefly summarize the numerical method here, but avoid a detailed exposition
as the approach is very similar to that used by Nijjer et al. (2018). We start by
combining (2.5), (2.6) and (2.8) and writing the velocity in terms of a streamfunction,
(u, v)= (∂Ψ /∂y,−∂Ψ /∂x), to give

∂2Ψ

∂x2
+ ∂

2Ψ

∂y2
− ∂Ψ
∂x

(
R
∂c
∂x

)
− ∂Ψ
∂y

(
R
∂c
∂y
+ d ln k

dy

)
= R

∂c
∂y
+ d ln k

dy
. (2.19)

The transverse velocity boundary conditions (2.11) become

Ψ (x, 0, t)=Ψ (x, 1, t). (2.20)

We imposed the boundary conditions in the flow direction (2.12)–(2.14), at a finite
distance x=±Γ so that,

∂Ψ

∂x
= 0 at x=±Γ , (2.21)

where Γ was chosen to be sufficiently large such that the mixing region was always
far from the boundaries. In fact, we increased Γ over the course of each simulation so
that it grew as the mixing length grew, ensuring that the mixing region was always far
from the boundaries while the fine-scale dynamics at early times remained resolved.
The domain was discretized on an adaptive rectangular grid which coarsened over time
as the concentration gradients weakened.

The concentration field was initialized to an almost sharp interface, to avoid any
numerical instabilities, by setting

c0 = 1
2 − 1

2 erf
(
x/
√

t0
)+ r(x, y)e−x2/t0 . (2.22)

Here t0 is a small time origin, which we set to t0 = 10−6 in all simulations, and
r corresponds to a uniformly distributed random function, on the interval [0, 10−4],
which was added to help trigger any instabilities.

At each time step (2.19) was solved using a multi-grid solver Adams (1999).
Equation (2.3) was advanced in time using a third-order Runge–Kutta scheme. All
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FIGURE 2. (Colour online) Evolution of the concentration field for R= 0 and (σ ,Pe, n)=
(1, 100, 1). (a) The imposed permeability k(y) = e−cos(2πy)/I0(1). (b) Evolution of the
mixing length, h, as a function of time, t. The dots correspond to the snapshots (c–e).
(c–e) Plots of the concentration field with overlain streamlines versus x/h and y at (c)
t= 5× 10−4, (d) t= 0.32 and (e) t= 200.

spatial derivatives were discretized using sixth-order compact finite differences except
for the advection term in (2.3), u · ∇c, which was discretized using a third-order
upwinding scheme. We validated our scheme by comparison to the linear stability
analysis of Pramanik & Mishra (2015a), and we chose spatial discretizations such that
the smallest scales of the flow were always well resolved. In particular, we ensured
that in cases when the interface was unstable to small-scale fingering the resolution
was sufficiently high that doubling the grid spacing had no qualitative effect on the
dynamics of the flow or diagnostic quantities.

3. Neutrally stable displacements R= 0

We first consider the case where the injected and ambient fluids have the same
viscosity. While this case has been explored by a number of authors (e.g. Camacho
1993; Berentsen, Verlaan & van Kruijsdijk 2005; Dentz & Carrera 2007), we outline
it here both for completeness and to set the stage for the analysis in the remainder
of the manuscript. Results from a representative simulation are given in figure 2.
As was noted earlier, if the flow is hydrodynamically stable, n can be scaled out
of the problem and so we only consider the case where n = 1. In this case, the
permeability is highest in the centre of the channel and lowest at the top and
bottom boundaries (figure 2a). In the moving frame, this causes the fluid in the
middle of the channel to move to the right and the fluid near the top and bottom
boundaries to move to the left. This shear spreads and mixes the fluids. To quantify
this spreading, we plot the evolution of the mixing length, h(t), in figure 2(b). We
find that the mixing evolves through three distinct regimes each with a different
scaling behaviour. The concentration fields corresponding to each of these regimes
are plotted in figure 2(c–e). In the first and third regimes, the concentration fields look
nearly indistinguishable: the concentration is nearly transversely uniform and relatively
diffuse in the streamwise direction. In the second regime, there is a relatively sharp
interface aligned with the permeability variations. Based on these observations, we
expect that in the first (early-time) and third (late-time) regimes, the streamwise
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transport is diffusively dominated, whereas in the second (intermediate-time) regime,
the streamwise transport is advectively dominated.

Since R= 0, the concentration acts as a passive tracer. This means that the velocity
is decoupled from the concentration field, and is given from (2.5) by

u(y)= k(y)− 1, v = 0. (3.1a,b)

In the case of sinusoidally varying log-permeability (2.9), the velocity is,

u= e−σ cos(2πy)

I0(σ )
− 1, v = 0. (3.2a,b)

Given this fixed, known velocity the concentration simply evolves via the advection–
diffusion equation (2.7). In the following sections, we consider the dominant balances
in (2.7) to determine how the concentration field evolves in time.

3.1. Early-time behaviour: initial diffusion
At early times, the streamwise concentration gradient between the fluids is large
and the concentration is transversely homogeneous. In this case, diffusion across the
interface dominates and the primary balance in the advection–diffusion equation is

∂c
∂t
= ∂c
∂t
= 1

Pe
∂2c
∂x2

. (3.3)

Using the initial and boundary conditions in § 2.3 the concentration evolves
self-similarly as

c= c= 1
2
+ 1

2
erf
(
− x√

4t/Pe

)
, (3.4)

which holds at all times when the permeability is homogeneous (k= 1). The mixing
length grows like h ∼ t1/2 and can be calculated explicitly by substituting (3.4) into
(2.18) (figure 3a).

This behaviour always holds initially, irrespective of the parameter choices, since
diffusive growth of the interface O(t1/2/Pe1/2) always outpaces advective spreading
O(1ut) (where 1u is a characteristic spreading velocity). In fact, the transition to the
intermediate regime occurs precisely when the growth rates become equal, giving a
transition time t=O(1/Pe1u2).

3.2. Intermediate-time behaviour: advection

After a time O(1/Pe1u2), spreading induced by the difference in permeability
overtakes longitudinal diffusion. The leading-order balance in (2.3) becomes

∂c
∂t
+ u

∂c
∂x
= 0, (3.5)

and the flow simply stretches the diffused solution that arises from the early-time
regime. In fact, since the rate of advective stretching is much faster than diffusion
to good approximation, we can ignore the effects of the early-time regime completely
and the solution to (3.5) is simply the travelling wave

c= c0(x− u(y)t)=H(u(y)− x/t), (3.6)
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FIGURE 3. (Colour online) Evolution of the mixing length and transversely averaged
concentration for R = 0 in the intermediate-time regime. (a) Scaled plot of the mixing
length h(t) for (Pe, σ ) = (500, 1), n = {1, 2, 3, 4, 6, 8} and (Pe, n) = (500, 1), σ =
{0.1,0.2,0.4,0.6,0.8,1,1.2,1.4,1.8,2} and (σ ,n)= (1,1), Pe={1,2,3,4,5,6,8,15,20}×
102. The black lines correspond to the predictions for the mixing length calculated from
the analytical solutions (3.4) (dashed) and (3.7) (dotted). (b) Plot of the transversely
averaged concentration, c(x, t) versus x/t for (R, Pe, n) = (0, 500, 1), σ ranging from
0.2 to 1.8 and ten logarithmically spaced times between 1 and 3. The characteristic
spreading velocity is taken to be the maximum velocity difference between the layers,
1u∼ sinh(σ )/I0(σ ).

given the initial condition (2.15). The transversely averaged concentration, c(x, t) can
be calculated by averaging (3.6),

c(x, t)=
∫ 1

0
H(u(y)− x/t) dy. (3.7)

The model gives good agreement with the numerical simulations (figure 3b) and
is able to reproduce the asymmetric profiles, which arise due to the fact that the
permeability is not symmetric about k= 1 and collapses upon rescaling the streamwise
coordinate by t. Since the interface is stretched at a constant rate, the mixing length
grows like h∼1ut (figures 3a and 4b).

