# CERTAIN METHOD FOR GENERATING A SERIES OF LOGICS 

SATOSHI MIURA and SHÛRÔ NAGATA

Introduction. At first, we define three relations $\supseteq,=$, and $\supset$ in connection with a pair of logics $\boldsymbol{L}$ and $\boldsymbol{L}^{*}$ as follows:
$\boldsymbol{L} \supseteq \boldsymbol{L}^{*}$, if and only if every proposition provable in $\boldsymbol{L}^{*}$ is also provable in $\boldsymbol{L}$;
$\boldsymbol{L}=\boldsymbol{L}^{*}$, if and only if $\boldsymbol{L} \supseteq \boldsymbol{L}^{*}$ and $\boldsymbol{L}^{*} \supseteq \boldsymbol{L} ;$
$\boldsymbol{L} \supset \boldsymbol{L}^{*}$, if and only if $\boldsymbol{L} \supseteq \boldsymbol{L}^{*}$ but not $\boldsymbol{L}^{*} \supseteq \boldsymbol{L}$.
Next, for a logic $\boldsymbol{L}$, we denote by $\boldsymbol{L}[A]$ the fortified logic of $\boldsymbol{L}$ by regarding a proposition $A$ as a new axiom scheme.

By $\boldsymbol{L O Q}$, we denote the logic obtained by adjoining Peirce's rule,

$$
P \equiv((a \rightarrow b) \rightarrow a) \rightarrow a,
$$

to the primitive logic $\boldsymbol{L O}$ (cf. Ono [6], [7]). According to Nagata [4], we can obtain a descending sequence, $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots$, from $\boldsymbol{L O Q}$ toward $\boldsymbol{L O}$ (i.e. $\left.\boldsymbol{L O Q}=\boldsymbol{L}_{1} \supset \boldsymbol{L}_{2} \supset \ldots \supset \boldsymbol{L}_{i} \supset \ldots \supset \boldsymbol{L O}\right)$ by the following method. A series of propositions $P_{i}$ is defined recursively as follows:

$$
\left\{\begin{array}{l}
P_{1} \equiv P \\
P_{i+1} \equiv\left(\left(p_{i} \rightarrow P_{i}\right) \rightarrow p_{i}\right) \rightarrow p_{i}, \quad(i=1,2, \ldots),
\end{array}\right.
$$

where $p_{i}$ 's are mutually distinct proposition-variables not occurring in $P$. For the series $P_{1}, P_{2}, \ldots$, we can assert that

$$
\boldsymbol{L O Q}=\boldsymbol{L} \boldsymbol{O}\left[P_{1}\right] \supset \boldsymbol{L} \boldsymbol{O}\left[P_{2}\right] \supset \ldots \supset \boldsymbol{L} \boldsymbol{O}\left[P_{i}\right] \supset \ldots \supset \boldsymbol{L} \boldsymbol{O}
$$

We have noticed that, by making use of the same method, existence of descending sequences from $\boldsymbol{K}$-series logics ( $\boldsymbol{L Q}, \boldsymbol{L N}, \boldsymbol{L K}$ ) toward their corresponding $\boldsymbol{J}$-series logics ( $\boldsymbol{L P}, \boldsymbol{L M}, \boldsymbol{L J}$ ) (cf. Ono [6]) can be proved. We have also noticed that existence of a descending sequence from $\boldsymbol{L N}$ toward $\boldsymbol{L} \boldsymbol{D}=\boldsymbol{L} \boldsymbol{M}[a \vee \rightarrow a]$ (cf. Curry [1]) can be proved similarly.

[^0]Discussing with us our recent studies on the subject, Prof. T. Tugué pointed out that we would have, in a similar manner, a descending sequence toward a logic $\boldsymbol{L}$ by starting from any proposition $A$, not provable in $\boldsymbol{L}$, instead of starting from Peirce's rule. Guided by his valuable suggestion, we obtained the following conclusion.

