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ON A DECOMPOSITION OF SPACES OF CUSP FORMS
AND TRACE FORMULA OF HECKE OPERATORS

HIROSHI SAITO

Introduction

For a positive integer N, put

a b

If(N) = {(c ) e SL(Z)|c = 0 (mod N)} .

d
For a positive integer £ and a Dirichlet character 4 modulo N, let SN, )
denote the space of holomorphic cusp forms for I'(N) of weight » and
character . For a positive integer n prime to I, the Hecke operator T,
is defined on S,(V, ¥), and in the case where » > 2, an explicit formula
for the trace tr T, of T, is known by Eichler [6] and Hijikata [8]. But
for higher levels, in particular, when N contains a power of a prime as
a factor, this formula is not suitable for numerical computations. It is
natural to ask a decomposition of S,(N, +) stable under the action of Hecke
operators and a formula for tr ), on each subspace. In fact, when + is
the trivial character +~, Yamauchi [18] gave a decomposition of S.(N, y~)
and a formula for tr T, on each subspace by means of the normalizers of
I'(N). In the case where N = p* with a prime p, S(p’, ¥, is divided into
two subspaces by this decomposition. When v > 2, in Saito-Yamauchi [11]
another decomposition of S.(p’, ¢, into four subspaces and the formulas

for tr T, on these subspaces were given by using the normalizer W= ((1))_ (1))
of I'(p*) and the twisting operator R, for ¢ the quadratic residue symbol
modulo p. In this paper, we shall generalize these results. In §1, we
define an operator U, on S,(NV, v) for a character y which satisfies a certain
condition. This operator is a generalization of R,WR,W in [11]. In a
similar way as in [11], we can give a formula for tr U,T, and also for
tr U,WT, with a normalizer W of I'(N) when + is trivial (§ 2. Th. 2.5. and

Th. 2.9.). In §3, we shall prove a multiplicative property of U,. This
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property makes it possible to define a decomposition of S,(IV, v+) into sub-
spaces. This decomposition is finer than the one given in [11] even in the
case where N = p® and is trivial. The trace of T, on each subspace is
given by a linear combination of tr U, T, and tr U,WT,. In §4, we give a
numerical example for N = 11%, x = 2 and the trivial 4. In this example,
we find a congruence between a cusp form associated with a Grossen-
character of @(v/—11) and a certain primitive cusp form modulo a prime
ideal p with the norm 99527. By means of a result of Shimura [16], this
prime ideal can be related to the special values of certain L-functions of
Q and Q(v—11). We can observe such a congruence also in the examples
of Doi-Yamauchi [3] for N = 7® and [11] for N = 11°, These observations
were done under the influence of Doi-Ohta [4] and Doi-Hida [5]. In the
Appendix, we give more examples for N = 13°, 19° under the condition that
k=2 and + is trivial. ‘

Notation

The symbols Z, Q, R, and C denote respectively the ring of rational
integers, the rational number field, the real number field, and the complex
number field. For a prime p, Z, and @, denote the ring of p-adic integers
and the field of p-adic numbers, respectively. For a prime p, v, denotes
the additive valuation of @, normalized as v,(p) = 1. For an associative
ring S with an identity element, we denote by S* the group of all in-
vertible elements of S, and by M,(S) the ring of all square matrices of
size n with coefficients in S. We put GL,(S) = M,(S)*. For subsets S,,
of 8§, 1< i,j< n, (S,) denotes the subsets {(s,;) € M,(S)|s;,; €S,;}. For a
group G and its subgroup H, we denote by 5 the conjugacy with respect
to H, ie.,, g g if and only if h~'gh = g’ with he H, and for a subset
X of G, we denote by X/+ a complete system of representatives of X with
respect to H. Finally, for a finite dimensional vector space V over C and
a linear operator T on V, tr T'|V denotes the trace of T on V.

§1. The operator U,

Let $ denote the complex upper half plane {z € C|Im (2) >0} and GL(R)*

= {re GL(R)|det y > 0}. Let » be a positive integer. For a complex-
valued function f(z) on § and y = (g 3) € GL(R)*, we define a function

fllr). on & by
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(flI712(z) = (det p)*(cz + d)~f(1(2)) ,

where 7(2) = (az + b)/(cz + d) for ze . For a positive integer IV and a
Dirichlet character 4 modulo N such that (—1) = (—1), let G.(N, ) denote
the vector space of holomorphic modular forms f(z) satisfying

Al = w@f  forall = (* P)eram.