3.3. Late-time behaviour: shear-enhanced dispersion
The transition to the late-time regime occurs once the concentration has diffused
across the entire channel, homogenizing the concentration in the transverse direction;
this occurs at a time O(Pe). In this case, the mixing zone is long and thin and
transverse diffusion balances longitudinal advection (cf. Taylor dispersion e.g. Taylor
1953; Aris 1956). This is in contrast to the previous regime, when the flow evolved
purely by longitudinal advection. In the limit of small deviations from the mean
c′� c and a long, thin mixing zone, (2.17) reduces to

(k− 1)
∂c
∂x
= 1

Pe
∂2c′

∂y2
, (3.8)

while the transversely averaged concentration still evolves according to (2.16). Given
that c is independent of y, we integrate this equation twice and impose periodicity and
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FIGURE 4. (Colour online) Evolution of the mixing length and transversely averaged
concentration for R= 0 in the late-time regime. (a) Shear-enhanced dispersivity S versus
σ with asymptotic limits (B 3) (dashed) and (B 6) (dot-dashed). (b) Scaled plot of h
versus t for (Pe, σ ) = (500, 1), n = {1, 2, 3, 4, 6, 8} and (Pe, n) = (500, 1), σ =
{0.1,0.2,0.4,0.6,0.8,1,1.2,1.4,1.8,2} and (σ ,n)= (1,1), Pe={1,2,3,4,5,6,8,15,20}×
102. The black lines correspond to the predictions for the mixing length calculated
from the analytical solutions (3.7) (dotted) and (3.4) with (3.11) (dashed). (c) Plot of
the transversely averaged concentration, c(x, t) versus the late-time similarity variable
x/
√

t/Pe∗ for the same parameters as (b) at t = 200. The theoretical solution (3.4) with
(3.11) is given by the dashed line.

zero-mean deviations (
∫ 1

0 c′ = 0), to give

c′ = Pe
∂c
∂x

[∫ y

0

∫ ζ

0
(k(η)− 1) dη dζ −

∫ 1

0

∫ s

0

∫ ζ

0
(k(η)− 1) dη dζ ds

]
. (3.9)

Substituting and solving for the convective flux in (2.16), using the expression for the
velocity (3.1), leads to

∂uc′

∂x
=−Pe

∂2c
∂x2

∫ 1

0

[∫ y

0
(k(η)− 1) dη

]2

dy. (3.10)

This convective flux can be written in the form of an effective diffusivity such that
(2.16) reduces to

∂c
∂t
= ∂

∂x

[
1

Pe∗
∂c
∂x

]
,

1
Pe∗
= 1

Pe
(1+ Pe2S); (3.11a,b)

where

S =− 1
Pe ∂c/∂x

∫ 1

0
uc′ dy=

∫ 1

0

[∫ y

0
(k(η)− 1) dη

]2

dy (3.12)

is the shear-enhanced dispersivity, which only depends on the permeability structure
(cf. Van den Broeck & Mazo 1983).

For our choice of sinusoidally varying log-permeability, this integral cannot be
solved analytically, but is instead integrated numerically for varying σ and plotted
in figure 4(a). In appendix B, we derive the asymptotic limits of the shear-enhanced
dispersivity for large and small σ (given as dashed and dot-dashed lines respectively
in figure 4a).
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FIGURE 5. (Colour online) Colour maps of the concentration field with overlain
streamlines for |R| < σ . (a,b) R = 0.4, (c,d) R = 0 and (e, f ) R = −0.4 and (σ , Pe, n) =
(1, 500, 1). The snapshots are taken at (a,c,e) intermediate times (t = 1) and (b,d, f ) late
times (t= 31). Note that the aspect ratios of the late-time figures are distorted.

The solution to (3.11a) is again the similarity solution (3.4), but now with a
modified Péclet number Pe∗ (3.11b) (see figure 4c). When the total dispersivity is
dominated by the shear-enhanced dispersivity, Pe2S � 1, the effective dispersion
scales like Pe∗∼ 1/(Pe1u2). In figure 4(b) we use this scaling to collapse the mixing
length as a function of time over a range of parameters.

In summary, in the presence of permeability layering but in the absence of viscosity
variations, the flow evolves through three regimes: early-time diffusion, intermediate-
time advection and late-time shear-enhanced dispersion.

4. Small viscosity variations |R|<σ
Next we consider the effect of viscosity variations that are weak compared to

the permeability; that is, the log-viscosity ratio is smaller than the log-permeability
variance, |R|<σ .

In the absence of permeability variations, when R > 0 and the Péclet number is
sufficiently large, the flow is unstable and a set of complex nonlinearly evolving
fingers develop (Tan & Homsy 1988). If permeability layering is introduced, the
flow tends to be forced along the permeability pathways (De Wit & Homsy 1997b;
Shahnazari et al. 2018) and as the permeability variance is increased, the flow
becomes more and more channelized until the fingers no longer interact. This is
especially true when the permeability variability dominates over variations in viscosity,
σ � |R|. Although instabilities are still possible (and are further discussed in § 6), in
this section we focus on flows that remain hydrodynamically stable and follow the
permeability pathways imposed.

Figure 5 shows the concentration field overlain with streamlines for σ = 1 and
R = 0.4, 0 and −0.4 at intermediate times (left) and late times (right). For all three
values of R, we find that the concentration field evolves in qualitatively the same
manner: after an early-time diffusive regime, as in § 3.1, at intermediate times the
flow is dominated by advective stretching (figure 5a,c,e); and at late times the flow is
dominated by shear-enhanced dispersion (figure 5b,d, f ). The main difference between
flows where R 6= 0 and R = 0 is that at intermediate times the interface is either
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stretched (R > 0) or compressed (R < 0) relative to the neutrally stable case owing
to the viscosity-enhanced or viscosity-tempered streamwise velocity. At late times, the
viscosity contrast seems to have little effect and the concentration field and streamlines
look nearly indistinguishable. In the following subsections we examine the effects of
small viscosity variations on the evolution of the three regimes identified in § 3. We
begin in § 4.1 with a consideration of how viscosity contrasts affect the fluid velocity.

