On the Pascal Hexagram.

By Prof. J. JACK.

§1. Proof in case of the circle.

FIGURE 9.

ABCDEF is any cyclic hexagon;

AB, DE meet in G,

BC, EF ", "H,

CD, FA ", "K; then G, H, K are in a straight line.

Draw KLNM parallel to BC and produce DE, EF, AB to meet it in I., N, M. Join DA, DM and let BC, DE meet in P.

 $\angle PCD = \angle BAD$ \therefore ABCD is a cyclic quadrilateral,

and $\angle PCD = \angle DKM$ \therefore KM is parallel to CB;

 $\therefore \ \angle BAD = \angle DKM$; $\therefore DAMK$ is a cyclic quadrilateral.

Again $\angle DEH = \angle DAK$ \therefore AFED is cyclic ;

and \angle DMN, *i.e.*, \angle DMK = \angle DAK \therefore DAMK is cyclic; $\therefore \ \angle$ DEH = \angle DMN and \therefore DMNE is cyclic.

Again
$$\frac{PB}{PE} = \frac{PD}{PC} = \frac{DL}{LK}$$

and $\frac{PE}{PH} = \frac{LE}{LN} = \frac{LM}{LD}; \quad \therefore \quad \frac{PB}{PH} = \frac{LM}{LK};$

.:. G, H, K are in a straight line.

FIGURES 10 AND 11.

§ 2. O is any point on a chord AB of a conic; the focus S, the directrix and e are given; the eccentric circle of O is described. Through O, radii Oa, Ob are drawn parallel to SA, SB, in opposite

sense when O, S are on the same side of the directrix (Fig. 10) and in the same sense when on *opposite* sides (Fig. 11).

Then ab passes through S.

For
$$\frac{Oa}{OK\sin\theta} = \frac{SA}{AK\sin\theta};$$

 \therefore S, a, K are in a straight line. So S, b, K are in a straight line; \therefore ab goes through S.

§3. Pascal's Theorem for the Conic (generally).

ABCDEF is any hexagon inscribed in a conic.

AB, DE meet in O_1 ; BC, EF meet in O_2 , and CD, FA meet in O_3 .

Then O_1 , O_2 , O_3 are in a straight line.

The focus S, the directrix and e are given.

Draw the eccentric circles of the points O_1 , O_2 , O_3 and draw in each of the circles the six radii parallel to SA, SB, SC, SD, SE and SF, in the opposite sense when O and S are on the same side of the directrix and in the same sense when O, S are on opposite sides of the directrix.

Let the radii be O_1a_1, O_1b_1 , etc.; O_2a_2, O_2b_2 , etc., etc. Join the points a_1b_1 , b_1c_1 , c_1d_1 , d_1e_1 , e_1f_1 , f_1a_1 ; a_2b_2 , b_2c_2 , c_2d_2 , etc., a_3b_3 , b_3c_3 , c_3d_3 , etc.

Then the three cyclic hexagons $(abcdef)_1$, $(abcdef)_2$, $(abcdef)_3$ are similar and similarly situated.

Let a_1b_1 , d_1e_1 meet in g_1 ,

 $b_1c_1, e_1f_1, \dots, h_1,$

and c_1d_1 , f_1a_1 , ..., k_1 ,

and similarly for the other two hexagons let the corresponding sides meet in g_2 , h_2 , k_4 and g_2 , h_3 , k_3 .

Then $g_1h_1k_1$, $g_2h_2k_2$, $g_3h_3k_3$ are straight lines by the proof of the theorem in the case of a circle.

Now from the nature of the eccentric circle, a_1b_1 , d_1e_1 meet in S, that is, the point g_1 is S.

Similarly ,, ,, *h*₂ is S and ,, ,, *k*₃ is S.

Hence the three straight lines, $g_1h_1k_1$, $g_2h_2k_2$, $g_3h_3k_3$ have one point S common and they are parallel, because the figures are similar and similarly situated ;

.:. the three lines are coincident.

Now taking the three triangles $O_1a_1g_1$, $O_2a_2g_2$, $O_3a_3g_3$ which are

similar, we have
$$\frac{O_1g_1}{O_1a_1} = \frac{O_2g_2}{O_2a_2} = \frac{O_3g_3}{O_3a_3}$$

and if O_1m_1 , O_2m_2 , O_3m_3 are the perpendiculars from O_1 , O_2 , O_3 to the directrix, we have

$$\frac{O_1 a_1}{O_1 m_1} = \frac{O_2 a_2}{O_2 m_2} = \frac{O_3 a_3}{O_3 m_3} = e;$$

it therefore follows that

$$\frac{O_1g_1}{O_1m_1} = \frac{O_2g_2}{O_2m_2} = \frac{O_3g_3}{O_3m_3};$$

 \therefore O₁, O₂, O₃ are in a straight line, and it passes through the point in which the Pascal line of the cyclic hexagons meets the directrix.

On Newton's Theorem in the Calculus of Variations. By J. H. MACLAGAN-WEDDERBURN, M.A.