We denote by S, ) the subspace of G.(N, ) consisting of cusp forms
and by SN, ) the space of new forms in S,(IV,/,). For the trivial character
¥, we put S(N) = S.(N, ¥,) and S%(INV) = SNV, +~). For a positive integer
n prime to N, the Hecke operator T, on SNV, ) is defined in the usual
way by

AT = e 5 v@f|[ (¢ )]
’ bag:dnd 0 d/l
For a Dirichlet character y, we denote by f, the conductor of y. Let g

be a primitive character with {, = ¢. Then for fe SV, ), the twisting
operator R, is defined as follows;

= s B[ )],

where g(3) is the Gauss sum for y. Then it is known (c.f. [13]) that f|R,
belongs to S(IV/, ¥y?), where N’ is the least common multiple of N, f,f,
and f2. For a positive divisor M of N such that (M, N/M) =1, we choose
and fix an element y, of SL,(Z) which satisfies

(0 “é) (mod M?)

. 1
™= C 9 ety
and put
-

For M = N and M = 1, we take respectively

=(o—1) =<1 0)
W=\ o T 1)
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For a positive divisor M of N, we denote by M the divisor of N such
that the sets of primes which divide M and M are the same and (M, N/M)
= 1. For a positive divisor M of N, we put 5, = 5z, and define the ope-
rator W, by

fIWy = fllpul. -

Let y be a character modulo N, and M a divisor of N such that (M, N/M)
= 1. Then y can be expressed as y = yyxw/u» Where y, (resp. yy,x) is a
character modulo M (resp. N/M). For a positive divisor M’ of N, we put
Xw = Xa- In this notation, it is known that f|W,, is contained in SN,
Vuvyu). These operators T,, R,, and W, satisfy the following properties.

LeEmMMmA 1.1. Let x be a primitive character, and M a positive divisor
of N such that (M, NJM) = 1. Then for fe S(N, ), one has
(1) If n is a positive integer prime to Nf,, then
fIT.R, = 3(nf|R,T,
fl T.Wy = ‘I/'M(n)f‘ W.T, .
(2) Suppose (M, §,) =1. Then
IR, Wy = 2(M)f|WyR, .
(8) Let M’ be a positive divisor of N such that (M', NIM') =1 and
(M, M) =1. Then
f I WM WM' = ‘T’M'(M )f I WMM'
f l WMWM = "I/'M(_l){l;NIM(M )f .
These properties of T,, R,, and W, are given in Atkin-Li [1] and can
be verified easily by straightforward computations.
Now we give a definition of the operator U,, which is essential to

our decomposition of S(IV, ). Let y be a primitive character with the
conductor §, = M. We assume

(L.1) N and f,f,[N.
For such a character y, we define the operator U, by
U,=RW,RW,.

For the trivial character y,, we define U, = the identity map. Then U,
induces a map
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U,: SN, ) —> SN, ¥) .
Furthermore, U, satisfies the following properties.

ProrositioN 1.2. The notation being as above, let fe S (I, ).
(1) If n is a positive integer prime to N, then

fIT.U, =fIU,T, .

(2) Let ¥y be a primitive character which satisfies the condition (1.1).
Suppose (f,, ) = 1. Then

fIUU, = $out(M ) M| U,y

where M = {, and M’ = {,..
(8) If + is the trivial character, then for a positive divisor L of N prime
to f,, it holds

fIOW, =fIW.U,.
Proof. Let M = {,, then by (1) of Lemma 1.1, we see

fl TnUz = fl TnRz WMRZ WM
= z(n)fleTnWMRIWM
= X(n)‘I"M(n)fle WMTnRx W
= fIR,WyR ,W,T, .
The assertions (3) and (3) can be proved in a similar way by using Lemma

1.1, and we omit the proof.
For M = {,, let M be as above, and put

U, = va(— D, (DN U, .

Then the assertion (2) of the above proposition is equivalent to the fol-
lowing.

CoroLLARY 1.3. If {, is prime to {,, then
uvu,=U,,.

ProposITiON 1.4. The notation being as above, then the following as-
sertions hold.

(1) If f is a primitive form in SXN, ), then f is an eigen-function for
U,. In particular, U, induces a map

U,: SUN, 4) —> SN, ¥) .
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(2) Suppose v,(i,i,) < v,(N) and v,(2) < v, (N) for a prime divisor p
of T,- If g belong to S.N|p, ), then

glUI:O

(3) Let f be a primitive form in S N, ). If flU, =0 for a character
x with §, = p*, where p is a prime divisor of N, then it holds v,(i,f,) = v,(IN)
or v,(i}) = v,(N), and there exists g € S(N|p, Vy") such that f = g|R,.

