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Abstract

We study several kinds of subschemes of mixed characteristic models of Shimura varieties which
admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications
and formal local structures, as if they were Shimura varieties in characteristic zero. We also
generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent
sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
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1. Introduction

Integral models of Shimura varieties and their compactifications have played
crucially important roles in many recent developments in algebraic number theory.
In most of these developments, it is desirable to have certain decompositions of
their special fibers into disjoint unions of locally closed subsets, which allowed
mathematicians to reduce or relate their questions to some simpler building
blocks.

For example, in PEL-type cases without factors of type D, we have the p-rank
strata and Newton strata for all models, the Oort central leaves and Ekedahl–
Oort strata for models above hyperspecial levels at p, and the Kottwitz–Rapoport
strata for models above parahoric levels at p, on the reductions modulo p of all
integral models we consider. When the level and ramification at p are mild, these
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are known to form stratifications in the precise sense that closures of strata are
again unions of strata. In general, they still form stratifications in a weaker sense
that suitable unions form closed subsets, which are sufficiently useful for many
applications.

On the other hand, it is also desirable to have nice total or partial
compactifications of the integral models. For a long time, it was mainly the
good reduction integral models or some parahoric variants of them which had
been considered at all (see the introductions of [36, 78], and [79]). Nevertheless,
in recent works by Madapusi Pera (see [50]) and us (with more elementary
arguments; see [38, 41], and [43], and also [1] and [70]), a general principle
has emerged—the difficulties in the construction of compactifications and in the
construction of normal integral models with nice local properties are essentially
disjoint from each other.

Roughly speaking, the first goal of this article is to uniformly construct good
partial toroidal and minimal compactifications for many nice locally closed
subsets or subschemes, without any detailed knowledge of their local properties,
but with a long list of nice properties as if they were Shimura varieties in
characteristic zero.

We have several motivations for this.
Firstly, while preparing our previous article [45], we observed that the supports

of nearby cycles over the integral models of PEL-type or Hodge-type Shimura
varieties we consider, even in the trivial coefficient case, enjoy some intriguing
nice features near the toroidal and minimal boundary, which make it possible
to talk about good toroidal and minimal compactifications of such supports.
(We emphasize that in PEL-type cases we do allow arbitrarily high levels at p,
for which no theory of local models is currently available.) Based on earlier
experience of one of us (see [80, 82]), we soon realized that the same can be
said for several other kinds of subsets or subschemes of the integral models
we consider, including the above-mentioned p-rank strata, Newton strata, Oort
central leaves, Ekedahl–Oort strata, and Kottwitz–Rapoport strata (at least in
PEL-type cases).

Secondly, in Boxer’s recent work [12] on generalized Hasse invariants on
Ekedahl–Oort strata, he introduced the notion of well-positioned subschemes near
the boundaries of toroidal and minimal compactifications of the good reduction
integral models constructed in [36], and used it to show that the Ekedahl–Oort
strata extend to affine subschemes of the minimal compactifications. We observed
that a slightly weaker notion than Boxer’s naturally generalizes to cover many
other interesting situations, including everything we mentioned in the previous
paragraph. We shall call them well-positioned subsets or subschemes, from
now on.
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Thirdly, we can generalize many useful results concerning the coherent and
étale cohomology of integral models of Shimura varieties to the context of
well-positioned subsets or subschemes—these can be considered the second
goal of this article. They not only have many potential applications, but also
clarify what were really needed in their original proofs. For example, for
coherent cohomology, we can generalize Koecher’s principle for the global
sections of canonical extensions of automorphic bundles over partial toroidal
compactifications, and the vanishing of higher direct images of subcanonical
extensions of automorphic bundles under the canonical morphisms from the
partial toroidal compactifications to the partial minimal compactifications,
even when they are far from normal. For étale cohomology, under some
technical assumptions, we can generalize Pink’s formula (see [72]) for the
pullbacks to boundary strata of the derived direct images of automorphic étale
sheaves, under the canonical morphisms from Shimura varieties to the minimal
compactifications; and also Morel’s formula (see [58, 59, 61]) for the analogues
for middle perversity extensions instead of derived direct images.

Here is an outline of this article.
In Section 2, we introduce and study the notions of well-positioned subsets

and subschemes of the integral models of PEL-type or Hodge-type Shimura
varieties we consider, and of their partial toroidal and minimal compactifications.
In Section 2.1, we review the integral models we consider, and give a qualitative
description of their toroidal and minimal compactifications. In Section 2.2,
we introduce the well-positioned subsets and subschemes, and prove some
basic lemmas. In Section 2.3, we construct the partial toroidal and minimal
compactifications for all well-positioned subsets and subschemes, and include
some basic consequences. For example, we show that the local properties of the
partial toroidal compactifications are as nice as the given well-positioned subset
(with its reduced subscheme structure) or subscheme. In Section 2.4, we show that
the consideration of well-positioned subsets and subschemes, and their partial
compactifications, are functorial in nature and compatible with Hecke actions.
In Section 2.5, we present the generalizations of Koecher’s principle and the
vanishing of higher direct images alluded above.

In Section 3, we study many examples of well-positioned subsets and
subschemes. We start with the seemingly trivial examples of pullbacks and
fibers in Section 3.1. Then we proceed with the more interesting examples of the
p-rank strata in Section 3.2, the Newton strata in Section 3.3, the Oort central
leaves in Section 3.4, the Ekedahl–Oort strata in Section 3.5, and the Kottwitz–
Rapoport strata in Section 3.6, all in PEL-type cases (and often without factors
of type D), by first introducing them as locally closed subsets, and then showing
that they are well positioned as in Section 2.2, and hence admit partial toroidal
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and minimal compactifications as in Section 2.3. We have chosen to present
these examples in PEL-type cases, often without factors of type D, because the
theories are most complete and well understood in these cases. (Nevertheless,
see [48, 85], for example, for some recent developments for Hodge-type Shimura
varieties with hyperspecial levels at p.) The definitions we have used are not
necessarily the ones of the greatest elegance, novelty, or historical importance,
but rather ones that are most amenable to the consideration of semi-abelian
degenerations near the boundary. (We apologize to any experts whose works
we might have failed to highlight or even mention.) In Section 3.7, we study
the supports of nearby cycles, and show that they are well positioned, under
an assumption that is satisfied at a cofinal system of levels. The upshot is that,
with little knowledge beyond the definitions, we can show that many subsets or
subschemes are well positioned. Then they automatically admit partial toroidal
and minimal compactifications with familiar properties, just like their ambient
integral models of Shimura varieties, and they enjoy all the nice features we have
abstractly established in Section 2.

In Section 4, we introduce and study the notion of well-positioned étale
sheaves and complexes over the partial toroidal compactifications of the well-
positioned subsets introduced in Section 2. In Sections 4.1 and 4.2, we give their
definitions and study their general properties, together with some examples. In
Sections 4.3, 4.4, and 4.5, we present the generalizations of Pink’s and Morel’s
formulas alluded above, and also a variant of Mantovan’s formula with boundary
terms (different from our previous generalization in [45]).

We emphasize that our results apply even when we have essentially no
knowledge of the well-positioned subsets or subschemes being considered. For
example, consider any good reduction p-integral model introduced by Kottwitz
in [32, Section 5] in PEL-type cases not of type D, consider the intersection
of a Newton and an Ekedahl–Oort strata on its characteristic p special fiber,
and consider just one irreducible component of its pullback to principal level
p2018, which we denote by Y. We know essentially nothing about Y, but we
can still show that it is well positioned, that the (generally infinite-dimensional)
coherent cohomology of its partial toroidal compactification Ytor

Σ still satisfies our
generalization of Koecher’s principle, and that the intersection complex of Ytor

Σ is
well positioned and satisfies our generalization of Morel’s formula over Ymin.

We shall follow [36, Notation and Conventions] unless otherwise specified.
While for practical reasons we cannot explain everything we need from the
various constructions of toroidal and minimal compactifications we need, we
recommend the reader to make use of the reasonably detailed index and table of
contents there, when looking for the numerous definitions. For references to [36],
the reader should also consult the errata available on the author’s website for
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corrections to some known errors and imprecisions. We sometimes use materials
in [45] without thoroughly reviewing them.

2. Well-positioned subsets and subschemes of good integral models

2.1. Background setting. Let p > 0 be a rational prime number. Let us repeat
[45, Assumption 2.1] as follows:

ASSUMPTION 2.1.1. Let XH → S be a scheme over the spectrum of a discrete
valuation ring R0 of mixed characteristics (0, p), which is the pullback of one the
following integral models in the literature: (The various notations S0, ES0, and so
forth below are those in the works we cited, which we freely use, but mostly only
in proofs.)

(Sm) A smooth integral model

MH2 → S0 = Spec(OF0,(2))

defined as a moduli of abelian schemes with PEL structures at a neat level
H2
⊂ G(Ẑ2), as in [36, Chs 1, 2, and 7], with p ∈ 2 and H = H2

×∏
q∈2 G(Zq). (When 2 = {p}, it is shown in [36, Proposition 1.4.3.4]

that the definition in [36, Section 1.4.1] by isomorphism classes agrees
with the one in [36, Section 1.4.2] by Z×(p)-isogeny classes, the latter being
Kottwitz’s definition in [32, Section 5].)

(Nm) A flat integral model

EMH→ ES0 = Spec(OF0,(p))

of a moduli MH → S0 = Spec(F0) at a neat level H ⊂ G(Ẑ) (essentially
the same as above, but with 2 = ∅) defined by taking normalizations over
certain auxiliary good reduction models as in [38, Section 6] (which allow
bad reductions due to arbitrarily high levels, ramifications, polarization
degrees, and collections of isogenies). (In this case, we also allow F0 to
be a finite extension of the reflex field, with MH and others replaced with
their pullbacks.) For simplicity, we shall assume that, in the choice of the
collection {(gj, L j, 〈 · , · 〉j)}j∈J in [38, Section 2], we have gj = 1 for all
j ∈ J and (L j0, 〈 · , · 〉j0) = (p

r0 L , p−2r0〈 · , · 〉) for some j0 ∈ J and some
r0 ∈ Z. (This simplifying assumption imposes no restriction on the integral
models we consider.)
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(Spl) A flat integral model
EM

spl

H → Spec(OK )

of MH ⊗F0 K → Spec(K ) defined by taking normalizations as in [43,
Section 2.4] over the splitting models defined by Pappas–Rapoport as in
[68, Section 15]. (By taking normalizations, we mean we also allow H
to be arbitrarily higher levels, not just the same levels considered in [68,
Section 15].) For simplicity, we shall assume that, in the choice of the
collection {(gj, L j, 〈 · , · 〉j)}j∈J in [43, Choices 2.2.9], we have gj = 1 for
all j ∈ J and (L j0, 〈 · , · 〉j0)= (p

r0 L , p−2r0〈 · , · 〉) for some j0 ∈ J and some
r0 ∈ Z. (Again, this simplifying assumption imposes no restriction on the
integral models we consider.)

(Hdg) A flat integral model

SK → Spec(OE,(v))

in the notation of [50, Introduction] at a neat level K . For consistency with
the notation in other cases, we shall denote K , E , and SK as H, F0, and
MH, respectively, in what follows. Essentially by construction, there exists
some auxiliary good reduction Siegel moduli MHaux → Spec(Z(p)) in Case
(Sm) above, with a finite morphism MH → MHaux ⊗Z(p) OF0,(v) extending
a closed immersion MH ⊗Z Q→ MHaux ⊗Z F0.

In all cases, there is some group functor G over Spec(Z), and some reflex field F0.

• In Cases (Sm), (Nm), and (Spl), the integral models are defined by (among
other data) an integral PEL datum (O, ?, L , 〈 · , · 〉, h0) (cf. [36, Definition
1.2.1.3]), which defines the group functor G as in [36, Definition 1.2.1.6], and
the reflex field F0 as in [36, Definition 1.2.5.4]. For technical reasons, we shall
insist that [36, Condition 1.4.3.10] is satisfied. Moreover, we shall assume as
in [38, end of Section 2], [41, Theorem 6.1], and [43, Choices 2.2.10] that the
image of H ⊂ G(Ẑ) under the canonical homomorphism G(Ẑ) → G(Ẑp) is
also neat. (In Case (Sm), this follows from the assumption that H2

⊂ G(Ẑ2)

is neat.)

• In Case (Hdg), we still have an integral PEL datum defining the auxiliary good
reduction Siegel moduli MHaux , which we abusively denote as (O, ?, L , 〈 · , · 〉,
h0) (with O = Z, without ‘aux’ in the notation), which also defines a group
functor Gaux with an injective homomorphism G → Gaux. Moreover, we shall
assume as in [50, Section 4.1.1] that K =H is of the formH=HpHp for some
Hp
⊂ G(A∞,p) and Hp ⊂ G(Qp), and that Hp is also neat. (The neatness of

Hp is not explicitly emphasized in [50, Section 4.1.1], but is implicitly needed
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in the construction by normalizations in [50, Section 3.7.1], where K = H is
assumed to be contained in some neat open compact K ‡

= Haux ⊂ Gaux(A∞)
of the form Hp

auxHaux,p with Hp
aux ⊂ Gaux(A∞,p) and Haux,p = Gaux(Zp) ⊂

Gaux(Qp). Since Gaux(Zp) is not neat, the neatness of Haux forced Hp
aux and

hence Hp to be also neat.)

Except in Case (Sm), we allow the level H ⊂ G(A∞) to be arbitrarily high at p;
that is, given any open compact subgroup of G(Qp), there exists some H we allow
whose image under the canonical homomorphism G(A∞)→ G(Qp) is smaller.

We shall say that we are in Case (Sm), (Nm), (Spl), or (Hdg) depending on the
case in Assumption 2.1.1 from where XH→ S is pulled back.

For each XH→ S as in Assumption 2.1.1, we have good toroidal and minimal
compactifications Xtor

H,Σ → S and Xmin
H → S, whose qualitative properties we

summarized axiomatically in [45, Proposition 2.2], based on the constructions
in [36, 38, 41, 43], and [50], which we also repeat as follows, for the sake of
clarity:

PROPOSITION 2.1.2. Let XH → S be as above. Then there is a canonical
minimal compactification

JXmin
H
: XH ↪→ Xmin

H

over S, together with a canonical collection of toroidal compactifications

JXtor
H,Σ
: XH ↪→ Xtor

H,Σ

over S, labeled by certain compatible collections Σ of cone decompositions,
satisfying the following properties:

(1) The structural morphism Xmin
H → S is proper. For each Σ , there is a proper

surjective structural morphism∮
H,Σ
: Xtor

H,Σ → Xmin
H ,

which is compatible with JXmin
H

and JXtor
H,Σ

in the sense that

JXmin
H
=

∮
H,Σ
◦ JXtor

H,Σ
.

(2) The scheme Xmin
H admits a stratification by locally closed subschemes Z flat

over S, each of which is isomorphic to an analogue of XH (in Cases (Sm),
(Nm), or (Spl)) or a finite quotient of it (in Case (Hdg)). Moreover, the same
incidence relation among strata holds on each fiber over S.
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(3) Each Σ is a set {ΣZ}Z of cone decompositions ΣZ with the same index set
as that of the strata of Xmin

H —The elements of this index set can be called the
cusp labels for XH. For simplicity, we shall suppress such cusp labels and
denote the associated objects with subscripts given by the strata Z.

(4) For each stratum Z, the cone decomposition ΣZ is a cone decomposition
of some P, where P is the union of the interior P+ of a homogeneous self-
adjoint cone (see [4, Ch. 2]) and its rational boundary components, which is
admissible with respect to some arithmetic group Γ acting on P (and hence
also on ΣZ). (For example, in the case of Siegel moduli, each P+ can be
identified with the space of r × r symmetric positive definite pairings for
some integer r , and P can be identified with the space of r × r symmetric
positive semidefinite pairings with rational radicals.) Then ΣZ has a subset
Σ+Z forming a cone decomposition of P+. If τ is a cone in ΣZ that is not in
Σ+Z , then there exist a stratum Z′ of Xmin

H , whose closure in Xmin
H contains Z,

and a cone τ ′ in Σ+Z′ , whose Γ ′-orbit is uniquely determined by the Γ -orbit
of τ (where Γ ′ is the analogous arithmetic group acting on ΣZ′).
We may and we shall assume that Σ is smooth and projective, and that, for
each Z and σ ∈ Σ+Z , its stabilizer Γσ in Γ is trivial.

(5) For each Σ , the associated Xtor
H,Σ admits a stratification by locally closed

subschemes Z[σ ] flat over S, labeled by the strata Z of Xmin
H and the orbits

[σ ] ∈ Σ+Z /Γ . The stratifications of Xtor
H,Σ and Xmin

H are compatible with each
other in a precise sense, which we summarize as follows: The preimage of
a stratum Z of Xmin

H is the (set-theoretic) disjoint union of the strata Z[σ ] of
Xtor

H,Σ with [σ ] ∈ Σ+Z /Γ . If τ is a face of a representative σ of [σ ], which
is identified (as in the property (4) above) with the Γ ′-orbit [τ ′] of some
cone τ ′ in Σ+Z′ , where Z′ is a stratum whose closure in Xmin

H contains Z, then
Z[σ ] is contained in the closure of Z[τ ′]. The same incidence relation among
strata holds on each fiber over S.

(6) For each stratum Z of Xmin
H , there is a proper surjective morphism

C → Z

from a normal scheme which is flat over S, together with a morphism

Ξ → C

of schemes which is a torsor under the pullback of a split torus E with some
character group S over Spec(Z), so that we have

Ξ ∼= Spec
OC

(⊕
`∈S

Ψ (`)

)
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for some invertible sheavesΨ (`). (EachΨ (`) can be viewed as the subsheaf
of (Ξ → C)∗OΞ on which E acts via the character ` ∈ S.) This character
group S admits a canonical action of Γ , and its R-dual S∨R := HomZ(S,R)
canonically contains the above P as a subset with compatible Γ -actions.

(7) For each σ ∈ ΣZ, consider the canonical pairing 〈 · , · 〉 : S× S∨R→ R and

σ∨ := {` ∈ S : 〈`, y〉 > 0, ∀y ∈ σ },
σ∨0 := {` ∈ S : 〈`, y〉 > 0, ∀y ∈ σ },

σ⊥ := {` ∈ S : 〈`, y〉 = 0, ∀y ∈ σ } ∼= σ∨/σ∨0 .

Then we have the affine toroidal embedding

Ξ ↪→ Ξ(σ) := Spec
OC

(⊕
`∈σ∨

Ψ (`)

)
.

The scheme Ξ(σ) has a closed subscheme Ξσ defined by the ideal sheaf
corresponding to

⊕
`∈σ∨0

Ψ (`), so that

Ξσ
∼= Spec

OC

(⊕
`∈σ⊥

Ψ (`)

)
.

Then Ξ(σ) admits a natural stratification by Ξτ , where τ runs over all the
faces of σ in ΣZ.

(8) For each representative σ ∈ Σ+Z of an orbit [σ ] ∈ Σ+Z /Γ , let

Xσ := (Ξ(σ))
∧

Ξσ

denote the formal completion of Ξ(σ) along Ξσ , and let (Xtor
H,Σ)

∧

Z[σ ] denote
the formal completion of Xtor

H,Σ along Z[σ ]. Then there is a canonical
isomorphism

Xσ
∼= (Xtor

H,Σ)
∧

Z[σ ]

inducing a canonical isomorphism

Ξσ
∼= Z[σ ].

(9) Let x be a point of Ξσ , which can be canonically identified with a point
of Z[σ ] via the above isomorphism. Let us equip Ξ(σ) with a coarser
stratification induced by the Γ -orbits [τ ] of τ , where τ are the faces of σ .
Each such orbit [τ ] can be identified with the Γ ′-orbits [τ ′] of some cone τ ′
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in Σ+Z′ , where Z′ is a stratum whose closure in Xmin
H contains Z. Then there

exists an étale neighborhood

U → Xtor
H,Σ

of x and an étale morphism

U → Ξ(σ)

respecting x such that the stratification of U induced by that of Xtor
H,Σ

coincides with the stratification of U induced by that of Ξ(σ), in the sense
that the preimage of the stratum Z[τ ′] of Xtor

H,Σ coincides with the preimage
of the [τ ]-stratum of Ξ(σ) when [τ ] determines [τ ′] as explained above;
and such that the pullbacks of these étale morphisms to Z[σ ] and to Ξσ are
both open immersions. (In particular, Xtor

H,Σ and Ξ(σ), equipped with their
stratifications as explained above, are étale locally isomorphic at x.)

For our purpose in this article, it is useful to have the following more precise
version of (8) of Proposition 2.1.2:

PROPOSITION 2.1.3. Let us retain the same setting as in Proposition 2.1.2. For
each given Σ , and for each Z, consider the full toroidal embedding

ΞΣZ =

⋃
σ∈ΣZ

Ξ(σ)

defined by the cone decomposition ΣZ (cf. [36, Theorem 6.1.2.8 and Section
6.2.5]), and consider the formal completion

XΣZ := (ΞΣZ)
∧⋃
τ∈Σ
+

Z
Ξτ

of ΞΣZ along its closed subscheme
⋃

τ∈Σ+Z
Ξτ . Consider, for each σ ∈ Σ+Z , the

formal completion
X◦σ := (Ξ(σ))

∧

Ξ(σ)+

of Ξ(σ) along its closed subscheme

Ξ(σ)+ :=
⋃

τ∈Σ+Z , τ⊂σ

Ξτ .

Then XΣZ admits an open covering by X◦σ for σ running through elements of Σ+Z ,
and we have canonical flat morphisms

Xσ → X◦σ ↪→ XΣZ → Xtor
H,Σ (2.1.4)
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(of locally ringed spaces) inducing isomorphisms

X◦σ
∼

→ (Xtor
H,Σ)

∧⋃
τ∈Σ
+

Z , τ⊂σ
Z[τ ] (2.1.5)

and
XΣZ/Γ

∼

→ (Xtor
H,Σ)

∧⋃
[τ ]∈Σ

+

Z /Γ
Z[τ ] (2.1.6)

such that (2.1.6) induces (2.1.5) by restriction, extending the Xσ

∼

→ (Xtor
H,Σ)

∧

Z[σ ]

and Ξσ

∼

→ Z[σ ] in (8) of Proposition 2.1.2.
More precisely, for each σ ∈ Σ+Z , and for each affine open formal subscheme

W = Spf(R) of X◦σ , under the canonically induced (flat) morphisms

W := Spec(R)→ Xtor
H,Σ

and
Spec(R)→ Ξ(σ)

induced by (2.1.5), the stratification of W induced by that of Xtor
H,Σ coincides with

the stratification of W induced by that of Ξ(σ). In particular, the preimages of
XH and Ξ coincide as open subschemes of W . This open subscheme, which we
denote as

W 0,

is the locus over Spec(R) where the pullback of any Mumford family is abelian.
(For the meaning of Mumford families, see [36, Definition 6.2.5.28] in Case (Sm),
and see [38, (8.29)] and [41, the proof of Lemma 4.13] in Case (Nm). In Case
(Spl), the Mumford families are the pullbacks from those in Case (Nm); see
[43, the proof of Lemma 3.2.22]. In Case (Hdg), we consider any pullbacks of
Mumford families from auxiliary toroidal compactifications in Case (Sm).)

Proof. In Case (Sm), these follow from the very construction of Mumford
families as relative schemes (with additional structures) over the formal boundary
charts in [36, Section 6.2.5], and from the proof of [36, Theorem 6.4.1.1(5)] and
its modification in the proof of [42, Lemma 1.3.2.41], based on [36, Theorem
6.4.1.1(6)], by matching the pullback of the tautological semi-abelian scheme
over Xtor

H,Σ = Mtor
H2,Σ with the Mumford family over XΣZ = XΦH2 ,δH2 ,ΣΦH2 ,δH2

,
for each representative (ΦH2, δH2, σ ) as in [36, Definition 6.2.6.1]. (Since the
pullback of the stratification of Xtor

H,Σ is determined by the theory of degeneration,
it coincides with the pullback of the stratification of Ξ(σ); see the proofs of
[36, Propositions 6.3.1.6 and 6.3.2.10].) In Case (Nm), these follow from [41,
Propositions 5.1 and 5.20]. In Case (Spl), these follow from the proposition
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in Case (Nm), because the stratification of EX
spl,tor

H,Σ is the pullback of that of
EX

tor

H,Σ , and because EΞ spl
ΦH,δH

(σ ) ∼= EΞΦH,δH(σ )× ECΦH,δH
EC spl
ΦH,δH

(see [43, (3.2.13)]).
In Case (Hdg), this follows from the facts that Xtor

H,Σ is the normalization (and
hence finite) over some auxiliary good reduction toroidal compactification in Case
(Sm), and that each stratum Z[σ ] of Xtor

H,Σ is open and closed in the preimage of a
stratum of this auxiliary toroidal compactification, by the proof of [50, Proposition
4.2.13].

Let us also record the following strengthening of (9) of Proposition 2.1.2, which
follows from the same argument of the proofs of [45, Proposition 2.2(9) and
Corollary 2.4], but with the input [45, Proposition 2.2(8)] there replaced with
Proposition 2.1.3 here:

COROLLARY 2.1.7 (Cf. [45, Corollary 2.4]). Let x be any point of Xtor
H,Σ , which

we may assume to lie on some stratum Z[σ ] above some stratum Z of Xmin
H . Let σ

be any representative of [σ ], and let E ↪→ E(σ ) and Eσ be the affine toroidal
embedding and the closed σ -stratum of E(σ ) over Spec(Z) (defined analogously
as in the case of Ξ ↪→ Ξ(σ) and Ξσ , but simpler). Let

Z̃ :=
⋃

[τ ]∈Σ+Z /Γ

Z[τ ]

(with its reduced subscheme structure) in Xtor
H,Σ , which is the reduced subscheme

of Xtor
H,Σ ×Xmin

H
Z. Let

E(σ )+ :=
⋃

τ∈Σ+Z , τ⊂σ

Eτ

(with its reduced subscheme structure) in E(σ ). Then there exists an étale
neighborhood

U → Xtor
H,Σ

of x and an étale morphism

U → E(σ )×Spec(Z) C

such that the stratifications of U induced by that of Xtor
H,Σ and by that of E(σ )

coincide with each other; and such that the pullback of U → Xtor
H,Σ under the

canonical morphism Z̃→ Xtor
H,Σ and the pullback of U → E(σ )×Spec(Z) C under

the canonical morphism E(σ )+ ×Spec(Z) C → E(σ ) ×Spec(Z) C are both open
immersions.
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Suppose τ is a face of σ . Then the preimage of the stratum Z[τ ′] of Xtor
H,Σ in U,

where [τ ′] is determined by [τ ] as in (9) of Proposition 2.1.2, is the preimage of
the stratum Eτ of E(σ ). If we denote by Ztor

[τ ′] the closure of Z[τ ′] in Xtor
H,Σ , and by

Eτ (σ ) the closure of Eτ in E(σ ), then the above implies that, étale locally at x,
the open immersion

JZtor
[τ ′ ]
: Z[τ ′] ↪→ Ztor

[τ ′]

can be identified with the product of the canonical open immersion

JEτ (σ ) : Eτ ↪→ Eτ (σ )

with the identity morphism on C.
In particular, when τ = {0}, this means the preimage U of X in U coincides

with the preimage of E. Moreover, étale locally at x, the open immersion

JXtor
H,Σ
: X ↪→ Xtor

H,Σ

can be identified with the product of the canonical open immersion

JE(σ ) : E ↪→ E(σ )

with the identity morphism on C.

In the remainder of this subsection, we record some special cases where C→ Z
is known to be an abelian scheme torsor for each Z.

REMARK 2.1.8. Already in Case (Sm), where H2
⊂ G(Ẑ2) has no factor at p,

the morphism C → Z might not be an abelian scheme for each Z, for an arbitrary
H—see the errata for [36] on the author’s website, and also the clarification in
[42, Remark 1.3.1.6]. (It is only an abelian scheme torsor over a finite étale cover
of Z.) Nevertheless, C → Z is indeed an abelian scheme for all Z when H2 is a
principal level

U2(m) := ker(G(Ẑ2)→ G(Z/mZ))

for some integer m prime to 2, because the constructions in [36, Sections 6.2.2–
6.2.3] remain valid, despite the mistake when taking quotients in [36, Section
6.2.4].

Consider the following special case of Case (Nm) in Assumption 2.1.1:
Suppose p is a good prime (as in [36, Definition 1.4.1.1]) for an integral PEL
datum (O, ?, L , 〈 · , · 〉, h0) as in Assumption 2.1.1 (which we have insisted to
satisfy [36, Condition 1.4.3.10]). Consider the trivial collection J = {j0} with
{(gj0, L j0, 〈 · , · 〉j0)} = {(1, L , 〈 · , · 〉)}, as in [38, Example 2.3]. Let H be the
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principal level
U(n) := ker(G(Ẑ)→ G(Z/nZ))

for some n = n0 pr , where n0 > 3 is an integer prime to p, and where r > 0, so
that

Hp
= U p(n0) := ker(G(Ẑp)→ G(Z/n0Z))

is neat. Let

H0 := U(n0) := ker(G(Ẑ)→ G(Z/n0Z)) = HpG(Zp).

Then XH → S (respectively XH0 → S) is a pullback of EMH → ES0 (respectively
EMH0 →

ES0) under some morphism S→ ES0 = Spec(OF0,(p)).

LEMMA 2.1.9. With the setting as above in Case (Nm), the morphism C → Z at
level H is an abelian scheme for all Z. Moreover, if we denote by C0 → Z0 the
analogous morphism at level H0, then the canonical morphism C → C0 ×Z0 Z
can be identified with the multiplication by pr on the abelian scheme C over Z.

Proof. Let (ZH, ΦH, δH) be a representative of cusp label for MH. Let us denote
by (ZHp , ΦHp , δHp) the prime-to-p part of (ZH, ΦH, δH), and by (ZH0, ΦH0, δH0)

the induced representative at level H0. It suffices to show that, in the notation of
[38, Section 8], ECΦH,δH→

EM
ZH

H is an abelian scheme, and the canonical morphism
ECΦH,δH→

ECΦH0 ,δH0
×
EM
ZH0
H0

EM
ZH

H can be identified with the multiplication by pr on

the abelian scheme ECΦH,δH over EM
ZH

H .
Since p is a good prime for (O, ?, L , 〈 · , · 〉, h0), we have the morphisms

CΦHp ,δHp → MZHp

Hp → Spec(OF0,(p)) as in [36, Sections 6.2.3–6.2.4], where
the first one is an abelian scheme. By [36, Proposition 1.4.4.3], the canonical
morphism M

ZH0
H0
→ MZHp

Hp ⊗Z Q is an open and closed immersion. Since the

schemes EM
ZH0
H0

and EM
ZH

H over ES0 = Spec(OF0,(p)) are independent of the auxiliary
choices (see [38, Propositions 6.1 and 7.4]), by taking MZHp

Hp as an auxiliary
good reduction model, we have an open and closed immersion EM

ZH0
H0

↪→ MZHp

Hp ,

and we can take EM
ZH

H to be the normalization of MZHp

Hp under the composition

MZH
H → M

ZH0
H0
→ EM

ZH0
H0

↪→ MZHp

Hp of canonical morphisms.
Since Hp is a principal level, by the construction in [36, Section 6.2.3],

CΦHp ,δHp → MZHp

Hp is an abelian scheme. By the same reasoning as in the
previous paragraph, ECΦH0 ,δH0

→ EM
ZH0
H0

is canonically isomorphic to the pullback

of CΦHp ,δHp → MZHp

Hp under the open and closed immersion EM
ZH0
H0

↪→ MZHp

Hp ,
which is also an abelian scheme. Since H = U(n0 pr ) and H0 = U(n0) are both
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principal levels, the canonical morphism CΦH,δH → CΦH0 ,δH0
×

M
ZH0
H0

MZH
H can be

identified with the multiplication by pr on the abelian scheme CΦH,δH over MZH
H .

Hence, there is also an isomorphism CΦH,δH

∼

→ CΦH0 ,δH0
×

M
ZH0
H0

MZH
H , which

extends to an isomorphism ECΦH,δH

∼

→ ECΦH0 ,δH0
×
EM
ZH0
H0

EM
ZH

H , by Zariski’s main

theorem, because abelian schemes are smooth, and because the base scheme EM
ZH

H
is noetherian normal by construction. The assertions in the first paragraph above
now follow.

LEMMA 2.1.10. In Case (Spl) that is based on the same setting as above in Case
(Nm) (see the paragraph preceding Lemma 2.1.9), the analogous statements in
Lemma 2.1.9 also hold.

Proof. For each representative (ZH, ΦH, δH) of cusp label for MH, by [43,
Definition 3.2.3], EC spl

ΦH,δH
is the normalization of ECΦH,δH × EM

ZH
H
EM
ZH,spl

H . When

ECΦH,δH →
EM
ZH

H is an abelian scheme, this fiber product is already normal because
EM
ZH,spl

H is. Hence, EC spl
ΦH,δH

→ EM
ZH,spl

H is the pullback of ECΦH,δH →
EM
ZH

H , and the
lemma follows.

REMARK 2.1.11. Other than the above special cases in Cases (Nm) and (Spl)
(with the restrictive assumption that J = {j0}, as in the paragraph preceding
Lemma 2.1.9), it is also true in many other special cases that C → Z is an abelian
scheme, or at least an abelian scheme torsor, for each Z. See, for example, the
Siegel moduli with parahoric levels in [78]. (It is plausible that the argument
there can be generalized to all cases in Cases (Nm) and (Spl) where p is good
for (O, ?, L , 〈 · , · 〉, h0), and where H =HpHp for some principal Hp

⊂ G(Ẑp)

and for some parahoric subgroup Hp of G(Qp) that is the identity component of
the stabilizer of the base change of the collection L to Zp.)

REMARK 2.1.12. When this article was first written, our treatment in Case (Hdg)
was based on the 2015 version of [50], and hence inherited its assumptions on H
which ensure that the morphism MH→ MHaux ⊗Z(p) OF0,(v) (in Assumption 2.1.1)
is a closed immersion. This was also why we assumed in [45] and [46] that, in
Case (Hdg) there, the level at p was exactly the pullback of some hyperspecial
level at p of a symplectic similitude group (see, in particular, [46, Remark 2.1]).
Henceforth, this assumption has been removed in the 2018 version of [50], so
now we can also allow arbitrarily high levels at p in Case (Hdg). We can similarly
remove the corresponding assumptions in [45] and [46], because exactly the
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same arguments in [46] also work with the 2018 version of [50], except with
the minor update that, in [46, proof of Proposition 2.4], the fifth sentence in the
fifth paragraph should refer to [50, Definition 5.1.1] instead of 5.1.2.

2.2. Well-positioned subsets and subschemes. Let T be a locally noetherian
scheme over S. For the schemes such as XH (and morphisms among them) over
S, we shall denote their pullbacks to T by (XH)T, and so forth.

DEFINITION 2.2.1. We say that a locally closed subset (respectively subscheme)
Y of (XH)T is well positioned if there exists a collection

Y\
= {Y\

Z}Z

indexed by the strata Z of Xmin
H , where each Y\

Z is a locally closed subset
(respectively subscheme) of ZT such that, for each W as in Proposition 2.1.3,
the pullback of Y to (W 0)T under the induced morphism W 0

→ XH is, as a subset
(respectively subscheme) of (W 0)T, the pullback of Y\

Z under the composition
W 0
→ Z of the induced morphism W 0

→ Ξ with the canonical morphisms
Ξ → C → Z. For convenience, for each Y\

Z as above, we shall also denote by Y\

C

the pullback of Y\

Z under C → Z, as a subset (respectively subscheme). We shall
say that Y\ is associated with Y.