4.1. Vertical flow equilibrium
Unlike when the viscosities are equal, R=0, we cannot simply integrate (2.5) to give a
fixed expression for the velocity. As noted earlier, we find that when the injected fluid
is more viscous than the ambient, R< 0, the streamwise velocity is reduced, whereas
when the injected fluid is less viscous than the ambient, R> 0, the streamwise velocity
is increased. Under the assumption that the flow is long and thin, the pressure is only
a function of the longitudinal coordinate and is constant along any transverse slice
to leading order. This limit, often referred to as ‘vertical flow equilibrium’ (Yortsos
1995), implies that

µ(u+ 1)
k

=−dp
dx
≈ const. (4.1)

Combining (4.1) with the fact that the flux vanishes in any transverse slice in the
moving frame, the velocity can be written as

u(x, y, t)= k(y)
µ(x, y, t)

[∫ 1

0

k(s)
µ(x, s, t)

ds
]−1

− 1. (4.2)

If the viscosity is uniform, then the permeability sets the velocity, u = k − 1, as in
(3.1). If, instead, the permeability is uniform, then the viscosity sets the velocity,
u(y) = µ−1/

∫ 1
0 µ−1 dy − 1 (this leads to the fast low-viscosity fingers and slow

high-viscosity fingers characteristic of the viscous-fingering instability). When both the
permeability and viscosity vary, depending on the sign of R and c′, the permeability
and viscosity can interact either constructively or destructively. The effect of varying
viscosity is only important at the interface; far upstream and downstream, where the
viscosity is uniform, the velocity variations are simply imposed by the structure of
the permeability field.

Decomposing the concentration into the transverse average and deviations c= c(x)+
c′(x, y), equation (4.2) becomes independent of the average concentration and only
depends on the transverse variations,

u(x, y, t)= k(y)
e−Rc′(x,y,t)

[∫ 1

0

k(s)
e−Rc′(x,s,t) ds

]−1

− 1. (4.3)

In the case of sinusoidal log-permeability variations, equation (4.3) is

u(x, y, t)= e−σ cos(2πy)+Rc′(x,y,t)∫ 1

0
e−σ cos(2πs)+Rc′(x,s,t) ds

− 1. (4.4)
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FIGURE 6. (Colour online) Evolution of the mixing length and transversely averaged
concentration for |R| < σ in the intermediate-time regime. (a) Evolution of the mixing
length for (σ , Pe, n)= (1, 2000, 1) and R ranging from −0.4 to 0.4; the inset shows the
same data normalized by the neutral displacement mixing length. (b) Plot of c versus
x/t for the same parameters as (a) for 10 logarithmically spaced times in the range
1 6 t 6 3. (c) Plot of the concentration deviations c′ as a function y at three different
points in x corresponding to c = 0.75 (red), c = 0.5 (green) and c = 0.25 (blue) for
(R, σ , Pe, n) = (−0.4, 1, 2000, 1). The longitudinally averaged concentration deviations
(averaged over the mixing zone),

∫
h c′dx/h, is given by the dashed black line. (d) Plot of

the spreading rate ḣ calculated by least-squares fitting a function of the form h= h0 + ḣt
to the numerical results for t in the range 16 t6 3, for Pe= 2000 (circles) and Pe= 4000
(squares). The theoretical predictions for ḣ, calculated using (4.5) and (3.7), are given by
the solid lines.

4.2. Intermediate-time behaviour: viscously coupled advection
After the early-time diffusion regime the flow transitions to the intermediate-time
regime dominated by advective spreading. The effect of a non-zero viscosity ratio on
the evolution of the mixing length is shown in figure 6(a). Similar to the R= 0 case,
the mixing zone grows linearly in time, however as R is increased, the growth rate
of the mixing zone, ḣ = dh/dt, increases. The nearly uniform spacing between the
curves suggests that the growth rate varies linearly in R. The transversely averaged
concentration is again asymmetric and evolves self-similarly (figure 6b), although
it differs appreciably from the R = 0 case at the downstream tips (cf. snapshots in
figure 5a,c,e).

In this regime, we first note that diffusion is negligible. This results in concentration
deviations that are almost exactly either c′=−c or c′= 1− c (figure 6c). To estimate
the overall effect of the deviations on the velocity, we average the deviations across
the length of the fingered region, which leads to a roughly sinusoidal variation across

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.190


Miscible displacements in layered porous media 481

the domain aligned with the permeability structure and with magnitude ' 1/2 (dashed
black line in figure 6c). Substituting these average deviations into (4.4), the mean
streamwise velocity reduces to

u= e−(σ+R/2) cos(2πy)∫ 1

0
e−(σ+R/2) cos(2πs) ds

− 1. (4.5)

This approximate model results in intermediate-time dynamics equivalent to the
neutrally stable case, but with an effective log-permeability ratio σeff =σ +R/2. Given
(4.5), we can calculate h as in § 3.2, and extract ḣ by fitting a linear profile h = ḣt.
Modelling the effective permeability in this way gives reasonably good agreement
with the numerical simulations (figure 6d), although it underestimates the spreading
rate for large |R|. This is because, at the boundary of the forward-propagating
and backward-propagating tips, the velocity is faster, u = eσ+R/I0(σ ), and slower,
u= e−(σ+R)/I0(σ ), respectively, than this model predicts.

4.3. Late-time behaviour: viscosity-dependent shear-enhanced dispersion
At late times, after advectively spreading, the concentration evolves diffusively again.
This evolution is analogous to the late-time behaviour of the neutrally stable case but
the addition of viscosity variations modifies the effective diffusivity.

As in § 3.3, we assume that the flow is long and thin, transverse velocities are
negligible so the fluid flow is predominantly in the streamwise direction and the
concentration deviations are small and evolve on a much faster time scale than their
transverse average. Equation (2.16) remains unchanged, but (3.8) becomes keRc′(x,y,t)∫ 1

0
keRc′(x,s,t) ds

− 1

 ∂c
∂x

Pe= ∂
2c′

∂y2
(x, y, t) (4.6)

because of the dependence of the velocity on the concentration through (4.3). Again
we impose periodic boundary conditions and zero-mean deviations.

Before solving, we first rescale the deviations, c̃= Rc′, such that (4.6) becomes kec̃∫ 1

0
kec̃ ds

− 1

 β = ∂2c̃
∂y2

, (4.7)

where β = R Pe ∂c/∂x = Pe ∂ ln µ(c)/∂x, incorporates all of the parameters in the
problem, and can be thought of as a rescaled bulk concentration or viscosity gradient.
Since β is independent of y, we can solve for c̃ by integrating (4.7) twice. We perform
this integration numerically, although the limits of small β, which is relevant here and
is considered in § 4.3.1, and large β, which we find to be useful and is considered
later in § 5.1, can be treated analytically. Having solved for c̃, we then calculate the
shear-enhanced dispersivity,

S =− 1
β

∫ 1

0
uc̃ dy, (4.8)
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FIGURE 7. (Colour online) Plot of S versus |β| for R < 0 and R > 0. The solid black
lines correspond to S, equation (4.8), calculated by numerically integrating (4.7). The
leading-order small-|β| asymptotic behaviour, which is equal to when R= 0, is given by
the dashed red line and the next-order corrections in β are given by the dot-dashed blue
lines, equation (4.12).

(cf. (3.12)). Solutions of S for σ = 1 and R> 0 and R< 0 are given in figure 7. When
R= 0, (4.7) reduces to (3.8) and S is exactly as described by (3.12), a permeability-
dependent constant. When the viscosity varies, the dispersivity is enhanced when the
injected fluid is less viscous (R> 0) and diminished when the injected fluid is more
viscous (R< 0), than the ambient fluid. Since β ∝ ∂c/∂x, and diffusion always causes
concentration gradients to diminish in time, β generally decreases over time. When |β|
is large (i.e. the viscosity gradient is large, as at early times), and R> 0, S diverges,
whereas when R< 0, S tends to zero. The former limit is unphysical and corresponds
to scenarios where the interface is unstable. The latter case is discussed in more detail
in § 5, in the context of stable injections. When |β| is small (i.e. the viscosity gradient
is small, as at late times), S becomes independent of β and tends to the value for
R = 0. This suggests that at late enough times, the effective diffusivity will always
become independent of the log-viscosity ratio, and the flow will always evolve like
the neutrally stable case.