(4) If \ is the trivial character «, and fe SAN, ), then for any divisor
L of N, it holds

flUlW =f|WLUx'

Proof. The assertions (1) and (4) easily follows from Prop. 1.2. We
shall prove (2) and (38). To prove (2), we may assume g is a primitive form.

From the assumption, it follows g|R, € S(N/p, vx). Put 7y = n,(ﬂg/p (1)),

then g|R,[7)]. belongs to S(N/p, ¥y ¥ry/ux?). Hence g|R, W, = g’'(pz) for g’ €
S(NIp, Valrw/ux?), and g|R,WyR, = 0. This proves the assertion (2). Now
we prove (3). By the assumption on y, we have v,(IV) > 2 and v,(f,) <
v,(N). Hence the p-th Fourier coefficient a, of f vanishes, and f|R,R, =
f. If fIR, is a primitive form in SV, ¥¢?), then f|R,W, is also a non-zero
constant multiple of a primitive form, and f|R,W,R, W, s 0. Hence if f|U,
= 0, then f|U, is not a primitive form in SV, vr¢?), and there exist g, h
€ S(N|p, ¥¥) such that (f|R,)X(2) = g(2) + h(pz). Then we have f = f|R,R,
= g|R,. Now we show that f|R, is a primitive form in SXN, ¥y*) if v,(f,f,)
< U,(N) and v,(7}) < v,(N). Otherwise f|R, can be written as f|R, = g'(2)
+ W(pz) with g’, b’ e S(N/p, ¥x). Then f=f|R,R; e S(N/p, ), because
v(N[p) > v,(f,f,) and v,(N/p) > v,(i2). This contradicts to our assumption
that fe SXN, ¥).

§2. Formula for tr U,T, and tr U W,T,

Let N and + be as in § 1. For a primitive character y which satisfies
the condition (1.1), we defined an operator U,: S,(INV, ¥) —> S(V, ¥ in § 1.
We shall give a formula for tr U,T,|S(V, ¥). For M = {,, we write N =
N,N,, where N, = M and N, = N/M. We put

- (%, 9

and for each prime p
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U,=RN)R Z,)*.

For the archimedean prime o, we put U, = GL,(R)*. We denote by U the

subgroup [[, U, of GL, (Q,), where v runs through all places of @. Let

p be a prime divisor of N and y = <g g) e U,. We define

Vo) = V() ,
and for ye [[,x U, X [lay GLAQ,) X U.
11‘;'(7’) = ﬂv"pp(rp) ’

where 7, is the p-th component of y. For a prime which divides N,, we
define a subset &,(U,) of M,(Z,) by

g,(U0) = {ge (meZP p”*"Z;)

p2v+yZ5( p””“Z;‘ vp(det g) = 2 + 4#} ,

where v = v,(N) and g = v,(},). For g = (g 2) e &,(U,), we put
@1 (&) = 7,(— be/p™** ), (—dp"**) .

Then for 7, 7 € U, and ge 5,(U,), we see

(2.2) (rgr) = V() 1a(det Gr)ix(8) ,

and in particular for ¢ = 77,

2.3) 1(rer™) = 1,(8) .

FOI' ge nple EP(UZ) X HpINz Up X npuv GLz(Qp) X Uoo’ put
Z(g) = l_[ ip(gp) n ‘pp(gp)_l ’
plNy PiNg

where g, denotes the p-th component of g. Then by (2.2), we see for 7,
7 €lpy Up X [y GLAQ) X U,

2.4) wrer) = «l'r(rr’)“pglxp(det (A (I
and in particular, if 7, 7’ € I'(V), then
(2.5) gy = vGr)'ug) .

For rational integers i, j, put

= (4 (Y 1)
“=\o mM)"™\o Mm)™’
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where M = §,. For a positive integer n prime to N, let Z(T,) = [], &,(T%)
X U,, where

E)(T,) = {ge R(N)® Z,|v,(det g) = v,(n)},
and let 5(T,) N GL,(Q) = \J¢., I'(IN)B, be a disjoint union.

LemMmA 2.1. The notation being as above, let p be a prime divisor of

i and v=uM), w=uG) Then for g= (500 BUb) and g

v+2p o/ v+
= (gmﬁg, §,+,,f’d,) in 8,U), U,g = U,g’ if and only if a/b = o|b/ modulo
p* and c/d = c’[d’ modulo p*. If this is the case, ¥,(g8" ") = v, (a’d-p*~**b'c).

This can be verified easily by a direct calculation, and we omit the
proof.