LEMMA 2.2.2. In Definition 2.2.1, it suffices to verify the condition for some
affine open covering of XΣZ =

⋃
σ∈Σ+Z

X◦σ by affine formal schemes W’s as in
Proposition 2.1.3 for just one collection Σ of cone decompositions.

Proof. Since locally closed subsets or subschemes coincide if and only if they do
over the open subsets in an open covering, for each Σ , it suffices to verify the
condition in Definition 2.2.1 for some open covering as in the statement of the
lemma. Since every two Σ’s has a common refinement, it suffices to show that,
if Σ ′ is a refinement of Σ , then the condition holds for Σ if and only if it holds
for Σ ′. In this case, the canonical morphism

Xtor
H,Σ ′ → Xtor

H,Σ

is proper, under which
⋃
[σ ′]∈Σ

′,+
Z /Γ Z[σ ′] is the reduced subscheme of the preimage

of
⋃
[σ ]∈Σ+Z /Γ

Z[σ ], which induces a proper morphism

(Xtor
H,Σ ′)

∧⋃
[σ ′ ]∈Σ

′,+
Z /Γ

Z[σ ′ ]
→ (Xtor

H,Σ)
∧⋃
[σ ]∈Σ

+

Z /Γ
Z[σ ]
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between the formal completions. On the other hand, for each σ ∈ Σ+Z , consider

Ξ(σ)′ :=
⋃

τ∈Σ
′,+
Z , τ⊂σ

Ξ(τ),

which admits a proper morphism

Ξ(σ)′→ Ξ(σ)

extending the identity morphism on Ξ and inducing a proper morphism⋃
τ∈Σ

′,+
Z , τ⊂σ

X◦τ → X◦σ

compatible with the compositions of morphisms

X◦τ ↪→ XΣ ′Z
/Γ

∼

→ (Xtor
H,Σ ′)

∧⋃
[σ ′ ]∈Σ

′,+
Z /Γ

Z[σ ′ ]

and
X◦σ ↪→ XΣZ/Γ

∼

→ (Xtor
H,Σ)

∧⋃
[σ ]∈Σ

+

Z /Γ
Z[σ ],

where the first morphisms in the compositions are open immersions, and where
the second morphisms in the compositions are the canonical isomorphisms, as in
Proposition 2.1.3. Therefore, for each affine open formal subscheme W = Spf(R)
of X◦σ , which induces a canonical morphism W = Spec(R)→ Ξ(σ), the pullback
of W under Ξ(σ)′ → Ξ(σ) is covered by finitely many Wi = Spec(Ri), where
Wi → Ξ(σ)′ is induced by some affine open formal subscheme Wi = Spf(Ri)

of X◦τi
, for some τi ∈ Σ

′,+

Z such that τi ⊂ σ . Since Ξ(σ)′ → Ξ(σ) induces the
identity morphism on Ξ by pullback on the target, W 0

=
⋃

i W 0
i is an open

covering, and the lemma follows, as desired.

The following three lemmas follow immediately from the definitions:

LEMMA 2.2.3. Suppose a locally closed subset (respectively subscheme) Y of
(XH)T is an intersection of locally closed subsets (respectively subschemes)
{Yi}i∈I of (XH)T, where each Yi is a well-positioned subset (respectively
subscheme) of (XH)T associated with Y\

i := {Y
\

i,Z}Z as in Definition 2.2.1.
Then Y is also a well-positioned subset (respectively subscheme), associated with
Y\
:= {

⋂
i∈I Y\

i,Z}Z as in Definition 2.2.1.

LEMMA 2.2.4. Suppose Y is a well-positioned subset (respectively subscheme)
of (XH)T, associated with Y\

= {Y\

Z}Z as in Definition 2.2.1. If Y0 is a closed
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subset of Y that is a well-positioned subset of (XH)T associated with Y\

0 = {Y
\

0,Z}Z,
where each Y\

0,Z is a closed subset of Y\

Z, then the open complement Y − Y0 is a
well-positioned subset (respectively subscheme), associated with {Y\

Z − Y\

0,Z}Z.
Similarly, if Y0 is an open subset of Y that is a well-positioned subset of (XH)T
associated with Y0,\

= {Y0,\
Z }Z, where each Y0,\

Z is an open subset of Y\

Z, then the
closed complement Y − Y0 is a well-positioned subset of (XH)T, associated with
{Y\

Z − Y0,\
Z }Z.

LEMMA 2.2.5. Suppose a locally closed subset (respectively subscheme) Y of
(XH)T is a union of its open subsets (respectively subschemes) {Yi}i∈I , where
each Yi is a well-positioned subset (respectively subscheme) of (XH)T associated
with Y\

i := {Y
\

i,Z}Z as in Definition 2.2.1. In the case of subschemes, suppose
moreover that, for each Z, the subschemes {Y\

i,Z}i∈I induce compatible open
subscheme structures over their finite intersections, so that

⋃
i∈I Y\

i,Z is defined.
Then Y is also a well-positioned subset (respectively subscheme), associated with
Y\
= {

⋃
i∈I Y\

i,Z}Z as in Definition 2.2.1.

LEMMA 2.2.6. Suppose Y is a closed well-positioned subset (respectively
subscheme) of (XH)T, and suppose Y\

= {Y\

Z}Z is associated with Y as in
Definition 2.2.1. Then Y\

Z is closed in ZT, and Y\

C is closed in CT, for each Z.

Proof. For each Z, since C → Z is proper and surjective, it suffices to show that
Y\

C is closed in CT. Assume otherwise, aiming for a contradiction. Then there
exists a point x in the closure of Y\

C in CT, but not in Y\

C . Since Ξ is fiberwise
dense in Ξ(σ) over C , and since Ξ → C and Ξσ → C are faithfully flat, by [21,
IV-2, 2.3.12], there exists a point y in the fiber of (Ξσ )T → CT above x such
that, for every affine neighborhood U of y in Ξ(σ)T, the pullback of Y\

C to U 0
:=

U ∩ ΞT is not closed. Since Xσ = (Ξ(σ))∧Ξσ → Ξ(σ) is flat and induces the
identity morphism along Ξσ , for some W as in Proposition 2.1.3, which we may
assume to contain y, the pullback Y\

W 0 of Y\

C to (W 0)T is not closed. But this
contradicts the assumption that Y is closed, because Y\

W 0 is by definition also the
pullback of Y to (W 0)T, as desired.

LEMMA 2.2.7. Suppose Y is a well-positioned subset (respectively subscheme)
of (XH)T, and suppose Y\

= {Y\

Z}Z is associated with Y as in Definition 2.2.1.
Then the closure (respectively schematic closure; see [10, Section 2.5, page 55])
Y of Y in (XH)T is a well-positioned subset (respectively subscheme) if and only
if the following condition holds: For each Z, the closure (respectively schematic
closure) Y

\

C of Y\

C in C is the pullback of the closure (respectively schematic
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closure) Y
\

Z of Y\

Z in Z, as a subset (respectively subscheme). In this case, the
closed complement Y0 := Y−Y is a well-positioned subset. (The above condition
is automatically satisfied when Y is closed in (XH)T, by Lemma 2.2.6; or when
C→ Z is flat for each Z, by [21, IV-2, 2.3.10] and [10, Section 2.5, Proposition 2].
Note that the schematic closures are defined because T is locally noetherian, in
which case the locally closed immersions Y→ (XH)T, Y\

C → CT, and Y\

Z → ZT

are automatically quasicompact, for all Z.) In this case, Y
\
:= {Y

\

Z}Z (respectively

Y\

0 := {Y
\

Z − Y\

Z}Z) is associated with Y (respectively Y0) as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, let YW 0 denote the pullback of Y to
(W 0)T. Since W 0

→ XH is flat, by [21, IV-2, 2.3.10] (respectively [10, Section
2.5, Proposition 2]), the closure (respectively schematic closure) YW 0 of YW 0 in
(W 0)T coincides with the pullback of Y. Similarly, since W 0

→ Ξ and Ξ → C
are flat, YW 0 coincides with the pullback of Y

\

C . Hence, by definition, Y is well
positioned if and only if the condition in the lemma holds.

DEFINITION 2.2.8. Let {Si}i∈I be a finite set of subschemes of a scheme S such
that each Si is a closed subset of the set-theoretic union

⋃
i∈I Si . For each i ∈ I ,

let Si denote the schematic closure of Si in S, and let Si,0 := Si − Si denote
the closed complement with its reduced subscheme structure. Then we define the
union

⋃
i∈I Si as a scheme as the (closed) schematic image of

∐
i∈I Si → S (see

[10, Section 2.5, page 55]) subtracted by the closed subset
⋂

i∈I Si,0.

LEMMA 2.2.9. Suppose a locally closed subset (respectively subscheme) Y of
(XH)T is a finite union of its closed subsets (respectively subschemes) {Yi}i∈I

(see Definition 2.2.8), where each Yi is a well-positioned subset (respectively
subscheme) of (XH)T. For each i ∈ I , suppose Y\

i = {Y
\

i,Z}Z is associated with Yi

as in Definition 2.2.1. In the case of subschemes, suppose moreover that C→ Z is
flat, for each Z. Then Y is also a well-positioned subset (respectively subscheme),
and Y\

:= {Y\

Z}Z, where Y\

Z :=
⋃

i∈I Y\

i,Z as a subset (respectively subscheme) for
each Z, is associated with Y as in Definition 2.2.1. (Implicit in this statement is
that each Y\

Z is defined in the case of subschemes.)

Proof. Suppose x0 is any point of Yi0,Z which specializes to a point x1 of Yi1,Z,
for some i0, i1 ∈ I . For each σ ∈ Σ+Z , since C → Z is proper and surjective,
since Ξ is fiberwise dense in Ξ(σ) over C , and since Ξ → C and Ξσ → C
are faithfully flat, there exist some W as in Proposition 2.1.3 and some points
x̃0 and x̃1 of W 0 lifting x0 and x1, respectively, such that x̃0 specializes to x̃1.
But x̃0 and x̃1 belong to the pullbacks of Yi0 and Yi1 , respectively. Therefore, the
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assumption that Yi0 is closed in Y shows that x̃1 is contained in the pullback of Yi0 ,
and so its image x1 is contained in Yi0,Z. Hence, Y\

i0,Z is closed in the set-theoretic
union Y\

Z :=
⋃

i∈I Y\

i,Z, and this union is locally closed as a subset of ZT. In the
case of subsets, Y\

:= {Y\

Z}Z is associated with Y as in Definition 2.2.1. In the
case of subschemes, each Y\

Z also admits the structure as a subscheme of ZT by
Definition 2.2.8, and Y\

:= {Y\

Z}Z is associated with Y as in Definition 2.2.1 by
[10, Section 2.5, Proposition 2], because W 0

→ XH and W 0
→ C are flat, and

because C → Z is flat by assumption.

LEMMA 2.2.10. If Y is a well-positioned subset (respectively subscheme) of
(XH)T, if Y\

= {Y\

Z}Z is associated with Y as in Definition 2.2.1, and if C → Z is
reduced (that is, is flat and has geometrically reduced fibers; see [21, IV-2, 6.8.1])
for all Z, then the unique reduced subscheme Yred over the underlying locally
closed subset Y of (XH)T is a well-positioned subscheme, and Y\

red = {Y
\

red,Z}Z,
where Y\

red,Z := (Y
\

Z)red for each Z, is associated with Yred as in Definition 2.2.1.
Moreover, if T = Spec(k) for some field k, and if CT→ ZT is (proper and) smooth
for all Z, then the smooth locus Ysm of Yred is a well-positioned subscheme, and
Y\

sm = {Y
\

sm,Z}Z, where Y\

sm,Z := (Y
\

Z)sm is the smooth locus of (Y\

Z)red for each Z,
is associated with Ysm as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, by the regularity of W → (XH)T
and W → Ξ(σ) (see [21, IV-2, 7.8.3(v)]), by the reducedness of C → Z, and
by [21, IV-2, 5.8.5, 6.4.1, and 6.5.3], the pullback of Yred to (W 0)T coincides
with the pullback of (Y\

Z)red as reduced subschemes, because their underlying sets
already coincide. Hence, Yred is a well-positioned subscheme. If T = Spec(k) and
if CT → ZT is smooth (which is, in particular, also regular), by [21, IV-2, 6.5.3]
again, the pullback of Ysm to (W 0)T coincides with the pullback of the smooth
locus (Y\

Z)sm of (Y\

Z)red. Since Ysm is open in Yred (by [21, IV-2, 6.12.5]), it is
locally closed, and hence also a well-positioned subscheme.

REMARK 2.2.11. It is natural to ask whether the collection Y\ in Definition 2.2.1
is uniquely determined by Y. In the case of subsets, this is true by definition. In
the case of subschemes, it is still true if C → Z is flat—see (4) of Theorem 2.3.2
below.

2.3. Partial compactifications of well-positioned subschemes. Let T be a
locally noetherian scheme over S, as in the beginning of Section 2.2.

DEFINITION 2.3.1. Suppose Y is a locally closed subset (respectively subscheme)
of (XH)T. Let Y denote the closure (respectively schematic closure) of Y in (XH)T,
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and let Y0 denote the complement subset Y − Y. (In this definition, we do not
assume that any of Y, Y, or Y0 is well positioned.) Let Y

min
denote the closure

(respectively schematic closure) of Y (or equivalently Y) in (Xmin
H )T, let Y

tor
Σ denote

the closure (respectively schematic closure) of Y (or equivalently Y) in (Xtor
H,Σ)T,

let Ymin
0 denote the closure of Y0 in (Xmin

H )T, and let Ytor
0,Σ denote the closure of

Y0 in (Xtor
H,Σ)T. In the case of subsets, we view them as subschemes with their

reduced subscheme structures. Let Ymin
:= Y

min
− Ymin

0 and Ytor
Σ := Y

tor
Σ − Ytor

0,Σ ,
with induced open immersions JYmin : Y ↪→ Ymin and JYtor

Σ
: Y ↪→ Ytor

Σ over
T. We shall call Ymin the partial minimal compactification of Y, and Ytor

Σ the
partial toroidal compactification of Y, with the term partial suppressed when Y
is a closed subscheme of (XH)T. (These partial compactifications are canonically

determined by XH

JXtor
H,Σ

↪→ Xtor
H,Σ

∮
H,Σ

→ Xmin
H , T, and Y, by their very constructions.)

THEOREM 2.3.2 (Cf. [45, Proposition 2.2] or Proposition 2.1.2). For each well-
positioned subset (respectively subscheme) Y of (XH)T with a collection Y\

=

{Y\

Z}Z as in Definition 2.2.1, its partial minimal and toroidal compactifications

JYmin : Y ↪→ Ymin

and
JYtor

Σ
: Y ↪→ Ytor

Σ

as in Definition 2.3.1 satisfy the following properties:

(1) For eachΣ , the proper surjective structural morphism
∮
H,Σ : X

tor
H,Σ → Xmin

H
induces a proper surjective structural morphism∮

Y,Σ
: Ytor

Σ → Ymin

(over T), so that

JYmin =

∮
Y,Σ
◦JYtor

Σ
.

The structural morphisms Ymin
→ T and Ytor

Σ → T are projective when Y is
closed in (XH)T (under the assumption in (4) of Proposition 2.1.2 that Σ is
projective).

(2) Consider an ample invertible sheaf ωXmin
H

over Xmin
H chosen as follows: In

Case (Sm), we take ωXmin
H

to be the pullback of ω as in [36, Theorem
7.2.4.1(2)]. In Case (Nm), we take ωXmin

H
to be the pullback of ω

EM
min
H ,J

as
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in [38, Proposition 6.4]. In Case (Spl), we take ωXmin
H

to be the pullback

of any of the ample ω
⊗(k,µ)

EM
spl,min
H ,J

as in [43, Theorem 4.3.1(3)]. In Case (Hdg),

we take ωXmin
H

to be the pullback of ωmin
K as in [50, Theorem 5.2.11(2)].

Then the pullback ωYmin of ωXmin
H

to Ymin is relatively ample over T, and its
further pullback ωYtor

Σ
to Ytor

Σ is semiample over the preimage of every affine
open subscheme of T. When T is affine and Y is closed in (XH)T, we have
canonical morphisms

Ytor
Σ → Proj

(⊕
k>0

Γ (Ytor
Σ , ω

⊗k
Ytor
Σ

)

)
→ Proj

(⊕
k>0

Γ (Ymin
, ω⊗k

Ymin)

)
∼= Ymin

, (2.3.3)

which coincides with the Stein factorization of
∮

Y,Σ : Y
tor
Σ → Ymin.

(3) The stratification of Xmin
H by locally closed subschemes Z induces a

stratification of Ymin by locally closed subschemes

YZ := Z×Xmin
H

Ymin
,

each of which is equipped with a canonical morphism Y\

Z → YZ

which induces a bijection between the underlying subsets of ZT (see
Definition 2.2.1), with an open dense stratum Y\

Z = Y for Z = XH. For each
Σ , the stratification of Xtor

H,Σ by locally closed subschemes Z[σ ] induces a
stratification of Ytor

Σ by locally closed subschemes

YZ[σ ] := Z[σ ] ×Xtor
H,Σ

Ytor
Σ ,

with an open dense stratum YZ[{0}] = Y for Z = XH and σ = {0}. For
each Z[σ ], the canonical surjective morphism Z[σ ]→ Z induces a surjective
morphism YZ[σ ] → YZ which factors through a (surjective) morphism
YZ[σ ] → Y\

Z (which is the pullback of Z[σ ] → Z when Y is a well-positioned
subscheme of (XH)T). Hence, YZ[σ ] is nonempty exactly when Y\

Z is, and
exactly when YZ is.

(4) For each top-dimensional cone σ in Σ+Z , we have a canonical isomorphism
YZ[σ ]

∼

→ Y\

C , which shows that Y\

C is determined by Y, for each Z. Thus,
in the case of subschemes, if the surjection C → Z is flat, then Y\

Z is
determined by its pullback Y\

C under a faithfully flat morphism, and hence
also by Y. In the case of subsets, Y\

Z is determined by Y\

C and Y by definition,
without the flatness assumption on C → Z. (See Remark 2.2.11.)
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(5) For each representative σ ∈ Σ+Z of an orbit [σ ] ∈ Σ+Z /Γ , and for ? =
Ξ , Ξ(σ), Ξσ , Xσ , X◦σ , and XΣZ , let Y\

? denote the pullback of ? under the
canonical morphism Y\

C → C. (In the case of subsets, we view Y\

Z and
Y\

C as subschemes of Z and C, respectively, with their reduced subscheme
structures, so that the above all make sense as statements for schemes and
formal schemes. In this case, C → Z induces a proper surjective morphism
Y\

C → Y\

Z of schemes, which is the pullback of C → Z when C → Z is
reduced; that is, is flat and has geometrically reduced fibers, as in [21, IV-2,
6.8.1].) Then we have a canonical isomorphism

Y\

Xσ

∼

→ (Ytor
Σ )
∧

YZ[σ ]
(2.3.4)

induced by the canonical isomorphism Xσ

∼

→ (Xtor
H,Σ)

∧

Z[σ ] , extending a

canonical isomorphism Y\

Ξσ

∼

→ YZ[σ ] induced by the canonical isomorphism
Ξσ

∼

→ Z[σ ] (see (8) of Proposition 2.1.2), which extends to flat morphisms

Y\

Xσ
→ Y\

X◦σ
↪→ Y\

XΣZ
→ Ytor

Σ (2.3.5)

induced by (2.1.4), inducing compatible canonical isomorphisms

Y\

X◦σ

∼

→ (Ytor
Σ )
∧⋃
τ∈Σ
+

Z , τ⊂σ
YZ[τ ]

(2.3.6)

and
Y\

XΣZ
/Γ

∼

→ (Ytor
Σ )
∧⋃
[τ ]∈Σ

+

Z /Γ
YZ[τ ]

(2.3.7)

induced by (2.1.5) and (2.1.6), respectively.

(6) For each σ ∈ Σ+Z , and for each affine open formal subscheme Spf(R)
of Y\

Xσ
, under the canonically induced (flat) morphisms Spec(R) → Ytor

Σ

and Spec(R) → Y\

Ξ(σ) induced by (2.3.4), the stratification of Spec(R)
induced by that of Ytor

Σ coincides with the stratification of Spec(R) induced
by that of Y\

Ξ(σ). In particular, the preimages of Y and Y\

Ξ coincide as open
subschemes of Spec(R). Analogous statements are true for Y\

X◦σ
and (2.3.6).

(7) Let x be a point of Y\

Ξσ
, which can be canonically identified with a point of

YZ[σ ] via the above isomorphism. Then there exists an étale neighborhood

U → Ytor
Σ

of x and an étale morphism

U → Y\

Ξ(σ)
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respecting x such that the stratification of U induced by that of Ytor
Σ

coincides with the stratification of U induced by that of Y\

Ξ(σ), or rather by
that of Ξ(σ) as in (9) of Proposition 2.1.2; and such that the pullbacks of
these étale morphisms to YZ[σ ] and to Y\

Ξσ
are both open immersions. (In

particular, Ytor
Σ and Y\

Ξ(σ), equipped with their stratifications as explained
above, are étale locally isomorphic at x.) There also exist étale morphisms
as above with the analogous but stronger property that their respective
pullbacks to

⋃
τ∈Σ+Z , τ⊂σ

YZ[τ ] and
⋃

τ∈Σ+Z , τ⊂σ
Y\

Ξτ
(with their reduced

structures) are both open immersions.

Proof. The properties (1) and (2), and the assertions concerning underlying
subsets in the property (3), follow immediately from the definitions.

Let Y, Y
min

, Y
tor
Σ , Y0, Ymin

0 , and Ytor
0,Σ be as in Definition 2.3.1. For each Z, let

Y
\

C denote the closure (respectively schematic closure) of Y\

C in CT, let Y\

C,0 :=

Y
\

C−Y\

C denote the complement, let Y
\

Z denote the closure (respectively schematic
closure) of Y\

Z in ZT, and let Y\

Z,0 := Y
\

Z − Y\

Z denote the complement. For each
W as in Proposition 2.1.3, as in the proof of Lemma 2.2.7, by [21, IV-2, 2.3.10],
by the definition of closures (respectively schematic closures), and by the flatness
of W → (Xtor

H,Σ)T and W → Ξ(σ) → C , the pullback of Ytor
Σ = Y

tor
Σ − Ytor

0,Σ

to WT is the pullback of Y\

C = Y
\

C − Y\

C,0, as a subset (respectively subscheme).
When Y is just given as a subset of (XH)T, by the regularity of W → (Xtor

H,Σ)T and
W → Ξ(σ) (see [21, IV-2, 6.8.1 and 7.8.3(v)]), by the normality of Ξ(σ)→ C
(see [38, Proposition 8.14] and its proof), and by [21, IV-2, 5.8.5, 5.8.6, 6.4.1, and
6.5.3], it follows that the pullback of Ytor

Σ to WT also coincides with the pullback
of Y\

C as reduced subschemes.
By the definition of W = Spec(R) by an affine open subscheme W = Spf(R)

of X◦σ , by Proposition 2.1.3, the pullback of YZ[σ ] := Z[σ ] ×Xtor
H,Σ

Ytor
Σ under the

canonical isomorphism Ξσ

∼

→ Z[σ ] coincides with the pullback of Y\

C , for all
σ ∈ Σ+Z , and hence all the assertions in the properties (5) and (6) follow. Since
the canonical morphism Ξσ → C is an isomorphism when σ is top dimensional,
this shows that Y\

C is uniquely determined by Y, and the remaining assertions
in the property (4) also follow. Since the canonical morphisms Ξσ → C → Z
are surjective, whose composition can be identified with the surjection Z[σ ] � Z
induced by

∮
H,Σ : X

tor
H,Σ → Xmin

H , the induced morphisms

YZ[σ ]
∼= Y\

Ξσ
→ Y\

C → Y\

Z → YZ

are also surjective, where the last morphism induces a bijection between subsets
of ZT, and hence all assertions in the property (3) follow.
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Finally, let us prove the property (7). We may and we shall assume that S is
excellent, because the models in Assumption 2.1.1, and their compactifications
in Proposition 2.1.2, are all defined over excellent Dedekind domains. Since Xtor

H
and Ξ(σ) are of finite presentation over S, by the usual limit argument, we may
and we shall assume that T is of finite type over S. By Artin’s approximation
(see [2, Theorem 1.12, and the proof of the corollaries in Section 2]), and by
the isomorphism (2.3.4) established above, we have some étale neighborhood
U → Ytor

Σ of x and an étale morphism U → Y\

Ξ(σ) such that the preimages of YZ[σ ]

and Y\

Ξσ
coincide, such that the pullbacks of the étale morphisms to YZ[σ ] and Y\

Ξσ

are open immersions, and such that the stratifications induced by those of Xtor
H,Σ

and Ξ(σ) can be matched up to automorphisms of the completion of U along
the common preimage of YZ[σ ] and Y\

Ξσ
. The condition for such automorphisms

to match stratifications (or rather some finite collections of closed subschemes) is
equivalent to the solution of finitely many algebraic equations. Thus, by applying
Artin’s approximation again, up to modifying the choices of U → Ytor

Σ and
U → Y\

Ξ(σ), we may assume that the induced stratifications already coincide over
U , so that the first assertion of the property (7) holds. By using the isomorphism
(2.3.6) instead of (2.3.4) in the above argument, we also obtain the other stronger
assertion of the property (7), as desired.

REMARK 2.3.8. In Case (Sm), the assertions for Ytor
Σ in Theorem 2.3.2 show that

our notion of well-positioned subschemes is consistent with the one introduced
by Boxer in [12, Section 3.4].

REMARK 2.3.9. Shimura subvarieties are not well positioned in general, even as
subsets, and that is why their compactifications (which can be constructed in a
similar way) are more difficult to describe.

Thanks to the proof of Theorem 2.3.2, we can slightly weaken Definition 2.2.1
as follows:

LEMMA 2.3.10. Suppose T is a locally noetherian scheme over S, and suppose Y
is a locally closed subset of (XH)T such that, for each Z, there exists some subset
Y\

Z of ZT such that, for each W as in Proposition 2.1.3, the pullback of Y to (W 0)T

coincides with the pullback of Y\

Z. Then Y\

Z is automatically locally closed in ZT.

Proof. Let Ytor
Σ be as in Definition 2.3.1. Since C → Z is proper and surjective, it

suffices to show that the pullback Y\

C of Y\

Z is locally closed in CT. Since W →
Xtor

H,Σ and W → Ξ(σ) are flat, by [21, IV-2, 2.3.10], the pullback of Ytor
Σ to Ws
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also coincides with the pullback of Y\

C . Since W is arbitrary, we may and we shall
assume that the σ involved is top dimensional in Σ+Z , in which case we have an
isomorphism YZ[σ ]

∼

→ Y\

C induced by Z[σ ]
∼

→ C , as in (4) of Theorem 2.3.2. Since
YZ[σ ] is locally closed in (Z[σ ])T by its definition as a pullback of Ytor

Σ , it follows
that Y\

C is locally closed in CT, as desired.

Thanks to (7) of Theorem 2.3.2, we also have the following:

PROPOSITION 2.3.11. If Y is a well-positioned subset (respectively subscheme)
of (XH)T, and if Y\

C → Y\

Z has connected fibers for all Z, then the open-and-closed
subsets (respectively subschemes) of Y are well-positioned subsets (respectively
subschemes), and their closures in Ymin and Ytor

Σ are also open and closed in these
partial compactifications.

Proof. Suppose Y\
= {Y\

Z}Z is associated with Y as in Definition 2.2.1. Suppose
Y1 is an open-and-closed subset (respectively subscheme) of Y. Let Y2 := Y−Y1

(with its open subscheme structure when Y is a subscheme). We claim that their
respective closures Ytor

1,Σ and Ytor
2,Σ in Ytor

Σ do not overlap.
Suppose, to the contrary, that there exist some Z and σ ∈ Σ+Z with some

point x ∈ YZ[σ ] ∩Ytor
1,Σ ∩Ytor

2,Σ , which we identify with a point of YΞσ via the
isomorphism Y\

Ξσ
∼= YZ[σ ] in (5) of Theorem 2.3.2. Let U → Ytor

Σ and U → Y\

Ξ(σ)

be étale morphisms as in (7) of Theorem 2.3.2, whose pullbacks to YZ[σ ] and to
Y\

Ξσ
are both open immersions. Up to replacing U with an open subscheme, we

may and we shall assume that U → Ytor
Σ and U → Y\

Ξ(σ) have connected fibers.
Consider the open subscheme U := U ×Ytor

Σ
Y of U , which can be identified with

U ×Y\
Ξ(σ)

Y\

Ξ because the étale morphisms match stratification’s. Let y denote

the image of x in Y\

C . Since U → Y\

Ξ(σ) is étale, and since Y\

Ξ ↪→ Y\

Ξ(σ) is an
affine toroidal embedding over Y\

C , which is fiberwise dense, for each i , there
exists some point xi of the pullback of Yi to U which specializes to x in U and is
mapped to y in Y\

C . Since Ξ → C is a torus torsor, the fiber of U → Y\

Ξ → Y\

C
above y is connected, which cannot overlap with both the pullbacks of Y1 and Y2.
Hence, such an x cannot exist, and the claim follows. So Ytor

1,Σ is also open and
closed in Ytor

Σ .
Now consider Yi,Z[σ ] := YZ[σ ] ∩ Ytor

i,Σ , for each i . Since Y\

C → Y\

Z has connected
fibers, so does the surjective morphism YZ[σ ]

∼= Y\

Ξσ
→ Y\

Z. Consequently, the
image Y\

i,Z of Yi,Z[σ ] in Y\

Z, which necessarily coincides with YZ ∩Ymin
i as a subset

of ZT, is open and closed in Y\

Z, and Yi,Z[σ ] coincides with the pullback of Y\

i,Z, for
each i , because Y\

1,Z and Y\

2,Z do not overlap either. So Ymin
1 is also open and closed

in Ymin. In YZ[σ ] (respectively Y\

Z), let us equip Yi,Z[σ ] (respectively Y\

i,Z) with its
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reduced subscheme structure in the case of subsets, and with the canonical open
subscheme structure in the case of subschemes. Then the canonical isomorphism
(2.1.5) induces an isomorphism Y\

X◦σ
×Y\Z

Y\

i,Z
∼

→ (Ytor
i,Σ)
∧⋃
τ∈Σ
+

Z , τ⊂σ
Yi,Z[τ ]

. Thus, for

each W as in Proposition 2.1.3, the pullback of Y1 to (W 0)T coincides with the
pullback of Y\

1,Z. Hence, Y1 is well positioned, with associated Y\

1 := {Y
\

1,Z}Z as
in Definition 2.2.1, as desired.

PROPOSITION 2.3.12. If Y is a well-positioned subset of (XH)T, and if Y\

C → Y\

Z
is flat and has irreducible fibers for all Z, then the irreducible components of Y
are well-positioned subsets, and their closures in Ymin and Ytor

Σ are also irreducible
components of these partial compactifications.

Proof. Let Y1 be an irreducible component of Y. By definition, its closures
in Ymin and Ytor

Σ , respectively, are irreducible components of these partial
compactifications. It remains to show that Y1 is well positioned. Let U → Ytor

Σ

and U → Y\

Ξ(σ) be étale morphisms as in (7) of Theorem 2.3.2, whose pullbacks
to YZ[σ ] and to Y\

Ξσ
are both open immersions. By the construction of U in the

proof there, we may and we shall assume that it is an approximation of the
pullback of Y to some affine formal scheme W = Spf(R) as in Proposition 2.1.3,
with associated affine scheme W = Spec(R). Up to replacing U with an open
subscheme, we may and we shall assume that the étale morphisms U → Ytor

Σ

and U → Y\

Ξ(σ) have irreducible fibers. By [21, IV-2, 2.3.10], the pullback
U 1 of Y1 to U is either empty or an irreducible component of U . Suppose U 1 is
nonempty, with generic point ηU 1

, which is maximal among points of U 1. Since
the morphisms U → Y\

Ξ(σ) → Y\

C → Y\

Z are flat and have irreducible fibers (by
assumption), by [21, IV-2, 2.3.10] again, the image ηZ of ηU 1

in Y\

Z is maximal
among points of Y\

Z, whose closure {ηZ} in Y\

Z is an irreducible component, and
U 1 coincides with the pullback of {ηZ}. Since Y\

C → Y\

Z has irreducible and hence
connected fibers,

∮
Y,Σ : Ytor

Σ → Ymin has connected fibers over YZ. Hence, over
each connected component of Y\

Z, there is at most one irreducible component
of the form {ηZ} as above. Let Y\

1,Z be the (disjoint) union of such irreducible
components. Then its pullback to any W (associated with W) as above coincides
with the pullback of {ηZ}, and hence with the pullback of U 1, or rather of Y1.
Since the affine formal schemes W as above form an open covering of XΣZ , for
each Z, it follows from Lemma 2.2.2 that Y1 is well positioned, as desired.

By the same arguments as in the proofs of [38, Propositions 14.1 and 14.2] and
[43, Corollary 3.4.15], using the regularity of W → XH and W → Ξ(σ) (see
[21, IV-2, 6.8.1 and 7.8.3(v)]) for each W as in Proposition 2.1.3, and using the
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facts that Ξ(σ) → C is surjective and smooth (under the assumption in (4) of
Proposition 2.1.2 that Σ is smooth), and that Ξ is fiberwise dense in Ξ(σ) over
C , we obtain the following for any well-positioned subset or subscheme Y of
(XH)T as in Definition 2.2.1, where we equipped Y with the canonical reduced
subscheme structure when Y is only given as a subset, with partial toroidal
compactification Ytor

Σ as in Definition 2.3.1:

PROPOSITION 2.3.13 (Cf. [38, Proposition 14.1]). Under the assumption
(in (4) of Proposition 2.1.2) that Σ is smooth, Y is reduced (respectively
normal, respectively regular, respectively Cohen–Macaulay, respectively (Ri),
respectively (Si), one property for each i > 0, respectively flat over T, respectively
faithfully flat over T) if and only if Ytor

Σ is.

PROPOSITION 2.3.14 (Cf. [38, Proposition 14.2]). Let P be the property of being
one of the following: reduced, geometrically reduced, normal, geometrically
normal, regular, geometrically regular, Cohen–Macaulay, (Ri), geometric (Ri),
and (Si), one property for each i > 0 (see [21, IV-2, 5.7.2 and 5.8.2]). Under the
assumption (in (4) of Proposition 2.1.2) that Σ is smooth, the fiber of Ytor

Σ → T
over some point t of T satisfies property P if and only if the corresponding fiber
of the open subscheme Y→ T over t does.

However, note that the analogues of Propositions 2.3.13 and 2.3.14 for Ymin are
not true in general. (They are already not true for Xmin

H in general.)

COROLLARY 2.3.15 (Cf. [38, Corollary 14.4] and [43, Corollary 3.4.15]).
Suppose that Y → T is flat, that its geometric fibers are reduced (respectively
have integral local rings), and that Y is closed in (XH)T. Then all geometric
fibers of Ytor

Σ → T have the same number of connected (respectively irreducible)
components, and the same is true for Y→ T.

The following technical result will be useful in Section 4.5: (The readers may
skip it for now, and come back only when reading the proof of Lemma 4.5.24.)

LEMMA 2.3.16. Suppose we are in Cases (Sm), (Nm), and (Spl). Suppose Y is
a well-positioned subset of (XH)T, and suppose Y\

= {Y\

Z}Z is associated with
Y as in Definition 2.2.1. For each stratum Z of Xmin

H , since it is an analogue of
XH, we can define Zmin and Ymin

Z as in the case of Xmin
H and Ymin. Let Z denote

the closure of Z in Xmin
H , and let YZ ⊂ ZT be defined by YZ as in the case of

Ymin
⊂ (Xmin

H )T in Definition 2.3.1. Then the identity morphism on Z extends to a
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canonical isomorphism Zmin ∼
→ Z. Moreover, YZ is a well-positioned subset of ZT,

and the isomorphism Zmin ∼

→ Z induces a canonical isomorphism Ymin
Z

∼

→ YZ.