When |R| < σ , we need to only consider the small-|β| limit because by the time
the flow reaches the late-time regime, β is inevitably small. We can justify this claim
using a scaling argument: once the flow reaches the late-time regime, which occurs
at a time t=O(Pe), the mixing length will have grown to a width h=O(Pe1u), or
equivalently, the concentration gradient is ∂c/∂x=O(1/Pe1u). This means that when
the flow transitions to the late-time regime, |β| =O(R/1u) <O(1).

4.3.1. Small viscosity gradient limit: |β| � 1
For β� 1, we start by expanding the concentration deviations as c̃= β c̃1 + β2c̃2 +

O(β3). Substituting into (4.6), expanding and equating powers of β gives

∂2c̃1

∂y2
= k− 1,

∂2c̃2

∂y2
= (kc̃1 − kkc̃1). (4.9a,b)
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Given that the concentration deviations must satisfy periodicity and have vanishing
mean, we find that

c̃1 = I(k− 1)− I(k− 1), (4.10)
c̃2 = I(kc̃1)− I(kc̃1)− kc̃1I(k)+ kc̃1 I(k), (4.11)

where I( f )= ∫ y
0

∫ ζ
0 f dη dζ for a given function f and, as before, the overbar refers

to a transverse average. The shear-enhanced dispersivity, S , is thus

S =− 1
β

∫ 1

0
uc̃ dy= kc̃1 + β(kc̃2

1 − kc̃1
2 + kc̃2)+O(β2). (4.12)

The leading-order contribution to S is identical to the R = 0 limit in § 3.3 and is
plotted in figure 7 as a dashed red line. The first-order corrections are given by dot-
dashed blue lines.

4.3.2. Comparison to numerical simulations
We now use the calculated shear-enhanced dispersivity to determine how c evolves

in time. Allowing S to vary in space, (2.16) yields a nonlinear diffusion equation for
c,

∂c
∂t
= 1

Pe
∂

∂x

{
[1+ Pe2S(β(x))]∂c

∂x

}
, (4.13)

where β(x) = R Pe ∂c/∂x depends on the local mean concentration gradient. We
solve (4.13) numerically with no-flux boundary conditions in the far field using
a Crank–Nicolson predictor–corrector method. We use both the exact form for S
(by solving (4.7) and calculating (4.8)), and the small-|β| approximation in (4.12).
The model concentration fields are initialized with a diffuse error-function solution
although the long-time results are indifferent to the exact initial conditions. The
non-uniform dispersion results in profiles that deviate from the classical error-function
solution owing to the enhanced or diminished dispersion in regions of large
concentration gradients.

Figure 8(a) shows the evolution of the normalized mixing length, h/hR0 , where
hR0 = h(t, R = 0), for different R, from the full two-dimensional (2-D) numerical
simulations (solid coloured lines) and model results (dashed and dotted black lines).
As expected, increasing R results in increased spreading, while the effects of variations
in the viscosity reduce as t is increased. The reduced-order model not only captures
this behaviour but also accurately predicts the manner in which the flow evolves.
This can be further seen in figure 8(b) which compares the reduced-order model
predictions for c with the full 2-D numerical simulations. The very good agreement
between both of the model solutions and the numerical results suggests that the
late-time behaviour can be accurately modelled by (4.13) with (4.12).

5. Large stabilizing viscosity variations |R|>σ, R< 0

Whereas in the previous section the flow evolves in qualitatively the same manner
as the uniform viscosity case (R = 0), when the viscosity ratio is larger than the
permeability ratio, the concentration evolves in a qualitatively different manner. Here
we consider the case where the injected fluid is more viscous than the ambient fluid
(R< 0) and the magnitude of the log-viscosity ratio is larger than the log-permeability
ratio.
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FIGURE 8. (Colour online) Evolution of the mixing length and transversely averaged
concentration for |R| < σ in the late-time regime. (a) Evolution of the mixing length h,
normalized by the neutral displacement mixing length hR=0 for (σ ,Pe, n)= (1, 100, 1) and
R ranging from −0.4 to 0.4. (b) Plot of the difference between c for R 6= 0 and R= 0. The
profiles are measured at t=100 for the same parameters as (a). The theoretical predictions,
found by solving (4.13) with either the exact solution of S (by solving (4.7)), or (4.12),
are given by the dashed and dotted black lines respectively.
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FIGURE 9. (Colour online) Evolution of the concentration field for stable displacements
|R|> σ , R< 0. (R, σ , Pe, n)= (−1, 0.1, 100, 1). (a–d) Colour maps of the concentration
field with overlain streamlines at (a) t = 3.6, (b) t = 17.8, (c) t = 89.1 and (d) t = 447.
(e) Colour map of the concentration deviations c′ = c− c at t = 3.6. ( f ) Colour map of
the streamwise velocity u at t= 3.6.

Figure 9(a–d) shows a sequence of snapshots of the concentration field in this limit.
The interface is initially not stretched by the permeability variations owing to the
large longitudinal gradient in viscosity (figure 9a). This is because, for large |∂c/∂x|,
distorting the interface generates large transverse gradients in concentration. These
correspond to large, stable transverse gradients in viscosity (and hence pressure)
which tend to force the profile back to vertical. Ultimately, this results in a stationary
interface (in the moving frame) where the streamwise velocity goes to zero (figure 9f ).
Far upstream and downstream, where the viscosity is transversely uniform, the velocity
is imposed by the permeability. The abrupt change in velocity at the interface drives
a circulation on either side of the interface carrying concentration away from it.
As the fluids mix, the concentration, and hence viscosity gradients at the interface
weaken. Over time, the stabilizing viscous forces become sufficiently weak that the
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streamwise velocity can grow and streamlines begin to penetrate through the interface
(figure 9b,c). Eventually the interface becomes very diffuse and the velocity becomes
predominantly longitudinal (figure 9d) as in the cases considered in previous sections.
In contrast to those cases, however, where the concentration deviations, (c′), are
O(1) until the late-time regime, the concentration deviations here are always small
because the concentration remains relatively transversely uniform with no large-scale
channelling into layers.

5.1. Concentration model
As found in § 4.3, the shear-enhanced dispersivity S is given by (4.8) where β =
R Pe ∂c/∂x and c̃ is given by (4.7) and u by (4.3). However, unlike in § 4.3, for
viscosity-stabilized flows, we now expect this model to apply for all time, rather than
just at late times, given that the flow remains nearly transversely uniform (c′� 1). In
particular, |β| is not just small but can take on any value. We thus first consider the
large-β limit.