For any proposition $A$, a series of propositions $A_{i}$ is defined recursively as follows:

$$
\left\{\begin{array}{l}
A_{1} \equiv A \\
A_{i+1} \equiv\left(\left(p_{i} \rightarrow A_{i}\right) \rightarrow p_{i}\right) \rightarrow p_{i}, \quad(i=1,2, \ldots),
\end{array}\right.
$$

where $p_{i}$ 's are mutually distinct proposition-variables not occurring in $A$. The proposition $A$ is called kernel. Taking Peirce's rule $P$ as the kernel $A$, we can produce the descending sequences described before. If we take $a \vee \rightarrow a$ (law of the excluded middle) as the kernel $A$, we can produce a descending sequence from $\boldsymbol{L D}$ toward $\boldsymbol{L M}$. Along this line, we would be able to give other examples as many as we like. To show these facts, we shall use certain truth-table, called $(n, r)$-evaluation. The $(n, r)$-evaluation is a slight refining of the truth-table appearing in Gödel [2] ${ }^{1}$. The refinement lies on the evaluation of negation defined as follows:

| $a$ | 0 | $1 \ldots$ | $r-1$ | $r \ldots$ | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\rightarrow a$ | $r$ | $r \ldots$ | $r$ | $0 \ldots$ | $\ldots$ |

The main purpose of this paper is to show that, for a logic $\boldsymbol{L}$ and a kernel $A$, we can generate a descending sequence from $\boldsymbol{L}[A]$ toward $\boldsymbol{L}$ under certain conditions. We wish to express our thanks to Profs. K. Ono and T. Tugué for their kind guidances.

Definition. For integers $n$ and $r$ such that $1 \leq r \leq n$, any evaluation having the following truth-value properties is called $(n, r)$-evaluation:

$$
a \rightarrow b=\left\{\begin{array}{lll}
0 & \text { if } & a \geq b, \\
b & \text { if } & a<b,
\end{array}\right.
$$

[^1]\[

$$
\begin{aligned}
& a \vee b=\operatorname{Min}(a, b), \\
& a \wedge b=\operatorname{Max}(a, b), \\
& \neg a=\left\{\begin{array}{lll}
r & \text { if } & a<r, \\
0 & \text { if } & a \geq r,
\end{array}\right.
\end{aligned}
$$
\]

where the truth-values of propositions $a, b$, denoted simply by $a$, $b$, respectively, runs over the set $\{0,1, \ldots, n\}$. If we take the logical constant $\wedge$ (contradiction) whose truth-value is defined by $r$, and define $\rightarrow a$ by $a \rightarrow 人$, then the above truth-value property for negation is obtained. For the predicate logics, we take a domain of $k$ individual objects $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right\}$ and define the truth-value of

$$
\begin{aligned}
& (\xi) a(\xi) \quad \text { by } \quad a\left(\xi_{1}\right) \wedge a\left(\xi_{2}\right) \wedge \ldots \wedge a\left(\xi_{k}\right), \\
& (\exists \xi) a(\xi) \quad \text { by } \quad a\left(\xi_{1}\right) \vee a\left(\xi_{2}\right) \vee \ldots \vee a\left(\xi_{k}\right) .
\end{aligned}
$$

Any proposition whose truth-value is always 0 is called $(n, r)$-true.
For any $n$ and $r$, all the axiom schemes ${ }^{2}$ ) of $\boldsymbol{L M}$ are $(n, r)$-true, and all the inference rules of $\boldsymbol{L M}$ deduce ( $n, r$ )-true conclusions, whenever their assumptions are all $(n, r)$-true. $\quad 人 \rightarrow a$ is ( $n, n$ )-true, $a \vee \rightarrow a$ is ( $n, 1$ )-true, and $(\wedge \rightarrow a) \vee b \vee \rightarrow b$ ( $c f$. Example) is both ( $n, 1$ )- and ( $n, n$ )-true for all $n, r$.

Before stating the theorem, the following two lemmas are remarkable.
Lemma 1. If the kernel $A \leq n-j(0 \leq j \leq n-1)$ for the $(n, r)$-evaluation, then, $A_{i} \leq n-j-i+1(1 \leq i \leq n-j+1)$.

Lemma 2. If the kernel $A$ takes the truth-value $n-j(0 \leq j \leq n-1)$ for the ( $n, r$ )-evaluation, then, $A_{i}$ takes $n-j-i+1(1 \leq i \leq n-j+1)$.

Theorem. Let $\boldsymbol{L}$ be a logic such that $\boldsymbol{L K} \supset \boldsymbol{L} \supseteq \boldsymbol{L O}$. Assume that there exists a function $r=r(n)(r=1,2, \ldots, n)$ satisfying the following conditions.
(1) For all $n$, every $L$-provable ${ }^{3}$ proposition is ( $\left.n, r\right)$-true.
(2) There exists a non-negative integer $j$ such that, for all $n(n \geq 2)$ larger than $j$, a proposition $A$ can never takes the truth-value larger than $n-j$, but can take certainly $n-j$ by the ( $n, r$ )-evaluation.