Proof. We can also define Ztor and Ytor
Z (for some collection of cone

decompositions). Since we are in Cases (Sm), (Nm), and (Spl), by the same
argument as in the proof of [45, Proposition 4.2], up to replacing Σ with a
refinement, there exists some top-dimensional σ ∈ Σ+Z such that the canonical
morphism Z[σ ] ∼= C → Z extends to a morphism from the closure Ztor

[σ ] of Z[σ ] in
Xtor

H,Σ to Ztor. Moreover, the description of formal charts there shows that YZ = Y\

Z

is a well-positioned subset of ZT, with associated collection (YZ)
\
= {(YZ)

\

Z′}Z
′

indexed by the strata Z′ of Xmin contained in Z. By taking any ωXmin
H

as in (2) of
Theorem 2.3.2 such that its pullback to Ztor

[σ ] descends to an ample invertible sheaf
over Zmin, the canonical morphism Ztor

[σ ] → Xmin
H induces a canonical morphism

Zmin
→ Z, which in turn induces a canonical morphism Ymin

Z → YZ. (Note that
there is at most one morphism Zmin

→ Z extending the identity morphism on the
open dense subscheme Z of the noetherian normal scheme Zmin.) For each stratum
Z′ of Xmin

H contained in Z, and for each τ ′ ∈ Σ+Z′ , the composition Z′
[τ ′] � Z′→ Z

factors through Z′→ Zmin
→ Z. Therefore, Zmin

→ Z induces a bijection between
geometric points, and even induces the identity morphism from Z′ as a stratum of
Zmin to Z′ as a stratum of Xmin

H . Since Y\

Z′ and YZ′ coincide as subsets of Z′T, for
each Z′, if Zmin

→ Z is an isomorphism, then the induced morphism Ymin
Z → YZ

is also an isomorphism.
It remains to show that the canonical morphism Zmin

→ Z is an isomorphism.
By the same strategy as in [19, Ch. V, page 152], it suffices to show that it
induces isomorphisms between completions of strict local rings. Let Z′ be any
stratum of Xmin contained in Z. For the sake of clarity, we shall denote Z′

as Z′′ when we view it as a stratum of Zmin, and denote with superscripts ′

(respectively ′′) various objects of Xmin
H (respectively Zmin) that are associated

with Z′ (respectively Z′′). The morphism Ztor
[σ ] → Xmin

H that induced Zmin
→ Z

also induces a proper surjective morphism C ′ → C ′′ between noetherian normal
schemes, and an injective homomorphism S′′ → S′ such that the pullback of
Ψ ′′(`′′) under C ′ → C ′′ is canonically isomorphic to Ψ ′(`′) when `′ is the image
of `′′ under S′′→ S′, so that we have canonically induced injective morphisms

FJ′′,(`
′′)
:= (C ′′→ Z′′)∗Ψ ′′(`′′)→ FJ′,(`

′)
:= (C ′→ Z′)∗Ψ ′(`′).

By [36, Proposition 7.2.3.16, and the errata] in Case (Sm), [38, Proposition 12.13]
in Case (Nm), and [43, Proposition 4.2.20] in Case (Spl), for each geometric point
x̄ of Z′, which we also view as geometric points of Zmin and Z, we have ring
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homomorphisms

(OZ)
∧

x̄
can.
→ (OZmin)∧x̄

∼=

( ∏
`′′∈(P′′)∨

(FJ′′,(`
′′))∧x̄

)Γ ′′

→

( ∏
`′∈(P′)∨∩ker(S′→S)

(FJ′,(`
′))∧x̄

)Stab(P′)∨∩ker(S′→S)(Γ
′)

, (2.3.17)

where ( · )∧x̄ denotes the pullbacks of various objects ( · ) over Z′ to the completion
of the strict local ring of Z′ at x̄ , where the first homomorphism is injective
because Z is reduced and Zmin

→ Z is surjective, where the third homomorphism
is defined and injective by the explanation in the previous sentence, and where the
composition of all homomorphisms in (2.3.17) is an isomorphism. But then all
homomorphisms in (2.3.17) are isomorphisms, because they are already known
to be injective. Thus, Zmin

→ Z is an isomorphism, because Z′ and x̄ are arbitrary,
as desired.

2.4. Functorial properties and Hecke actions.

PROPOSITION 2.4.1. Under any morphism T′→ T of locally noetherian schemes
over S, the pullback

Y′ := Y×T T′

of a well-positioned subset (respectively subscheme) Y of (XH)T is a well-
positioned subset (respectively subscheme) of (XH)T′ . If Y\

= {Y\

Z}Z is associated
with Y, then

Y′,\ := {Y\

Z ×T T′}

is associated with Y′, as in Definition 2.2.1. Let Y′,min and Y′,tor
Σ denote the partial

minimal and toroidal compactifications of Y′, respectively, as in Definition 2.3.1.
Then the canonical morphisms Y′,min

→ Ymin
×T T′ and Y′,tor

Σ → Ytor
Σ ×T T′ induce

isomorphisms between the reduced subschemes. In the case of subschemes, the
latter morphism Y′,tor

Σ → Ytor
Σ ×T T′ is an isomorphism, without having to pass to

the morphism between reduced subschemes.

Proof. For each Z, let Y\

Z be associated with Y as in Definition 2.2.1, and let
Y\

C denote its pullback under C → Z. Then Y′ is a well-positioned subset
(respectively subscheme) because the pullback of Y′ to (W 0)T′ coincides with
the pullback of Y′,\C := Y\

C ×T T′, which is in turn the pullback of Y′,\Z := Y\

Z×T T′,
as subsets (respectively subschemes), for each W as in Proposition 2.1.3. As in
the proof of Theorem 2.3.2, by the flatness of W → Xtor

H,Σ and W → Ξ(σ),
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the pullback of Y′,tor
Σ to WT′ coincides with the pullback of Y′,\C , which also

coincides with the pullback of Ytor
Σ , as a subset (respectively subscheme). The

remaining assertions then follow from the definitions.

PROPOSITION 2.4.2. If Y is a well-positioned subset (respectively subscheme) of
(XH)T, if (XH′)T → (XH)T is defined by an inclusion H′ ⊂ H of open compact
subgroups of G(Ẑ) (and other data), then the preimage Y′ of Y in (XH′)T is also
a well-positioned subset (respectively subscheme). If Y\

= {Y\

Z}Z is associated
with Y, and if Y′,\Z′ is the pullback of Y\

Z under Z′ → Z, for each stratum Z′

of Xmin
H′ above a stratum Z of Xmin

H , then Y′,\ := {Y′,\Z′ } is associated with Y′, as
in Definition 2.2.1. Let Y′,min and Y′,tor

Σ ′ denote the partial compactifications of
Y′, respectively, as in Definition 2.3.1. Then the canonical morphisms Y′,min

→

Ymin
×Xmin

H
Xmin

H′ and Y′,tor
Σ ′ → Ytor

Σ ×Xtor
H,Σ

Xtor
H′,Σ ′ induce isomorphisms between the

reduced subschemes. In the case of subschemes, the latter morphism between
partial toroidal compactifications is an isomorphism by itself.

Proof. By [36, Proposition 6.4.3.4] in Case (Sm), by [41, Proposition 7.1] in
Case (Nm), by [43, Proposition 3.4.10] in Case (Spl), and by [50, Sections 4.1.12
and 5.2.12] and the same facts used in the proof of Proposition 2.1.3 in Case
(Hdg), we have a proper morphism Xtor

H′,Σ ′ → Xtor
H,Σ for some Σ ′ refining Σ ,

which induces a proper morphism (Xtor
H′,Σ ′)

∧⋃
[σ ′ ]∈Σ

′,+

Z′
/Γ ′

Z′
[σ ′ ]

→ (Xtor
H,Σ)

∧⋃
[σ ]∈Σ

+

Z /Γ
Z[σ ]

between the formal completions (where any object denoted with a prime means
the analogous object at level H′). This proper morphism is compatible with the
proper morphism Ξ(σ)′ :=

⋃
τ∈Σ

′,+
Z , τ⊂σ Ξ

′(τ ) → Ξ(σ) extending Ξ ′ → Ξ

and covering C ′ → C and Z′ → Z. For each affine open formal subscheme
W= Spf(R) of X◦σ , which induces a canonical morphism W = Spec(R)→Ξ(σ),
its pullback under Ξ(σ)′ → Ξ(σ) is covered by finitely many Wi = Spec(Ri),
where Spec(Ri) → Ξ(σ)′ is induced by some affine open formal subscheme
Wi = Spf(Ri) of X′,◦τi

, for some τi ∈ Σ
′,+

Z such that τi ⊂ σ .
Now suppose Y is a well-positioned subset (respectively subscheme), with

associated Y\
= {Y\

Z}Z as in Definition 2.2.1. Let us denote by Y′ the pullback
of Y to (XH′)T, and by Y′,\Z′ the pullback of Y\

Z to Z′. Since the pullback of Y
to (W 0)T coincides with the pullback of Y\

Z, since Ξ(σ)′ → Ξ(σ) extends the
canonical morphismΞ ′→ Ξ , and since the two compositionsΞ ′→ Z′→ Z and
Ξ ′→ Ξ → Z coincide, the pullback of Y to (W 0

i )T coincides with the pullback of
Y′,\Z′ as a subset (respectively subscheme). Since W is arbitrary, Y′ is also a well-
positioned subset (respectively subscheme), with associated Y′,\ := {Y′,\Z′ } as in
Definition 2.2.1. As in the proof of Theorem 2.3.2, by the flatness of W → Xtor

H,Σ ,
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W → Ξ(σ), Wi → Xtor
H′,Σ ′ and Wi → Ξ(σ)′, the pullback of Ytor

Σ to WT coincides
with the pullback of Y\

Z, and the pullback of Y′,tor
Σ ′ to (Wi)T coincides with the

pullback of Y′,\Z′ , and so the pullback of Y′,tor
Σ ′ to (Wi)T coincides with the pullback

of Ytor
Σ , as subsets (respectively subschemes), for each i . The remaining assertions

then follow from the definitions.

For many arithmetic applications, it is desirable to have the following:

PROPOSITION 2.4.3 (Cf. [38, Propositions 13.7, 13.9, and 13.15] and [41,
Propositions 7.3 and 7.5]). Suppose that H and H′ are two open compact
subgroups of G(Ẑ), that g ∈ G(A∞), and thatΣ ′ is a g-refinement ofΣ as in [36,
Definition 6.4.3.3], such that H′ ⊂ gHg−1, and such that the morphisms

[g] : XH′ → XH, (2.4.4)

[g]min
: Xmin

H′ → Xmin
H , (2.4.5)

and
[g]tor

: Xtor
H′,Σ ′ → Xtor

H,Σ (2.4.6)

are compatibly defined. (See [36, Propositions 6.4.3.4 and 7.2.5.1] in Case (Sm);
see [38, Propositions 13.7, 13.9, and 13.15] and [41, Proposition 7.3] in Case
(Nm); see [43, Propositions 2.4.17, 3.4.10, and 4.3.11] in Case (Spl); and see [50,
Sections 4.1.12 and 5.2.12] in Case (Hdg).)

Suppose that T′ → T is a morphism over S, that Y is a well-positioned
subset (respectively subscheme) of (XH)T, and that Y′ is a well-positioned subset
(respectively subscheme) of (XH′)T′ , such that the morphism (2.4.4) induces a
morphism

[g] : Y′→ Y (2.4.7)

of sets (respectively schemes). Then the morphism (2.4.5) induces a morphism

[g]min
: Y′,min

→ Ymin (2.4.8)

extending (2.4.7), and the morphism (2.4.6) induces a morphism

[g]tor
: Y′,tor

Σ ′ → Ytor
Σ (2.4.9)

extending (2.4.7) and compatible with (2.4.8) under the canonical morphisms∮
H′,Σ ′ : Y

′,tor
Σ ′ → Y′,min and

∮
H,Σ : Y

tor
Σ → Ymin as in (1) of Theorem 2.3.2.

Suppose moreover that Y′ coincides with the pullback of Y under (2.4.4) as a
well-positioned subset (respectively subscheme). Then the canonical morphisms

Y′,min
→ Ymin

×Xmin
H ,[g]min Xmin

H′
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and
Y′,tor
Σ ′ → Ytor

Σ ×Xtor
H,Σ ,[g]

tor Xtor
H′,Σ ′

induce isomorphisms between the reduced subschemes. In the case of subschemes,
the latter morphism between partial toroidal compactifications is an isomorphism
by itself. If Y\

= {YZ}Z is associated with Y as in Definition 2.2.1, and if Y′,\Z′ is
the pullback of Y\

Z under Z′ → Z, for each stratum Z′ of Xmin
H′ that is mapped to

a stratum Z of Xmin
H under (2.4.5), then Y′,\ := {Y′,\Z′ } is associated with Y′, as in

Definition 2.2.1.

Proof. These follow from the definitions, from the constructions and properties
of (2.4.4), (2.4.5), and (2.4.6) in the references mentioned, and from the same
arguments as in the proofs of Propositions 2.4.1 and 2.4.2.

2.5. Vanishing of higher direct images, and Koecher’s principle. For
simplicity, let us assume that T = Spec(R1) is some noetherian affine scheme
over S = Spec(R0). Let Y be a well-positioned subset or subscheme of (XH)T,
with associated collection Y\

= {Y\

Z}Z as in Definition 2.2.1, and with partial
minimal and toroidal compactifications Ymin and Ytor

Σ as in Definition 2.3.1 and
Theorem 2.3.2. Let

h : C → Z
denote the structural morphism, with induced morphism

hY : Y
\

C → Y\

Z.

(Recall that, in the case of subschemes, this is exactly the pullback of h; but in
the case of subsets, this is just the induced map between reduced subschemes.)
For each ` ∈ S, let ΨY(`) denote the pullback of Ψ (`) under Y\

C → C . As in [39,
Section 6], let

P∨,+ := {` ∈ S : 〈`, y〉 > 0,∀y ∈ P− {0}}.

(See Proposition 2.1.2 for the meaning of S, and so forth.)

LEMMA 2.5.1 (Cf. [41, Lemma 8.1]). There exist infinitely many integers n prime
to p such that, for each such n, there exists a finite étale commutative group
scheme Hn of order prime to p over Z acting on C via morphisms compatible
with h : C → Z, inducing canonical morphisms C → C/Hn

∼

→ C over Z, whose
composition we denote as [n], such that

[n]∗Ψ (`) ∼= Ψ (n2`) ∼= Ψ (`)
⊗n2
, (2.5.2)

for each ` ∈ S. Moreover, for any R0-algebra R, the canonical morphism

Ψ (`)⊗R0 R→ [n]∗(Ψ (n2`)⊗R0 R) (2.5.3)
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defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants (cf. [63, page 72, Corollary]).

Proof. In Case (Sm), this follows from the constructions in [36, Sections 6.2.2–
6.2.4; see also the errata], because R0 is flat over OF0,(2). In Case (Nm),
this follows from [41, Lemma 8.1], because R0 is flat over OF0,(p). In Case
(Spl), this follows from [43, Lemma 4.4.5], because R0 is flat over OK . (See
Assumption 2.1.1 for the meanings of OF0,(2) and OK .) It remains to establish the
proposition in Case (Hdg). By the constructions in [50, Sections 4.1–4.2], there
exists some open compact subgroup H′ of H such that, for some stratum Z′ at
level H′ above Z, the corresponding C ′ → Z′ is an abelian scheme, and C → Z
is an equivariant quotient of C ′ → Z′ by some finite group H ′. Then there exist
infinitely many integers n prime to p and the order of H ′ such that the morphism
[n] : C ′→ C ′ over Z′ defined by multiplication by n, or equivalently by quotient
by the finite étale subgroup scheme C ′[n] of n-torsion points of C ′, descends to
a morphism [n] : C → C over Z defined by the quotient by some finite étale
commutative group scheme Hn of order prime to p over Z. Moreover, we have
the isomorphism (2.5.2) by descent and by its analogue at level H′, again by the
constructions in [50, Sections 4.1–4.2]. Finally, since the order of Hn is prime to
p and hence invertible in the base ring R1, the assertion for (2.5.3) holds by the
same averaging argument as in the proof of [41, Lemma 8.1].

LEMMA 2.5.4. The morphisms C → C/Hn
∼

→ C in Lemma 2.5.1 induces
similar morphisms Y\

C → Y\

C/Hn
∼

→ Y\

C compatible with hY : Y
\

C → Y\

Z, whose
composition we denote as [n]Y, such that

[n]∗YΨY(`) ∼= ΨY(n2`) ∼= ΨY(`)
⊗n2
,

for each ` ∈ S. Moreover, for any R1-algebra R, the canonical morphism

ΨY(`)⊗R1 R→ [n]Y,∗(ΨY(n2`)⊗R1 R) (2.5.5)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants.

Proof. Since the order of Hn is invertible in the base ring R1, there is a canonical
splitting of (2.5.3) defined (by descent, up to étale localizations trivializing Hn) by
sending each section x of the right-hand side to the section (#Hn)

−1 ∑
h∈Hn

h(x)
of the left-hand side defined by averaging, which is compatible with arbitrary base
changes. Hence, this lemma follows from Lemma 2.5.1.

By Lemma 2.5.4, and by the same arguments as in the proofs of [41,
Propositions 8.3 and 8.4], we obtain the following two propositions:
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PROPOSITION 2.5.6 (Cf. [41, Proposition 8.3]). Suppose ` ∈ P∨,+. Then

Ri hY,∗(ΨY(`)⊗R1 R) = 0

for all i > 0 and all R1-algebra R.

PROPOSITION 2.5.7 (Cf. [41, Proposition 8.4]). Suppose that S ∼= Z, that ` ∈ S
is negative, and that hY has positive-dimensional fibers. Then

hY,∗(ΨY(`)⊗R1 R) = 0

for all R1-algebra R.

DEFINITION 2.5.8 (Cf. [39, Corollary 5.8] and [41, Definition 8.5]). Let R
be an R1-algebra. We say that a quasicoherent sheaf E over Ytor

Σ is formally
canonical (respectively formally subcanonical) (over R) if it satisfies the
following condition: Suppose x̄ is a geometric point over Y\

Z, for some stratum
Z of Xmin

H . In what follows, we shall denote by ( · )∧x̄ the pullback of ( · ) under
(Y\

Z)
∧

x̄ → Y\

Z. Then there exists a quasicoherent sheaf E0,x̄ over (Y\

C)
∧

x̄ satisfying
the following properties:

(1) For each σ ∈ Σ+Z , the pullback E ∧ of E to the affine formal subscheme
(Y\

X◦σ
)∧x̄ of (Y\

XΣZ
)∧x̄ (see (5) of Theorem 2.3.2) is of the form

⊕̂
`∈?
((ΨY(`))

∧

x̄ ⊗O
(Y\C )

∧
x̄

E0,x̄)

(as an O
(Y\C )

∧

x̄
-module), where ? = σ∨ (respectively ? = σ∨

+
), where σ∨

+
is the

intersection of τ∨0 (in S) for τ running through faces of σ in ΣZ (including σ
itself).

(2) There is a finite exhaustive filtration on E0,x̄ whose graded pieces are
isomorphic to pullbacks (under the structural morphism (Y\

C)
∧

x̄ → T) of
quasicoherent sheaves over T = Spec(R1) associated with finite R-modules.

REMARK 2.5.9. In Case (Sm), by [39, Corollary 5.8], the pullbacks of the usual
canonical (respectively subcanonical) extensions E can

M0
(W ) (respectively E sub

M0
(W ))

as in [35, Definition 6.13] are formally canonical (respectively subcanonical) as
in Definition 2.5.8. The same are true for their pullbacks to Cases (Nm) and (Spl),
which is feasible when G(Zp) is a hyperspecial maximal open compact subgroup
of G(Qp).
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THEOREM 2.5.10 (Vanishing of higher direct images; cf. [39, Theorem 3.9]
and [41, Theorem 8.6]). Suppose that R is an R1-algebra, and that E is a
quasicoherent sheaf over Xtor

H,Σ that is formally canonical (respectively formally
subcanonical) over R, as in Definition 2.5.8. Let D′ be the effective Cartier divisor
defined over Xtor

H,Σ as in [41, Corollary 6.7] (whose definition also work here),
whose support is

D := Xtor
H,Σ − XH

with its reduced subscheme structure, and let

E (−nD′) := E ⊗OXtor
H,Σ

OXtor
H,Σ
(−nD′),

for each integer n. Then

Ri

(∮
Y,Σ

)
∗

E (−nD′) = 0

for all i > 0 and n > 0 (respectively n > 0).

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup
in [39, Section 4], except that hY : Y

\

C → Y\

Z is in general not an abelian scheme
torsor over a finite cover of Y\

Z; and thanks to Proposition 2.5.6, which implies the
analogue of [39, Lemma 6.1] for the context here; the same argument as in the
proof of [39, Theorem 3.9] also works here.

THEOREM 2.5.11 (Koecher’s principle; cf. [39, Theorem 2.3] and [41, Theorem
8.7]). Suppose O ⊗Z Q is a simple algebra over Q. Suppose R is an R1-algebra,
and suppose that E is a quasicoherent sheaf over Xtor

H,Σ that is formally canonical
over R, as in Definition 2.5.8. Then the canonical restriction morphism

(Ytor
Σ → Ymin

)∗E → (Y→ Ymin
)∗(E |Y) (2.5.12)

is an isomorphism. Consequently, for each open subset U min of Ymin, if we denote
by U tor

Σ its preimage in Ytor
Σ under the canonical morphisms

∮
Y,Σ , and by U its

preimage in Y under the canonical morphism Y → Ymin, then the canonical
restriction map

Γ (U tor
Σ ,E |U tor

Σ
)→ Γ (U,E |U ) (2.5.13)

is a bijection, except when dim(XH) = 1 and U min
−U 6= ∅.

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup
in [39, Section 4], and thanks to Proposition 2.5.7, which implies the analogue of
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[39, Lemma 6.2] for the context here (under the assumption that O ⊗Z Q is a
simple algebra over Q), the same argument as in the proof of [39, Theorem 2.3]
also works here.

REMARK 2.5.14. For an example, see Example 4.2.24 below.

REMARK 2.5.15. Based on the arguments of the proofs of [39, Theorems 3.9 and
2.3] and of [41, Theorems 8.6 and 8.7], the proofs of Theorems 2.5.10 and 2.5.11
only make use of the underlying topological space of YZ, which coincides with
Y\

Z as a subset of ZT, and of the formal completion of Ytor
Σ along the preimage

of YZ. Such arguments closely follow the formal local approaches in the proofs
of [24, Theorem 5.4], [42, Section 8.2], and [19, Ch. V, Proposition 1.5], rather
than the global cohomological approaches in the proofs of [44, Theorem 1.1], [39,
Theorem 2.5], and [40, Theorems 4.5 and 4.6].

REMARK 2.5.16. Theorem 2.5.11 shows that, in cases where O ⊗Z Q is simple
and where XH → S is nonproper and of relative dimension at least two, any
generalized Hasse invariants over the Ekedahl–Oort strata Y of (XH)s (as in
Section 3.5 below) automatically extend to Ytor

Σ , as in [12, Theorem 6.2.2], and
hence to the Stein factorization (Ytor

Σ )
st
:= Spec

OYmin
((
∮

Y,Σ)∗OYtor
Σ
) of the proper

surjective morphism
∮

Y,Σ : Y
tor
Σ → Ymin, which is finite over Ymin. Although this

does not imply that they descend to Ymin in general, they do descend to Ymin (with
affine nonvanishing loci as usual) in the context of [12] (which is in Case (Sm)
here), as in [12, Theorem 6.2.3]. This is because, in Case (Sm), by [12, Lemma
3.4.3] and its proof, the formation of (

∮
H,Σ)∗OXtor

H,Σ
commutes with base change

to Ymin (and gives (
∮

Y,Σ)∗OYtor
Σ

) whenever Y is a well-positioned subscheme of
(XH)T; and therefore (Ytor

Σ )
st
→ Ymin is an isomorphism in this case.

REMARK 2.5.17 (Cf. [41, Theorem 8.10]). Since the proof of [39, Theorem
2.5] made use of Serre duality, we cannot easily generalize the higher Koecher’s
principle to the context of Theorem 2.5.11. (We already had no idea whether we
should expect such a generalization over the whole integral models in ramified
characteristics.)

3. Examples of well-positioned subsets and subschemes

3.1. Pullbacks and fibers. Let XH → S be as in Assumption 2.1.1. For any
locally noetherian scheme T over S, it is tautological that the whole scheme Y =
(XH)T is a well-positioned subscheme of itself, that Y\

= {ZT}Z is associated
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with Y as in Definition 2.2.1, and so that Ymin
= (Xmin

H )T and Ytor
Σ = (Xtor

H,Σ)T
satisfy the properties in Theorem 2.3.2, analogous to those in Proposition 2.1.2.
In particular, the fibers and geometric fibers of XH, Xmin

H , and Xtor
H,Σ over S admit

the same stratifications and the formal local descriptions as in Proposition 2.1.2.
This is not as trivial as it seems to be. In all cases in Assumption 2.1.1,

even the fiberwise density of XH in Xmin
H is not obvious and required some hard

work, let alone the stratification and formal local descriptions along the boundary.
(Nevertheless, these are all proved in the works [36, 38, 41, 43, 50] we cited in
the proof of Proposition 2.1.2 or rather [45, Proposition 2.2].)

3.2. p-rank strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. (As explained in the introduction, we have
chosen to present our examples here and in later subsections only in PEL-type
cases, because the theories are most complete and well understood in these cases.
We have not tried to include Case (Hdg) because the corresponding theories
are still developing.) Let XH → S be as in Assumption 2.1.1, which carries a
tautological collection {(Aj, λj, ij)}j∈J of abelian varieties quasi-isogenous to each
other over XH, equipped with polarizations and endomorphism structures. (In
Case (Sm), the index set J is just a singleton.) Let T → S be the special point
s = Spec(k)→ S of residue characteristic p > 0.

Consider any geometric point t̄ → (XH)s above a point t ∈ (XH)s , which
defines by pullback a collection {(Aj,t̄ , λj,t̄ , ij,t̄)}j∈J of abelian varieties quasi-
isogenous to each other over t̄ , equipped with polarizations and endomorphism
structures. Since the p-rank of an abelian variety is an isogeny invariant (see [63,
Ch. III, Section 15, page 147]), the p-rank of t̄ → (XH)s , which we shall denote
as r(t̄), can be defined to be the p-rank of Aj,t̄ for any j ∈ J. Since the p-rank of
Aj,t̄ is unchanged under any automorphism of t̄ → (XH)s , it is unambiguous to
write r(t) := r(t̄).

Since the p-rank of an m-fold self-fiber product of an abelian variety A is just
m times the p-rank of A, by considering any morphism from (XH)s to some
principally polarized Siegel moduli with no level at p (using Zarhin’s trick if
necessary, as in the constructions in [38, Lemma 4.1(2) and (4.6)]), and by pulling
back the p-rank strata over (some characteristic p fiber of) such Siegel moduli
(cf. [30, Section IV.1]), we obtain the following:

PROPOSITION 3.2.1.

(1) The subset
(XH)

(r)
s := {t ∈ (XH)s : r(t) = r}

of (XH)s is locally closed, and hence admits the structure of a reduced
subscheme, for each integer r > 0.
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(2) The union
⋃

06r6r0
(XH)

(r)
s is closed for each integer r0 > 0.

(3) We have a set-theoretic disjoint union

(XH)s =
∐
r>0

(XH)
(r)
s . (3.2.2)

REMARK 3.2.3. The disjoint union (3.2.2) is not a stratification in general,
because the closure of (XH)

(r0)
s in (XH)s might be smaller than

⋃
06r6r0

(XH)
(r)
s

for some r0. (See, for example, [22] for the case of Siegel moduli with Iwahori
levels at p.)

DEFINITION 3.2.4. By abuse of language, we shall still call (XH)
(r)
s the p-rank r

stratum of (XH)s . We shall call any such stratum a p-rank stratum.

PROPOSITION 3.2.5. For each r0 > 0, the locally closed subset Y := (XH)
(r0)
s of

(XH)s is a well-positioned subset as in Definition 2.2.1, which is associated with
some collection Y\

= {Y\

Z}Z such that Y\

Z is either the empty subset, or some p-
rank stratum of Zs (whose precise definition will be made clear in the proof), for
each Z. With its reduced subscheme structure, (XH)

(r0)
s admits the partial minimal

and toroidal compactifications (Xmin
H )(r0)

s := Ymin and (Xtor
H,Σ)

(r0)
s := Ytor

Σ as in
Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is reduced
(which is the case, for example, when C→ Z is smooth), (XH)

(r0)
s (with its reduced

subscheme structure) is also a well-positioned subscheme. These statements are
also true if we consider the closed union

⋃
06r6r0

(XH)
(r)
s instead of (XH)

(r0)
s .

To show this, we need the following (reviewing) lemma, which will also be
useful for the consideration of more complicated strata in later sections:

LEMMA 3.2.6. For each W as in Proposition 2.1.3, let {(Aj,W 0, λj,W 0, ij,W 0)}j∈J

denote the pullback of {(Aj, λj, ij)}j∈J to W 0. By considering also the pullbacks
of the Mumford families over X◦σ (see Proposition 2.1.3), the compatible
collection of polarizations {λj,W 0 : Aj,W 0 → A∨j,W 0}j∈J of abelian schemes (which
are compatible with their endomorphism structures) extends to a compatible
collection of homomorphisms {λj,W :G j,W → G∨j,W }j∈J between semi-abelian
schemes with canonically extended endomorphism structures. Since W is
noetherian and normal (by [21, IV-2, 7.8.3(v)]), the above determines a
compatible collection of homomorphisms {λ\j,W :G

\

j,W → G∨,\j,W }j∈J between
their Raynaud extensions (see [36, Sections 3.3.3 and 3.4.4]), together with a
compatible collection of commutative diagrams
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0 // G\

j,t̄ [p
n
] //

λ
\

j,t̄
��

Aj,t̄ [pn
] //

λj,t̄

��

(Yj/pnYj)t̄ //

φj,t̄

��

0

0 // G∨,\j,t̄ [p
n
] // A∨j,t̄ [p

n
] // (X j/pn X j)t̄ // 0

(3.2.7)

and

0 // Tj,t̄ [pn
] //

λTj,t̄

��

G\

j,t̄ [p
n
] //

λ
\

j,t̄
��

Bj,t̄ [pn
] //

λBj,t̄

��

0

0 // T ∨j,t̄ [p
n
] // G∨,\j,t̄ [p

n
] // B∨j,t̄ [p

n
] // 0

(3.2.8)

of finite flat group schemes over each geometric point t̄ → W 0, for each integer
n > 1, where Tj,W (respectively Bj,W ) is the torus (respectively abelian) part of
G\

j,W , where T ∨j,W (respectively B∨j,W ) is the torus (respectively abelian) part of
G∨,\j,W , where X j and Yj are the respective character groups of Tj and T ∨j , where the
objects with subscripts t̄ are pullbacks to t̄ of the corresponding objects over W 0

or W , where the vertical morphisms are all induced by polarizations, and where
the horizontal morphisms are all exact sequences of finite flat group schemes.

Proof. These assertions follow from the corresponding assertions for Mumford
families. (See [36, Chs 4 and 5, and Section 6.2.5] for Mumford’s construction and
for the definition of Mumford families, and see more particularly [36, Corollary
4.5.2.13 and Proposition 5.2.2.1] for the assertions concerning torsion points.)

Proof of Proposition 3.2.5. By Lemma 3.2.6, for each j ∈ J and for each
geometric point t̄ → W 0, since (Y/pnY )t̄ is constant (étale) and since Tj,t̄ is
a torus (and hence Tj,t̄ [pn

] is of multiplicative type for every n > 1), the p-rank
of Aj,t̄ is just rkZ(Y ) plus the p-rank of the abelian part Bj,t̄ , which depends only
on the composition t̄ → W 0

→ Z, under which (Bj,t̄ , λBj,t̄ , iBj,t̄ ) is the pullback
of the tautological (Bj, λBj, iBj) over Z. Hence, Y := (XH)

(r0)
s is a well-positioned

subset as in Definition 2.2.1 if, when r0 > rkZ(Y ), we take Y\

Z := Zr0−rkZ(Y )
s , the

p-rank r0 − rkZ(Y ) stratum of Zs (defined similarly by the tautological collection
{(Bj, λBj, iBj)}j∈J over Z); and when r0 < rkZ(Y ), we take Y\

Z := ∅. The remaining
assertions in the proposition are self-explanatory.

REMARK 3.2.9. When C → Z is reduced at some level H, so that (XH)
(r)
s is a

well-positioned subscheme of (XH)s by Proposition 3.2.5, for each integer r > 0,
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the pullback of (XH)
(r)
s to (XH′)s for any higher level H′ ⊂H is a well-positioned

subscheme of (XH′)s , by Proposition 2.4.2, which underlies the same subset as
(XH′)

(r)
s . This is useful, for example, when p is a good prime for (O, ?, L , 〈 · , · 〉,

h0) as in [36, Definition 1.4.1.1], in which case there exists a bottom level H at
which the morphisms C → Z are all smooth. Then we can pullback from such a
bottom level and obtain well-positioned subschemes over the p-rank strata in all
higher levels.

3.3. Newton strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. Let XH → S be as in Assumption 2.1.1,
which carries a tautological collection {(Aj, λj, ij, αHj)}j∈J, as in the beginning
of Section 3.2. Let us take T→ S to be the special point s = Spec(k)→ S. For
simplicity, assume that O ⊗Z Q involves no factor of type D, in the sense of [36,
Definition 1.2.1.15], so that (any pullback of) G⊗Z Q is (fiberwise) connected.

Consider any geometric point t̄ = Spec(k(t̄))→ (XH)s above a point t ∈ (XH)s ,
which defines by pullback a collection {(Aj,t̄ , λj,t̄ , ij,t̄)}j∈J as before, and hence also
a collection

{(Aj,t̄ [p∞], λj,t̄ , ij,t̄)}j∈J

of Barsotti–Tate groups with quasipolarizations and endomorphism structures.
Consider

K t̄ := Frac(W (k(t̄))),

which is equipped with the Frobenius automorphism σt̄ induced by the pth power
automorphism of k(t̄). Following [31] and [74, Section 1], we say that two
elements x, y ∈ G(K t̄) are σt̄ -conjugate if there exists g ∈ G(K t̄) such that
g−1xσt̄(g) = y. By [75, Lemma 1.16], any morphism t̄ ′ → t̄ between spectra
of algebraically closed fields in characteristic p > 0 induces a bijection from the
set of σt̄ -conjugacy classes in G(K t̄) to the set of σt̄ ′-conjugacy classes in G(K t̄ ′),
and hence it is unambiguous to denote either of the two sets as B(G⊗Z Qp).

For each j ∈ J, the covariant Dieudonné module D(Aj,t̄ [p∞]) of Aj,t̄ [p∞] is
canonically isomorphic to the W (k(t̄))-dual of H 1

crys(At̄/W (k(t̄))), equipped with
additional structures induced by λj,t̄ and ij,t̄ , and with its (σt̄ -linear) Frobenius
and (σ−1

t̄ -linear) Verschiebung endomorphisms, as usual. (See [54, Ch. IV], [53],
and [7].) By [75, 3.23 c)], we have compatible symplectic isomorphisms

D(Aj,t̄ [p∞]) ∼= L j ⊗Z W (k(t̄))

of O ⊗Z W (kt̄)-modules, for all j ∈ J, inducing compatible symplectic
isomorphisms

D(Aj,t̄ [p∞])⊗W (k(t̄)) K t̄
∼= L ⊗Z K t̄
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of O ⊗Z K t̄ -modules. Hence, for any j ∈ J, the Frobenius automorphism of
D(Aj,t̄ [p∞]) ⊗W (k(t̄)) K t̄ induces a σt̄ -linear automorphism of L ⊗Z K t̄ , which
is independent of the choice of j ∈ J and determines a well-defined σt̄ -conjugacy
class b(t̄) in B(G⊗Z Qp).