We start by expanding c̃ in powers of 1/β, c̃= c̃0 + c̃1/β + O(1/β2). Substituting
into (4.7) expanding and equating different powers of β, we find

kec̃0∫ 1

0
kec̃0 dy

− 1= 0, (5.1)

and so,

c̃0 =− ln(k)+ ln(k), c̃1 = ∂
2c̃0

∂y2
, (5.2a,b)

and

c̃1 =−
(

kk′′ − (k′)2
k2

)
, (5.3)

where we have again used the fact that
∫ 1

0 c̃0 =
∫ 1

0 c̃1 = 0. To leading order, the
concentration deviations align themselves such that the streamwise velocity is zero.
The shear-enhanced dispersivity in this limit is

S = 1
β

∫ 1

0
uc̃ dy= 1

β2

∫ 1

0
ln(k)

(
kk′′ − (k′)2

k2

)
dy+O

(
1
β3

)
. (5.4)

In the case of sinusoidally varying log-permeability, this limit corresponds to

S = 2σ 2π2

β2
+O

(
1
β3

)
. (5.5)

Equations (4.12) and (5.4) correspond to the asymptotic limits of small and large
viscosity gradient, and are plotted together with the full solutions of (4.7)–(4.8) for
the shear-enhanced dispersivity in figures 10(a) and 10(b) respectively. We can also
combine the two limits into a very simple approximate analytical composite solution;
for example for the case of a sinusoidally varying log-permeability,

Scomp =
(

1
S∗
+ β2

2σ 2π2

)−1

, (5.6)

where S∗ = ∫ 1
0 [
∫ y

0 (k − 1) dη]2 dy is the leading-order behaviour in (4.12). This
approximate solution captures the general behaviour of the shear-enhanced dispersivity
reasonably well without having to solve (4.7) exactly (see dotted lines in figure 10).
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FIGURE 10. (Colour online) (a) Plot of S normalized by its small-|β| limit versus β and
(b) plot of S normalized by its large-|β| limit versus β for σ ranging from 1 to 5. The
dashed black lines denote the asymptotic limits (4.12) and (5.4) in (a) and (b) respectively
and the dotted lines correspond to the approximate solution (5.6) for σ = 5.

10-2 100

0
ß

0.1
0.2
0.3

t x
102

10-3

10-2

10-1h

(a) (b)

100

101

0

0.2

0.4

0.6

0.8
t

t

1.0

-10 -5 0 5 10

c-

FIGURE 11. (Colour online) Evolution of the mixing length and transversely averaged
concentration for |R|> σ , R< 0. (a) Plot of h versus t for (R, Pe, n)= (−2, 300, 1) and
σ ranging from 0 to 0.3. (b) Plot of c(x, t) for (R, σ , Pe, n) = (−2, 0.2, 300, 1) and
t = 32, 100, 320, 1000. The theoretical predictions, found by solving (4.13), with either
the exact solution of S (found by solving (4.7)), or (5.6), are given by the dashed and
dot-dashed black lines respectively.

5.2. Comparison to numerical simulations

We solve the reduced-order model (4.13) both directly and using the approximate
composite solution (5.6), in the same manner as § 4.3.2 with a step initial condition
(2.15). The comparisons to the transversely averaged concentration profiles from
the full numerical simulations are given in figure 11(b). The exact solution of the
reduced model is not only able to capture the sharp interface and the long tails, but it
also accurately predicts the evolution of the concentration field. Using the composite
approximation of S in the reduced model also captures the qualitative evolution of
the transversely averaged concentration although it slightly overestimates the amount
of spreading that occurs. The mixing length is also shown as a function of time
for different σ in figure 11(a). The very good agreement between the reduced-order
model and the full simulations over a range of σ and t, suggests that the full 2-D
problem can be reduced to solving a 1-D nonlinear diffusion equation for all times
in this limit.
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FIGURE 12. (Colour online) Evolution of the concentration field for |R|> σ and R> 0.
(a–d) Colour maps of the concentration field for (R, σ , Pe, n) = (2, 0.1, 4000, 4) at (a)
t= 0.1, (b) t= 8, (c) t= 104 and (d) t= 1500. Note that the aspect ratio is increasingly
compressed in figures (b–d). (e, f ) Evolution of h(t) for (Pe, n)= (1000, 4) and: (e) R= 2
with varying σ ; and ( f ) σ = 0.1 with varying R.

6. Large de-stabilizing viscosity variations |R|>σ, R> 0

Finally, we consider the case where the injected fluid is less viscous than the
ambient fluid and the log-viscosity ratio is larger than the log-permeability ratio,
R > σ . In the absence of any permeability variations, σ = 0, this configuration
is hydrodynamically unstable (provided Pe is sufficiently large). In homogeneous
media such unstable miscible displacements evolve through three flow regimes (Nijjer
et al. 2018): at early times, the flow is linearly unstable, where the interface grows
diffusively, and fingers grow exponentially; at intermediate times, the fingers have
finite amplitude and propagate and interact with each other nonlinearly leading to
coarsening; and at late times, a single pair of counter-propagating fingers remain
which propagate and slow, leaving a well-mixed interior.

In the presence of permeability layering, there is a competition between the evolving
wavelength of viscous fingering and the imposed wavelength of the permeability
structure. The competition between viscous fingering, which acts to coarsen the
transverse length scale, and permeability layering, which acts to impose a fixed
length scale, results in rich intermediate-time dynamics. As a result, the number of
layers n can no longer be scaled out of the problem. Nonetheless, as before, the
early-time dynamics is still dominated by longitudinal diffusion across the sharp
interface, and the late-time dynamics is dominated by shear-enhanced dispersion
which becomes independent of the viscosity ratio at long times (cf. § 4.3).

In general, there are four possible intermediate-time regimes through which the
flow can evolve, representative snapshots of which are given in figure 12. In the first
regime (I), fingering occurs within the permeability layers and these fingers coarsen
until they coincide with the imposed permeability layering (figure 12a). In the second
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regime (II), the flow follows the imposed layered structure while diffusing across
the layers causing the flow to slow down (figure 12b). In some cases, this flow
can then be unstable, leading to a third regime (III) which corresponds to fingering
over a transverse length scale that is larger than that imposed by the permeability
(figure 12c). These fingers then also coarsen, leading to a fourth regime (IV) where
a single pair of counter-propagating fingers remain (figure 12d). This pair of fingers
slows leaving a well-mixed region which eventually evolves through shear-enhanced
dispersion. Note that regimes III and IV can only occur if n> 1.

The growth of the mixing length can be drastically different depending on which
regime the flow is in (figure 12e, f ). When the flow fingers (regimes I and III), as with
a homogeneous porous medium, the mixing length grows linearly in time. When the
flow is channelling or in the single-finger exchange-flow regime (regimes II and IV)
the mixing length tends to a constant value. As σ is varied from 0 (the homogeneous
medium scenario), we see a transition from pure viscous fingering to channelling and
fingering behaviour (figure 12e). As R is varied from 0 (neutrally stable displacement
scenario), we see a transition from pure channelling behaviour to both channelling and
fingering (figure 12f ). Exactly which regimes occur depend on all four of the variables
in this problem. In general we find fingering behaviour (regimes I and III) is more
significant for larger values of R and Pe, while channelling is more significant for
larger values of σ . Also, fingering across layers (regimes III and IV) is only relevant
when n> 1, and is most notable when the length scale of the permeability variations
is small, n� 1.

In the following sections we review the different regimes briefly and discuss some
simple models for the evolution of the transversely averaged concentration. We note
that the following is not an exhaustive description of all possible behaviour, and
we leave an exhaustive description of the interplay between viscous fingering and
permeability layering for future work.