Then, there is a descending sequence from $\boldsymbol{L}[A]$ toward $\boldsymbol{L}$, i.e.,

[^2]$$
\boldsymbol{L}[A]=\boldsymbol{L}\left[A_{1}\right] \supset \boldsymbol{L}\left[A_{2}\right] \supset \ldots \supset \boldsymbol{L}\left[A_{i}\right] \supset \ldots \supset \boldsymbol{L}
$$

Proof. (i) The cases $j \neq 0$ or $n \geq 3$. If we take $(n+j-1, r)$ evaluation in place of $(n, r)$-evaluation, then, $A \leq n-j$ turns out to be $A \leq n-1$. By Lemma 1, $A_{i} \leq n-i$ holds; hence, $A_{n}=0$ always holds. Since all the $L$-provable propositions are $(n+j-1, r)$-true by assumption, all the $\boldsymbol{L}\left[A_{n}\right]$-provable propositions are always $(n+j-1, r)$-true. By Lemma 2, however, $A_{i}=n-i$ holds; hence, $A_{n-1}=1$ holds. Therefore, $A_{n-1}$ is not $\boldsymbol{L}\left[A_{n}\right]$-provable. Namely, $\boldsymbol{L}\left[A_{n-1}\right] \supset \boldsymbol{L}\left[A_{n}\right] \supset \boldsymbol{L}$.
(ii) The case $j=0$ and $n=2$. By assumption, there exists $r$ such that $A_{1}$ can take 2 by $(2, r)$-evaluation. However, $A_{2} \leq 1$ by Lemma 1. Hence, $A_{1}$ is not $\boldsymbol{L}\left[A_{2}\right]$-provable. Therefore, $\boldsymbol{L}\left[A_{1}\right] \supset \boldsymbol{L}\left[A_{2}\right]$. q.e.d.

Example. In the following table, descending sequences from $\boldsymbol{L}[A]$ toward $\boldsymbol{L}$ are exhibited by showing their kernels $A$ and the numbers $r$ appearing in the assumption of the theorem. We can further substitute, in the table, $\boldsymbol{L M}[\rightarrow a \vee \rightarrow \rightarrow a]$ or $\boldsymbol{L M}[(a \rightarrow b) \vee(b \rightarrow a)]$ etc. for $\boldsymbol{L M}$. In the following table, $\boldsymbol{A} \cap \boldsymbol{B}$ denotes the logics in which any proposition is provable, if and only if it is both $\boldsymbol{A}$ - and $\boldsymbol{B}$-provable.

|  | $\boldsymbol{L}[A]$ | L | A | $r$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | LOQ | LO | $P \equiv((a \rightarrow b) \rightarrow a) \rightarrow a$ | $1 \leq r \leq n$ |
| 2 | LQ | $\boldsymbol{L P}$ | $P$ | $1 \leq r \leq n$ |
| 3 | $L N$ | $\boldsymbol{L M}$ | $P$ | $1 \leq r \leq n$ |
| 4 | $\boldsymbol{L K}$ | $\boldsymbol{L J}$ | $P$ | $r=n$ |
| 5 | $\boldsymbol{L N}$ | $\boldsymbol{L D}$ | $P$ | $r=1$ |
| 6 | $\boldsymbol{L D}$ | LM | $a \bigvee \neg a$ | e. g. $r=n$ |
| 7 | $\boldsymbol{L J}$ | $\boldsymbol{L M}$ | $\wedge \rightarrow a$ | $1 \leq r \leq n-1$ |
| 8 | $\boldsymbol{L} \boldsymbol{N}_{i} \equiv \boldsymbol{L M}\left[P_{i}\right]$ | $\boldsymbol{L} \boldsymbol{D}_{\boldsymbol{i}} \equiv \boldsymbol{L} \boldsymbol{M}\left[B_{i}\right](B \equiv a \bigvee \neg a)$ | $P_{i}$ | $r=1$ |
| 9 | $\boldsymbol{L} \boldsymbol{N}_{i}$ | $\boldsymbol{L} \boldsymbol{J}_{i} \equiv \boldsymbol{L} \boldsymbol{M}\left[C_{i+1}\right](C \equiv$ 人 $\rightarrow a)$ | $P_{i}$ | $r=n$ |
| 10 | $\boldsymbol{L J} \cap \boldsymbol{L} \boldsymbol{N}$ | $\boldsymbol{L M}$ | $(\wedge \rightarrow a) \vee b \vee(b \rightarrow c)$ | $1 \leq r \leq n-1$ |
| 11 | $L N$ | $\boldsymbol{L J} \cap \boldsymbol{L} \boldsymbol{N}$ | $P$ | $r=n$ |
| 12 | $\boldsymbol{L J} \cap \boldsymbol{L D}$ | $\boldsymbol{L M}$ | $(\wedge \rightarrow a) \vee b \vee \rightarrow b$ | e. $g$. $r=n-1$ |