By [74, Sections 1–3, especially Theorem 3.6] and [31, Section 3], we have the
following:

PROPOSITION 3.3.1.

(1) The assignment of b(t̄) ∈ B(G ⊗Z Qp) to a geometric point t̄ → (XH)s
depends only on the image t of t̄ → (XH)s , in the sense that any
automorphism of t̄ → (XH)s induces an automorphism of G(K t̄) preserving
the σt̄ -conjugacy class of b(t̄). Thus, it is unambiguous to write

b(t) := b(t̄).

(2) There is a partial ordering 6 on the set B(G ⊗Z Qp) such that, for each
b ∈ B(G⊗Z Qp), the subset {t ∈ (XH)s : b(t) 6 b} of (XH)s is closed, and
so the subset

(XH)
b
s := {t ∈ (XH)s : b(t) = b}

of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(XH)s =
∐

b∈B(G⊗ZQp)

(XH)
b
s . (3.3.2)

(3) There is a canonical map from B(G⊗ZQp) to the set N of Newton polygons
(for GLQp(L ⊗Z Qp)), denoted b 7→ νb, such that b 6 b′ only if νb 6 νb′

(which is the case when νb and νb′ have the same end points and νb lies
above νb′). For each geometric point t̄ → (XH)s , the corresponding Newton
polygon νb(t̄) is the one classifying the (rational) covariant Dieudonné
module D(Aj,t̄ [p∞]) ⊗W (k(t̄)) K t̄ (for any j ∈ J), ignoring the additional
structures.

(4) For each ν ∈ N , the subset {t ∈ (XH)s : νb(t) 6 ν} of (XH)s is closed, and
so the subset

(XH)
ν
s := {t ∈ (XH)s : νb(t) = ν}

of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(XH)s =
∐
ν∈N

(XH)
ν
s , (3.3.3)

which is coarser than (3.3.2) in general. For each b ∈ B(G ⊗Z Qp), the
subset (XH)

b
s of (XH)

νb
s is open and closed.
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REMARK 3.3.4. The disjoint union (3.3.2) is not a stratification in general,
because the closure of (XH)

b
s = {t ∈ (XH)s : b(t) = b} in (XH)s might be smaller

than {t ∈ (XH)s : b(t) 6 b}. (See [77] and [25, Corollary 3.11.2 and Section 3.12]
for examples where the ordinary loci are nonempty but not dense.) Nevertheless,
the situation is better in Case (Sm), where the level at p is hyperspecial: By [23,
Theorem 1.1], (3.3.2) is indeed a stratification. Moreover, by [83, Theorem 11.1],
(XH)

b
s is nonempty for each b ∈ B(G ⊗Z Q, [µ]) ⊂ B(G ⊗Z Q), where [µ] is

the conjugacy class of cocharacters determined by h0 as in [45, Section 6.1], and
where B(G⊗Z Q, [µ]) is as in [33, Section 6].

DEFINITION 3.3.5. By abuse of language, we shall still call each (XH)
b
s a Newton

stratum of (XH)s .

Let Z be a stratum of Xmin
H . (At least temporarily, we need to introduce some

filtrations Z and V, where Z is typeset in a very slightly different font compared
with Z. This could be a bit confusing, but we hope the purpose of the notation
will be clear from the context.) Since we are in Cases (Sm), (Nm), or (Spl), the
stratum Z is associated with some cusp label [(ZH, ΦH, δH)], which determines
an H-orbit ZH of a fully symplectic liftable filtration Z = {Z−i}i∈Z on L ⊗Z Ẑ
(see [36, Definitions 5.2.7.1 and 5.4.2.4]). By [37, Proposition A.5.8 and Lemma
A.4.3], we have the following:

LEMMA 3.3.6. In Cases (Sm), (Nm), or (Spl), under the assumption that G⊗Z Q
is connected, there exists a parabolic subgroup P of G⊗Z Q, which is the
stabilizer of a symplectic filtration V = {V−i}i∈Z of L ⊗Z Q, with

0 = V−3 ⊂ V−2 ⊂ V⊥
−2 = V−1 ⊂ V0 = L ⊗Z Q,

such that V−2⊗QA∞ lies in the H-orbit of Z−2⊗ZQ for some representative Z of
ZH. The image of P in each simple factor of (G⊗Z Q)ad is either the whole factor
or a proper maximal parabolic subgroup.

REMARK 3.3.7. Lemma 3.3.6 is generally false without the assumption that G⊗Z
Q is connected. See [37, Example A.7.2].

Let us fix the choices of P and V as in Lemma 3.3.6.

DEFINITION 3.3.8. For each i , set GrV
−i = V−i/V−i−1 as usual. Then GrV

−1 is
equipped with a pairing 〈 · , · 〉−1 induced by 〈 · , · 〉, compatible with O-actions
in the sense that 〈bx, y〉−1 = 〈x, b?y〉−1 for all b ∈ O and x, y ∈ GrV

−1.
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Consider, for each Q-algebra R, the following quotients of subgroups of P(R):

(1) P′(R) is the kernel of the homomorphism

(ν−1 GrV
−2)(R)× GrV0 (R) : P(R)→ GLO⊗ZR(GrV

−2⊗QR)
× GLO⊗ZR(GrV0 ⊗QR) :

(g, r) 7→ (r−1 GrV
−2(g),GrV0 (g)),

where ν(R) : P(R)→ Gm(R) : (g, r) 7→ r denotes the similitude character.

(2) U(R) := {g ∈ P : GrV(g) = IdGrV}.

(3) M(R) := P(R)/U(R).

(4) Gh(R) :=
{
(gh, r) ∈ GLO⊗ZR(GrV

−1⊗QR)× R× :
〈gh x, gh y〉−1 = r〈x, y〉−1,∀x, y ∈ V−1

}
, which is equipped with

a canonical homomorphism

GrV
−1(R) : P(R)→ Gh(R) : (g, r) 7→ (gh := GrV

−1(g), r).

Also, the canonical homomorphism P′(R) → Gh(R) induces a canonical
isomorphism P′(R)/U(R)

∼

→ Gh(R).

(5) Z(R) := ker(GrV
−1(R)), which contains U(R) by definition.

(6) Gl(R) := Z(R)/U(R) ∼= M(R)/Gh(R), and so M(R) ∼= Gl(R)× Gh(R).

These assignments are functorial in R, and define the unipotent radical U of P, the
Levi quotient M ∼= P/U, and a canonical factorization M ∼= Gl × Gh . For each
H ⊂ G(A∞), we define HP :=H∩P(A∞), H′P :=H∩P′(A∞), HU :=H∩U(A∞),
HM :=HP/HU, Hl :=HM∩Gl(A∞), H′l :=HP/H′P, Hh :=HM/Hl , and H′h :=
H′P/HU. Moreover, for each torus argument Φ representing ΦH, we define Hh,Φ

to be the image in Gh(A∞) of the stabilizer of Φ in HP, so that H′h ⊂Hh,Φ ⊂Hh .

PROPOSITION 3.3.9. For each b ∈ B(G ⊗Z Qp), the (possibly empty)
locally closed subset Y := (XH)

b
s of (XH)s is a well-positioned subset as in

Definition 2.2.1, which is associated with some collection Y\
= {Y\

Z}Z such that
Y\

Z is either empty or some Newton stratum of Zs (whose precise definition will
be made clear in the proof), for each Z. With its reduced subscheme structure,
(XH)

b
s admits the partial minimal and toroidal compactifications (Xmin

H )bs := Ymin

and (Xtor
H,Σ)

b
s := Ytor

Σ as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10,
when C → Z is reduced (which is the case, for example, when C → Z is
smooth), (XH)

b
s (with its reduced subscheme structure) is also a well-positioned
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subscheme. The analogous statements are true if we consider the closed union⋃
b′6b (XH)

b′
s = {t ∈ (XH)s : b(t) 6 b} instead of (XH)

b
s . By Lemma 2.2.5 and

by (4) of Proposition 3.3.1, the analogous statements are also true if we consider
(XH)

ν
s and the closed union

⋃
ν′6ν (XH)

ν′

s , for each ν ∈ N .

Proof. By Lemma 3.2.6, for each j ∈ J, for each W as in Proposition 2.1.3, and
for each geometric point t̄ → W 0, the Barsotti–Tate group Aj,t̄ [p∞] admits a
filtration with filtered pieces 0⊂ Tj,t̄ [p∞] ⊂ G\

j,t̄ [p
∞
] ⊂ Aj,t̄ [p∞], with the graded

pieces given by the (multiplicative-type) torus part Tj,t̄ [p∞], the abelian part
Bj,t̄ [p∞], and the (étale) constant part (Yj⊗Z (Qp/Zp))t̄ , compatibly equipped
with quasipolarizations and endomorphism structures. Hence, by functoriality,
the associated covariant Dieudonné module D(Aj,t̄ [p∞]) carries a symplectic
filtration

0 ⊂ D(Tj,t̄ [p∞]) ⊂ D(G\

j,t̄ [p
∞
]) ⊂ D(Aj,t̄ [p∞]) (3.3.10)

by O ⊗Z W (k(t̄))-submodules.
The bottom totally isotropic piece D(Tj,t̄ [p∞]) of (3.3.10) has the same

O-multirank (see [36, Definition 1.2.1.25]) as Z−2, where Z is any representative
of the H-orbit ZH underlying the cusp label of Z (see [36, Definitions 5.4.2.4
and 5.4.2.7, and Theorem 7.2.4.1(4)]). By [37, Lemmas A.4.3 and A.4.4] and
their proofs, up to modifying the choices of the above symplectic isomorphisms
D(Aj,t̄ [p∞]) ⊗W (k(t̄)) K t̄

∼= L ⊗Z K t̄ of O ⊗Z K t̄ -modules, which still define the
same element b(t̄) ∈ B(G⊗Z Qp), we may assume that these isomorphisms match
(3.3.10) with the filtration Z⊗Ẑ K t̄ on L ⊗Z K t̄ . By [37, Proposition A.5.8], there
exists a totally isotropic O⊗Z Q-submodule V−2 of L ⊗Z Q such that V−2⊗Q A∞
lies in the H-orbit of Z−2⊗ZQ, whose stabilizer defines a parabolic subgroup P of
G⊗Z Q, as in Lemma 3.3.6. Let M, Gl , and Gh be defined as in Definition 3.3.8.
Let B(P ⊗Q Qp) denote the sets of σt̄ -conjugacy classes in P(K t̄), and let us
similarly define B(M ⊗Q Qp), B(Gl ⊗Q Qp), and B(Gh ⊗Q Qp). Then we have
canonical maps

B(P⊗Q Qp)→ B(G⊗Z Qp)

and

B(P⊗Q Qp)→ B(M⊗Q Qp) ∼= B(Gl ⊗Q Qp)× B(Gh ⊗Q Qp)

induced by the canonical homomorphisms between the groups. By repeating the
definition of b(t̄), the isomorphisms D(Aj,t̄ [p∞]) ⊗W (k(t̄)) K t̄

∼= L ⊗Z K t̄ above,
which we have assumed to match the filtrations on both sides, define an element
bP(t̄) ∈ B(P⊗Q Qp) whose image under B(P⊗Q Qp)→ B(G⊗Z Qp) is b(t̄).

By [33, Sections 1.4 and 3.6], b(t̄) is determined by the image bM(t̄) of
bP(t̄) under the canonical map B(P⊗Q Qp) → B(M⊗Q Qp), which is in turn
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determined by the composition t̄ → W 0
→ Z. (Since the two outer graded

pieces Tj,t̄ [p∞] and (Yj ⊗Z (Qp/Zp))t̄ are multiplicative type and étale, the
essential data is the middle graded piece Bj,t̄ [p∞] (with its additional structures),
which is determined by the induced t̄ → Z.) On the other hand, since O⊗Z Q
involves no factor of type D, by [36, Lemma 1.4.3.3] and by the proof of [37,
Lemma A.4.7], the middle graded piece D(Bj,t̄ [p∞])⊗W (k(t̄)) K t̄ is determined by
D(Aj,t̄ [p∞])⊗W (k(t̄)) K t̄ (both with their additional structures), and therefore b(t̄)
also determines bM(t̄).

For each b ∈ B(G⊗Z Qp), and for each Z as above, let us define a locally
closed subset Zb

s of Zs as follows: We define Zb
s to be empty either if (XH)

b
s is

empty, or if b is not the image of any bP ∈ B(P⊗Q Qp). Otherwise, we define Zb
s

to be Zbh
s , the Newton stratum of Zs associated with bh ∈ B(Gh ⊗Q Qp), where

(bl, bh) is the image of bM under B(M⊗Q Qp) ∼= B(Gl ⊗Q Qp) × B(Gh ⊗Q Qp).
(For our purpose, bl is not important, because it parameterizes the torus parts of
degenerations.)

By the explanations above, for each b ∈ B(G ⊗Z Qp) as above, and for each
W 0 as in Proposition 2.1.3, the pullback of Y := (XH)

b
s to (W 0)s coincides with

the pullback of Y\

Z := Zb
s . Thus, Y is a well-positioned subset. The remaining

assertions in the proposition are then self-explanatory.

REMARK 3.3.11. When C → Z is reduced at some level H, so that (XH)
b
s is a

well-positioned subscheme of (XH)s by Proposition 3.3.9, for each b ∈ B(G ⊗Z
Qp), the pullback of (XH)

b
s to (XH′)s for each higher level H′ ⊂ H is a well-

positioned subscheme of (XH′)s , by Proposition 2.4.2, which underlies the same
subset as (XH′)

b
s . (See Remark 3.2.9 for a similar consideration.) Then we can

pullback from such a bottom level and obtain well-positioned subschemes over
the Newton strata in all higher levels. Similar statements are true for pullbacks of
(XH)

ν
s to higher levels, for each ν ∈ N .

3.4. Oort central leaves and their pullbacks. In this subsection, we shall
consider only XH→ S in the following special case of Case (Nm): Suppose p is
a good prime (as in [36, Definition 1.4.1.1]) for the integral PEL datum (O, ?, L ,
〈 · , · 〉, h0) in Assumption 2.1.1 (which we have insisted to satisfy [36, Condition
1.4.3.10]). Consider the trivial collection J = {j0} with

{(gj0, L j0, 〈 · , · 〉j0)} = {(1, L , 〈 · , · 〉)},

as in [38, Example 2.3]. Let H be any neat open compact subgroup of G(Ẑ). Let
Hp denote the image of H under the canonical homomorphism G(Ẑ)→ G(Ẑp),
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and let
H0 := HpG(Zp).

Since p is a good prime for (O, ?, L , 〈 · , · 〉, h0), we have a good reduction
integral model MHp → Spec(OF0,(p)) as in [36, Section 1.4.1]. By [36,
Proposition 1.4.4.3], the canonical morphism MH0 → MHp ⊗Z Q is an open
and closed immersion. Since the schemes EMH0 and EMH over ES0 = Spec(OF0,(p))

in [38, Proposition 6.1] are independent of the auxiliary choices, by taking MHp

as an auxiliary good reduction model, we have an open and closed immersion
EMH0 ↪→ MHp , and we can take EMH to be the normalization of MHp under the
composition MH → MH0 →

EMH0 ↪→ MHp of canonical morphisms. Then
we take XH → S (respectively XH0 → S) to be the pullback of EMH → ES0

(respectively EMH0 →
ES0), which carries the pullback (A, λ, i) of the tautological

( EAj0,
Eλj0,
Eij0) over EMH (respectively EMH0 ).

Let T = s̄→ S be a geometric point above the special point s = Spec(k)→ S
of residue characteristic p > 0. Let (X, λX, iX) denote any Barsotti–Tate group X
over s̄, with a quasipolarization λX and an O ⊗Z Zp-endomorphism structure iX
compatible with λX. By [66, Theorem 3.3] for the case of quasipolarized Barsotti–
Tate groups without additional structures, by the fact that there are only finitely
many O⊗ZZp-endomorphism structures over each polarized abelian scheme (see
[36, Proposition 1.3.3.7]), and by (3) and (4) of Proposition 3.3.1, we obtain the
following:

PROPOSITION 3.4.1. Let k0 and (X, λX, iX) be as above.

(1) There is a locally closed subset

C(X,λX,iX)((XH)s̄)

of (XH)s̄ containing all points t ∈ (XH)s̄ such that there exists some
geometric point t̄ = Spec(k(t̄)) → (XH)s̄ above t ∈ (XH)s̄ such that
the triple (At̄ [p∞], λt̄ , i t̄) over t̄ defined by the pullback (At̄ , λt̄ , i t̄) of the
tautological triple over XH is isomorphic to the pullback of (X, λX, iX).

(2) Consider the b(X, λX, iX) ∈ B(G⊗Z Qp) defined by the (rational) covariant
Dieudonné module D(X) ⊗W (k0) Frac(W (k0)) and its additional structures
induced by λX and iX. Then C(X,λX,iX)((XH)s̄) is a closed subset, called the
Oort central leaf, of the Newton stratum (XH)

b(X,λX,iX)
s̄ .

PROPOSITION 3.4.2. Let s̄ = Spec(k̄) and (X, λX, iX) be as above. The locally
closed subset Y := C(X,λX,iX)((XH)s̄) of (XH)s̄ is a well-positioned subset as in
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Definition 2.2.1, which is associated with some collection Y\
= {Y\

Z}Z such that Y\

Z
is either the empty subset or some Oort central leaf of Zs̄ (whose precise definition
will be made clear in the proof), for each Z. With its reduced subscheme structure,
C(X,λX,iX)((XH)s̄) admits the partial minimal and toroidal compactifications Ymin

and Ytor
Σ as in Definition 2.3.1 and Theorem 2.3.2, which we abusively denote by

C(X,λX,iX)((X
min
H )s̄) and C(X,λX,iX)((X

tor
H,Σ)s̄), respectively. By Lemma 2.2.10, when

C → Z is reduced (which is the case when H = H0, in which case C → Z
is smooth, by [36, Theorem 6.4.1.1]), C(X,λX,iX) (with its reduced subscheme
structure) is also a well-positioned subscheme.

To show this, we need the following technical lemma, which will also be useful
for the consideration in Section 3.5:

LEMMA 3.4.3. With the setting as in Lemma 3.2.6, but with j and J suppressed
from the notation system, for each n > 1, consider the canonical geometric
filtration

W−3,pn = 0 ⊂ W−2,pn = Tt̄ [pn
] ⊂ W−1,pn = G\

t̄ [p
n
] ⊂ W0,pn = At̄ [pn

] (3.4.4)

on At̄ [pn
] defined by (3.2.7) and (3.2.8), which is symplectic with respect to the

λt̄ -Weil pairing
eλt̄ : At̄ [pn

] × At̄ [pn
] → µpn ,t̄

(which is perfect because λt̄ is of degree prime to p, under the assumption that
p is good for (O, ?, L , 〈 · , · 〉, h0)) in the sense that W−2,pn and W−1,pn are the
annihilators of each other.

Then there exists a noncanonical splitting

ςpn : GrWpn = Tt̄ [pn
] ⊕ Bt̄ [pn

] ⊕ (Y/pnY )t̄
∼

→ At̄ [pn
] (3.4.5)

of the filtration Wpn which respects the canonical pairings in the sense that, for
each (x−2, x−1, x0) and (y−2, y−1, y0) in GrWpn , we have

eλt̄ (ςpn ((x−2, x−1, x0)), ςpn ((y−2, y−1, y0)))

= eλB,t̄ (x−1, y−1)+ [eφ(x−2, y0)− eφ(y−2, x0)], (3.4.6)

where
eλB,t̄ : Bt̄ [pn

] × Bt̄ [pn
] → µpn ,t̄

is the λB,t̄ -Weil pairing on the abelian part, and where

eφ : Tt̄ [pn
] × (Y/pnY )t̄ → µpn ,t̄

is the canonical pairing defined by eφ(x, y) = x(φ(y)) = (φ(y))(x) for all

x ∈ Tt̄ [pn
] ∼= Homt̄((X/pn X)t̄ ,µpn ,t̄)
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and y ∈ (Y/pnY )t̄ , where φ : Y → X is dual to the homomorphism λT,t̄ : Tt̄ → T ∨t̄
between the torus parts, induced by λ\t̄ (which are perfect pairings, because λB,t̄

and φ are of degree prime to p since λt̄ is). We may assume that ςpn lifts to similar
splittings ςpn′ (respecting the canonical pairings) for all n′ > n.

Proof. Since W is flat over S, there exists a complete discrete valuation ring V
with residue field k(t̄) and with generic point η of residue characteristic zero,
together with a morphism Spec(V ) → W 0 lifting the geometric point t̄ → W 0.
Let us denote the pullbacks to η of A by Aη, and so forth, with subscripts η.

Since η is of residue characteristic zero, and since some level structure αH is
defined over XH ⊗Z Q, up to replacing V with a finite flat extension (with the
same residue field), we may assume that there is an integral principal level-pn

structure αpn ,η : L/pn L
∼

→ Aη[pn
] of type (L ⊗Z Ẑ, 〈 · , · 〉) as in [36, Definition

1.3.6.2], whose pullback to some geometric point η̄→ η is the reduction modulo
pn of some symplectic isomorphism α̂η̄ : L ⊗Z Ẑ ∼

→ T Aη̄. By pulling back the
geometric filtration on T Aη̄ defined by (3.2.7) and (3.2.8) (cf. [36, Proposition
5.2.2.1]), we obtain a filtration Z on L ⊗Z Ẑ (whose H-orbit ZH is associated
with the cusp label [(ΦH, δH)] for the stratum Z), which admits a noncanonical
splitting δ̂ : GrZ

∼

→ L ⊗Z Ẑ of O ⊗Z Zp-modules which respects the induced
pairings between the graded pieces. Hence, by using the above isomorphism α̂η̄,
there is also a noncanonical splitting ς̂η̄ : Tp Tt̄ ⊕ Tp Bt̄ ⊕ (Y ⊗Z Zp)η̄

∼

→ Tp Aη̄,
whose reduction modulo pn descends to a noncanonical splitting

ςpn ,η : GrWpn = Tη[pn
] ⊕ Bη[pn

] ⊕ (Y/pnY )η
∼

→ Aη[pn
],

which are compatible with the O⊗ZZp-module structures and respect the induced
pairings between the grade pieces. (See [36, Section 5.2.2] for all of these.)

By [36, Lemma 1.2.4.4], since p is a good prime, up to a change of coordinates
on L ⊗Z Zp which replaces the above splittings with some other choices, we may
assume that ςpn ,η is symplectic in the sense that the condition (3.4.6) holds with
η replacing t̄ . Moreover, for each n′ > n, up to replacing η with a point η′ finite
over it, we may assume that ςpn ,η lifts to a similar splitting ςpn′ ,η′ (respecting the
canonical pairings). By [36, Proposition 5.2.3.3, or rather the proofs of Lemmas
5.2.3.1 and 5.2.3.2], since η is the generic point of a complete discrete valuation
ring V , the splitting ςpn ,η extends to a splitting over V respecting the canonical
pairings (with V replacing η in (3.4.5) and (3.4.6)), whose pullback to t̄ gives the
desired splitting ςpn ,t̄ as in (3.4.5), satisfying the condition given by (3.4.6), which
lifts to similar splittings ςpn′ (respecting the canonical pairings) for all n′ > n.

Proof of Proposition 3.4.2. In Lemma 3.4.3, by varying n > 1, the isomorphism
class of (At̄ [p∞], λt̄ , i t̄) determines and is determined by the isomorphism classes
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of (X, Y, φ : Y → X) and of (Bt̄ [p∞], λB,t̄ , iB,t̄), which depends only on the
composition t̄ → W 0

→ Z. Therefore, for each W 0 as in Proposition 2.1.3, the
pullback of Y = C(X,λX,iX)((XH)s̄) to (W 0)s̄ coincides with the pullback of some
subset Y\

Z of Zs̄ which is either the empty subset, or some Oort central leaf, whose
definition depends only on (X, λX, iX). Hence, Y is a well-positioned subset. The
remaining assertions in the proposition are then self-explanatory.

REMARK 3.4.7. Since C → Z is reduced at level H0, so that C(X,λX,iX)((XH0)s̄)

is a well-positioned subscheme of (XH0)s̄ by Proposition 3.4.2, the pullback
of C(X,λX,iX)((XH0)s̄) to (XH)s̄ is a well-positioned subscheme of (XH)s̄ , by
Proposition 2.4.2, which underlies the same subset as C(X,λX,iX)((XH)s̄). (See
Remarks 3.2.9 and 3.3.11 for similar considerations.) Then we can pullback from
H0 and obtain well-positioned subschemes over the Oort central leaves in all
higher levels.

3.5. Ekedahl–Oort strata and their pullbacks. In this subsection, we shall
consider only the same kinds of XH → S in Case (Nm) as in Section 3.4. Let
T → S be the special point s = Spec(k) → S of residue characteristic p > 0.
Consider any geometric point t̄ = Spec(k(t̄))→ (XH)s above a point t ∈ (XH)s ,
which defines by pullback a triple (At̄ , λt̄ , i t̄), and hence also a truncated Barsotti–
Tate group (At̄ [pn

], λt̄ , i t̄) with the induced quasipolarization and endomorphism
structure, for each integer n > 1. When n = 1, the isomorphism class of the
triple (At̄ [p], λt̄ , i t̄) is classified by the isomorphism class of the associated
F-zip with additional structures. Concretely, this F-zip is (Mt̄ ,Ct̄ , Dt̄ , ϕ0,t̄ , ϕ1,t̄),
where Mt̄ := H dR

1 (At̄/t̄) := H 1
dR(At̄/t̄)

∨ is equipped with its two maximal totally
isotropic submodules

Ct̄ := H 0(At̄ ,Ω
1
At̄ /t̄
)⊥ = ker(H dR

1 (At̄/t̄)→ LieAt̄ /t̄)

and
Dt̄ := (H 1(At̄ ,H

0(Ω•At̄ /t̄
)))⊥

given by the Hodge filtration and the conjugate filtration, respectively, together
with the isomorphisms ϕ0,t̄ : (Mt̄/Ct̄)

(p) ∼

→ Dt̄ and ϕ1,t̄ : C (p)
t̄

∼

→ Mt̄/Dt̄

induced by the Cartier isomorphism, as in [83, Section 3.1] (which is dual to the
construction in [57, Section 7.5]). As explained in [83, Example 3.2], Ct̄ = ker(F)
and Dt̄ = ker(V ), where the (σt̄ -linear) Frobenius F : Mt̄ → Mt̄ and (σ−1

t̄ -
linear) Verschiebung V : Mt̄ → Mt̄ are the respective reductions modulo p of the
corresponding F and V of the covariant Dieudonné module D(At̄ [p∞]) (which
can be canonically identified with the dual of H 1

crys(At̄/W (k(t̄)))).
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For simplicity, assume that O ⊗Z Q involves no factor of type D, in the sense
of [36, Definition 1.2.1.15], so that (any pullback of) G ⊗Z Q is connected.
By [83, Sections 3.1 and 5.1–5.3, Theorems 7.1 and 10.1, Corollary 10.2, and
Proposition 10.3] (and the references there to earlier works) for the case H = H0

(with hyperspecial level at p), and by pulling back the locally closed strata to
higher levels H ⊂ H0, we obtain the following:

PROPOSITION 3.5.1.

(1) The isomorphism class of F-zips over k(t̄) with additional structures (in
the precise sense described in [83, Definition 3.1]) is classified by elements
of the subset W M0 of W of minimal Weyl length representatives of WM0\W ,
where W is the Weyl group of G⊗ZF̄p, where F̄p is some algebraic closure of
Fp, and where WM0 is the Weyl group of a Levi subgroup M0 of a parabolic
subgroup P0 of G⊗Z F̄p defined up to conjugacy by h0 (or rather by the p-
adic version of [µ] determined by h0, as in [45, Section 6.1]). In particular,
there is an element w(t̄) ∈ W M0 associated with the above F-zip (Mt̄ ,

Ct̄ , Dt̄ , ϕ0,t̄ , ϕ1,t̄) with additional structures induced by λt̄ and i t̄ , which
depends only on the image t of t̄ → (XH)s . Thus, it is unambiguous to
write w(t) := w(t̄).

(2) There is a partial ordering 6 on the set W M0 (see [73, Corollary 6.3]) such
that, for each w ∈ W M0 , the subset {t ∈ (XH)s : w(t) 6 w} of (XH)s is
closed, and so the subset

(XH)
w
s := {t ∈ (XH)s : w(t) = w}

of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(XH)s =
∐

w∈W M0

(XH)
w
s . (3.5.2)

(3) When H = H0, the disjoint union (3.5.2) is a stratification in the sense
that the closure of (XH0)

w
s is {t ∈ (XH0)s : w(t) 6 w} =

⋃
w′6w (XH0)

w′

s ,
for each w ∈ W M0 . This is called the Ekedahl–Oort stratification of (XH0)s
(see [55–57, 65, 84], and [83]). Moreover, each (XH0)

w
s is equidimensional

of dimension l(w), and smooth (over s).

(4) The assignment of F-zips with additional structures works more generally
over schemes over s and defines a canonical morphism ζ : (XH)s → Zip,
where Zip abusively denotes the Artin stack over s of F-zips with additional
structures. When H = H0, the morphism ζ is smooth (by, for example,
specializing [85, Theorem 3.1.2] to our setting here).
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REMARK 3.5.3. The disjoint union (3.5.2) might not be a stratification in general.
Although it is indeed a stratification at level H0, the morphism (XH)s → (XH0)s
is not necessarily flat, and hence might not preserve the closure relations.

DEFINITION 3.5.4. By abuse of language, we shall still call each (XH)
w
s an

Ekedahl–Oort stratum of (XH)s .

PROPOSITION 3.5.5. For each w ∈ W M0 , the locally closed subset Y := (XH)
w
s

of (XH)s is a well-positioned subset as in Definition 2.2.1, which is associated
with some collection Y\

= {Y\

Z}Z such that Y\

Z is either the empty subset or some
Ekedahl–Oort stratum of Zs (whose precise definition will be made clear in the
proof), for each Z. With its reduced subscheme structure, (XH)

w
s admits the partial

minimal and toroidal compactifications

(Xmin
H )ws := Ymin and (Xtor

H,Σ)
w
s := Ytor

Σ

as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is
reduced (which is the case when H = H0, in which case C → Z is smooth,
by [36, Theorem 6.4.1.1]), (XH)

w
s (with its reduced subscheme structure) is also a

well-positioned subscheme. The analogous statements are true if we consider the
closed union

⋃
w′6w (XH)

w′

s = {t ∈ (XH)s : w(t) 6 w} instead of (XH)
w
s .

Proof. In Lemma 3.4.3, with n = 1, the isomorphism class of (At̄ [p], λt̄ , i t̄)

determines and is determined by the isomorphism classes of (X, Y, φ : Y → X)
and of (Bt̄ [p], λB,t̄ , iB,t̄), which depends only on the composition t̄ → W 0

→ Z,
because there is some splitting (3.4.5) which respects the pairings as in (3.4.6).
Therefore, for each w ∈ W M0 , and for each W 0 as in Proposition 2.1.3, the
pullback of Y = (XH)

w
s to (W 0)s coincides with the pullback of some subset Y\

Z
of Zs which is either the empty subset, or some Ekedahl–Oort stratum, whose
definition depends only on w (and can be explicitly given in group-theoretic
terms). Hence, Y is a well-positioned subset. The remaining assertions in the
proposition are then self-explanatory.

REMARK 3.5.6. Since C → Z is reduced at level H0, so that (XH0)
w
s is

a well-positioned subscheme of (XH0)s by Proposition 3.5.5, for each w ∈

W M0 , the pullback of (XH0)
w
s to (XH)s is a well-positioned subscheme of

(XH)s , by Proposition 2.4.2, which underlies the same subset as (XH)
w
s . (See

Remarks 3.2.9, 3.3.11, and 3.4.7 for similar considerations.) Then we can
pullback from H0 and obtain well-positioned subschemes over the Ekedahl–Oort
strata in all higher levels.
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COROLLARY 3.5.7. When H = H0, the schemes (Xtor
H,Σ)

w
s over s are smooth

(under the assumption in (4) of Proposition 2.1.2 that Σ is smooth), for all
w ∈ W M0 .

Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1.

COROLLARY 3.5.8. The morphism ζ : (XH)s → Zip in (4) of Proposition 3.5.1
(necessarily uniquely) extends to a morphism ζ tor

: (Xtor
H )s → Zip, and we have

(Xtor
H,Σ)

w
s = (ζ

tor)−1(zw) as subsets of (Xtor
H )s , for the same point zw of Zip such

that (XH)
w
s = ζ

−1(zw), for each w ∈ W M0 . Moreover, ζ tor is smooth (under the
assumption in (4) of Proposition 2.1.2 that Σ is smooth) when ζ is.

Proof. By an analogue of the argument of the proof of (7) of Theorem 2.3.2,
by also approximating the finitely many objects and morphisms associated with
n = 1 (but ignoring those associated with n′ > n) in Lemma 3.4.3, we may
assume that the étale morphisms U → Xtor

H,Σ and U → E(σ ) ×Spec(Z) C in
Corollary 2.1.7 are adapted to all Ekedahl–Oort strata of (XH)s in the sense
(as in Definition 4.1.1 below) that, in the notation of Proposition 3.5.5, the
pullbacks of (Xtor

H,Σ)
w
s = Ytor

Σ and Y\

Z coincides as subsets of Us , for each
w ∈ W M0 . Then ζ : (XH)s → Zip induces a morphism Us → Zip, which factors
through the morphisms Us → E ×Spec(Z) Cs → Cs , by essentially the same
argument as in the proof of Proposition 3.5.5. By composing the morphisms
Us → E(σ )×Spec(Z) Cs → Cs with the induced morphism Cs → Zip, we obtain a
(necessarily unique) extension Us → Zip, which is smooth when Us → Zip is (cf.
the paragraph preceding Proposition 2.3.13). By construction, the pullbacks of
(XH)

w
s (respectively (Xtor

H,Σ)
w
s ) and zw coincide as subsets of Us (respectively Us),

for each w ∈ W M0 . Thus, by varying U → Xtor
H,Σ and by étale descent, we obtain

the desired extension ζ tor
: (Xtor

H )s→ Zip of ζ , with all the required properties.

3.6. Kottwitz–Rapoport strata and their pullbacks. In this subsection, we
shall consider only XH → S in the following special cases of Cases (Nm) and
(Spl): As in [75, 6.2], assume that O⊗ZZp is a maximal order in O⊗ZQp (stable
under ?). Suppose that L is a (periodic and self-dual) multichain of (O⊗Z Zp)-
lattices in L ⊗Z Qp, as in [75, Definition 3.4] and [43, Section 2.1]. Let H be any
open compact subgroup of G(A∞) such that its image Hp under the canonical
homomorphism G(Ẑ) → G(Ẑp) is a neat (see [36, Definition 1.4.1.8]) open
compact subgroup of G(Ẑp), so that H is also neat, and such that the image Hp

of H under the canonical homomorphism G(Ẑ) → G(Zp) is contained in the
connected stabilizer H0,p of L (cf. [43, Definition 2.1.10 and Choices 2.2.10]).
Let H0 := HpH0,p.
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As explained in [75, 3.2] and [43, Choices 2.2.9 and 2.2.10], there exists a
finite subset LJ = {Λj}j∈J of L such that an O ⊗Z Zp-lattice Λ in L ⊗Z Qp

belongs to L if and only if there exist some r ∈ Z and j ∈ J such that Λ = prΛj,
and there exists a collection {(1, L j, 〈 · , · 〉j)}j∈J (with the same index set) for the
consideration in [38, Section 2] such that Λj = L j ⊗Z Zp in L ⊗Z Qp, such that
L j ⊗Z Ẑp

= L ⊗Z Ẑp, and such that L j0 = pr0 L for some j0 ∈ J and some r0 ∈ Z.
Hence, {(1, L j, 〈 · , · 〉j)}j∈J defines a flat integral model EMH → Spec(OF0,(p)) as
in [38, Proposition 6.1].