6.1. Regime I: fingering within layers
The flow is able to finger within the permeability layers when the length scale of
the most unstable mode, y∼ 1/RPe (Tan & Homsy 1986), is small compared to the
length scale imposed by the permeability y∼ 1/n. Hence the flow always fingers for
sufficiently large Pe and is also observed to be enhanced when σ is small (De Wit
& Homsy 1997b; Shahnazari et al. 2018). Note that fingering within layers is also
possible when permeability effects dominate over viscous effects, R < σ , so long as
Pe is sufficiently large.

Figure 13(a,b) shows snapshots of the concentration field for σ = 0.1 and σ = 0
respectively. The fingers evolve in a similar manner in both cases, leading to an
asymmetric transversely averaged concentration that evolves self-similarly with
similarity variable x/t (figure 13c). The main difference between the two simulations
is that the fingers move significantly faster when permeability heterogeneities are
present. For example, the mixing length grows at more than double the rate in the
simulation in figure 13(a) compared to the homogeneous case, which is far larger
than one would predict simply by considering the difference in permeability.

This difference is due to the structure of the flow being fundamentally different in
the two simulations. Whereas, in the homogeneous medium, the forward and backward
propagating fingers are on average about the same size, in the heterogeneous medium,
the backward propagating fingers are broad and aligned with the low permeability
layers. This means the two fluids tend to be much more segregated (figure 13d), and
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FIGURE 13. (Colour online) Evolution of the concentration field for |R| > σ and R >
0 in the fingering within layers regime; (R, Pe, n) = (2, 8000, 2). (a,b) Colour maps
of the concentration field for (a) σ = 0.1 and (b) σ = 0 at t = 1. (c) Plot of the
transversely averaged concentration c(x, t) and (d) transverse variance in concentration
var(c) = ∫ 1

0 c′2 dy versus the similarity variable x/t for σ ranging from 0 to 0.3. In (c),
the theoretical prediction for a homogeneous medium (Nijjer et al. 2018, dashed) and for
a heterogeneous medium ((C 4), dot-dashed) are also shown.

so the effective viscosity difference between the forward- and backward-propagating
fingers is much larger in the heterogeneous medium, which leads to much faster
spreading. We also observe from the simulations that the spreading rate is broadly
insensitive to σ for σ & 0.1 (figure 13c,d), which supports the idea that the presence
of layered heterogeneity changes the spreading rate through the structure of the flow.
In § C.1 we extend the model presented by Nijjer et al. (2018) for the homogeneous
case by accounting for this change in finger structure. The model prediction, given
by the dot-dashed line in figure 13(c), gives good quantitative agreement with the
numerical simulations when σ & 0.1. Thus we find that, although small amounts of
permeability heterogeneity would be expected to have a small effect on the spreading
rate, they can in fact alter the structure of the flow and lead to significantly faster
spreading and mixing.

6.2. Regime II: stable channelling
After the fluid fingers inside the high-permeability layers, it coarsens until a
single broad finger remains in each layer (figure 12b). Figure 14(a–d) shows
a sequence of snapshots of the concentration field with overlain streamlines for
(R, σ , Pe, n) = (2, 0.1, 1000, 1) for which at intermediate times the flow is always
in this channelling regime. In this example, n = 1 and so the channelling consists
of a single pair counter-propagating fingers. The flow is predominantly longitudinal
except in regions localized near large concentration gradients. Initially the streamwise
velocity is large and localized in the finger. Upstream and downstream, where the
viscosity is uniform, the velocity is imposed by the permeability, but is small relative
to the contributions due to viscosity variations (figure 14f ). As time progresses,
and the fluids become more mixed, the effect of the viscosity reduces and the
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FIGURE 14. (Colour online) Evolution of the concentration field for |R| > σ and R >
0 in the channelling regime; (R, σ , Pe, n) = (2, 0.1, 500, 1). (a–d) Colour maps of the
concentration field with overlain streamlines at (a) t= 20, (b) t= 60, (c) t= 100 and (d)
t = 140. (e) Colour map of the concentration deviations c′ = c− c at t = 20. ( f ) Colour
map of the streamwise velocity u at t = 20. Note that the aspect ratio of the figures is
compressed by a factor of 30, so variations in the x-direction seem more pronounced than
they actually are.
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FIGURE 15. (Colour online) (a) Plot of c(x, t) from the numerical simulations (solid lines)
and the theoretical prediction overlain (dashed line) for (R, σ ,Pe, n)= (2, 0.1, 1000, 1). (b)
Plot of the linear slope α of c, as a function of σ , showing a least-squares fit to the data
from numerical simulations (dots) and the theoretical solution (C 11) for K = 0.5 (solid
line) and K = 0.6 (dashed line).

streamwise velocity in the fingered region approaches the upstream and downstream
velocity (figure 14b–d). The concentration deviations, figure 14(e), are uniform in the
x-direction, vary sinusoidally in the y direction and are in phase with the velocity.

This behaviour resembles the late-time regime in the miscible viscous-fingering
instability (i.e. when σ = 0). More specifically, the dynamics consists of an interior
region where the background gradient is linear and steady and the ends of which
are filled in by the propagating fingers (figure 15a). Superimposed on the steady
background gradient are sinusoidal concentration deviations which decay in time.

In § C.2, we generalize the analysis from § 4.3.1 by allowing the deviations to
evolve in time, and so derive a simplified model for the evolution of the mean
concentration field in this regime. To test the validity of this model, we compare the
predicted steady interior slope, α, to the results of the 2-D numerical simulations
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FIGURE 16. (Colour online) Evolution of the concentration field for |R| > σ and R >
0 in the viscous fingering across layers regime; (R, Pe, n) = (2, 2000, 32). (a,b) Colour
maps of the concentration field for (a) σ = 0.1 and (b) σ = 0 at t = 8. (c) Plot of h(t)
for five different simulations each (light, thin lines) and their average (dark, thick line).
(d) Plot of c(x, t) versus the similarity variable x/t and t ranging from 6 to 20. Each
curve corresponds to the average across five different simulations.

(figure 15b). As the viscosity ratio and permeability variance are increased α decreases
due to the increased fluid velocity. The model shows reasonable agreement with the
numerical simulations and the slight over-prediction of the slope is likely due to the
underestimation of the velocity at early times.

6.3. Regimes III and IV: viscous fingering across layers
As noted earlier, if n > 1, the channelling regime can become unstable to a
viscous-fingering instability which has fingers that are wider than the permeability
structure imposed. The viscous fingers that develop in the heterogeneous medium
are qualitatively similar to the fingers that develop in a homogeneous medium
(figure 16a,b) and go through the same large-scale coarsening until a single finger
remains. This single finger then evolves in manner similar to the single-finger state
in a homogeneous medium (σ = 0).

One key difference between the two simulations is that in the heterogeneous
medium there tends to be more tip splitting, aligned with the permeability field,
due to velocity heterogeneities at the finger tips as well as fading and coalescence
of fingers. The fact that the fingers are more unstable leads to more variability
from simulation to simulation, more intermittent flow and non-uniform growth of
the mixing length (figure 16c). The concentration field evolves in qualitatively the
same manner in both cases, the profile is asymmetric and again has the similarity
variable x/t (figure 16d). However the spreading rate is slower in the case when
heterogeneities are present. Modelling the difference in spreading rate is the subject
of future work.