| 13 | $\boldsymbol{L} \boldsymbol{D}$ | $\boldsymbol{L} \boldsymbol{J} \cap \boldsymbol{L} \boldsymbol{D}$ | $a \vee \rightarrow a$ | $r=n$ |
| :---: | :---: | :---: | :---: | :---: |
| 14 | $\boldsymbol{L} \boldsymbol{J}$ | $\boldsymbol{L J} \cap \boldsymbol{L} \boldsymbol{D}$ | $\wedge \rightarrow a$ | $r=1$ |
| 15 | $\boldsymbol{L J} \cap \boldsymbol{L} \boldsymbol{N}$ | $\boldsymbol{L J} \cap \boldsymbol{L} \boldsymbol{D}$ | $(\wedge \rightarrow a) \bigvee b \bigvee(b \rightarrow c)$ | $r=1$ |

(As for the correlations of logics in the lines $10-15$ under $\boldsymbol{L}[A]$ and $\boldsymbol{L}$, see Miura [3]. )

## References

[ 1] Curry, H.B., Foundations of mathematical logic (1963), New York.
[ 2 ] Gödel, K., Zum intuitionistischen Aussagenkalkül, Akad. Wiss. Anzeiger, vol. 69 (1932), 65-66.
[ 3] Miura, S., A remark on the intersection of two logics, Nagoya Math. J., vol. 26 (1966), 167-171.
[4] Nagata, S., A series of successive modifications of Peirce's rule, Proc. Japan Acad., vol. 42 (1966), 859-861.
[5] Nishimura, I., On formulas of one variable in intuitionistic propositional calculus, J. Symb. Logic, vol. 25 (1960), 327-331.
[6] Ono, K., On universal character of the primitive logic, Nagoya Math. J., vol. 27-1 (1966), 331-353.
[7] Ono, K., A certain kind of formal theories, Nagoya Math. J., vol. 25 (1965), 59-86.
[8] Umezawa, T., Über die zwischensysteme der Aussagenlogik, Nagoya Math. J., vol. 9 (1955), 181-189.
[9] Umezawa, T., On intermediate propositional logics, J. Symb. Logic, vol. 24 (1959), 20-36.
[10] Umezawa, T., On logics intermediate between intuitionistic and classical predicate logic, J. Symb. Logic, vol. 24 (1959), 141-153.

## Toyota Technical College

and
Mathematical Institute,
Nagoya University

Added in proof April 28, 1967.
After this paper had been admitted, we found the fact that a series of propositions $P_{i}$, appearring in Nagata [4] and also in this paper, has been introduced by A.S. Troelstra in the slightly different form. (See [11] cited below.) A result of Nagata [4] has been already used in Troelstra [11] in order to verify one of his theorems. Moreover, there are some arguments in [11] connected with ours in the present paper.
[11] Troelstra, A.S., On intermediate propositional logics, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 68 (Indag. Math., vol. 27) (1965), 141-152.


[^0]:    Received September 6, 1966.

[^1]:    1) In Gödel [2], it is discussed that there is "eine monoton abnehmende Folge von Systemen" between $\boldsymbol{L K}$ and $\boldsymbol{L} \boldsymbol{J}$ by considering the formula $F_{n} \equiv \vee_{1 \leq i<k \leq n}\left(a_{i} \equiv a_{k}\right)$ with respect to a many-valued evaluation. This fact enables us to do the same discussion between $\boldsymbol{L K}$ and a logic, in which every provable proposition is ( $n, r$ )-true ( $c f$. Definition) for any $n$ and some $r$. Moreover, in Umezawa [8]-[10] and Nishimura [5], there are detailed discussions on intermediate logics between $\boldsymbol{L K}$ and $\boldsymbol{L J}$.
[^2]:    2) cf. $H$ system of Curry [1].
    ${ }^{3)}$ In this paper, for a logic $\boldsymbol{L}$, a proposition $A$ is called to be $L$-provable when $A$ is provable in $\boldsymbol{L}$.