Let XH → S (respectively XH0 → S) be the pullback of EMH → ES0

(respectively EMH0 →
ES0) in Case (Nm), or of EM

spl

H → Spec(OK ) (respectively
EM

spl

H0
→ Spec(OK )) in Case (Spl). For compatibility with the setting in the theory

of local models, suppose that S → Spec(OF0,(p)) factors through Spec(OF0,v),
where OF0,v is completion of OF0 at some place v|p. In both cases, XH → S
(respectively XH0 → S) carries the pullback {(Aj, λj, ij)}j∈J of the tautological
collection {( EAj, Eλj,Eij)}j∈J over EMH (respectively EMH0 ), which extends (up to
periodicity) to an L -set (A, λ, α) of abelian schemes (up to Z×(p)-isogeny, with
additional structures), which is isomorphic to the pullback of the tautological one
over the moduli Mnaive

Hp over Spec(OF0,v) defined in [43, Definition 2.2.5], under a
canonical morphism XH→ Mnaive

Hp .
Let GL denote the identity component of the group scheme over Spec(Zp)

stabilizing the multichain L , so that GL (Zp) = H0,p. By [75, Sections 3 and 6]
and [67, Theorem 2.2], GL is a smooth group scheme, and there is a GL -torsor
M̃

naive
Hp → Mnaive

Hp , together with a GL -equivariant smooth morphism M̃
naive
Hp →

Mnaive, which is of the same relative dimension as M̃
naive
Hp →Mnaive

Hp , where Mnaive is
the local model for Mnaive

Hp , which is called the naive local model in later works such
as [68]. Alternatively, there is a smooth morphism Mnaive

Hp → [Mnaive/GL ], which
is of the same relative dimension as the smooth morphism GL → Spec(Zp),
without having to explicitly mention M̃

naive
Hp . By composition with the canonical

morphism XH → Mnaive
Hp , we obtain a morphism $ : XH → [Mnaive/GL ] (which

is not necessarily smooth or even flat).
Let T = s̄→ S be a geometric point above the special point s = Spec(k)→ S

of residue characteristic p > 0. Consider the orbits x̄ in

KRs̄ := Mnaive(s̄)/GL (s̄) = [Mnaive/GL ](s̄).

Since the (GL )s̄-orbits are locally closed in (Mnaive)s̄ (see, for example, [76,
Lemma 2.3.3]), the pullback of each x̄ ∈ KRs̄ is a locally closed subset of XH(s̄)
(in the induced Zariski topology). Hence, we have following:
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PROPOSITION 3.6.1.

(1) For any geometric t̄ → s̄, the canonical pullback map [Mnaive/GL ](s̄) →
[Mnaive/GL ](t̄) is bijective. Consequently, there is a well-defined assignment
$(t̄) ∈ KRs̄ (still abusively denoted using $ ) to each geometric point t̄ →
(XH)s̄ , which induces a well-defined assignment $(t) ∈ KRs̄ to each point
t ∈ (XH)s̄ .

(2) Let us equip KRs̄ with the partial ordering 6 such that x̄ ′ 6 x̄ exactly when
the orbit x̄ ′ is contained in the closure of the orbit x̄ . For each x̄ ∈ KRs̄ , the
subset {t ∈ (XH)s̄ : $(t) 6 x̄} =

⋃
x̄ ′6x̄ (XH)

x̄ ′
s̄ of (XH)s̄ is closed, and so

the subset
(XH)

x̄
s̄ := {t ∈ (XH)s̄ : $(t) = x̄}

of (XH)s̄ is locally closed. Hence, we have a set-theoretic disjoint union

(XH)s̄ =
∐

x̄∈KRs̄

(XH)
x̄
s̄ . (3.6.2)

REMARK 3.6.3. Since$ : XH→ [Mnaive/GL ] is not necessarily flat, the disjoint
union (3.6.2) might not be a stratification in general, in the sense that the closure
of a stratum might not be a union of strata. Nevertheless, it is indeed a stratification
when$ is flat. This is the case when H = H0 and when Mnaive happens to be flat
over Spec(Zp) and normal, in which case the canonical morphism EMH0 → Mnaive

Hp

is an open and closed immersion.

DEFINITION 3.6.4. By abuse of language, we shall still call (XH)
x̄
s̄ a Kottwitz–

Rapoport stratum of (XH)s̄ . (See [64, Section 3] and the introduction of [25].)

REMARK 3.6.5. Since the morphism $ : XH → [Mnaive/GL ] factors through
[M loc/GL ] → [Mnaive/GL ] in both Cases (Nm) and (Spl) (cf. [68, (15.4)]),
it makes sense to also introduce Kottwitz–Rapoport strata based on the orbits
in [M loc/GL ](s̄). (In Case (Spl), we can also consider [M spl/GL ] instead of
[M loc/GL ].) In what follows, all the results in Proposition 3.6.6, Remark 3.6.7,
and Corollary 3.6.9 will remain correct if we replace the target of the morphism
$ : XH → [Mnaive/GL ] with [M loc/GL ](s̄) (or with [M spl/GL ](s̄) in Case
(Spl)), and replace the definition of KRs̄ accordingly.

PROPOSITION 3.6.6. For each x̄ ∈ KRs̄ , the locally closed subset Y := (XH)
x̄
s̄

of (XH)s̄ is a well-positioned subset as in Definition 2.2.1, which is associated
with some collection Y\

= {Y\

Z}Z such that Y\

Z is either the empty subset or some
Kottwitz–Rapoport stratum of Zs̄ (whose precise definition will be made clear in
the proof), for each Z. With its reduced subscheme structure, (XH)

x̄
s̄ admits the
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partial minimal and toroidal compactifications (Xmin
H )x̄

s̄ := Ymin and (Xtor
H,Σ)

x̄
s̄ :=

Ytor
Σ as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is

reduced, (XH)
x̄
s̄ (with its reduced subscheme structure) is also a well-positioned

subscheme. The analogous statements are true if we consider the closed union⋃
x̄ ′6x̄ (XH)

x̄ ′
s̄ = {t ∈ (XH)s̄ : $(t) 6 x̄} instead of (XH)

x̄
s̄ .

Proof. As in the proof of Proposition 3.3.9, by Lemma 3.2.6, for each j ∈ J and
for each geometric point t̄ → W 0, the Barsotti–Tate group Aj,t̄ [p∞] admits a
filtration 0 ⊂ Tj,t̄ [p∞] ⊂ G\

j,t̄ [p
∞
] ⊂ Aj,t̄ [p∞] with graded pieces given by the

(multiplicative-type) torus part Tj,t̄ [p∞], the abelian part Bj,t̄ [p∞], and the (étale)
constant part (Yj⊗Z (Qp/Zp))t̄ , compatibly equipped with quasipolarizations and
endomorphism structures, and such filtrations are compatible with each other
and with twists by σk(t̄). Consequently, by considering the associated covariant
Dieudonné modules, the kernel of

V : D(Aσt̄
j,t̄ [p

∞
])→ D(Aj,t̄ [p∞])

determines and is determined by the kernel of

V : D(Bσt̄
j,t̄ [p

∞
])→ D(Bj,t̄ [p∞]),

where the superscripts σt̄ denotes the pullback by σt̄ . Hence, $(t̄) depends only
on the composition t̄ → W 0

→ Z, because it is determined by the former kernels
(for all j ∈ J) (cf. [25, the proof of Proposition 2.5.9, and Remark 2.5.11]), while
the latter kernels (by definition) only depend on the abelian parts. Therefore, for
each x̄ ∈ KRs̄ , and for each W 0 as in Proposition 2.1.3, the pullback of Y := (XH)

x̄
s̄

to (W 0)s̄ coincides with the pullback of some subset Y\

Z of Zs̄ which is either
the empty subset, or some Kottwitz–Rapoport stratum, whose definition depends
only on x̄ (and can be explicitly given in group-theoretic terms). Hence, Y is a
well-positioned subset. The remaining assertions in the proposition are then self-
explanatory.

REMARK 3.6.7. When C → Z is reduced at some level H, so that (XH)
x̄
s is a

well-positioned subscheme of (XH)s̄ by Proposition 3.6.6, for each x̄ ∈ KRs̄ , the
pullback of (XH)

x̄
s̄ to (XH′)s̄ for each higher level H′ ⊂ H is a well-positioned

subscheme of (XH′)s̄ , by Proposition 2.4.2, which underlies the same subset as
(XH′)

x̄
s̄ . (See Remarks 3.2.9, 3.3.11, 3.4.7, and 3.5.6 for similar considerations.)

Then we can pullback from such a bottom level and obtain well-positioned
subschemes over the Kottwitz–Rapoport strata in all higher levels.

COROLLARY 3.6.8. For each x̄ ∈ KRs̄ , the scheme (Xtor
H,Σ)

x̄
s̄ is smooth over

s̄ (under the assumption in (4) of Proposition 2.1.2 that Σ is smooth) when
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(XH)
x̄
s̄ is, and the scheme

⋃
x̄ ′6x̄ (X

tor
H,Σ)

x̄
s̄ is normal and Cohen–Macaulay when⋃

x̄ ′6x̄ (XH)
x̄ ′
s̄ is.

Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1.

COROLLARY 3.6.9. The morphism $ : XH (necessarily uniquely) extends to a
morphism $ tor

: Xtor
H → [M

naive/GL ], and we have (Xtor
H,Σ)

x̄
s̄ = ($ tor)−1(x̄) as

subsets of (Xtor
H )s̄ , for each x̄ ∈ KRs̄ = [Mnaive/GL ](s̄). Moreover, $ tor is smooth

(under the assumption in (4) of Proposition 2.1.2 that Σ is smooth) when $ is.

Proof. Suppose that s̄ → s factors through some scheme of finite type over s
over which all the finitely many Kottwitz–Rapoport strata of (XH)s̄ have models.
As in the proof of Corollary 3.5.8, by also approximating these models, we
may assume that the étale morphisms U → Xtor

H,Σ and U → E(σ ) ×Spec(Z) C
in Corollary 2.1.7 are adapted (as in Definition 4.1.1 below) to all Kottwitz–
Rapoport strata of (XH)s̄ , in the sense that, in the notation of Proposition 3.6.6,
the pullback of (Xtor

H,Σ)
x̄
s̄ = Ytor

Σ to Us̄ coincides with the pullback of Y\

Z, for each
w ∈ W M0 . Then, by proceeding as in the proof of Corollary 3.5.8, with the proof
of Proposition 3.5.5 replaced with that of Proposition 3.6.6 as an input, we obtain
the desired extension $ tor of $ , with all the required properties.

EXAMPLE 3.6.10. Let us work in Case (Nm), and replace $ : XH →

[Mnaive/GL ] with $ : XH → [M loc/GL ] as in Remark 3.6.5. Suppose that
p > 2 and G ⊗Z Qp splits over a tamely ramified extension of Qp, and that
H = H0 and H0,p is the full stabilizer of the multichain L in G(Qp). Also,
suppose that O ⊗Z Q involves no factor of type D, in the sense of [36, Definition
1.2.1.15], so that G ⊗Z Qp is connected with simply connected derived group.
Then it follows from [69, Theorem 1.2 and Section 8.2] and the construction
in [38] (see Assumption 2.1.1) that $ : XH → [M loc/GL ] is smooth. Hence,
by Corollary 3.6.9, $ tor

: Xtor
H → [M

loc/GL ] is also smooth. Moreover, it
follows from [69, Theorem 1.1 and Section 9] that, for each x̄ ∈ KRs̄ , the
scheme (XH)

x̄
s̄ (respectively

⋃
x̄ ′6x̄ (XH)

x̄ ′
s̄ ) is smooth over s (respectively normal

and Cohen–Macaulay). By Corollary 3.6.8, the scheme (Xtor
H,Σ)

x̄
s̄ (respectively⋃

x̄ ′6x̄ (X
tor
H,Σ)

x̄ ′
s̄ ) has the same property.

REMARK 3.6.11. The philosophy behind our strategies in Sections 3.2–3.6 can be
(very roughly) summarized as follows: Suppose that we have a stratification of a
characteristic p fiber of an integral model of a Shimura variety defined by pulling
back a stratification of the stack of p-divisible groups, and that the formation
of this latter stratification is insensitive to the étale parts of p-divisible groups.
Then every stratum of the former stratification should be well positioned, and its
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partial toroidal and minimal compactifications should be stratified by pullbacks
of strata of the stack of p-divisible groups (of smaller heights).

REMARK 3.6.12. Likewise, the Ekedahl–Kottwitz–Oort–Rapoport (EKOR)
stratification introduced in [26, Section 6] should also be well positioned. We
leave the details to the interested readers.

3.7. Supports of nearby cycles. In this subsection, we again consider all
cases in Assumption 2.1.1. Consider any rational prime number ` 6= p. Suppose
Λ = Q` or Q̄`. Recall the notion of the supports of a Λ-perverse sheaf F over
a scheme X of finite type over a base field k which we assume (for simplicity)
to be either algebraically closed or finite (see [6, 2.2.14]). By [6, 4.3.1], F has a
finite Jordan–Hölder filtration, indexed by some finite set I , with simple graded
pieces. For each i ∈ I , the corresponding graded piece is isomorphic to some
JYi ,!∗(Gi [dim(Yi)]), where Yi is a reduced irreducible closed subscheme of X ,
where JYi : Yi

0 ↪→ X is an immersion from a smooth open dense subscheme
Y 0

i of Yi , and where Gi is an irreducible lisse sheaf over Y 0
i .

DEFINITION 3.7.1. With the setting as above, we shall write

Supp(F) = {Yi : i ∈ I },

ignoring possible repetitions, and call Yi the supports of F .

REMARK 3.7.2. The closed subschemes Yi are well determined for all i ∈ I , but
their smooth open subschemes Y 0

i are not: one can always replace Y 0
i with an

open dense subscheme. Since each lisse sheaf Gi over Y 0
i is uniquely determined

by its restriction to any open dense subscheme of Y 0
i , we abusively say that Gi is

well determined, despite the fact that Y 0
i is not.

Suppose Gi and Gi ′ are irreducible lisse sheaves as above, with i, i ′ ∈ I , which
are defined over Y 0

i and Y 0
i ′ , respectively. We abusively consider them isomorphic

if Y 0
i and Y 0

i ′ have the same closure Yi = Yi ′ in X , and if the restrictions of Gi and
Gi ′ to Y 0

i ∩ Y 0
i ′ are isomorphic to each other.

DEFINITION 3.7.3. For each Y ∈ Supp(F), we denote by LocY (F) the set of
isomorphism classes of Gi as above.

By abuse of language, we shall freely shrink or increase the open subscheme
Y 0

i of Yi over which each such Gi is defined (see Remark 3.7.2). For Y ∈ Supp(F)
and G ∈ LocY (F), we define m(Y,G) to be the multiplicity of JY,!∗(G[dim(Y )])
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in any Jordan–Hölder sequence of F . Then we have

[F ] =
∑

Y∈Supp(F)

∑
G∈LocY (F)

m(Y,G)[JY,!∗(G[dim(Y )])] (3.7.4)

in the Grothendieck group of perverse sheaves over X .

REMARK 3.7.5. If V is a nowhere zero lisse sheaf over X , we have canonically
Supp(F) = Supp(F ⊗ V). For each support Y , we have a canonical multivalued
map LocY (F) → LocY (F ⊗ V) sending G to the irreducible Jordan–Hölder
constituents of G ⊗ V . For example, for any flat model XH → S of relative
dimension d considered in Assumption 2.1.1, for any nonzero étale sheaf Vξ as
in [45, Proposition 3.2], which is defined over all of XH (under the assumption
that ` 6= p), and for any i : s = Spec(k) → S, j : η = Spec(K ) → S,
ī : s̄ = Spec(k̄) → S̄, and j̄ : η̄ = Spec(K̄ ) → S̄ as in [45, Section 5.1], the
supports of RΨXH(Λ[d]) and RΨXH(Vξ [d]) (which are perverse sheaves on (XH)s̄
by [27, 4.5]) coincide. Therefore, for the sake of simplicity, we shall often focus
on the trivial coefficient case.

REMARK 3.7.6. In Cases (Nm) and (Spl), when H has a high level at p, we have
no geometric information about the ‘bad reduction’ of XH→ S. Nevertheless, by
definition, the supports of RΨXH(Λ[d]) still give important topological invariants
of this bad reduction. We show that these supports have good properties near the
boundary of (XH)s̄ (or, more precisely, near the boundary of any (Xtor

H,Σ)s̄), even
though we do not know their precise shape in the interior.

Let us introduce the following:

ASSUMPTION 3.7.7. All the proper surjective morphisms C → Z (in Proposition
2.1.2) are smooth and has (nonempty) connected geometric fibers.

REMARK 3.7.8. Assumption 3.7.7 holds, for example, in the contexts of
Remark 2.1.8 and Lemmas 2.1.9 and 2.1.10.

LEMMA 3.7.9. Suppose that Assumption 3.7.7 holds, and that U → Xtor
H,Σ and

U → E(σ ) ×Spec(Z) C are étale morphisms as in Corollary 2.1.7, with U the
common preimage of XH and E ×Spec(Z) C in U. Up to replacing U with an open
subscheme, we may and we shall assume that the induced morphisms U → Xtor

H,Σ
and U → E(σ ) ×Spec(Z) C have connected geometric fibers. Let ϕ : U → Z
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denote the induced morphism. Then we have the following two cases for Y ∈
Supp(RΨXH(Λ[d])):

(1) The pullback of Y to Us̄ is empty.

(2) The pullback YU of Y to Us̄ coincides with the pullback under ϕ of some
Y \

Z ∈ Supp(RΨZ(Λ[dZ])), where dZ := dim(Zη). Moreover, the pullbacks
of sheaves G in LocY (RΨXH(Λ[d])) and G\Z in LocY \Z

(RΨZ(Λ[dZ])) to YU

define a bijection

LocY (RΨXH(Λ[d])) ∼= LocY \Z
(RΨZ(Λ[dZ])), (3.7.10)

such that, when G is matched with G\Z, we have

m(Y,G) = m(Y \

Z,G
\

Z). (3.7.11)

Proof. Since ϕ : U → Z is smooth, we have

ϕ∗RΨZ(Λ) ∼= RΨU (Λ) ∼= (RΨXH(Λ))|Us̄ (3.7.12)

(see [3, XV, 2.1] and [16, XIII, 2.1.5]). Moreover, since ϕ is smooth of relative
dimension dZ

:= d − dZ, the functor ϕ∗[dZ
] is t-exact for the middle perversity

by [6, 4.2.5]. Therefore, it sends a Jordan–Hölder filtration to a filtration. By [6,
4.2.6.2], since ϕ : U → ϕ(U ) has nonempty connected geometric fibers, ϕ∗[dZ

]

induces a fully faithful embedding of the category of perverse sheaves over ϕ(U )
as a thick subcategory of the category of perverse sheaves over U . Consequently,
the restriction of the functor ϕ∗[dZ

] to the category of perverse sheaves over ϕ(U )
respects Jordan–Hölder filtrations, as desired. (For our purpose, the restriction
from Z to its open subscheme ϕ(U ) is irrelevant because any Y \

Z in case (2) has a
nonempty intersection with the open subscheme ϕ(U )s̄ of Zs̄ .)

Lemma 3.7.9 shows that studying the nearby cycles RΨXH(Λ) near the
boundary of any (Xtor

H,Σ)s̄ is essentially the same as studying the nearby cycles
RΨZ(Λ) over the smaller analogues Zs̄ of (XH)s̄ . More precisely, we have the
following:

PROPOSITION 3.7.13. Suppose that Assumption 3.7.7 holds. Then every Y in
Supp(RΨXH(Λ[d])) is a (reduced) well-positioned subscheme of (XH)s̄ as in
Definition 2.2.1 (with T = s̄ there), with minimal and toroidal compactifications
Y min and Y tor

Σ as in Definition 2.3.1 and Theorem 2.3.2.
Under the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, we have

Supp(RΨXtor
H,Σ
(Λ[d])) = {Y tor

Σ : Y ∈ Supp(RΨXH(Λ[d]))}. (3.7.14)
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For each Y ∈ Supp(RΨXH(Λ[d])) and each G ∈ LocY (RΨXH(Λ[d])), we have a
canonical extension G tor

Σ ∈ LocY tor
Σ
(Supp(RΨXtor

H,Σ
(Λ[d]))), with

m(Y,G) = m(Y tor
Σ ,G tor

Σ ). (3.7.15)

Proof. Let Y min and Y tor
Σ denote the (reduced) schematic closures of Y in (Xmin

H )s̄
and (Xtor

H,Σ)s̄ , respectively. Suppose U , U , and ϕ : U → Z are as in Corollary 2.1.7
and Lemma 3.7.9. Then Lemma 3.7.9, with the Y \

Z there, implies that ϕ(U )s̄ ∩
Y \

Z = ϕ(U )s̄ ∩ Y min as subsets of Zs̄ , and that the pullback of the canonical open
immersion JY tor

Σ
: Y → Y tor

Σ (induced by the canonical open immersion JXtor
H,Σ
:

XH ↪→ Xtor
H,Σ ) under U → Mtor

H,Σ coincides with the pullback of the canonical
open immersion

JY \Z×Z(E(σ )×Spec(Z)C)
: Y \

Z ×Z (E ×Spec(Z) C) ↪→ Y \

Z ×Z (E(σ )×Spec(Z) C)

induced by JE(σ ) : E ↪→ E(σ ) and the identity morphisms on Y \

Z and C . Since the
respective pullbacks of the étale morphisms U → Xtor

H,Σ and U → E(σ )×Spec(Z)C
to Z[σ ] and Eσ ×Spec(Z) C are both open immersions (see Corollary 2.1.7),
by gluing in the Zariski topology, the pullback of the canonical isomorphism
Ξσ
∼= Z[σ ] in (8) of Proposition 2.1.2 to s̄ induces a canonical isomorphism

Y \

Z ×Z Ξσ
∼= YZ[σ ] , where YZ[σ ] := Z[σ ] ×Xtor

H,Σ
Y tor
Σ . Consequently, the canonical

isomorphism X◦σ = (Ξ(σ))
∧⋃
τ∈Σ
+

Z , τ⊂σ
Ξτ
∼= (Xtor

H,Σ)
∧⋃
τ∈Σ
+

Z , τ⊂σ
Z[τ ] in Proposition 2.1.3

induces a canonical isomorphism (Y \

Z ×Z Ξ(σ))
∧

Y \Z×ZΞσ

∼= (Y tor
Σ )
∧

YZ[σ ]
, and the

analogues of the other properties in Proposition 2.1.2 follow. By matching also the
closed subscheme

⋃
τ∈Σ+Z , τ⊂σ

(Y \

Z ×Z Ξτ ) of Y \

Z ×Z Ξ(σ) with the locally closed
subscheme

⋃
τ∈Σ+Z , τ⊂σ

YZ[τ ] of Y tor
Σ (see Corollary 2.1.7 again), the analogue of

Proposition 2.1.3 also follows. This shows that Y is a well-positioned subscheme,
and that Y \

Z and YZ := Z×Xmin
H

Y min coincide as subsets of Zs̄ , by Theorem 2.3.2.
As for the assertions in the last paragraph, under the assumption that Σ is

smooth, the morphism E(σ ) → Spec(Z) is smooth for each σ in ΣZ. Hence,
the same argument as in the proof of Lemma 3.7.9 (see, in particular, (3.7.12))
shows that RΨXtor

H,Σ
(Λ[d]) is étale locally near (Z[σ ])s̄ the pullback of RΨZ(Λ[d]),

and so its supports are étale locally the pullbacks of those of RΨZ(Λ[dZ]). Thus,
we can conclude the proof by comparing these with the assertions in Lemma 3.7.9
for Supp(RΨXH(Λ[d])).

REMARK 3.7.16. It may happen that a support Y does not meet any boundary
strata in the sense that YZ = Z ×Xmin

H
Y min is empty for each stratum Z of Xmin

H .
Equivalently, by Proposition 3.7.13, YZ[σ ] = Z[σ ] ×Xtor

H,Σ
Y tor
Σ is empty for each
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stratum Z[σ ] of Xtor
H,Σ . In this case, we have Y = Y min and Y = Y tor

Σ . (For
studying supercuspidal representations of G(Qp), such supports might be the most
interesting.)

4. Well-positioned étale sheaves

4.1. Definition. Let T be a locally noetherian scheme over S as in Section 2.2,
which we assume to be separated and of finite type over a regular scheme of
dimension 6 1, or over a quasiexcellent finite-dimensional scheme. Consider any
rational prime number ` 6= p. Let Λ be a coefficient ring that is either Z/`mZ
(for some integer m > 1), Z`, Q`, Q̄`, or a finite extension of any of these. For
simplicity, we shall also denote byΛ the constant étale sheaf with values inΛ. We
shall denote by Db

c ( · ,Λ) the bounded derived category of Λ-étale constructible
sheaves over ( · ), when defined. (See [15, 1.1], [17], and [49] when Λ is not
torsion.) When discussing perverse sheaves, we shall assume (as in [6, 2.2.14])
that T = Spec(k) for some field k that is either algebraically closed or finite, and
that Λ = Q` or Q̄`.

Given any stratum Z of Xmin
H , we shall write

Z̃ :=
⋃

[τ ]∈Σ+Z /Γ

Z[τ ],

which is the reduced subscheme of the preimage of Z in Xtor
H,Σ . Suppose Y is a well-

positioned subset of (XH)T, with associated Y\
= {Y\

Z}Z as in Definition 2.2.1. Let
us equip Y and Y\

Z with their canonical reduced subscheme structures, for all Z.
Let Ymin, Ytor

Σ , and YZ = Z×Xmin
H

Ymin be as in Definition 2.3.1 and Theorem 2.3.2.
Let

YZ̃ := Z̃×Xtor
H,Σ

Ytor
Σ .

Let
aYZ̃
: YZ̃ → Ytor

Σ

and
a\YZ̃
: YZ̃ → Y\

Z

denote the canonical morphisms.

DEFINITION 4.1.1. Consider a collection UZ = {(U i , aU i
, a\

U i ,C
)}i∈IZ , where

aU i
: U i → Xtor

H,Σ

and
a\

U i ,E(σi )
: U i → E(σi)×Spec(Z) C
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are étale morphisms like the U → Xtor
H,Σ and U → E(σ ) ×Spec(Z) C in

Corollary 2.1.7, which we assume to have connected geometric fibers (which is
possible up to replacing U with an open subscheme).

(1) We say that UZ induces an affine open covering of Z̃ if each U i is affine and
if

{U
+

i := U i ×Xtor
H,Σ

Z̃ ↪→ Z̃}i∈IZ

is an affine open covering of Z̃.

(2) We say that UZ is adapted to a well-positioned subset Y (as above) if the
pullback of Ytor

Σ under aU i
coincides with the pullback of Y\

Z under the
morphism

a\
U i
: U i → Z

induced by a\
U i ,E(σi )

, for each Z and for each i ∈ IZ.

LEMMA 4.1.2. Given any UZ inducing an affine open covering of Z̃ as in
Definition 4.1.1, up to replacing UZ with an étale refinement, we may assume that
UZ is adapted to any finite collection {Yi}i∈I of well-positioned subsets of (XH)T.

Proof. This is achieved by an analogue of the argument of the proof of (7)
of Theorem 2.3.2, by refining the output of Corollary 2.1.7, using Artin’s
approximation, which matches not just the stratifications but also the pullbacks of
the locally closed subschemes Yi and Y\

i,Ξ(σ) of (XH)T and (Ξ(σ))T, respectively,
for all i (assuming without loss of generality that S is excellent and that T is of
finite type over S).

DEFINITION 4.1.3. With the setting (of Y, Ytor
Σ , and so forth) as above, we say

that a complex F in Db
c (Y

tor
Σ ,Λ) is a well-positioned complex (over Ytor

Σ ) if there
exists a collection

F \
= {(F \

Z, ιZ)}Z

indexed by the strata Z of Xmin
H , where F \

Z ∈ Db
c (Y

\

Z,Λ), and where

ιZ : a∗YZ̃
F ∼

→ a\,∗YZ̃
F \

Z (4.1.4)

is an isomorphism in Db
c (YZ̃,Λ), for each Z, satisfying the following

compatibility condition: For each Z, there exists some collection

UZ = {(U i , aU i
, a\

U i ,E(σi )
)}i∈IZ
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which induces an affine open covering of Z̃ and is adapted to Y as in
Definition 4.1.1, which induces canonical morphisms

aYUi
: YU i

:= U i ×Xtor
H,Σ

Ytor
Σ → Ytor

Σ

and
a\YUi
: YU i

→ Y\

Z,

such that the restriction of ιZ to

YU
+

i
:= YU i

×Xtor
H,Σ

Z̃,

for each i ∈ IZ, extends to an isomorphism

ιU i
: a∗YUi

F ∼

→ a\,∗YUi
F \

Z (4.1.5)

in Db
c (YU i

,Λ).
We say that an F as above is a well-positioned sheaf (respectively well-

positioned perverse sheaf, when T and Λ are as in the beginning of this section)
if, moreover, F is a sheaf (respectively perverse sheaf). We often suppress the
isomorphisms ιZ from the notation when they are canonical ones or are clear from
the context.

REMARK 4.1.6. Certainly, the above applies to the special case with Y = (XH)T
and Y\

= {ZT}Z, as in Section 3.1.

REMARK 4.1.7. In Definition 4.1.3, if we replace UZ = {(U i , aU i
, a\

U i ,E(σi )
)}i∈IZ

with a refinement U ′Z = {(U
′

i ′, aU
′

i ′
, a\

U
′

i ′ ,E(σi ′ )
)}i ′∈I ′Z

, then the isomorphism ιU i
in

(4.1.5) induces an isomorphism ιU ′i ′
in Db

c (YU
′

i ′
,Λ) when U

′

i ′ refines U i .

REMARK 4.1.8. For a well-positioned perverse sheaf F as in Definition 4.1.3,
when Y\

C → Y\

Z is smooth, we typically have F \

Z perverse only up to shifting by
dim(Y)− dim(Y\

Z). (See Lemma 4.2.13 below.)

REMARK 4.1.9. In Definition 4.1.3, we allow F \

Z = 0, which will be the case for
any Z such that F = 0 near YZ̃. For Z 6= Z′, we do not require any compatibility
between (F \

Z, ιZ) and (F \

Z′, ιZ
′).

REMARK 4.1.10. In Definition 4.1.3, the complex F does not necessarily
determine the collection F \. Nevertheless, under the assumption (in (4) of
Proposition 2.1.2) that Σ is smooth, if Y\

C → Y\

Z is smooth and has nonempty
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connected geometric fibers, for each Z, and if F and F \

Z are either lisse sheaves
or perverse sheaves, then F \

Z is uniquely determined by F , by [6, 4.2.6.2].
Alternatively, if Λ = Q̄`, and if Assumption 4.3.1 below holds, then F \

Z is
uniquely determined by F (by Theorem 4.3.16; see Remark 4.3.32 below).

REMARK 4.1.11. The automorphic étale sheaves Vξ defined as in [45, Section 3]
typically (for nontrivial ξ ) do not extend to well-positioned complexes over Xtor

H,Σ .

As a partial justification of Definition 4.1.3, we have the following:

LEMMA 4.1.12. In each of the contexts of Propositions 2.4.1, 2.4.2, and 2.4.3
(where H′ = H and Σ ′ = Σ in the context of Proposition 2.4.1), suppose F is
a well-positioned complex over Ytor

Σ , equipped with a collection F \
= {(F \

Z, ιZ)}Z,
as in Definition 4.1.3. Let F ′ denote the pullback of F under Y′,tor

Σ ′ → Ytor
Σ . For

each stratum Z′ of Xmin
H′ above a stratum Z of Xmin

H , let F ′,\Z′ denote the pullback of
F \

Z under Y′,\Z′ → Y\

Z, and let ι′Z′ denote the pullback of ιZ under Y′Z̃ → YZ̃, where

Y′Z̃ denotes the preimage of Z̃
′

in Y′,tor
Σ ′ . Then F ′ is a well-positioned complex over

Y′,tor
Σ ′ , equipped with the collection F ′,\ := {(F ′,\Z′ , ι

′

Z′)}Z
′ .

If F is a well-positioned sheaf, so is F ′. Under the assumption (in (4) of
Proposition 2.1.2) that Σ and Σ ′ are smooth, if F is a well-positioned perverse
sheaf; if Y\

C → Y\

Z and the induced morphism Y′,\C ′ → Y\

Z are smooth of the same
relative dimension dZ

−dE , where dE is the relative dimension of E over Spec(Z),
for each Z′ above Z; and if F \

Z[−dZ
] is a perverse sheaf, for each Z; then F ′ is

also a well-positioned perverse sheaf.

Proof. For each stratum Z of Xmin
H , let UZ = {(U i , aU i

, a\
U i ,E(σi )

)}i∈IZ be as in

Definition 4.1.3. Suppose Z′ is a stratum of Xmin
H′ above Z, with Z̃

′

the reduced
subscheme of its preimage in Xtor

H′,Σ ′ . Suppose there exists a collection

U ′Z′ = {(U i ′, aU i ′
, a\

U i ′ ,E ′(σi ′ )
)}i ′∈IZ′

for Xtor
H′,Σ ′ such that it induces an affine open covering of Z̃

′

and is adapted to
Y′ as in Definition 4.1.1, and such that it refines the pullback of UZ in the sense
that, for each i ′ ∈ IZ′ , there exists some i ∈ IZ such that aU i ′

and a\
U i ′ ,E(σi ′ )

lift

the pullbacks of aU i
and a\

U i ,E(σi )
, respectively, via some étale morphisms U i ′ →

U i ×Xtor
H,Σ

Xtor
H′,Σ ′ and U i ′ → U i ×Ξ(σi ) Ξ

′(σ ′i ). Then the pullbacks of ιZ and ιU i
to

Z̃
′

:= Z̃×Ytor
Σ

Y′,tor
Σ ′ and Y′U i ′

:= U i ′×Xtor
H′,Σ ′

Y′,tor
Σ ′ , respectively, induce the desired ι′Z′

and ι′
U i ′

. The question (in the last paragraph of the lemma) of whether F ′ is a sheaf
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or a perverse sheaf can be answered étale locally, essentially by definition. (For
perverse sheaves, see [6, 2.2.12 and 2.2.19].) Hence, by using the isomorphisms
ι′
U i ′

, and (for perverse sheaves) by the t-exactness of smooth morphisms up to
shifting by the relative dimensions (see [6, 4.2.5]), the question has an affirmative
answer by the assumptions we made. It remains to construct such a U ′Z′ .

In the context of Proposition 2.4.1, we can just take U ′Z′ = UZ, since these
collections are defined over the same Xtor

H,Σ regardless of the base change T′→ T.
In each of the contexts of Propositions 2.4.2 and 2.4.3, let us fixed a choice of

some i ∈ IZ. Let U
+

i denote the pullback of Z̃ under aU i
: U i → Xtor

H,Σ . Suppose
that x is a point of Xtor

H′,Σ ′ whose image y in Xtor
H,Σ is contained in the image of

the open immersion U
+

i → Z̃ induced by aU i
, so that y lies on the stratum Z[σi ]

of Xtor
H,Σ . Up to replacing U i with an affine open subscheme still containing y, we

may and we shall assume that a\
U i ,E(σi )

: U i → E(σi) ×Spec(Z) C is induced by

an étale morphism a\
U i ,Ξ(σi )

: U i → Ξ(σi) such that, over the image of this étale
morphism, Ξ(σi) is isomorphic to E(σi) ×Spec(Z) C as schemes over C (cf. [45,
Lemma 2.3]), and such that a\

U i ,E(σi )
and a\

U i ,Ξ(σi )
differ by this last isomorphism.