Note that viscous fingering across layers is also possible when permeability effects
dominate over viscous effects, R < σ . This can occur when the system reaches the
late-time regime and the interface is still hydrodynamically unstable. For the interface

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.190


492 J. S. Nijjer, D. R. Hewitt and J. A. Neufeld

10-3 100

t t t
103

103

102Pe

(a) (b) (c)

101

103
103

102102

101

10-4 10-2 102100 10-2 100 102 0

0.5

1.0

1.5
∂

1

2

3
1

1

2
2I

2II
2III

2IV
3

3

t ¡ Pe-1 t ¡ Pe-1 t ¡ Pe-1

t ¡ Pe

t ¡ Pe t ¡ Pe

FIGURE 17. (Colour online) Representative plots of the scaling exponent of the mixing
length, δ, found by locally fitting a power law of the form h = Atδ , for three different
parameter sets: (a) (R, σ , n) = (−2, 0.1, 1), demonstrating a viscously dominated stable
displacement, as in § 5, (b) (R, σ , n)= (0.1, 1, 1), demonstrating a permeability-dominated
displacement, as in § 4 and (c) (R, σ , n)= (2, 0.1, 6), demonstrating a viscously dominated
unstable displacement, as in § 6. The regime boundaries (black lines) divide the early-time
(regime 1), intermediate-time (regime 2) and late-time (regime 3) regimes. The dotted
lines in (c) delineate the various intermediate-time regimes (§§ 6.1–6.3) and the dashed
line delineates the hydrodynamically stable and unstable regions (Nijjer et al. 2018).

to be stable, the width of the mixing zone must be h ∼ RPe (Nijjer et al. 2018).
The mixing zone at the start of the late-time regime in the permeability-dominated
scenario is h∼Pe1u/n2∼Peσ/n2 and so the late-time state may be unstable to further
coarsening via a viscous instability if R>σ 2/n2.

7. Discussion and conclusions
In this paper, we have examined miscible displacements in heterogeneous porous

media. The main goal throughout this work has been to better understand the structure
and evolution of the concentration field during stable and unstable displacement
processes through the use of high-resolution numerical simulations. Motivated by the
fact that many geological formations consist of layered sedimentary sequences, we
considered porous media with a permeability structure that varies perpendicular to
the flow direction. We considered cases where the injected fluid is equally viscous,
more viscous or less viscous than the ambient fluid. In general we find that the
flow evolves through three main flow regimes. Figure 17 summarizes these different
possible regimes in the cases of viscously dominated stable displacements (figure 17a),
permeability-dominated displacements (figure 17b), and viscously dominated unstable
displacements (figure 17c). In each case the figure shows the instantaneous scaling
exponent of the mixing length, δ, where h= Atδ, for different Pe.

At early times (regime 1 in figure 17), the concentration field evolves through
diffusion across an initially sharp interface (δ = 1/2) and is independent of both the
log-viscosity ratio, R, and log-permeability ratio, σ (see § 3.1). Once advection begins
to outpace diffusion (t∼O(1/Pe)) the flow transitions to the intermediate-time regime.
At intermediate times (regime 2 in figure 17), the interplay between viscosity and
permeability variations leads to a range of possible dynamics (δ 6= 1/2). Finally, once
the interface has become long and thin and transversely homogenized (t∼O(Pe)) the
flow transitions to the late-time regime. At late times (regime 3 in figure 17), the
flow becomes dominated by shear-enhanced dispersion and the concentration evolves
diffusively again (δ = 1/2).

At intermediate times (regime 2 in figure 17), the interplay between viscosity and
permeability variations leads to different behaviour depending on the relative size

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.190


Miscible displacements in layered porous media 493

0

0.2

0.4

0.6

0.8
R = -1 R = 0 R = 1

t t

1.0(a) (b) (c)

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

-2 0 2
x/�t x/�t x/�t

-2 0 2

c-

-2 0 2

FIGURE 18. (Colour online) Long-time evolution of c(x, t) for σ = 0.3, (Pe, n)= (100, 1)
and t ranging from 10 to 1000. The viscosity ratio is (a) stabilizing R=−1, (b) neutrally
stable R= 0 and (c) de-stabilizing R= 1. The asymptotic, viscosity-independent solution,
equation (3.4) with (3.11) is given by the dashed line.

of R and σ and whether the injected fluid is more viscous or less viscous than
the ambient fluid. When permeability effects dominate (σ > |R|; § 4); the viscosity
modulates the effective permeability of the medium but otherwise evolves qualitatively
in the same manner as when the two fluids have equal viscosity. When the injected
fluid is more viscous than the ambient (|R|>σ and R< 0; § 5), the viscosity contrast
tends to prevent channelling at the interface and reduces spreading of the two fluids
relative to the equal viscosity, R= 0 case. When the injected fluid is less viscous than
the ambient (|R| > σ and R > 0; § 6), a number of different possible regimes were
identified (regimes 2I, 2II, 2III and 2IV in figure 17c). These different regimes arose
due to the interplay between viscous fingering, which tends to cascade through a
range of length scales, and the permeability structure, which has a fixed length scale.
Overall, depending on which regime the flow is in, the permeability heterogeneity
can either enhance or temper spreading relative to the uniform permeability case.

At late times (regime 3 in figure 17), the concentration evolves through shear-
enhanced dispersion (§ 4.3), which asymptotically becomes independent of the
viscosity ratio and only depends on the permeability structure. Figure 18 demonstrates
this behaviour: it shows the evolution of the concentration field for a neutrally stable
displacement, large stabilizing displacement and a large de-stabilizing displacement.
Although spreading is initially hindered (R < 0), or enhanced (R > 0), at late times
they both tend to the same viscosity-independent self-similar solution. This means
that for processes that occur over very small length scales or very long time scales,
the viscosity difference becomes insignificant and the permeability structure dictates
the rate of spreading and mixing of the two fluids.

In summary, the flow evolves through three distinct regimes: an early-time regime
dominated by longitudinal diffusion, an intermediate-time regime dominated by
longitudinal advection and a late-time regime dominated by shear-enhanced dispersion.
Informed by high-resolution numerical simulations, we have developed simple models
that capture the dominant physics in each of the regimes, which provide an easy way
of quantitatively predicting the average behaviour of these systems.
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FIGURE 19. (Colour online) Plot of two different measures of h versus t for (σ ,Pe, n)=
(0.3, 300, 1) and R=−1,−2. The solid lines correspond to (2.18) and the dashed lines
correspond to (A 1).

Appendix A. Comparison of mixing length metrics
Figure 19(a) shows a comparison of the mixing length quantity used throughout this

paper (2.18) and the more typical measure

h= h∗ = x|c=0.01 − x|c=0.01. (A 1)

It can be seen that h calculated using (A 1) shows no discernible difference between
the two simulations, whereas h calculated using (2.18) is noticeably different at
intermediate times. This is because the simulations shown in figure 19 correspond
to large stabilizing viscosities whose concentration profiles are composed of a sharp
gradient at the interface, which depends on the viscosity ratio, and long tails upstream
and downstream, which are independent of the viscosity ratio. Since (A 1) only picks
up the growth of the tail regions, it is independent of R, whereas (2.18) accounts
for the evolution of the sharp concentration gradient and hence depends on R. We
therefore use (2.18) to measure the mixing length due to this sensitivity to the
structure of the concentration field.