Then U
+

i coincides with the pullback of

Ξ(σi)
+
:=

⋃
τ∈Σ+Z , τ⊂σ i

Ξτ ⊂ Ξ(σi)

under a\
U i ,Ξ(σi )

. Consider the pullbacks

aU
′

i
: U
′

i := U i ×Xtor
H,Σ

Xtor
H′,Σ ′ → Xtor

H′,Σ ′

and
a\

U
′′

i ,Ξ
′(σ ′i )
: U
′′

i := U i ×Ξ(σi ) Ξ
′(σ ′i )→ Ξ ′(σ ′i )

of aU i
and a\

U i ,Ξ(σi )
, respectively, where σ ′i ∈ Σ

′,+

Z′ is some cone such that x lies

on stratum Z[σ ′i ] of Xtor
H′,Σ ′ . Let U

′

i := U i ×Xtor
H,Σ

Xtor
H′,Σ ′ , U

′,+

i := U
+

i ×Xtor
H,Σ

Xtor
H′,Σ ′ ,

U
′′

i := U i ×Ξ(σi )Ξ
′(σ ′i ), and U

′′,+

i := U
+

i ×Ξ(σi )Ξ
′(σ ′i ). Then U

′,+

i coincides with
the pullback of Z̃

′

, and U
′′,+

i coincides with the pullback of

Ξ ′(σ ′i )
+
:=

⋃
τ ′∈Σ

′,+

Z′
, τ ′⊂σ ′i

Ξ ′τ ′ ⊂ Ξ
′(σ ′i ),

and the induced morphisms U
′,+

i → Z̃
′

and U
′′,+

i → Ξ ′(σ ′i )
+ are open immersions

with the same image, the preimage of U
+

i in Z̃
′

. Therefore, (U
′

i)
∧

U
′,+

i
and (U

′′

i )
∧

U
′′,+

i
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are both canonically isomorphic to (Xtor
H′,Σ ′)

∧

U
′,+

i
. Moreover, for each affine open

formal subscheme W = Spf(R) of (Xtor
H′,Σ ′)

∧

U
′,+

i
, the pullbacks to W = Spec(R) of

the stratifications of Xtor
H′,Σ ′ and Ξ ′(σ ′i ) coincide with each other.

By the same approximation argument as in the proofs of (7) of Theorem 2.3.2
and of Lemma 4.1.2, there exists a scheme U

′′′

i with étale morphisms U
′′′

i → U
′

i

and U
′′′

i → U
′′

i such that the induced étale morphisms aU
′′′

i
: U

′′′

i → Xtor
H′,Σ ′ and

a\
U
′′′

i ,Ξ
′(σ ′i )
: U
′′′

i → Ξ ′(σ ′i ) satisfy the same properties as the étale morphisms U →

Xtor
H,Σ and U → Ξ(σ) in (9) of Proposition 2.1.2 do, and are adapted to Y′ in the

sense that the pullback of Y′,tor
Σ ′ under aU

′′′

i
coincides with the pullback of Y′,\Z′ under

a\
U
′′′

i ,Ξ
′(σ ′i )

; and such that the image of aU
′′′

i
contains x , so that x is lifted to a point

of U
′′′

i . By [45, Lemma 2.3, and its proof], up to replacing U
′′′

i with an affine open
subscheme still containing x , we may and we shall assume that, over the image
of a\

U
′′′

i ,Ξ
′(σ ′i )

, there is an isomorphism between Ξ ′(σ ′i ) and E ′(σ ′i ) ×Spec(Z) C ′ as
schemes over C ′, which lifts the pullback of the isomorphism between Ξ(σi) and
E(σi)×Spec(Z) C over the image of a\

U i ,Ξ ′(σ
′

i )
, and hence a\

U
′′′

i ,Ξ
′(σ ′i )

induces an étale

morphism a\
U
′′′

i ,E ′(σ
′

i )
: U
′′′

i → E ′(σ ′i )×Spec(Z) C ′ lifting a\
U i ,E(σi )

. Thus, since i ∈ IZ

and x are arbitrary, by collecting (and reindexing) such (U
′′′

i , aU
′′′

i
, a\

U
′′′

i ,E ′(σ
′

i )
), we

obtain the desired collection U ′Z′ for Xtor
H′,Σ ′ .

REMARK 4.1.13. In Lemma 4.1.12, without the assumptions in the last paragraph
there, F ′ is generally not a perverse sheaf even when F is.

4.2. General properties and examples. In this subsection, suppose Y and Y′

are well-positioned subsets of (XH)T, such that Y′ is a (locally closed) subset of Y,
with associated Y\

= {Y\

Z}Z and Y′,\ = {Y′,\Z }Z, respectively, as in Definition 2.2.1.
Let Ytor

Σ and Y′,tor
Σ denote the partial toroidal compactifications of Y and Y′,

respectively, as in Definition 2.3.1. Let J : Y′,tor
Σ ↪→ Ytor

Σ , JZ̃ : Y′Z̃ ↪→ YZ̃, and
JZ : Y′,\Z ↪→ Y\

Z denote the canonical locally closed immersions, for all Z. Let
aYZ̃
: YZ̃ → Ytor

Σ , aY′
Z̃
: Y′Z̃ → Y′,tor

Σ , a\YZ̃
: YZ̃ → Y\

Z, and a\Y′
Z̃
: Y′Z̃ → Y′,\Z denote

the canonical morphisms, for each Z.

LEMMA 4.2.1. Suppose F and F ′ are well-positioned complexes over Ytor
Σ

and Y′,tor
Σ , equipped with collections F \

= {(F \

Z, ιZ)}Z and F ′,\ = {(F ′,\Z , ι
′

Z)}Z,
respectively, as in Definition 4.1.3. Then:
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(1) J!F ′ is a well-positioned complex over Ytor
Σ , equipped with the collection

{(JZ,!F ′,\Z , JZ̃,!ι
′

Z)}Z. In particular, J!ΛY′,tor
Σ

is a well-positioned sheaf over
Ytor
Σ , equipped with the collection {JZ,!ΛY′,\Z

}Z.

(2) J ∗F is a well-positioned complex over Y′,tor
Σ , equipped with the collection

{(J ∗ZF
\

Z, J ∗
Z̃
ιZ)}Z.

(3) Hq(F) is a well-positioned sheaf over Ytor
Σ , equipped with the collection

{(Hq(F \

Z),Hq(ιZ))}Z, for each q.

Proof. By Lemma 4.1.2 and Remark 4.1.7, we may assume that each collection
UZ as in Definition 4.1.3 that we consider is adapted to both Y and Y′. Since
the canonical morphism Y′Z̃ → YZ̃ ×Y\Z

Y′,\Z induces an isomorphism between the
reduced subschemes, the lemma follow from the definitions, and (for the assertion
(1)) from [3, XVII, 5.1.2].

LEMMA 4.2.2. Suppose F ′ is as in Lemma 4.2.1. Suppose T is just a point. Under
the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, suppose moreover
that the induced morphism Y\

C → Y\

Z is smooth (which is the case if C → Z is)
for each Z. Then the canonical morphisms

a∗YZ̃
RJ∗F ′→ RJZ̃,∗a

∗

Y′
Z̃
F ′ (4.2.3)

and
a\,∗YZ̃

RJZ,∗F ′,\Z → RJZ̃,∗a
\,∗

Y′
Z̃
F ′,\Z (4.2.4)

are isomorphisms in Db
c (YZ̃,Λ), and hence the isomorphism

RJZ̃,∗ι
′

Z : RJZ̃,∗a
∗

Y′
Z̃
F ′→ RJZ̃,∗a

\,∗

Y′
Z̃
F ′,\Z

canonically induces an isomorphism

ιZ : a∗YZ̃
RJ∗F ′

∼

→ a\,∗YZ̃
RJZ,∗F ′,\Z (4.2.5)

in Db
c (YZ̃,Λ), for each Z. Moreover, RJ∗F ′ is a well-positioned complex over

Ytor
Σ , equipped with the collection {(RJZ,∗F ′,\Z , ιZ)}Z. In particular, RJ∗ΛY′,tor

Σ
is a

well-positioned complex over Ytor
Σ , equipped with the collection {RJZ,∗ΛY′,\Z

}Z.

Proof. For each Z, let UZ = {(U i , aU i
, a\

U i ,E(σi )
)}i∈IZ be any collection as in

Definition 4.1.3 (for F ′, adapted to Y′), which we may and we shall assume to be
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also adapted to Y, by Lemma 4.1.2 and Remark 4.1.7. For each i ∈ IZ, consider
the canonical morphisms

aYUi
: YU i

:= U i ×Xtor
H,Σ

Ytor
Σ → Ytor

Σ ,

aY′Ui
: Y′U i

:= U i ×Xtor
H,Σ

Y′,tor
Σ → Y′,tor

Σ ,

a\YUi
: YU i

→ Y\

Z,

and
a\Y′Ui

: Y′U i
→ Y′,\Z ,

where the restriction of
ι′Z : a

∗

Y′
Z̃
F ′ ∼→ a\,

∗

Y′
Z̃
F ′,\Z

to
Y′

U
+

i
:= Y′U i

×Xtor
H,Σ

Z̃

extends to an isomorphism

ι′U i
: a∗Y′Ui

F ′ ∼→ a\,∗Y′Ui

F ′,\Z

in Db
c (Y

′

U i
,Λ), by assumption.

To show that (4.2.3) and (4.2.4) are isomorphisms, and that RJ∗F ′ is a well-
positioned complex over Ytor

Σ , equipped with the collection {(RJZ,∗F ′,\Z , ιZ)}Z, it
suffices to fix the choices of some i ∈ IZ as above, and show that the restrictions
of (4.2.3) and (4.2.4) to the open subscheme

YU
+

i
:= YU i

×Xtor
H,Σ

Z̃

of YZ̃ are isomorphisms, and that the isomorphism

(a∗YZ̃
RJ∗F ′)|Y

U+i

∼

→ (a\,∗YZ̃
RJZ,∗F ′,\Z )|YU+i

(which should be the restriction of ιZ to YU
+

i
) induced by the restrictions of (4.2.3),

(4.2.4), and RJZ̃,∗ι
′

Z to YU
+

i
extends to an isomorphism

ιU i
: a∗YUi

RJ∗F ′
∼

→ a\,∗Y′Ui

RJZ,∗F ′,\Z

over YU i
. Let iYUi

: YU
+

i
→ YU i

, iY′Ui
: Y′

U
+

i
→ Y′U i

, JU i
: Y′U i

↪→ YU i
, and

JU
+

i
: Y′

U
+

i
↪→ YU

+

i
denote the canonical morphisms. For these purposes, it suffices

to show that the canonical morphism

i∗YUi
RJU i ,∗

a\,∗Y′Ui

F ′,\Z → RJU
+

i ,∗
i∗Y′Ui

a\,∗Y′Ui

F ′,\Z (4.2.6)

is an isomorphism, by the commutativity of the following commutative diagram
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(a∗YZ̃
RJ∗F ′)|Y

U+i

can. o

��

(4.2.3)|Y
U+i // (RJZ̃,∗a

∗

Y′
Z̃
F ′)|Y

U+i

can. o

��
i∗YUi

a∗YUi
RJ∗F ′ b.c.

∼
// i∗YUi

RJU i ,∗
a∗Y′Ui

F ′

i∗YUi
RJUi ,∗

ι′
Ui o

��

// RJU
+

i ,∗
i∗Y′Ui

a∗Y′Ui

F ′

RJ
U+i ,∗

(ι′Z|YU+i
) o

��
i∗YUi

a\,∗YUi
RJZ,∗F ′,\Z

can. o

��

b.c.
∼
// i∗YUi

RJU i ,∗
a\,∗Y′Ui

F ′,\Z
(4.2.6) // RJU

+

i ,∗
i∗Y′Ui

a\,∗Y′Ui

F ′,\Z

can. o
��

(a\,∗YZ̃
RJZ,∗F ′,\Z )|YU+i

(4.2.4)|Y
U+i // (RJZ̃,∗a

\,∗

Y′
Z̃
F ′,\Z )|YU+i

(4.2.7)

in Db
c (YU

+

i
,Λ), in which ‘b.c.’ means base change morphisms, which (under the

smoothness assumptions) are isomorphisms by the smooth base change theorem
(see [3, XVI, 1.2]); and in which the composition of the three vertical arrows at the
rightmost column is the restriction of RJZ̃,∗ι

′

Z to the open subscheme YU
+

i
of YZ̃.

Let F ′,\C denote the pullback of F ′,\Z to Y′,\C . Consider

E(σi)
+
:=

⋃
τ∈Σ+Z , τ⊂σi

Eτ ⊂ E(σi),

Y′,\E(σi )+
:= E(σi)

+
×Spec(Z) Y′,\C ,

and
Y\

E(σi )+
:= E(σi)

+
×Spec(Z) Y\

C .

Let JC : Y′,\C → Y\

C and JE(σi )+ :Y
′,\

E(σi )+
→ Y\

E(σi )+
denote the canonical

morphisms. Since YU
+

i

∼= E(σi)
+
×E(σi ) YU i

and Y′
U
+

i

∼= E(σi)
+
×E(σi ) Y′U i

, in
order to show that (4.2.6) is an isomorphism, by the smooth base change theorem
(and the smoothness assumptions) again, it suffices to show that the canonical
morphism

(YE(σi )+ → Y\

C)
∗RJC,∗F ′,\C → RJE(σi )+,∗(Y

′

E(σi )+
→ Y′,\C )

∗F ′,\C (4.2.8)

is an isomorphism. Since JE(σi )+ is by definition the product IdE(σi )
+

T
×T JC , the

morphism (4.2.8) can be identified with the Künneth morphism

ΛE(σi )
+

T
�L

T (RJC,∗F ′,\C )→ R(IdE(σi )
+

T
×T JC)∗(ΛE(σi )

+

T
�L

T F ′,\C ), (4.2.9)

which is an isomorphism, because T is a point, by [6, 4.2.7], as desired.
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LEMMA 4.2.10. Suppose that T = S is Henselian, that Y′ = Yη and Y′,\Z = (Y
\

Z)η,
and that F ′ is as in Lemma 4.2.1. Consider the nearby cycle functors RΨY and
RΨY\Z

, for all Z, defined by some compatible choices of geometric points η̄ and
s̄ above the generic and special points η and s of S, respectively, as in [45,
Section 5.1]. Under the assumption (in (4) of Proposition 2.1.2) thatΣ is smooth,
suppose moreover that Y\

C → Y\

Z is smooth for each Z. Then RΨYtor
Σ
(F ′) is a

well-positioned complex over (Ytor
Σ )s̄ , equipped with a collection {(RΨY\Z

(F ′,\Z ),

ιZ)}Z, for some canonical isomorphisms ιZ, as in Definition 4.1.3. In this case,
ιZ can be taken to be not just in Db

c ((YZ̃)s̄,Λ), but also in Db
c ((YZ̃)s̄ × η̄, Λ);

and the isomorphisms ιU i
can be taken to be not just in Db

c ((YU i
)s̄,Λ), but

also in Db
c ((YU i

)s̄ × η̄, Λ). (Here Db
c (( · )s̄ × η̄, Λ) denotes the bounded derived

category of Λ-étale constructible sheaves over ( · )s̄ with compatible continuous
Gal(k(η̄)/k(η))-actions.)

Suppose that Λ = Q` or Q̄`, and that Y\

C → Y\

Z is smooth of relative
dimension dZ

− dE , where dZ
:= d − dZ, d := dim((XH)η), dZ := dim(Zη),

and dE := dim(Eη), for each Z. If F ′ is a well-positioned perverse sheaf over
Y′,tor
Σ = (Ytor

Σ )η, and if F ′,\Z [−dZ
] is a perverse sheaf over Y′,\Z = (Y

\

Z)η, for each
Z, then RΨYtor

Σ
(F ′) is a well-positioned perverse sheaf over (Ytor

Σ )s̄ , equipped with
the collection {(RΨY\Z

(F ′,\Z ), ιZ)}Z as above, where RΨY\Z
(F ′,\Z )[−dZ

] is a perverse
sheaf, for each Z.

Proof. For the first paragraph of the lemma, by the same reduction steps as in the
proof of Lemma 4.2.2, we are reduced to showing that the canonical morphism

ΛE(σi )
+

s̄
�L

s̄ (RΨY\C
(F ′,\C ))→ RΨE(σi )

+

S×SY\C
(ΛE(σi )

+
η
�L
η F

′,\

C ) (4.2.11)

(cf. (4.2.9)) in Db
c ((E(σi)

+

S ×S Y\

C)s̄ × η̄, Λ) is an isomorphism, where F ′,\C

denotes the pullback of F ′,\Z under Y′,\C → Y′,\Z , for each Z. Since σi is smooth by
assumption, E(σi)

+ is a relative normal crossings divisor on the smooth scheme
E(σi) over Spec(Z). Hence, by [16, XIII, 2.1.11] (or rather its proof), we have a
canonical isomorphism

ΛE(σi )
+

s̄

∼

→ RΨE(σi )
+

S
(ΛE(σi )

+
η
)

in Db
c (E(σi)

+

s̄ × η̄, Λ), via which (4.2.11) induces the Künneth morphism

(RΨE(σi )
+

S
(ΛE(σi )

+
η
))�L

s̄ (RΨY\C
(F ′,\C ))→ RΨE(σi )

+

S×SY\C
(ΛE(σi )

+
η
�L
η F

′,\

C ).

(4.2.12)
Thus, (4.2.11) is an isomorphism because (4.2.12) is, by [27, 4.7]. The second
paragraph of the lemma then follows from [27, 4.5] and [6, 4.2.8].
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LEMMA 4.2.13. Suppose that T = Spec(k) for some field k that is either
algebraically closed or finite, and that Λ = Q` or Q̄`. Suppose that (XH)T and
ZT are equidimensional of dimensions d and dZ, respectively, for each Z. Under
the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, suppose moreover
that Y\

C → Y\

Z is smooth of relative dimension dZ
− dE , where dZ

:= d − dZ and
dE := dim(ET), for each Z. Suppose F ′ is a well-positioned perverse sheaf over
Y′,tor
Σ , equipped with a collection F ′,\ = {F ′,\Z }Z, where F ′,\Z [−dZ

] is a perverse
sheaf over Y′,\Z , for each Z. Then a∗Y′

Z̃
F ′[−1] and a\,∗Y′

Z̃
F ′,\Z [−1] are perverse sheaves

(isomorphic to each other under ι′Z[−1]) in Db
c (Y

′

Z̃,Λ); and a∗YZ̃
(J!∗F ′)[−1] and

a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ

])[dZ
− 1] are perverse sheaves in Db

c (YZ̃,Λ). Moreover, we
have canonical isomorphisms

a∗YZ̃
(J!∗F ′)[−1]

∼

→ JZ̃,!∗(a
∗

Y′
Z̃
F ′[−1]) (4.2.14)

and
a\,∗YZ̃

(JZ,!∗(F ′,\Z [−dZ
]))[dZ

− 1]
∼

→ JZ̃,!∗(a
\,∗

Y′
Z̃
F ′,\Z [−1]) (4.2.15)

in Db
c (YZ̃,Λ) extending the compositions of canonical isomorphisms

J ∗
Z̃

a∗YZ̃
(J!∗F ′)[−1]

∼

→ a∗Y′
Z̃
J ∗(J!∗F ′)[−1]

∼

→ a∗Y′
Z̃
F ′[−1] (4.2.16)

and

J ∗
Z̃

a\,∗YZ̃
(JZ,!∗(F ′,\Z [−dZ

]))[dZ
− 1]

∼

→ a\,∗Y′
Z̃

J ∗Z (JZ,!∗(F ′,\Z [−dZ
]))[dZ

− 1]
∼

→ a\,∗Y′
Z̃
F ′,\Z [−1], (4.2.17)

respectively, in Db
c (Y

′

Z̃,Λ). Hence, the isomorphism

JZ̃,!∗(ι
′

Z[−1])[1] : JZ̃,!∗(a
∗

Y′
Z̃
F ′[−1])[1]

∼

→ JZ̃,!∗(a
\,∗

Y′
Z̃
F ′,\Z [−1])[1]

canonically induces an isomorphism

ιZ : a∗YZ̃
J!∗F ′

∼

→ a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ

])[dZ
], (4.2.18)

in Db
c (YZ̃,Λ), for each Z; and J!∗F ′ is a well-positioned perverse sheaf over Ytor

Σ ,
equipped with the collection {(JZ,!∗(F ′,\Z [−dZ

]))[dZ
], ιZ)}Z.

In particular, suppose Y′ = Ysm and Y′,\Z = (Y\

Z)sm in the above, which are
valid choices by Lemma 2.2.10, so that Y′,tor

Σ = (Y
tor
Σ )sm. Consider the intersection

complexes ICYtor
Σ
:= J!∗(Λ(Ytor

Σ )sm[d]) and ICY\Z
:= JZ,!∗(ΛY\Z,sm

[dZ]). Then ICYtor
Σ

is

a well-positioned perverse sheaf, equipped with the collection {ICY\Z
[dZ
]}Z.
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Proof. In addition to showing that a∗Y′
Z̃
F ′[−1], a\,∗Y′

Z̃
F ′,\Z [−1], a∗YZ̃

(J!∗F ′)[−1], and

a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ

])[dZ
− 1] are all perverse sheaves, since the assignment of

middle perversity extensions is functorial and fully faithful (see [29, Corollary
III.5.11]), in order to also show that the compositions of canonical isomorphisms
(4.2.16) and (4.2.17) (necessarily uniquely) extend to the desired canonical
isomorphisms (4.2.14) and (4.2.15), so that all remaining assertions of the lemma
will follow, it suffices to show that the perverse sheaves a∗YZ̃

(J!∗F ′)[−1] and

a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ

])[dZ
− 1] are isomorphic to the middle perversity extensions

of their restrictions to Y′Z̃, respectively. Essentially by definition (see also [29, the
criterion on page 148, after Lemma-Definition III.5.2]), both the perversity and
this last property can be verified étale locally.

For each Z, let UZ = {(U i , aU i
, a\

U i ,E(σi )
)}i∈IZ be as in Definition 4.1.3 (for F ′,

adapted to Y′), which we may and we shall assume to be also adapted to Y, by
Lemma 4.1.2 and Remark 4.1.7. Since UZ induces an affine open covering of Z̃
by assumption, by the explanation in the previous paragraph, and by using the
canonical isomorphisms induced by ι′Z and ι′

U i
, for each i ∈ IZ, it suffices to show

that i∗Y′Ui

a\,∗Y′Ui

F ′,\Z [−1] is a perverse sheaf in Db
c (Y

′

U
+

i
,Λ), and that the composition

of canonical isomorphisms

J ∗
U
+

i
i∗YUi

(JU i ,!∗
a\,∗Y′Ui

F ′,\Z )[−1]
∼

→ i∗Y′Ui

J ∗U i
(JU i ,!∗

a\,∗Y′Ui

F ′,\Z )[−1]

∼

→ i∗Y′Ui

a\,∗Y′Ui

F ′,\Z [−1]. (4.2.19)

in Db
c (Y

′

U
+

i
,Λ) (necessarily uniquely) extends to some isomorphism

i∗YUi
(JU i ,!∗

a\,∗Y′Ui

F ′,\Z )[−1]
∼

→ JU
+

i ,!∗
(i∗Y′Ui

a\,∗Y′Ui

F ′,\Z [−1]) (4.2.20)

in Db
c (YU

+

i
,Λ). (Then i∗YUi

(JU i ,!∗
a\,∗Y′Ui

F ′,\Z )[−1] is a perverse sheaf in Db
c (YU

+

i
,Λ)

that is isomorphic to the middle perversity extension of its restriction to Y′
U
+

i
.)

Under the assumption that Σ is smooth, E(σi)
+ is a relative normal crossings

divisor on the smooth scheme E(σi) over Spec(Z), and henceΛE(σi )
+

T
[dE −1] is a

perverse sheaf over E(σi)
+

T , by [29, Lemma III.6.5]. Since F ′,\Z [−dZ
] is a perverse

sheaf, under the assumption that Y\

C → Y\

Z is smooth of relative dimension dZ
−

dE , by the smooth base change theorem (see [3, XVI, 1.2]) and by the t-exactness
of smooth morphisms up to shifting by the relative dimensions (see [6, 4.2.5]),

F ′,\C [−dE ] := (Y
′,\

C → Y′,\Z )
∗F ′,\Z [−dE ]
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is also a perverse sheaf. Since a\Y′Ui

and a\YUi
are pullbacks of the composition

of the étale morphism a\
U i ,E(σi )

: U i → E(σi) ×Spec(Z) C with the canonical
morphism E(σi) ×Spec(Z) C → Z, and since iY′Ui

and iYUi
are pullbacks of

the closed immersion E(σi)
+
→ E(σ ), it follows that i∗Y′Ui

a\,∗Y′Ui

F ′,\Z [−1] and

i∗YUi
(JU i ,!∗

a\,∗Y′Ui

F ′,\Z )[−1] are perverse sheaves in Db
c (Y

′

U
+

i
,Λ) and Db

c (YU
+

i
,Λ),

respectively, because they are compatibly isomorphic to the pullbacks under
compatible étale morphisms of the perverse sheaves

(ΛE(σi )
+

T
[dE − 1])�L

T (F
′,\

C [−dE ])

and
(ΛE(σi )

+

T
[dE − 1])�L

T (JC,!∗(F ′,\C [−dE ]))

(see [6, 4.2.8]), respectively; and that (via these compatible isomorphisms)
the composition (4.2.19) can be identified with the pullback of the canonical
isomorphism

(IdE(σi )
+

T
×T JC)

∗((ΛE(σi )
+

T
[dE − 1])�L

T (JC,!∗(F ′,\C [−dE ])))

∼

→ (ΛE(σi )
+

T
[dE − 1])�L

T (F
′,\

C [−dE ]). (4.2.21)

Since (4.2.21) extends to the Künneth isomorphism

(ΛE(σi )
+

T
[dE − 1])�L

T (JC,!∗(F ′,\C [−dE ]))

∼

→ (IdE(σi )
+

T
×T JC)!∗((ΛE(σi )

+

T
[dE − 1])�L

T (F
′,\

C [−dE ])) (4.2.22)

(see [6, 4.2.8] again), it follows that (4.2.19) also extends to some isomorphism
(4.2.20), which can be identified with the pullback of (4.2.22), as desired.

LEMMA 4.2.23. Suppose that S is Henselian, and that Λ = Q` or Q̄` for
simplicity. Consider the nearby cycle functors RΨXtor

H,Σ
and RΨZ, for all Z, defined

by some compatible choices of geometric points η̄ and s̄ above the generic and
special points η and s of S, respectively, as in [45, Section 5.1]. Under the
assumption (in (4) of Proposition 2.1.2) that Σ is smooth, suppose moreover that
C → Z has connected geometric fibers and is smooth of relative dimension dZ

−

dE , where d := dim((XH)η), dZ := dim(Zη), dZ
:= d−dZ, and dE = dim(ET), for

each Z, so that Assumption 3.7.7 holds. Suppose that Y ∈ Supp(RΨXtor
H,Σ
(Λ[d]))

and G ∈ LocY (RΨXtor
H,Σ
(Λ[d])), with corresponding Y \

Z ∈ Supp(RΨZ(Λ[dZ])) and
G\Z ∈ LocY \Z

(RΨZ(Λ[dZ])), for each Z, as in Lemma 3.7.9 and Proposition 3.7.13.
Then Y ∩ (XH)s̄ is a well-positioned subset of (XH)s̄ , by Proposition 3.7.13,
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with its toroidal compactification Y as in Definition 2.3.1. Moreover, there exist
smooth open subschemes Y 0 and Y \,0

Z of Y and Y \

Z (with their reduced subscheme
structures), respectively, for each Z, over which G and G\Z are defined, such that
Y 0
∩(XH)s̄ is a well-positioned subset of (XH)s̄ , with its toroidal compactification

Y 0 as in Definition 2.3.1. Let JY : Y 0 ↪→ Y and JY \Z
: Y \,0

Z ↪→ Y \

Z denote the
canonical open immersions, for each Z. By [20, Appendix, Theorem 10.1] and [6,
5.3.1, 5.3.2, and 5.3.4], ICY (G) := JY,!∗(G[dim(Y )]) (respectively ICY \Z

(G\Z) :=
JY \Z,!∗

(G\Z[dim(Y \

Z)]), for each Z) is a pure perverse sheaf. By [6, 5.3.5 and 5.3.8],

the ICY (G)-isotypic subquotient H of RΨXtor
H,Σ
(Λ[d]) (respectively ICY \Z

(G\Z)[dZ
]-

isotypic subquotient H\

Z of RΨZ(Λ[d])) is defined. Then H is a well-positioned
pure perverse sheaf over Y , equipped with a collection {(H\

Z, ιZ)}Z, where ιZ is
induced by its analogue for nearby cycles as in Lemma 4.2.10, for each Z.

Proof. These follow from Proposition 3.7.13, from Lemmas 2.2.10, 4.2.10,
and 4.2.13 and their proofs, and from the following: For each Z, and for each
collection UZ = {(U i , aU i

, a\
U i ,E(σi )

)}i∈IZ as in Definition 4.1.3, the isomorphisms
ιZ and ιU i

, for all i ∈ IZ, are induced by their analogues for nearby cycles, because
the corresponding isotypical subquotients of nearby cycles match over U i , for all
i ∈ IZ, and because the fibered category of perverse sheaves is a stack (see [6,
2.2.19]).

EXAMPLE 4.2.24. (This is a more detailed version of a remark we made in the
introduction.) Suppose that we are in the setting of Section 3.4. For simplicity,
assume that O ⊗Z Q is simple and involves no factor of type D, in the sense of
[36, Definition 1.2.1.15], so that G⊗Z Q is connected. Suppose that

H = U(n0 p2018) := ker(G(Ẑ)→ G(Z/(n0 p2018Z))),

for some n0 > 3. By Lemma 2.1.9, C → Z is an abelian scheme, for each
Z. Consider any Newton stratum (XH)

b
s , for some b ∈ B(G ⊗Z Qp), as in

Proposition 3.3.1, and any Ekedahl–Oort stratum (XH)
w
s , for some w ∈ W M0 ,

as in Proposition 3.5.1, which are well-positioned subschemes of (XH)s , by
Propositions 3.3.9 and 3.5.5. By Lemma 2.2.3 and Proposition 2.3.12, any
irreducible component Y of the intersection (XH)

b
s ∩ (XH)

w
s (with its reduced

subscheme structure) is a well-positioned subscheme of (XH)s . Thus, the
(generally infinite-dimensional) coherent cohomology of its partial toroidal
compactification still satisfies our generalization of Koecher’s principle, by
Theorem 2.5.11. Moreover, by Lemmas 4.2.1, 4.2.2, and 4.2.13, if we denote by
J : Y ↪→ (Xtor

H,Σ)s the canonical immersion, then J!Q̄` (respectively RJ∗Q̄`,
respectively the intersection complex ICYtor

Σ
) is a well-positioned sheaf

https://doi.org/10.1017/fms.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.20


K.-W. Lan and B. Stroh 76

(respectively complex, respectively perverse sheaf) over (Xtor
H,Σ)s , and we have

generalizations of Pink’s and Morel’s formulas for these in Sections 4.3 and 4.5
(see Theorems 4.3.16 and 4.5.26 below).

4.3. Pink’s formula. The goal of this subsection is to generalize [72, Theorem
5.3.1]. We first state its original form for automorphic étale sheaves (see
Theorem 4.3.10 below), and then its generalization for tensor products with well-
positioned complexes (see Theorem 4.3.16 below).

Let us start with some preparations. For simplicity, in this subsection, let us
make the following assumptions (although some of them can be relaxed):

ASSUMPTION 4.3.1.

(1) In all cases, assume that H = H`,pU`(`r )Hp, where H`,p
⊂ G(Ẑ`,p)

and Hp ⊂ G(Zp) are open compact subgroups, and where U`(`r ) :=

ker(G(Z`)→ G(Z/`rZ)), for some r > 1.

(2) In Cases (Sm), (Nm), or (Spl), also assume that O ⊗Z Q involves no factor
of type D (as in [36, Definition 1.2.1.15]), so that G⊗Z Q is connected.

(3) In Case (Sm), assume in addition that ` 6∈2. (This is forced by the condition
(1) above when r > 1.)

(4) In Cases (Nm), (Spl), and (Hdg), assume in addition that C → Z is an
abelian scheme torsor (of constant relative dimension) over a finite étale
cover, for each Z (cf. Remark 2.1.8). In Cases (Nm) and (Spl), this is true, for
example, when we assume that H is a principal level, and that we are in the
setting preceding Lemma 2.1.9. (See also Remark 2.1.11). In Case (Hdg),
this is true, for example, when p > 2 and Hp is a maximal hyperspecial
open compact subgroup of G(Qp) (see [50, Sections 4.3 and 5.3]).

LEMMA 4.3.2. Under Assumption 4.3.1, there exists a system of open compact
subgroups H(`r ′ )

⊂ H, labeled by integers r ′ > r , such that:

(1) For each r ′ > r , we have H(`r ′ )
= H`,pU`(`r ′)Hp, where H`,p and Hp are

as above, and where U`(`r ′) := ker(G(Z`)→ G(Z/`r ′Z)).

(2) By writing H′ = H(`r ′ ) for simplicity, the corresponding canonical
morphisms XH′ → XH and their boundary analogues Ξ ′ → Ξ , C ′ → C
and Z′ → Z are finite étale. The morphisms C → Z and C ′ → Z′ are
abelian scheme torsors over finite étale covers of the base schemes, and the
morphisms Ξ → C and Ξ ′→ C ′ are torus torsors. The induced morphism
C ′ → C ×Z Z′ is étale locally over Z′ the multiplication by `r ′−r on an
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abelian scheme, and the canonical morphism Ξ ′ → Ξ ×C C ′ is Zariski
locally over C ′ the multiplication by `r ′−r on a torus.

Proof. Part (1) of the lemma is just the definition of H(`r ′ )
⊂ H, for each r ′ > r .

It remains to verify the assertions in part (2) of the lemma. In Case (Sm), these
follow from the constructions in [36, Sections 6.2.2–6.2.4; see also the errata].
In Cases (Nm) and (Spl), since H/H′ ∼= U`(`r )/U`(`r ′), we can define relative
moduli C ′,mod and Ξ ′,mod over C and Ξ parameterizing the `-power parts of the
degenerations of level structures, as in [36, Section 6.2.4] (see also [42, Section
1.3.2]), which are finite étale over C and Ξ , respectively, and have the desired
property as (instead of C ′ and Ξ ′) in the last sentence of the lemma. Then the
induced morphisms C ′→ C ′,mod and Ξ ′→ Ξ ′,mod are isomorphisms by Zariski’s
main theorem, because they are finite morphisms between normal schemes which
induce isomorphisms in characteristic zero. In Case (Hdg), these follow from the
boundary descriptions in characteristic zero in [50, Section 2.1] (based on [4]
and [71]) and in characteristic p in [50, Sections 4.1–4.2].

Let Z be a stratum of Xmin
H .

In Cases (Sm), (Nm), or (Spl), the stratum Z is associated with some cusp label
[(ZH, ΦH, δH)], which determines an H-orbit ZH of a fully symplectic liftable
filtration Z = {Z−i}i∈Z on L⊗Z Ẑ (see [36, Definitions 5.2.7.1 and 5.4.2.4]). Then
we fix the choices of P and V = {V−i}i∈Z as in Lemma 3.3.6, where V−2 ⊗Q A∞
lies in the H-orbit of Z−2 ⊗Z Q, and define various groups as in Definition 3.3.8.

In Case (Hdg), it is the consequence of the characteristic zero theory in [5]
and [71] that the stratum Z is associated with some parabolic subgroup P of G⊗Z
Q whose image in each simple factor of (G⊗ZQ)ad is either the whole factor or a
proper maximal parabolic subgroup. Let U and M denote the unipotent radical and
the Levi quotient of P, respectively. Then we have an exact sequence 1→ Gh →

M→ Gl → 1, where Gh defines the boundary analogue of XH, which is a finite
cover of Z in [71] and [50]. (Unlike in PEL cases, we do not have M ∼= Gl×Gh in
general.) In what follows, we will not be as precise as in Cases (Sm), (Nm), and
(Spl), but only state the bare minimum for the application of Pink’s arguments
in [72].

REMARK 4.3.3. The group Γ in Proposition 2.1.2 is by definition a subgroup of
Gl(Q). Even in Cases (Sm), (Nm), or (Spl), where M ∼= Gl × Gh , it is generally
not true that HM coincides with the semidirect product Hl o Hh or H′l n H′h
(see [36, Definitions 5.3.1.4 and 5.3.1.1, and the errata], and see [42, Definitions
1.2.1.11 and 1.2.1.12]), and Γ ′ := Γ ∩Hl is a finite index subgroup of Γ which
is generally different from Γ . This discrepancy between Γ and Γ ′ defines a finite
étale cover of Z in characteristic zero, which is consistent with the consideration in
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[71, Section 6.3] (cf. Definition 4.3.4 below). Nevertheless, in Cases (Sm), (Nm),
or (Spl), Γ ′ = Γ when and exactly when M ∼= Gl × Gh induces a direct product
HM
∼= Hl ×Hh , in which case Hl = H′l and H′h = Hh,Φ = Hh . This is the case,

for example, when H is a principal level (and when the technical assumption [36,
Condition 1.4.3.10] is satisfied).

Consider any algebraic representation ξ of G ⊗Z Q on a finite-dimensional
vector space Vξ over Q̄`, with an associated étale sheaf Vξ over XH, as
explained in [45, Section 3.1] (which is consistent with [72, Sections 1 and
4.9]). The association is functorial and also applies to complexes V of algebraic
representations of G ⊗Z Q on finite-dimensional vector spaces over Q̄`, with
associated complexes V of Q̄`-étale sheaves over XH. For each algebraic group
( · ) over Q, let Db( · , Q̄`) denote the bounded derived category of algebraic
representations of ( · ) on finite-dimensional vector spaces over Q̄`. Then the
above association induces a functor from Db(G ⊗Z Q, Q̄`) to Db

c (XH, Q̄`) (see
the beginning of Section 4.1).

Following [72, Section 5.2], let us introduce the following definitions:

DEFINITION 4.3.4. For the group Γ in Proposition 2.1.2 associated with Z,
consider the Stein factorization

C st
:= Spec

OZ
((C → Z)∗OC)→ Z,

with an induced action of Γ . Then we denote by Γ ′ the largest (finite index)
subgroup of Γ which acts trivially on C st. (In Cases (Sm), (Nm), and (Spl), this
is the same Γ ′ as in Remark 4.3.3.)

DEFINITION 4.3.5. Let u := Lie U(Q`) denote the Lie algebra of the `-adic
analytic Lie group U(Q`). For each V ∈ Db(P, Q̄`), we denote by RInv(u, V ) the
object of Db(M, Q̄`) whose cohomology computes the Lie algebra cohomology
of V .

DEFINITION 4.3.6. For each object V ∈ Db(M, Q̄`), we denote by RInv(Γ ′, V )
the object of Db(Gh, Q̄`) whose cohomology computes the group cohomology
of V .

REMARK 4.3.7. In Cases (Sm), (Nm), or (Spl), the boundary stratum Z and its
finite cover C st are analogues of XH associated with Gh at levels Hh,Φ and H′h ,
respectively, and we have C st/(Γ/Γ ′)

∼

→ Z. In Case (Hdg), it is only the C st in
Definition 4.3.4 that is associated with Gh , but we still have C st/(Γ/Γ ′)

∼

→ Z.
In all cases, the constructions in [45, Section 3.1] and [72, Sections 1 and 4.9]
associate an object of Db

c (C
st, Q̄`) with any RInv(Γ ′, V ) as in Definition 4.3.6,

https://doi.org/10.1017/fms.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.20


Compactifications of subschemes of integral models of Shimura varieties 79

which admits an action of Γ/Γ ′ and defines an object of Db
c (Z, Q̄`) (cf. [71, (1.10)

and (4.7)]) because C st
→ Z is étale by assumption (see (4) of Assumption 4.3.1).

DEFINITION 4.3.8. For each object V ∈ Db(G⊗Z Q, Q̄`), we define

V \

Z := RInv(Γ ′, RInv(u, V |P)) (4.3.9)

as in Definition 4.3.6, with an associated object V \

Z of Db
c (Z, Q̄`) as in

Remark 4.3.7.
When V is represented by an algebraic representation Vξ of G⊗Z Q on a finite-

dimensional vector space over Q̄`, we denote by V \

ξ,Z the unique representative
of V \

Z which is a direct sum of shifts of algebraic representations of Gh on finite-
dimensional vector spaces over Q̄` (which exists because Gh is reductive), and by
V \

ξ,Z the associated direct sum of shifts of Q̄`-étale sheaves over Z representing
V \

Z. As usual, we shall also denote by Vξ , Vξ , V \

ξ,Z, and V \

ξ,Z the induced objects in
the derived categories.

Suppose T is just a point. Let imin
: ZT → (Xmin

H )T and i tor
: Z̃T → (Xtor

H,Σ)T

(respectively jmin
: (XH)T ↪→ (Xmin

H )T and j tor
: (XH)T ↪→ (Xtor

H,Σ)T) denote the
canonical locally closed (respectively open) immersions, which satisfy imin

=∮
◦i tor and jmin

=
∮
◦ j tor, where

∮
:= (

∮
H,Σ)T : (X

tor
H,Σ)T → (Xmin

H )T is as in
(1) of Theorem 2.3.2.

THEOREM 4.3.10 (Pink). Let Vξ be an algebraic representation of G ⊗Z Q on
a finite-dimensional vector space over Q̄`, which defines Vξ , and so on, as in
Definition 4.3.8. For simplicity, we shall denote by the same symbols the pullbacks
of Vξ and V \

ξ,Z under T → S. Then, under Assumption 4.3.1, there exists a
canonical isomorphism

imin,∗R jmin
∗

Vξ
∼

→ V \

ξ,Z (4.3.11)

in Db
c (ZT, Q̄`). More precisely, by the proper base change theorem (see [3, XII,

5.1]), we have a canonical isomorphism

imin,∗R jmin
∗

Vξ
∼

→ R
∮

Z,∗
i tor,∗R j tor

∗
Vξ , (4.3.12)

where
∮

Z : Z̃T → ZT is the pullback of
∮

. Then the upshot is the existence of an
isomorphism
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R
∮

Z,∗
i tor,∗R j tor

∗
Vξ

∼

→ V \

ξ,Z, (4.3.13)

which depends only on Vξ |P, such that (4.3.11) is the composition

imin,∗R jmin
∗

Vξ
(4.3.12)
∼

→ R
∮

Z,∗
i tor,∗R j tor

∗
Vξ

(4.3.13)
∼

→ V \

ξ,Z. (4.3.14)

As level varies, such isomorphisms are compatible with Hecke actions of elements
of P(A∞) (when defined). (In characteristic p, we usually cannot expect the
Hecke actions to be defined for all elements of P(A∞).)

Proof. The existence of the canonical isomorphism (4.3.11) follows from [72,
Theorem 4.2.1 and Proposition 5.2.1], while the later explanatory statements are
based on the proofs there. (We could have referred to [72, Theorem 5.3.1] when
the simplifying assumption HQ = HC K P there is satisfied, which corresponds
to the assumption that Γ = Γ ′ in our setting; cf. [72, paragraph after (3.7.4)],
Remark 4.3.3, and Definition 4.3.4.) Although they were stated only over
Spec(F0), the same arguments there work as long as there are systems of minimal
and toroidal compactifications with the same axiomatic properties as in [72,
Sections 3.7–3.11; see also Section 4.9], which is the case here, by considering
higher principal levels at `, thanks to Lemma 4.3.2.

REMARK 4.3.15. The proof of Theorem 4.3.10 in [72] is consistent with the one
here: In Cases (Sm), (Nm), and (Spl), this is because of the comparisons in [34,
Theorems 4.1.1 and 5.1.1; see also the errata] and in [37]. In Case (Hdg), this is
because [50] and [72] were based on the same characteristic zero results in [71].

Let Y be a well-positioned subset of (XH)T, with associated Y\
= {Y\

Z}Z

as in Definition 2.2.1. Let Ymin and Ytor
Σ be its partial minimal and toroidal

compactifications, as in Definition 2.3.1, with the canonical proper surjection∮
Y :=

∮
Y,Σ : Ytor

Σ → Ymin, as in Theorem 2.3.2. Let imin
Y : YZ → Ymin and i tor

Y :

YZ̃→ Ytor
Σ (respectively jmin

Y : Y ↪→ Ymin and j tor
Y : Y ↪→ Ytor

Σ ) denote the canonical
locally closed (respectively open) immersions, which satisfy imin

Y =
∮

Y ◦i
tor
Y and

jmin
Y =

∮
Y ◦ j tor. Now we can formulate our generalization of Theorem 4.3.10:

THEOREM 4.3.16. Let F be a well-positioned complex over Ytor
Σ , equipped with

a collection F \
= {(F \

Z, ιZ)}Z as in Definition 4.1.3. Let Vξ be an algebraic
representation of G ⊗Z Q on a finite-dimensional vector space over Q̄`. Let FY,
Vξ,Y, and V \

ξ,YZ
denote the pullbacks of F , Vξ , and V \

ξ,Z (see Definition 4.3.8) to Y,
Y, and YZ, respectively. Then, under Assumption 4.3.1, there exists a canonical
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isomorphism
imin,∗
Y R jmin

Y,∗ (Vξ,Y ⊗L FY)
∼

→ V \

ξ,YZ
⊗

L F \

Z (4.3.17)

in Db
c (YZ, Q̄`). As level varies, such isomorphisms are compatible with actions of

elements of P(A∞) when they are defined on some collections of Y and F \

Z (which
is possible by Lemma 4.1.12).

In order to prove Theorem 4.3.16, we need some further preparations.

LEMMA 4.3.18. There is a canonical isomorphism

imin,∗
Y R jmin

Y,∗ (Vξ,Y ⊗L FY)
∼

→ R
∮

YZ,∗

i tor,∗
Y R j tor

Y,∗(Vξ,Y ⊗L FY), (4.3.19)

where
∮

YZ
: YZ̃ → YZ is the pullback of

∮
Y.

Proof. This follows from the proper base change theorem (see [3, XII, 5.1]).

LEMMA 4.3.20. LetΛ be as in the beginning of Section 4.1. Suppose f : T → T ′

is a morphism between schemes of residue characteristics prime to `, which we
assume to be separated and of finite type over some regular scheme of dimension
6 1. Suppose G ∈ Db

c (T,Λ) and H ∈ Db
c (T

′,Λ). Then there is a canonical
morphism

(R f∗G)⊗L H→ R f∗(G ⊗L ( f ∗H)) (4.3.21)

in Db
c (T

′,Λ).

Proof. By adjunction, we have a canonical morphism f ∗R f∗G → G, which
induces a canonical morphism

f ∗((R f∗G)⊗L H) ∼→ ( f ∗R f∗G)⊗L ( f ∗H)→ G ⊗L ( f ∗H),

which in turn induces the desired morphism (4.3.21).

Consequently, we have a canonical morphism

(R j tor
Y,∗Vξ,Y)⊗L F → R j tor

Y,∗(Vξ,Y ⊗L FY). (4.3.22)

LEMMA 4.3.23. In Lemma 4.3.20, suppose that f : T → T ′ is a morphism
between schemes of finite type over S0 = Spec(k) for some field k, which is
étale locally of the form f = g ×S0 IdS : T = E ×S0 S ↪→ T ′ = E ′ ×S0 S,
where g : E → E ′ is a morphism between schemes separated and of finite type
over S0, and where S is of finite type over S0. Suppose moreover that such an
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étale local factorization of f can be chosen such that G and H are the pullbacks
of some L ∈ Db

c (E,Λ) and M ∈ Db
c (S,Λ), respectively. Then (4.3.21) is an

isomorphism.

Proof. Up to étale localization, we may identify the morphism (4.3.21) with the
Künneth morphism (Rg∗L)�L

S0
M→ R f∗(L�L

S0
M), which is an isomorphism

by [6, 4.2.7].

REMARK 4.3.24. In Lemma 4.3.20, when f is compactifiable, we have a
canonical isomorphism (R f!G) ⊗L H ∼

→ R f!(G ⊗L ( f ∗H)), which is the well-
known projection formula (see [3, XVII, 5.2.9]), by the proper base change
theorem (see [3, XVII, 5.2.2]). However, such a formula is false in general for
R f∗ instead of R f!.

COROLLARY 4.3.25. The canonical morphism (4.3.22) is an isomorphism.

Proof. For each Z, let UZ = {(U i , aU i
, a\

U i ,E(σi )
)}i∈IZ be as in Definition 4.1.3. Let

Ui denote the common preimage of XH and E in U i (see Corollary 2.1.7), and let
aYUi
: YUi := Ui×XH Y→ Y, aYUi

: YU i
:= U i×Xtor

H,Σ
Ytor
Σ → Ytor

Σ , JU i
: YUi ↪→ YU i

,

and a\YUi
: YUi → Y\

Z denote the induced canonical morphisms. In order to show
that (4.3.22) is an isomorphism, by étale localization, it suffices to show that, for
each Z and each i ∈ IZ as above, the induced morphism

(RJU i ,∗
a∗YUi

Vξ,Y)⊗L (a∗YUi
F)→ RJU i ,∗

a∗YUi
(Vξ,Y ⊗L FY) (4.3.26)

is an isomorphism, for each i ∈ I . Since Vξ is lisse, by using the isomorphism ιU i
:

a∗YUi
F ∼

→ a\,∗YUi
F \

Z as in (4.1.5), this follows from Lemma 4.3.23, as desired.

LEMMA 4.3.27. It suffices to prove Theorem 4.3.16 when Y = (XH)T.

Proof. Let J : Y→ (XH)T and JZ : YZ → ZT denote the canonical morphisms.
By [3, XVII, 5.1.2 and 5.1.6], we have

JZ,!i
min,∗
Y R jmin

Y,∗ (Vξ,Y ⊗L FY) ∼= imin,∗R jmin
∗
(J!(Vξ,Y ⊗L FY)).

Since J!(Vξ,Y ⊗L FY) ∼= Vξ ⊗L (J!FY) and JZ,!(V \

ξ,YZ
⊗

L F \

Z)
∼= V \

ξ,Z ⊗
L (JZ,!F \

Z)

because Vξ and V \

ξ,Z are direct sums of shifted lisse sheaves, we are reduced to
constructing (4.3.17) when Y, F , and F \

Z are replaced with (XH)T, J!F , and
JZ,!F \

Z, respectively. Hence, this lemma follows from (1) of Lemma 4.2.1.
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Proof of Theorem 4.3.16. By Lemma 4.3.27, we may and we shall assume that
Y = (XH)T. In this case, the desired (4.3.17) is the following composition

imin,∗
Y R jmin

Y,∗ (Vξ,Y ⊗L FY)

(4.3.19)
∼

→ R
∮

YZ,∗

i tor,∗
Y R j tor

Y,∗(Vξ,Y ⊗L FY)

R
∮

YZ ,∗
i tor,∗
Y (4.3.22)−1

∼

→ R
∮

YZ,∗

i tor,∗
Y ((R j tor

Y,∗Vξ,Y)⊗L F)

can.
∼

→ R
∮

YZ,∗

((i tor,∗
Y R j tor

Y,∗Vξ,Y)⊗L (i tor,∗
Y F))

R
∮

YZ ,∗
(Id⊗ιZ)
∼

→ R
∮

YZ,∗

(
(i tor,∗

Y R j tor
Y,∗Vξ,Y)⊗L

(∮
∗

YZ

F \

Z

))
proj.
∼

→

(
R
∮

YZ,∗

i tor,∗
Y R j tor

Y,∗Vξ,Y
)
⊗

L F \

Z

(4.3.13)
∼

→ V \

ξ,YZ
⊗

L F \

Z, (4.3.28)

where (4.3.13) is applicable because Y = (XH)T and so Y\

Z = ZT; where (4.3.22)
is an isomorphism by Corollary 4.3.25; and where the isomorphism denoted
‘proj.’ is based on the well-known projection formula (see [3, XVII, 5.2.9] and
Remark 4.3.24), which is applicable because

∮
YZ,∗

is proper.

REMARK 4.3.29. Instead of using Lemma 4.3.27 and (4.3.13), we could have
directly established the isomorphism R

∮
YZ,∗

i tor,∗
Y R j tor

Y,∗Vξ,Y
∼

→ V \

ξ,YZ
needed in the

last step of (4.3.28), without assuming Y = (XH)T, by the same argument as in
the proof of Theorem 4.3.10, thanks to Theorem 2.3.2, Proposition 2.4.2, and
Lemma 4.3.2.

REMARK 4.3.30. Theorems 4.3.10 and 4.3.16 have analogues over Z`—we then
need to replace the Lie algebra cohomology in Definitions 4.3.5 and 4.3.8 by
continuous group cohomology. (See [72, Theorem 4.2.1].)

REMARK 4.3.31. We have seen in Theorem 4.3.16 that imin,∗
Y R jmin

Y,∗ (Vξ,Y ⊗L

FY), for any well-positioned complex F , is canonically isomorphic to the
(derived) tensor product of V \

ξ,YZ
and F \

Z, where V \

ξ,YZ
is the pullback of the

complex V \

ξ,Z essentially defined in [72]. This is intriguing because the minimal
compactification is far from being a product near the boundary. As a consequence
of this sheaf-theoretic product structure, we see that the following problems are,
at least intuitively, unrelated:
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(1) Studying the bad reduction of a Shimura variety at p, or studying its nearby
cycles, or studying the constant sheaves or intersection complexes on natural
stratifications such as the Newton or Ekedahl–Oort ones.

(2) Studying the behavior of such complexes near the boundary strata of the
minimal compactification.

REMARK 4.3.32. By Theorem 4.3.16, under Assumption 4.3.1, V \

ξ,YZ
⊗

L F \

Z

is uniquely determined by F and Vξ , for an arbitrary Vξ . When Vξ = Q̄` is
the trivial representation, V \

ξ,Z has a direct summand Q̄` in degree zero, by
‘Lieberman’s trick’. (This is a representation-theoretic statement independent of
the consideration of integral models.) Therefore, F \

Z is uniquely determined by
V \

ξ,YZ
⊗

L F \

Z in this case, and also by F (cf. Remark 4.1.10).

4.4. Mantovan’s formula with boundary terms. The goal of this subsection
is to present a generalization of [51, Section 8, Theorem 22] and [52, Theorem
3.1] in a way different from our previous one [45, Theorem 6.32], which also
shows certain boundary terms. (See Theorem 4.4.7 and Remark 4.4.13 below.)

Let us resume the context of Section 3.3. Assume moreover that p is a good
prime for the integral PEL datum (O, ?, L , 〈 · , · 〉, h0) as in [36, Definition
1.4.1.1]; that we are in Case (Nm) with the trivial collection J = {j0} with {(gj0,

L j0, 〈 · , · 〉j0)} = {(1, L , 〈 · , · 〉)}, as in [38, Example 2.3]; and that O ⊗Z Q is
simple and involves no factor of type D, in the sense of [36, Definition 1.2.1.15].
(This is the setting in [45, Section 6.3].) In this case, (G ⊗Z Q)ad is also simple
over Q. Let us also import Assumption 4.3.1 from Section 4.3. For the sake of
concreteness, let us fulfil the requirement in Assumption 4.3.1 that C → Z is
an abelian scheme torsor for each Z by assuming that H is a principal level, by
Lemma 2.1.9. This will be harmless for our purpose in this subsection, because
principal levels are cofinal among all choices of levels.

Suppose S = Spec(OK ), where K is the v-adic completion of F0 at a place
v|p. Consider the nearby cycle functors RΨXH , and others, defined by some
compatible choices of geometric points η̄ = Spec(K̄ ) and s̄ above the generic
and special points η = Spec(K ) and s of S, respectively, as in [45, Section 5.1].
For each b ∈ B(G⊗Z Qp), and for each irreducible algebraic representation ξ of
G ⊗Z Q on a finite-dimensional vector space Vξ over Q̄`, recall that Mantovan
proved the following formula (see [45, Theorem 6.26], with H running over a
cofinal system of higher levels, such as all higher principal levels)∑

i

(−1)i [H i
ét,c(X

b
s̄ , (RΨX(Vξ ))|Xb

s̄
)] =

∑
j

(−1) j Eb([H
j

ét,c(Ig
b
,Vξ )]) (4.4.1)
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between virtual representations of G(A∞,p)× G(Qp)
+
×WK , where

G(Qp)
+
:= {gp ∈ G(Qp) : g−1

p (L ⊗Z Zp) ⊂ L ⊗Z Zp}

is a submonoid of G(Qp) (cf. [51, page 599]), where Igb is the limit of the so-
called Igusa varieties over certain central leaf of Xb

s̄ , and where Eb is the so-called
Mantovan functor. (For more details, see [45, Section 6.3] and the references there
to [51], [52], and other works.)

Let Z be a stratum of Xmin
H , which is associated with some parabolic subgroup P

of G⊗Z Q, as in Lemma 3.3.6, with its various quotients of subgroups defined in
Definition 3.3.8. Since O⊗ZQ is simple by assumption, P is either all of G⊗ZQ,
or a proper maximal parabolic subgroup of G ⊗Z Q. For each b ∈ B(G ⊗Z Qp),
by Proposition 3.3.9 and its proof, Y := (XH)

b
s is a well-positioned subset of

(XH)s , associated with the collection Y\
:= {Y\

Z := Zb
s }Z, where Zb

s is either the
empty subset or the Newton stratum Zbh

s of Zs . In the latter case, (XH)
b
s 6= ∅, and

b is the image of some bP ∈ B(P ⊗Q Qp), with image bM = (bl, bh) in B(M ⊗Q
Qp)∼= B(Gl ⊗Q Qp)×B(Gh ⊗Q Qp). Conversely, by the construction of Mumford
families, every bh ∈ B(Gh ⊗Q Qp) such that Zbh

s is nonempty comes from some
b ∈ B(G ⊗Z Qp) as above. For such Y and Y\, let (Xtor

H,Σ)
b
s := Ytor

Σ be defined as
in Definition 2.3.1.

By Lemmas 4.2.1 and 4.2.10, RΨXtor
H,Σ
(Q̄`)|(Xtor

H,Σ )
b
s̄

is a well-positioned complex
over (Xtor

H,Σ)s̄ , equipped with the collection {RΨZ(Q̄`)|Zb
s̄
}Z. By abuse of notation,

we shall still denote their extensions by zero to the whole schemes (Xtor
H,Σ)s̄ and

Zs̄ , respectively, by the same symbols. Therefore, by Theorem 4.3.16, we have an
isomorphism

imin,∗
s̄ R jmin

s̄,∗ (Vξ ⊗L RΨXH(Q̄`)|(XH)
b
s̄
)
∼

→ V \

ξ,Z ⊗
L RΨZ(Q̄`)|Zb

s̄
(4.4.2)

in Db
c (Zs̄, Q̄`), where Vξ and V \

ξ,Z also denote their pullbacks to (XH)s̄ and Zs̄ ,
respectively. Note that (4.4.2) is not just an isomorphism in Db

c (Zs̄, Q̄`), but
also an isomorphism in Db

c (Zs̄ × η̄, Q̄`), because the proof of Theorem 4.3.16
only uses canonical isomorphisms which are compatible with the actions of
Gal(k(η̄)/k(η)) = Gal(K̄/K ) (cf. Lemma 4.2.10 and its proof).

Since Vξ is lisse, the canonical morphism Vξ ⊗L RΨXH(Q̄`) → RΨXH(Vξ ) is
an isomorphism in Db

c ((XH)s̄ × η̄, Q̄`). Similarly, since the complex V \

ξ,Z is a
direct sum of shifted lisse sheaves (see Definition 4.3.8), the canonical morphism
V \

ξ,Z ⊗
L RΨZ(Q̄`) → RΨZ(V \

ξ,Z) is an isomorphism in Db
c (Zs̄ × η̄, Q̄`). Hence,

(4.4.2) can be rewritten as an isomorphism

imin,∗
s̄ R jmin

s̄,∗ (RΨXH(Vξ )|(XH)
b
s̄
)
∼

→ RΨZ(V \

ξ,Z)|Zb
s̄

(4.4.3)
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in Db
c (Zs̄, Q̄`), where RΨXH(Vξ )|(XH)

b
s̄

and RΨZ(V \

ξ,Z)|Zb
s̄

abusively denote their
extensions by zero to the whole schemes (XH)s̄ and Zs̄ .

As H ⊂ G(Ẑ) varies among principal levels, the attached HP := H ∩ P(A∞),
HU :=H∩U(A∞), HM :=HP/HU, and Hh := (M(A∞)→ Gh(A∞))(HM) (see
Definition 3.3.8 and Remark 4.3.3) vary accordingly among principal levels in
the respective ambient groups. We can also consider a projective system of higher
level analogues of Z, as H′h =Hh,Φ =Hh ⊂ Gh(A∞) vary among principal levels,
which we abusively denote as Ẑ.

However, to formulate the boundary version of (4.4.1), it is better to consider
the Gl(A∞)-orbit of Ẑ (which is a disjoint union of locally closed subsets in the
limit of the projective system Xmin

= {Xmin
H }H parameterized by principal levels

H), which we abusively denote as XP. The elements of Gl(A∞) act by twisting
the torus arguments in the cusp labels, without changing the associated filtration
Z. The finite level object XP,H is the disjoint union of all Z (the strata of Xmin

H )
parameterized by cusp labels [(ZH, ΦH, δH)] with the same underlying H-orbit
ZH, where ZH ⊗Z Q has stabilizer P ⊗Q A∞. Such cusp labels [(ZH, ΦH, δH)]

are in bijection with Gl(Q)\Gl(A∞)/H′l = Gl(Q)\Gl(A∞)/Hl . The generic fiber
(XP)η admits an action of P(A∞)with trivial restriction to U(A∞), and the induced
action of M(A∞) ∼= P(A∞)/U(A∞) ∼= Gl(A∞) × Gh(A∞) is the combination of
the action of Gl(A∞) as above and the action of Gh(A∞) on Ẑη.

Since P+/R×>0
∼= Gl(R)/Ul,∞ (where Ul,∞ is the stabilizer of some element

of P+) is a Riemannian symmetric space associated with Gl(R), the group
cohomology of Γ can be computed using the cohomology of the manifold
Γ \P+/R×>0. By putting together the V \

ξ,Z over each Z at level H, each of which
being a cohomology complex of Γ , we obtain the cohomology complex over
Gl(Q)\Gl(A)/Ul,∞Hl . Thus, by taking limit over all principal levels H, we obtain
a limit V \

ξ,P over XP, which admits an admissible action of Gl(A∞).
Suppose that b ∈ B(G ⊗Z Qp) is the image of some bP ∈ B(P ⊗Q Qp) with

image bM = (bl, bh) in B(M⊗Q Qp) ∼= B(Gl ⊗Q Qp)× B(Gh ⊗Q Qp). Then we
can define (XP)

bh
s to be the Gl(A∞)-orbit of Ẑ

bh

s , the preimage of Zbh
s , and write

symbolically

imin,∗
P,s̄ R jmin

s̄,∗ (RΨX(Vξ )|Xb
s̄
)
∼

→ RΨXP(V
\

ξ,P)|(XP)
bh
s̄
. (4.4.4)

By applying the analogue of (4.4.1) to XP, we obtain the following equality∑
i

(−1)i [H i
ét,c((XP)s̄, imin,∗

P,s̄ R jmin
s̄,∗ (RΨX(Vξ )|Xb

s̄
))]

=

∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)]) (4.4.5)
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between virtual representations of Gl(A∞)×Gh(A∞,p)×Gh(Qp)
+
×WK , where

Gh(Qp)
+ is the submonoid of Gh(Qp) analogous to the submonoid G(Qp)

+ of
G(Qp), where Igbh

P is the analogous limit of Igusa varieties over (XP)
bh
s̄ (whose

pullback to Ẑs is the usual one associated with Gh , over some chosen central leaf
at the bottom level), where each H j

ét,c(Ig
bh
P ,V

\

ξ,P) admits an admissible/continuous
action of Gl(A∞)× Gh(A∞,p)× Jbh (Qp)×WK , and where

Ebh : Groth(Gl(A∞)×Gh(A∞,p)× Jbh (Qp))→ Groth(Gl(A∞)×Gh(A∞)×WK ).

(4.4.6)
is the combination of the identity functor on Groth(Gl(A∞)) and the
corresponding Mantovan functor for Gh (cf. [45, (6.20)]).

THEOREM 4.4.7 (Cf. [51, Section 8, Theorem 22] and [52, Theorem 3.1], and
also [45, Theorems 6.26 and 6.32]). For each b ∈ B(G ⊗Z Qp), we have an
equality ∑

i

(−1)i [H i
ét(Xs̄, (RΨX(Vξ ))|Xb

s̄
)]

=

∑
P

IndG(A∞)
P(A∞)

(∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)])

)
(4.4.8)

between virtual representations of G(A∞,p) × G(Qp)
+
× WK , where the sum

over P runs over a complete (finite) set of representatives of conjugacy classes
of (rational) parabolic subgroups of G ⊗Z Q that is either (proper) maximal or
G⊗Z Q itself such that b ∈ B(G⊗Z Qp) is the image of some bP ∈ B(P⊗Q Qp)

with image bM = (bl, bh) in B(M⊗Q Qp) ∼= B(Gl ⊗Q Qp)×B(Gh ⊗Q Qp). (Note
that bh depends on P.)

Overall, we have an equality∑
i

(−1)i [H i
ét(Xs̄, RΨX(Vξ ))]

=

∑
P

IndG(A∞)
P(A∞)

( ∑
bh∈B(Gh⊗QQp)

∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)])

)
(4.4.9)

between virtual representations of G(A∞,p)× G(Qp)
+
×WK , and an equality∑

i

(−1)i [H i
ét(Xη̄,Vξ )]

=

∑
P

IndG(A∞)
P(A∞)

( ∑
bh∈B(Gh⊗QQp)

∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)])

)
(4.4.10)
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between virtual representations of G(A∞) × WK , where the sums over P run
over a complete (finite) set of representatives of conjugacy classes of (rational)
parabolic subgroups of G⊗Z Q that is either (proper) maximal or G⊗Z Q itself.

Proof. Let Xmin denote the limit of Xmin
H over principal levels H ⊂ G(Ẑ). By

[37, Propositions A.5.8 and A.5.9], we have a stratification
∐

P (G(A∞) · XP) of
Xmin, where the disjoint union is over the same P’s as in the second paragraph
of the statement of the theorem, and where P(A∞) is the stabilizer of XP in
G(A∞). By (2) of Proposition 2.1.2, the same are true over the fibers over s̄. By
Proposition 3.3.9, (XP)s̄ contains some nonempty Zb

s̄ only when b ∈ B(G⊗Z Qp)

is the image of some bP ∈ B(P ⊗Q Qp). Thus, we obtain the equality (4.4.8)
between virtual representations of G(A∞,p)×G(Qp)

+
× WK by summing the

parabolic inductions of (4.4.5) over the same P’s as in the first paragraph of the
statement of the theorem.

As in [45, (6.24)], we have an equality∑
i

(−1)i [H i
ét(Xs̄, RΨX(Vξ ))]

=

∑
b∈B(G⊗QQp)

∑
i

(−1)i [H i
ét(X

b
s̄ , (RΨX(Vξ ))|Xb

s̄
)] (4.4.11)

between virtual representations of G(A∞)×WK . By combining the contributions
from all b ∈ B(G ⊗Z Qp), we obtain the equality (4.4.9) between virtual
representations of G(A∞,p) × G(Qp)

+
× WK . Thus, by [45, Corollary 5.20 and

Remark 5.35], we obtain (4.4.10) as an equality between virtual representations
of G(A∞,p)×G(Qp)

+
×WK , which then extends to the desired equality between

virtual representations of G(A∞)×WK (cf. [51, Section 8]).

REMARK 4.4.12. The term H i
ét(Xs̄, (RΨX(Vξ ))|Xb

s̄
) in (4.4.9) differs from both

H i
ét(X

b
s̄ , (RΨX(Vξ ))|Xb

s̄
) and H i

ét,c(X
b
s̄ , (RΨX(Vξ ))|Xb

s̄
) in general.

REMARK 4.4.13. Compared with its analogue for
∑

i (−1)i [H i
ét,c(Xη̄,Vξ )] in

[45, (6.33)], the formula (4.4.10) is more elaborate and contains the additional
(boundary cohomology) terms parameterized by all proper maximal parabolic
subgroups P of G⊗ZQ, although (in theory) these two formulas imply each other
by duality.

REMARK 4.4.14. Here is an alternative argument for establishing the equality
(4.4.10) (which does not rely on Proposition 3.3.9 and Theorem 4.3.16): By
applying the analogues of [45, Corollary 5.20, Remark 5.35, and (6.24)]
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and (4.4.1) for XP, we obtain an equality∑
i

(−1)i [H i
ét,c((XP)η̄,V \

ξ,P)]

=

∑
bh∈B(Gh⊗QQp)

∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)]) (4.4.15)

between virtual representations of Gl(A∞)×Gh(A∞,p)×Gh(Qp)
+
×WK , which

extends to an equality between virtual representations of Gl(A∞)×Gh(A∞)×WK ,
by the same explanation as in [51, Section 8]. By Theorem 4.3.10 (the original
theorem of Pink’s), we can rewrite (4.4.15) as an equality∑

i

(−1)i [H i
ét,c((XP)η̄, imin,∗

P,η̄ R jmin
η̄,∗ Vξ )]

=

∑
bh∈B(Gh⊗QQp)

∑
j

(−1) j Ebh ([H
j

ét,c(Ig
bh
P ,V

\

ξ,P)]) (4.4.16)

between virtual representations of Gl(A∞)×Gh(A∞)×WK . Thus, we obtain the
desired equality (4.4.10) by summing the parabolic inductions of (4.4.16) over
the same P’s as in the second paragraph of Theorem 4.4.7. However, such an
argument cannot isolate the contribution of a single Newton stratum as in (4.4.8).

4.5. Morel’s formula. The goal of this subsection is to generalize Morel’s
results concerning restrictions to boundary strata of intersection complexes of
automorphic étale sheaves in [58, Section 5.2], [59, Section 4.2], and [61, Section
1.4] (see also [60]), and their variants in [80, Section 9], [81], and [82], to the case
of general tensor products of automorphic étale sheaves with well-positioned pure
perverse sheaves. (See Theorems 4.5.26 and 4.5.37 below.)

We shall resume the context of Section 4.3, with Assumption 4.3.1, because our
generalization of Morel’s results depends on our generalization of Pink’s formula
there, just as the original results of Morel’s depend on the original formula of
Pink’s. For simplicity, we shall make the following assumption in this subsection:

ASSUMPTION 4.5.1. We are in Cases (Sm), (Nm), or (Spl), and C → Z is an
abelian scheme torsor for each Z.