Appendix B. Asymptotic solutions for neutral displacements
When the variations in the permeability are small (σ � 1), (3.2) becomes

u= k− 1'−σ cos(2πy), (B 1)

such that at intermediate times the characteristic spreading velocity is

1u= 2σ , (B 2)

and at late times the shear-enhanced dispersivity, (3.12), is

S=
∫ 1

0

[∫ y

0
(k(η)− 1) dη

]2

dy' σ 2

8π2
. (B 3)

When the variations in the permeability are large (σ�1), the fluid velocity diverges
at y= 1/2 and tends to −1 everywhere else. The charactersitic spreading velocity is

1u' (2πσ)1/2. (B 4)
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At late times, the shear-enhanced dispersivity, S , is given by (3.12). Taylor expanding
I0(σ ) as σ→∞, (3.12) becomes

S =
∫ 1

0

[∫ y

0

(
e−σ cos(2πη)

eσ [(2πσ)−1/2 +O(σ−3/2)] − 1
)

dη
]2

dy. (B 5)

Solving using Laplace’s method gives

S=
∫ 1

0
[−y+H(y− 1/2)]2 dy+O(σ−1)= 1

12
+O(σ−1). (B 6)

Appendix C. Concentration models for R>σ

C.1. Regime I: fingering within layers
To model the nonlinear evolution of the fingered region, we again assume the flow
is in vertical flow equilibrium and that the streamwise velocity is given by (4.3).
However, unlike in §§ 3.2 and 4.2 where the velocity depends on the permeability,
here we assume the velocity only depends on the viscosity,

u= eRc(x,y,t)∫ 1

0
eRc(x,s,t) ds

− 1, (C 1)

since σ � 1. Substituting the streamwise velocity into (2.16) and neglecting
longitudinal diffusion gives

∂c
∂t
+ ∂

∂x


∫ 1

0
cµ(c) dy∫ 1

0
µ(c) dy

− c

= 0. (C 2)

Next we consider ηf (x) forward-propagating fingers of width wf (x) and ηb(x)
backward-propagating fingers of width wb(x). We make the simplifying assumption
that the forward- and backward-propagating fingers have uniform concentration c= 1
and c = 0 respectively, but allow the viscosity to vary inside the finger. We have
the additional constraints that the transversely averaged concentration is equal to the
proportion of forward-propagating fingers ηf wf = c and the total area of the fingers
adds up to one, ηf wf + ηbwb = 1.

In a homogeneous medium (σ = 0), the forward- and backward-propagating fingers
have viscosities µ(y) ≈ eR(1−y2/w2

f ) and µ(y) ≈ eR(y2/w2
f ) across the fingers respectively

(see Nijjer et al. 2018). When σ is non-zero, the backward-propagating fingers are
broad and coincide with the low permeability layers. In this case, the viscosity in the
fingers is nearly uniform, µ(y)≈ 1.

Substituting our assumptions for the concentration and viscosity into (C 2) gives,

∂c
∂t
+ ∂

∂x


ηf

∫ wf

−wf

eR(1−y2/w2
f ) dy

ηf

∫ wf

−wf

eR(1−y2/w2
f ) dy+ ηb

∫ wb

−wb

1 dy
− c

= 0. (C 3)
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This has the solution

c(x, t)=



1 x/t<
1

Me
− 1

1
Me − 1

(√
Me

x/t+ 1
− 1

)
1

Me
− 1 6 x/t 6 Me − 1

0 x/t>Me − 1,

(C 4)

where

Me =
√

πeRerf(
√

R)

2
√

R
. (C 5)

The transversely averaged concentration evolves in exactly the same manner as in
the homogeneous case but with a larger effective viscosity (cf. Nijjer et al. 2018).
This model prediction is given by the dot-dashed line in figure 13(c) and gives good
quantitative agreement with the numerical simulations when σ & 0.1.

C.2. Regime II: stable channelling
This regime is characterized by a linear background gradient with superimposed
deviations that decay. In § 5 we found that in the limit of large aspect ratio and small,
quasi-statically evolving deviations, (2.17) reduced to (4.6). Here, in the channelling
regime, the deviations decay exponentially, independently of the transversely averaged
concentration. We therefore generalize the analysis of § 4.3 by allowing the deviations
to evolve in time. Equation (2.16) remains the same, but (2.17) becomes

∂c′

∂t
+ u

∂c
∂x
= 1

Pe
∂2c′

∂y2
. (C 6)

Again, the fluid flow is assumed to be in vertical flow equilibrium and so the velocity
is given by (4.4). For simplicity, we will also assume σ � 1, although the method
below can be generalized to σ =O(1). Since c′� c=O(1), (4.4) can be written, to
leading order, as

u= Rc′ − σ cos(2nπy), (C 7)

and (C 6) becomes

∂c′

∂t
+ Rc′

∂c
∂x
− 1

Pe
∂2c′

∂y2
= σ cos(2nπy)

∂c
∂x
. (C 8)

When σ = 0 this is exactly the late-time, single-finger exchange-flow behaviour of
the miscible viscous-fingering instability (Nijjer et al. 2018). Solving (C 8) using
separation of variables yields

c′ =
(−σ∂c/∂x

γ
+Ke−γ t

)
cos(2nπy), (C 9)

where γ = R∂c/∂x + 4n2π2/Pe. The constant of integration K corresponds to the
initial conditions at the onset of this regime and incorporates the nonlinear early-
time spreading. A simple approximation would be that K ≈ 1/2 corresponding to the
maximum amplitude of sinusoidally varying c′.
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Depending on which term is dominant in (C 9), one gets one of two limiting
solutions to (2.16). When t is small (intermediate times), the second term in
(C 9) dominates over the first. The deviations are longitudinally uniform and decay
exponentially, and the solution of (2.16) for c is

c= 1
2 − αx. (C 10)

This tendency to a steady linear profile can be seen in figure 15(a). When t is large
(late times), the first term dominates over the second. In this case the deviations decay
quasi-steadily with the transversely averaged concentration. This case is exactly the
small-β limit discussed in § 4.3.1 in the limit of small σ , and is dominated by shear-
enhanced dispersion. In this case c tends to the self-similar error-function solution
(3.4) with effective diffusivity (3.11). In addition, if σ >R, the first term, which scales
like O(σ/R) (given ∂c/∂x∼ 1/RPe), is always larger than Ke−γ t, consistent with the
fact that this channelling behaviour is only present when viscosity variations are more
important than permeability variations, R>σ .

Thus far the model is unable to predict the slope of the well-mixed interior region,
α. To close the model, we relate the convective flux to the mixing that occurs.
We consider a control volume containing everything to the right of the midplane.
Neglecting longitudinal diffusion, the total convective flux into this control volume
must balance the net change in concentration∫ T

0

∫ 1

0
uc′ dy dt=

∫ ∞
0

c dx≈ 1
8α
, (C 11)

where T is a timescale marking the end of this regime. Assuming the flow is always
in this channelling regime, we can substitute (C 7) and (C 8) into (C 11) to attain
an implicit equation for α. This control volume approach inherently depends on the
choice of T; as T →∞, the transversely averaged concentration evolves via shear-
enhanced dispersion and the estimate for α→0. We therefore select T at the boundary
between the intermediate- and late-time regimes such that the concentration profile is
linearly well mixed in the interior and has not transitioned to the late-time diffusive
solution. For our simulations, we find the choice T = 200≈ 3/γ appropriate, although
we note that predictions are broadly insensitive to the choice of T as long as T ∼
O(1/γ ).
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