Recall that, in Section 4.3, we have extended the construction in [45,
Proposition 3.2] to a functor from Db(G ⊗Z Q, Q̄`) to Db

c (XH, Q̄`), and we
have similar constructions over each stratum Z of Xmin

H .
Let Q̄ denote the algebraic closure of Q in C, and fix a choice of a field

homomorphism Q̄ ↪→ Q̄`. Since we will be working with weights, it is more
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convenient to work with Db(G ⊗Z Q̄, Q̄`), which is isomorphic to Db(G ⊗Z Q,
Q̄`) (via the above choice of Q̄ ↪→ Q̄`).

The h0 : C → EndO⊗ZR(L ⊗Z R) in Assumption 2.1.1 (cf. [36, Definition
1.2.1.3]) induces by restriction a central cocharacter Gm⊗Z R→ G⊗Z R, whose
reciprocal descends to a cocharacter w : Gm ⊗Z Q→ G⊗Z Q (cf. [14, 1.1.1] for
the general definition). For simplicity, we shall also denote by w the base change
Gm ⊗Z Q̄→ G⊗Z Q̄.

DEFINITION 4.5.2. We say a complex V ∈ Db(G ⊗Z Q̄, Q̄`) is pure of weight
−a ∈ Z if, by pullback under the cocharacter w, the group Gm ⊗Z Q̄ acts on
Hn(V ) via the character x 7→ xa+n , for each n ∈ Z.

EXAMPLE 4.5.3. The representation L ⊗Z Q̄` of G ⊗Z Q̄ (with its tautological
action, placed in degree zero) is pure of weight 1.

LEMMA 4.5.4. Suppose V ∈ Db(G ⊗Z Q̄, Q̄`) is pure of weight −a ∈ Z as in
Definition 4.5.2, with associated complex V ∈ Db

c (XH, Q̄`). For each functorial
point s̄ = Spec(k)→ S, where k is a perfect field of characteristic p, the pullback
Vs̄ of V to (XH)s̄ is mixed of weight a (cf. [15, Definition 6.2.2]). More precisely,
Hn(Vs̄) is lisse and pointwise pure of weight a + n, for each n ∈ Z (see [15,
Definition 1.2.2]).

Proof. This follows from [45, Proposition 3.2] and [72, Proposition 5.6.2 and
Lemma 5.6.6].

REMARK 4.5.5. Beware that in general V is not pure (as in [15, Definition 6.2.4])
when (XH)s̄ is not smooth (over s̄). Nevertheless, the restriction of Vs̄ to every
smooth subscheme of (XH)s̄ is pure of weight a (see [15, Example 6.2.5(b)]).

LEMMA 4.5.6. Consider any t = Spec(k) → S, where k is a field of
characteristic p that is either algebraically closed or finite. Let V ∈ Db(G⊗Z Q̄,
Q̄`) be pure of weight−a ∈ Z, with associated V ∈ Db

c (XH, Q̄`), whose pullback
to (XH)t we abusively denote by the same symbols. Let F be a pure shifted
perverse sheaf of weight b ∈ Z over (XH)t . Then V ⊗L F is pure of weight a + b,
and is isomorphic to a direct sum of shifted perverse sheaves. If V is concentrated
in degree zero, and if F is a perverse sheaf, then V ⊗L F is also a perverse sheaf.

Proof. The tensor product V ⊗L F is isomorphic to a direct sum of shifted
perverse sheaves because the fibered category of perverse sheaves is a
category module over the symmetric monoidal fibered category of lisse
sheaves. Consider V ∨ := RHom(V, Q̄`) in Db(G ⊗Z Q̄, Q̄`), with associated
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V∨ := RHom(V, Q̄`) in Db
c (XH, Q̄`). In order to show that V ⊗L F is pure of

weight a + b, it suffices to note that V ⊗L F is mixed of weight 6 a + b (by
Lemma 4.5.4), and that

D(XH)t (V ⊗L F) ∼= RHom(V ⊗L F ,K(XH)t )

∼= V∨ ⊗L RHom(F ,K(XH)t )
∼= V∨ ⊗L D(XH)t (F)

is mixed of weight6 −a− b. (See [6, 5.1.13 and 5.1.14].) If V is concentrated in
degree zero, then V is a lisse sheaf concentrated in degree zero, and hence V⊗L F
is a perverse sheaf if F is.

Let Z be a stratum of Xmin
H , which is associated with some (rational) parabolic

subgroup P of G⊗Z Q, as in Lemma 3.3.6, which is the stabilizer of a symplectic
filtration V = {V−i}i∈Z of L ⊗Z Q such that V−2 ⊗Q A∞ lies in the H-orbit of
Z−2 ⊗Z Q for some representative Z = {Z−i}i∈Z of ZH.

DEFINITION 4.5.7. Consider a collection C = {Z(c)}c of strata of Xmin
H containing

the open stratum XH. Then the incidence relation among the strata of Xmin
H induces

a partial order on the indices c by declaring that c 6 c′ whenever Z
(c)
⊂ Z

(c′)
. We

say that C is a chain if such an induced partial ordering is a total ordering. We
say that a chain C ends with Z, in which case we write C �Z, if Z is the (unique)
minimal element in C .

LEMMA 4.5.8. Suppose V−2 and Z−2 are as above, and suppose C = {Z(c)}c � Z
as in Definition 4.5.7. Let c0 > c1 > · · · > cr be a total ordering of all the indices
of C , so that XH = Z(c0) and Z = Z(cr ). Then there exists a filtration

0 = V(c0)
−2 ( V(c1)

−2 ( · · · ( V(cr )
−2 = V−2, (4.5.9)

which induces by base change a filtration

0 = V(c0)
−2 ⊗QA∞ ( V(c1)

−2 ⊗QA∞ ( · · · ( V(cr )
−2 ⊗QA∞ = V−2⊗QA∞ = Z−2⊗ZQ,

(4.5.10)
whose H-orbit depends only on C . The stabilizer Q of (4.5.9) in G ⊗Z Q is a
parabolic subgroup satisfying the following conditions (cf. Definition 3.3.8):

(1) U ⊂ Q ⊂ P, and so the unipotent radical UQ of Q contains U, and the
Levi quotient MQ := Q/UQ can be identified with the Levi quotient of the
parabolic subgroup Q/U of M.

(2) There is a canonical homomorphism Q/U → Gh , which is surjective and
canonically splits.
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(3) Ql := ker((Q/U) → Gh) is a (rational) parabolic subgroup of Gl , with
unipotent radical UQl

∼= UQ/U and Levi quotient MQl := Ql/UQl .

Conversely, any (rational) parabolic subgroup of G ⊗Z Q satisfying these
conditions define a chain linking XH and Z as in Definition 4.5.7.

Proof. Since the incidence relations among the strata of Zmin are the same as their
restrictions to the characteristic zero fibers, the existence of the filtrations (4.5.9)
and (4.5.10) follows from [36, Theorem 7.2.4.1(4) and Lemma 5.4.2.11]. The
bijection between the filtrations as in (4.5.9) and the parabolic subgroups Q of
G⊗Z Q satisfying the above conditions then follows from [37, Proposition A.5.8
and Lemma A.4.3].

REMARK 4.5.11. By Lemma 4.5.8, such chains correspond to the strata of the
reductive Borel–Serre compactification of (the analytification of) XH⊗R0 C above
the stratum Z ⊗R0 C of Xmin

H ⊗R0 C, where the base changes are defined by any
ring homomorphism R0→ C. (See [9, Sections III.6 and III.10, and Propositions
III.15.2 and III.15.4].)

DEFINITION 4.5.12. For each C and Q as in Lemma 4.5.8, we define

r(Q) := r(C ) := (#C )− 1. (4.5.13)

We also define ΓQ to be the image of Γ ∩ Ql(Q) (see Definition 4.3.4) under the
canonical morphism Ql(Q)→ MQl (Q), and uQ := Lie UQ(Q`).

LEMMA 4.5.14. For any other choice Q′ instead of Q as in Lemma 4.5.8, with
ΓQ′ and uQ′ defined as in Definition 4.5.12, there are isomorphisms ΓQ

∼

→ ΓQ′

and uQ
∼

→ uQ′ of groups and `-adic analytic Lie groups, respectively, inducing
isomorphisms between their cohomology.

Proof. This is because (4.5.9) determines and is determined by (4.5.10), and the
H-orbit of the latter depends only on C .

Let C and Q be as in Lemma 4.5.8. For each 0 6 i 6 r(Q), the stabilizer P(i) of
V(i)
−2 in G⊗ZQ is a parabolic subgroup associated with Z(ci ) as in Lemma 3.3.6. By

definition, we have Q =
⋂

06i6r(Q) P(i). Moreover, there exists a homomorphism

sQ
:

∏
06i6r(Q)

(Gm ⊗Z Q̄)→ Q⊗Q Q̄ (4.5.15)

which induces a cocharacter

sQ,(i)
: Gm ⊗Z Q̄→ Q⊗Q Q̄ (4.5.16)
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from the i th factor such that sQ,(i) acts:

(1) on V(ci )
−2 ⊗Q Q̄ by x 7→ x2;

(2) on ((V(ci )
−2 )
⊥/V(ci )

−2 )⊗Q Q̄ by x 7→ x ; and

(3) on ((L ⊗Z Q)/(V(ci )
−2 )
⊥)⊗Q Q̄ by x 7→ 1;

for each 0 6 i 6 r(Q). (These are base changes of the graded pieces for
the filtration 0 = V(ci )

−3 ⊂ V(ci )
−2 ⊂ (V(ci )

−2 )
⊥
= V(ci )

−1 ⊂ V(ci )
0 = L ⊗Z Q.) Such

homomorphisms (4.5.15) and (4.5.16) exist because the filtration (4.5.9) splits.
Moreover, the Levi quotient Q → MQ admits a splitting with image in the
centralizer of the image of the homomorphism (4.5.15), or equivalently the
centralizer of the images of the cocharacters (4.5.16), for all 0 6 i 6 r(Q). From
now on, we shall also view MQ as a Levi subgroup of Q using such a splitting.

For each a ∈ Z, for each 0 6 i 6 r(Q), and for each V ∈ Db(MQ ⊗Z Q̄, Q̄`),
which we canonically view as an object in Db(Q⊗Q Q̄, Q̄`) by pullback under the
canonical homomorphism Q→ MQ, we define

w
Q,(i)
>a (V ) :=

∑
a′>a

(subcomplex of V on which sQ,(i) acts by x 7→ xa′) (4.5.17)

and

wQ,(i)
<a (V ) :=

∑
a′<a

(subcomplex of V on which sQ,(i) acts by x 7→ xa′), (4.5.18)

which are again objects of Db(MQ ⊗Z Q̄, Q̄`), because MQ (as a Levi subgroup
of Q) lies in the centralizer of the image of sQ,(i). Since (4.5.15) is the product
of (4.5.16) as i varies, the truncation operators as in (4.5.17) and (4.5.18) also
commute with each other as i varies.

For each 0 6 i 6 r(Q), consider

dQ,(i) := dim(Z(ci )
η ) (4.5.19)

(which does not depend on the choice of S). For each a ∈ Z and each V ∈
Db(MQ ⊗Q Q̄, Q̄`), consider the subcomplex

V 6a
Q := w

Q,(r(Q))
>dQ,(r(Q))−a w

Q,(r(Q)−1)
<dQ,(r(Q)−1)−a · · ·w

Q,(2)
<dQ,(2)−a w

Q,(1)
<dQ,(1)−a(V ) (4.5.20)

in Db(MQ ⊗Z Q̄, Q̄`). The assignment of V 6a
Q to V defines an exact functor

( · )
6a
Q : Db(MQ ⊗Z Q̄, Q̄`)→ Db(MQ ⊗Z Q̄, Q̄`). (4.5.21)
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DEFINITION 4.5.22. Let C and Q be as in Lemma 4.5.8, and let ΓQ and uQ be as
in Definition 4.5.12. For each a ∈ Z, and for each object V in Db(G ⊗Z Q, Q̄`),
we define

V \,6a
C := RInv(ΓQ, (RInv(uQ, V |Q))

6a
Q ), (4.5.23)

which is a complex in Db(Gh ⊗Z Q̄, Q̄`), whose isomorphism class depends only
on C , but not on the choice of Q, by Lemma 4.5.14. Then the constructions in [45,
Section 3.1] and [72, Sections 1 and 4.9] associate a complex V \,6a

C in Db
c (Z, Q̄`)

(cf. Remark 4.3.7 and Definition 4.3.8) with V \,6a
C .

We need one last technical preparation:

LEMMA 4.5.24. Suppose T = Spec(k), where k is a field that is either
algebraically closed or finite. Let Y be a well-positioned subset of (XH)T,
with associated Y\

= {Y\

Z}Z as in Definition 2.2.1, and with partial minimal and
toroidal compactifications Ymin and Ytor

Σ as in Definition 2.3.1 and Theorem 2.3.2.
Suppose that F is a perverse sheaf over Ytor

Σ , equipped with a collection
F \
= {(F \

Z, ιZ)}Z as in Definition 4.1.3, such that F \

Z[d
Z
] is a perverse sheaf over

Z, where dZ
:= dim((XH)T)− dim(ZT), for each Z.

Now let us fix the choice of Z. Suppose we have the morphisms

Ztor
→ Zmin ∼

→ Z→ Xmin
H ,

which induce
Ytor

Z → Ymin
Z

∼

→ YZ → Ymin
,

as in Lemma 2.3.16 and its proof. Then, under the assumption (see
Assumptions 4.3.1 and 4.5.1) that Y\

C ′ → Y\

Z′ is an abelian scheme torsor
(of constant relative dimension) for each stratum Z′ of Zmin, there exists a well-
positioned perverse sheaf G over Ztor, equipped with a collection G\ = {(G\Z′,
ι′Z′)}Z

′ indexed by the strata Z′ in Z, such that G\Z′ = F \

Z′[d
Z
] for each Z′, and

such that the pullbacks of ιZ′[dZ
] and ι′Z′ to Z′ ×Z Ztor

[σ ], for some top-dimensional
σ ∈ Σ+Z as in the proof of Lemma 2.3.16, coincide with each other.

Proof. As in the proof of Lemma 4.2.13, since the fibered category of perverse
sheaves is a stack (see [6, 2.2.19]), it suffices to construct G and ι′Z′ over the étale
boundary charts of Ztor. Let Z′ be any stratum of Z. Suppose that we have already
defined G over the largest open subscheme of Ztor containing all stratum Z′′ of Z
that contain Z′ in its closure but differ from Z′, and defined ι′Z′′ and its extensions
over some U ′Z′′ as in Definition 4.1.3, for all such Z′′. (When Z′ = Z, we simply
have G|Z = F \

Z[d
Z
], with ι′Z and its extensions being the identity morphisms.)
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Let x be a point of a stratum Z′
[τ ′′] of Ztor

[σ ], which lies above a point y of a
stratum Z′

[τ ′] of Ztor above Z′. By using nested approximation as in the proof
of [45, Proposition 4.3], there exist a torus homomorphism E ′′ → E ′ and an
abelian scheme torsor C ′′ → C ′, and representatives τ ′′ and τ ′ of [τ ′′] and [τ ′],
respectively, such that there exists a commutative diagram

Ztor
[σ ]

��

U
′′oo

��

// E ′′(τ ′′)×Spec(Z) C ′′

��
Ztor U

′oo // E ′(τ ′)×Spec(Z) C ′

(4.5.25)

in which the squares are both Cartesian, and in which the horizontal morphisms
define compatible étale neighborhoods of x and y such that the preimages of Z and
E ′ ×Spec(Z) C ′ coincide as an open subscheme U ′ of U

′

; such that the preimages
of Z[σ ], E ′′ ×Spec(Z) C ′′, and U ′ coincide as an open subscheme U ′′ of U

′′

; and
such that the pullbacks of the horizontal étale morphisms under the canonical
morphisms Z′ ×Z Ztor

→ Ztor and E ′(τ ′)+ ×Spec(Z) C ′→ E ′(τ ′)×Spec(Z) C ′ (when
defined) are open immersions. Up to replacing U

′

and U
′′

with open subschemes,
we may assume that all étale morphisms above have connected geometric fibers.
Then there exists an étale morphism U

′′′

→ U
′′

with connected geometric fibers
such that the pullback of ιZ and ιZ′ extend to isomorphisms

ιU ′′′ : (YU ′′′ → Ytor
Σ )
∗F ∼

→ (YU ′′′ → Y\

Z)
∗F \

Z

and
ιU ′′′ : (YU

′′′ → Ytor
Σ )
∗F ∼

→ (YU
′′′ → Y\

Z′)
∗F \

Z′

(see Definition 4.1.3), where U ′′′ denotes the preimage of U ′′ in U
′′′

, and where
YU ′′′ := U ′′′ ×Xtor

H,Σ
Ytor
Σ and YU

′′′ := U
′′′

×Xtor
H,Σ

Ytor
Σ .

Let G\Z′,U ′ denote the pullback of G\Z′ = F \

Z′[d
Z
] to YZ,U ′ := U ′×Ztor Ytor

Z , which is
a shifted perverse sheaf because U ′→ Z′ is smooth of constant relative dimension.
Since Z[σ ] ∼= C → Z is smooth of constant relative dimension, the further
pullback G\Z′,U ′′′ of G\Z′,U ′ to YU ′′′ , which coincides with the pullback of G\Z′ under
YU ′′′ → YZ′ , is also a shifted perverse sheaf. Using the isomorphisms ιU ′′′ and
ιU ′′′ above up to shifting, the pullback of F \

Z[d
Z
] under YU ′′′ → Y\

Z is isomorphic
to G\Z′,U ′′′ . Since U ′′′ → U ′ is smooth and has connected geometric fibers, by [6,
4.2.5 and 4.2.6.2], this uniquely descends to an isomorphism between F \

Z′[d
Z
]

and G\Z′,U ′ over the image of YU ′′′ in YZ′ . Hence, the pullback G\
Z′,U ′

of G\Z′ to

YZ,U ′ := U
′

×Ztor Ytor
Z , which necessarily has no support in YZ,U ′ − YZ,U ′ , defines
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an extension of the partially defined G over the image of YU
′′′→ YZ,U ′ . By varying

x (and y), we obtain étale neighborhoods which induce an open covering of the
preimage of Z′ in Ztor, and hence by descent an extension of G over a larger open
subscheme containing this preimage, with the desired ι′Z′ and its extensions over
some collection UZ′ as in Definition 4.1.3. Thus, by inductively repeating this
process until we exhaust all strata Z′ of Z, the lemma follows.

Now we are ready to state and prove our generalizations of Morel’s results:

THEOREM 4.5.26. Suppose T = Spec(k), where k is a finite field of characteristic
p. Let Y be a well-positioned subset of (XH)T, with associated Y\

= {Y\

Z}Z as in
Definition 2.2.1, and with partial minimal and toroidal compactifications Ymin and
Ytor
Σ as in Definition 2.3.1 and Theorem 2.3.2.
Suppose that V = Vξ is an algebraic representation of G ⊗Z Q on a finite-

dimensional vector space over Q̄` that is pure of weight −a ∈ Z (as in
Definition 4.5.2), and that F is a well-positioned pure perverse sheaf of weight
b ∈ Z over Ytor

Σ , equipped with a collection F \
= {(F \

Z, ιZ)}Z as in Definition 4.1.3
such that F \

Z[−dZ
] is a pure perverse sheaf of weight b − dZ over Y\

Z, where
dZ
:= dim((XH)T)− dim(ZT), for each Z.

Let Z be a stratum of Xmin
H . Let imin, imin

Y , and so forth be defined as in
the paragraphs preceding Theorems 4.3.10 and 4.3.16. Let FY, VY, and V \,6a

C ,YZ

denote the pullbacks of F , V , and V \,6a
C (see Definition 4.5.22) to Y, Y, and YZ,

respectively. Then, under Assumptions 4.3.1 and 4.5.1, we have an equality

[imin,∗
Y jmin

Y,!∗(VY ⊗
L FY)] =

∑
C�Z

(−1)r(C )−1
[V \,6a

C ,YZ
⊗

L F \

Z] (4.5.27)

in the Grothendieck group of Db
c (YZ, Q̄`). (See Definitions 4.5.7, 4.5.12,

and 4.5.22.)

Proof. We shall closely follow the arguments in [59, especially the proofs of 4.2.1
and 4.2.3]. Let w6a+b and w>a+b denote the weight truncation functors defined in
[59, Section 3.1, page 36]. By Lemma 4.5.6, VY ⊗

L FY is a pure perverse sheaf
of weight a + b. Therefore, by [59, 3.1.4], there is a canonical isomorphism

jmin
Y,!∗(VY ⊗

L FY)
∼

→ w6a+b R jmin
Y,∗ (VY ⊗

L FY) (4.5.28)

in Db
c (Y

min
, Q̄`). For each C = {Z(c)}c with indices ordered as

c0 > c1 > · · · > cr(C )
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as in Lemma 4.5.8, and for each 0 6 i 6 r(C ), let i (i)C : YZ(ci ) → Ymin denote the
canonical morphism, so that i (0)C = jmin

Y and i (r(C ))

C = imin
Y . By [59, 3.1.3 and 3.3.4;

cf. 3.3.5], we have an equality

[imin,∗
Y w6a+b R jmin

Y,∗ (VY ⊗
L FY)] =

∑
C�Z

(−1)r(C )−1
[w6a+b i (r(C )),∗

C Ri (r(C )−1)
C ,∗

w>a+b i (r(C )−1),∗
C · · · Ri (2)C ,∗w>a+b i (2),∗C Ri (1)C ,∗w>a+b i (1),∗C R jmin

Y,∗ (VY ⊗
L FY)]

(4.5.29)

in the Grothendieck group of Db
c (YZ, Q̄`).

Let Q be as in Lemma 4.5.8, which is
⋂

06i6r(C ) P(i) as in the paragraph
following Lemma 4.5.14. For each 0 6 i 6 r(C ), let U(i), M(i), G(i)

l , and
G(i)

h be defined as in Definition 3.3.8 for P(i), with ΓP(i) ⊂ G(i)
l (Q) defined

by the corresponding Z(ci ) as in Definition 4.3.4, and let u(i) := Lie U(i)(Q`).
Let Q(i)

:=
⋂

06 j6i P( j), let UQ(i) denote the unipotent radical of Q(i), and let
uQ(i) := Lie UQ(i)(Q`). Let Q(i)

l := ker((Q(i)/U(i)) → G(i)
h ), which is a parabolic

subgroup of G(i)
l , with unipotent radical UQ(i)l

:= UQ(i)/U
(i) and Levi quotient

MQ(i)l
:= Q(i)

l /UQ(i)l
(cf. Lemma 4.5.8). Let ΓQ(i) be the image of ΓP(i) ∩ Q(i)

l (Q)
under the canonical homomorphism Q(i)

l (Q) → MQ(i)l
(Q) (cf. Definition 4.5.12).

When i > 1, also consider the canonical homomorphism Q(i)/U(i−1)
→ G(i−1)

h ,
whose kernel is Q(i−1)

l , and whose image is a parabolic subgroup P(i)h of G(i−1)
h ,

with unipotent radical U(i)
h
∼= U(i)/(U(i)

∩U(i−1)) ∼= UQ(i)/UQ(i−1) and Levi quotient
M(i)

h
∼= G(i)

h,l × G(i)
h , where G(i)

h,l := MQ(i)l
/MQ(i−1)

l
. (Note that we have U(0)

= 1,

G(0)
h = G ⊗Z Q, Q(0)

l = 1, UQ(0)l
= 1, and MQ(0)l

= 1.) Let ΓP(i)h
be the image of

ΓQ(i) under the canonical morphism MQ(i)l
→ G(i)

h,l , and let u(i)h := Lie U(i)
h (Q`).

By definition, we have ΓP(i)h

∼= ΓQ(i)/ΓQ(i−1) and u(i)h
∼= uQ(i)/uQ(i−1) . We also have

MQ(i)l

∼=
∏

16 j6i G( j)
h,l and MQl

∼=
∏

16i6r(C ) G(i)
h,l .

Suppose that, for some 1 6 i < r(C ), we have a canonical isomorphism

i (i),∗C Ri (i−1)
C ,∗ w>a+b · · · Ri (1)C ,∗w>a+b i (1),∗C Ri (0)C ,∗(VY ⊗

L FY)

∼= V \,6a,pre
C ,Y

Z(ci )
⊗

L F \

Z(ci )
(4.5.30)

in Db
c (YZ(ci ), Q̄`), where V \,6a,pre

C ,Y
Z(ci )

is associated with

RInv(ΓQ(i), w
Q,(i−1)
<dQ,(i−1)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i), V |Q(i)))) (4.5.31)

in Db(G(i)
h ⊗Z Q̄, Q̄`) (cf. Definition 4.3.8 and (4.5.20)). When i = 1, this is just

Theorem 4.3.16 (with no truncation needed in (4.5.31)).
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Since F \

Z(ci )
[−dZ(ci )

] is a pure perverse sheaf of weight b− dZ(ci ) over YZ(ci ) , and
since dQ,(i) = dZ(ci ) , by the analogue of Lemma 4.5.6 for Z(c1), and by [59, the proof
of 4.1.2, based on 2.1.4] (cf. Lemma 4.5.4), we have a canonical isomorphism

w>a+b(V \,6a,pre
C ,Y

Z(ci )
⊗

L F \

Z(ci )
) ∼= V \,6a

C ,Y
Z(ci )
⊗

L F \

Z(ci )
(4.5.32)

in Db
c (YZ(ci ), Q̄`), where V \,6a

C ,Y
Z(c1)

is associated with

RInv(ΓQ(i), w
Q,(i)
<dQ,(i)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i), V |Q(i)))) (4.5.33)

in Db(G(i)
h ⊗Z Q̄, Q̄`).

Since ΓP(i+1)
h

∼= ΓQ(i+1)/ΓQ(i) , since ΓQ(i) ⊂ MQ(i)l
(Q), since MQ(i)l

commutes with

G(i)
h and hence also with U(i+1)

h , and since the cocharacters sQ,(1), . . . , sQ,(i) act
trivially on u(i+1)

h
∼= uQ(i+1)/uQ(i) , we have a canonical isomorphism

RInv(ΓP(i+1)
h
, w

Q,(i)
<dQ,(i)−a RInv(u(i+1)

h ,

(RInv(ΓQ(i), w
Q,(i−1)
<dQ,(i−1)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i), V |Q(i)))))|P(i+1)

h
))

∼= RInv(ΓQ(i+1), w
Q,(i)
<dQ,(i)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i+1), V |Q(i+1)))).

(4.5.34)

By Lemmas 2.3.16 and 4.5.24, and by applying Theorem 4.3.16 to the pullback
to YZ(ci+1) of R(YZ(ci ) ↪→ Ymin

Z(ci ))∗(V \,6a
C ,Y

Z(ci )
⊗

L F \

Z(ci )
), we obtain (4.5.30) with i

replaced with i + 1. In the final step, when i + 1 = r(C ), so that Z(cr(C ))
= Z, the

same argument for showing (4.5.32) gives a canonical isomorphism

w6a+b(V \,6a,pre
C ,Y

Z(cr(C ))
⊗

L F \

Z)
∼= V \,6a

C ,YZ
⊗

L F \

Z (4.5.35)

in Db
c (YZ, Q̄`), and hence we obtain a canonical isomorphism

w6a+b i (r(C )),∗

C Ri (r(C )−1)
C ,∗ w>a+b · · · Ri (1)C ,∗w>a+bi (1),∗C Ri (0)C ,∗(VY ⊗

L FY)

∼= V \,6a
C ,YZ
⊗

L F \

Z. (4.5.36)

in Db
c (YZ, Q̄`). Now, just combine (4.5.28), (4.5.29), and (4.5.36).

THEOREM 4.5.37. Suppose that V = Vξ and −a ∈ Z are as in Theorem 4.5.26.
Let d := dim((XH)η). Consider the nearby cycle functors RΨXH , and others,
defined by some compatible choices of geometric points η̄ and s̄ above the generic
and special points η and s of S, respectively, as in [45, Section 5.1], where
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S = Spec(OK ), and where K is the v-adic completion of F0 at some place v|p,
as in Section 4.4. Then, under Assumptions 4.3.1 and 4.5.1, we have an equality

[imin,∗
s̄ jmin

s̄,!∗ RΨXH(V[d])] =
∑
C�Z

(−1)r(C )−1
[V \,6a

C ,Zs̄
⊗

L RΨZ(Q̄`)[d]] (4.5.38)

in the Grothendieck group of Db
c (Zs̄ × η̄, Q̄`).

Proof. We shall closely follow [81], with additional inputs from [62] and [45,
Section 5], and from this article. Since the argument is global, let us consider MH,
Mmin

H , and so forth over Spec(F0) as in Assumption 2.1.1. Note that these are the
generic fibers for the analogues of XH, Xmin

H , and so forth, with the base scheme
S replaced with some analogue over Spec(OF0,(q)) for any good prime q 6= p for
(O, ?, L , 〈 · , · 〉, h0) and H (in the sense that H is maximal hyperspecial at q).

Consider the categories M(MH), M(Mmin
H ), and so forth of horizontal perverse

sheaves which admit weight filtrations, as in [62, 6.1]. For V = Vξ as in
Theorem 4.5.26, the associated sheaf V[d] over MH (which can be defined using
any analogues of XH as above over Spec(OF0,(q)) for some good q 6= p) is an
object in M(XH), and it follows from [62, 8.1.4] and the same argument of the
proof of Theorem 4.5.26 (with F and F \

Z being Q̄`[d] for each Z) that, after
pullback from Spec(F0) to η = Spec(K ), we have an equality

[imin,∗
η jmin

η,!∗(V[d])] =
∑
C�Z

(−1)r(C )−1
[V \,6a

C ,Zη [d]] (4.5.39)

in the Grothendieck group of Db
c (Zη, Q̄`), and hence also an equality

[ jmin
η,!∗(V[d])] =

∑
Z′

∑
C ′�Z′

(−1)r(C
′)−1
[i ′,min
η,! V \,6a

C ′,Z′η
[d]] (4.5.40)

in the Grothendieck group of Db
c ((X

min
H )η, Q̄`), where the objects associated with

Z′ are denoted with an additional prime.
By [45, Theorem 5.26], we have a canonical isomorphism

RΨXmin
H

jmin
η,!∗(V[d])

∼

→ jmin
s̄,!∗ RΨXH(V[d]) (4.5.41)

in Db
c ((X

min
H )s̄ × η̄, Q̄`). For each Z′, by decomposing the canonical morphism

i ′,min
: Z′ → Xmin

H as a composition of the open immersion Z′ ↪→ Z′,min and the
closed immersion Z′,min

→ Xmin
H using Lemma 2.3.16, by applying [45, Theorem

5.23] to Z′ ↪→ Z′,min, and by the proper base change theorem (cf. [3, XII, 5.1] and
[16, XIII, (2.1.7.1)]), we have a canonical isomorphism

i ′,min
s̄,! RΨZ′(V \,6a

C ′,Z′η
)
∼

→ RΨXmin
H
(i ′,min
η,! V \,6a

C ′,Z′η
) (4.5.42)
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in Db
c ((X

min
H )s̄ × η̄, Q̄`). On the other hand, since V \,6a

C ′,Z′η
is quasi-isomorphic to a

direct sum of shifted lisse sheaves, we have a canonical isomorphism

V \,6a
C ′,Zs̄
⊗

L RΨZ′(Q̄`)
∼

→ RΨZ′(V \,6a
C ′,Z′η

) (4.5.43)

in Db
c (Z
′

s̄ × η̄, Q̄`) (as we have seen in Section 4.4). Thus, we obtain the equality

[ jmin
s̄,!∗ RΨXH(V[d])] =

∑
Z′

∑
C ′�Z′

(−1)r(C
′)−1
[i ′,min

s̄,! (V
\,6a
C ′,Z′s̄
⊗

L RΨZ′(Q̄`)[d])]

(4.5.44)
in the Grothendieck group of Db

c ((X
min
H )s̄×η̄, Q̄`) by combining (4.5.39), (4.5.41),

(4.5.42), and (4.5.43). By applying imin,∗
s̄ to (4.5.44), we also obtain the equality

(4.5.38) in the Grothendieck group of Db
c (Zs̄ × η̄, Q̄`), as desired.

REMARK 4.5.45. In order to establish (4.5.39) and (4.5.40), instead of resorting
to results in [62], we may proceed as in the proof of [82, 1.4.8] and resort
to Laumon’s Cebotarev density theorem for perverse sheaves as in [47, 1.1.2]
(or rather an analogue of it), by applying Theorem 4.5.26 to Y = (XH)s and
F = Λ(Xtor

H,Σ )s
[d] (for some smooth Σ), after replacing XH, and others, with their

analogues over Spec(OF0,(q)), for all good primes q - p`.

COROLLARY 4.5.46. With the same setting as in Theorem 4.5.37, the perverse
sheaf jmin

s̄,!∗ (RΨXH(V[d])) has no support contained in the boundary of (Xmin
H )s̄ .

Proof. As in the case of (4.5.43), we have a canonical isomorphism

V ⊗L RΨXH(Q̄`[d])
∼

→ RΨXH(V[d]) (4.5.47)

in Db
c ((XH)s̄ × η̄, Q̄`). Since Assumption 4.5.1 implies Assumption 3.7.7, by

Lemma 3.7.9, Proposition 3.7.13, and Lemma 4.2.23, we have the following
facts: The pure isotypic subquotients of RΨXH(Q̄`[d]) extend to well-positioned
perverse sheaves Fα over (Xtor

H,Σ)s̄ , labeled by some index α. Each such Fα

is equipped with a collection F \
α = {(F

\

α,Z, ια,Z)}Z, where F \

α,Z[−dZ
] is a pure

isotypic subquotient of RΨZ(Q̄`[dZ]), with dZ := dim(Zη) and dZ
:= d − dZ as

usual, for each Z. Since Fα and F \

α,Z have isomorphic pullbacks to schemes U
smooth over Z of relative dimension dZ, they have the same weight. Moreover,
pure isotypic subquotients of RΨZ(Q̄`[dZ]) are exactly such F \

α,Z[−dZ
], over all

α. By applying Theorem 4.5.26 to such Fα and F \

α,Z, by summing up identities
like (4.5.27) over all Z and α (which have the same form regardless of the possibly
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varying weights of Fα), and by (4.5.44) and (4.5.47), we obtain an identity

[ jmin
s̄,!∗ (RΨXH(V[d]))] =

∑
α

[ jmin
s̄,!∗ (V ⊗L (Fα|(XH)s̄ ))] (4.5.48)

in the Grothendieck group of Db
c ((X

min
H )s̄ × η̄, Q̄`). For each α, since V is

quasi-isomorphic to a direct sum of shifted lisse sheaves, and since Fα is the
middle perversity extension of a shifted (pure isotypic) lisse étale sheaf over an
irreducible smooth scheme, jmin

!∗
(V⊗L (Fα|(XH)s̄ )) has no support contained in the

boundary of (Xmin
H )s̄ . Thus, the corollary follows from (4.5.48), as desired.
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Lecture Notes in Mathematics, 340 (Springer, Berlin, Heidelberg, New York, 1973).

[17] T. Ekedahl, On the Adic Formalism, in Cartier et al. [13], 197–218.
[18] C. Faber, G. van der Geer and F. Oort (Eds.), Moduli of Abelian Varieties, Progress in

Mathematics, 195 (Birkhäuser, Boston, 2001).
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Soc. Math. France 138(2) (2010), 259–315.

[79] B. Stroh, ‘Compactification minimale et mauvaise réduction’, Ann. Inst. Fourier (Grenoble)
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46(6) (2013), 1023–1024.
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