LemMA 2.2. The notation being as above, let E(U,T,) = [, v &,(U,)
X [Tpw: Eo(T2) X U.. Then the union

E(U,T) N CL@ = U U Ti@afy

is disjoint, where i and j runs through a complete system of representatives

of (Z[§,Z2)".

Proof. Since U N GL(Q) = I'(N) and «;,8; € GL(Q), it is enough to
prove the union 5(U,T,) = U Us Uay;B, is disjoint. We note the union
Mot Eo(Tr) = Uk [pws UpBe is disjoint and ay; € [[pw, Ups Bi € [Ty Upe
Hence the proof can be reduced to showing the umnion [],x, &,(U,)
= Usj [Tows Upcts; is disjoint. Let M = §, and M = N,, then

(iJ'MZ — e —ﬂﬁM) (mod I*)
M — N
o, i = ~ Iy . ’
RAYE M + iM .
M IMM I (mod (YY)

and by the definition of 5F,(U,), a;; € [[pw. &,(U,). By Lemma 2.1, for
integers i, j, i/, j/ prime to N,, we see

U, = Uy & i=i,j=j  (modp¥).
Hence the right side of the union is disjoint. We show [[,, &,(U,)

. . . pu+2pa pv+pb
C Uy TTpivs Upetsy.  For a prime p which divides NN, let g= (pm,lc pv+2;‘d)
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e 5,(U,). If we put M = pM’, M = p*M’ and take two integers i, j which
satisfy

jiM"” — M'M™)b = —iM'M’
{(U ) ’ ¢ (mod p*) ,

jM"M'd = —M M
then by Lemma 2.1, we have U,g = U,a,;. Such i and j are determined
uniquely modulo p#, because ad — bc = 0 (mod p). Our assertion follows

from this.
As a corollary of this Lemma, we obtain

CoRrOLLARY 2.3. The notation being as above, let fe S(N, ). Then it
holds

figT, =C 2 &) [8l

gETo(N\E(U yT2) NGL2(Q)

C = B 1 (A0, (By) T] )
g(x)* »ina PN

where g runs through o complete system of representatives of the left cosets
of B(U,T,) N GL(Q) by I'(N) and for a prime divisor p of N;,, A, =
MM p*+* and B, = MM:[p"** with v = v,(N) and 1 = v,(f,).

Proof. We note the right hand side is independent of the choice of
the representatives because of (2.5). We may assume B, is of the form

(g 3) Since we have

aGjM* — MM?)  b(jM* — MM?) — idMM) e
, < oM biiI*M — dNIM® (mod M)
43Pr = -~ ~ o .
MM bMM? + d(jMM + iM -
(s Vae ) meacuin)

we see 7(x;;8:) = 7(H)y(a)C'. By the definition of U, and T,, we obtain
our corollary.

By means of Eichler-Selberg’s trace formula (c.f. [6], [8], [10], [12]) and
a result of Hijikata [8], we can express trace of U,T, on S(IV, ) in an
explicit way. Let us introduce some notations. For two rational integers
s, n, put &(X) = X* — sX + n, K(®) = Q[X]/(@(X)), and denote by X the
class containing X. For a prime p, let v = v,(N) and K(9), = K(9) Q Q,.

It we define R,(;) = ( 5”2 gp) then R(N)® Z, = R,(). For « in GL(Q,)
y P

or GL,(R), we denote by f,(X) the minimal polynomial of «. For a Z,-
order 4, of K(®),, we define
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Co(», @, 4,) = {e e R,W)If. = 9, p.(4,) = Q,la] N B,()},

where ¢, denotes the isomorphism from K(®), to @,[a] such that ¢, (X) =
a. For A, which contains Zp[}? ], we define also the following sets;

0.0,0,4,) = {£eZ,|9(¢) = 0 (mod P***))}
{neZ,|9(p) = 0 (mod pr***1H} ,
2,0,9,4,) = if p=2(s* — 4n) = 0 (mod p) and v >0
o, otherwise ,
where p is the non-negative integer such that [4,: Z,,[X']] = p°. We denote
by 2,0, ®, 4,) (vesp. O(v, D, 4,)) a complete system of representatives of

2,@, 0, 4,) (resp. 2,(v, 9, 4,)) modulo p****. For e 2,(,?,4,) and ye
2,(, 9, 4,) we define elements ¢(X) and ¢(X) in C,(, @, 4,) by

pw®=(_ 5 )

—p0®) s—¢
B = (377 TP TOD),

We define a map

o: 2,0, 9, 4,) U 2,(v,9, 4,) —> C,(v, D, 4,)
by ¢(§) = pi(X) for g€ 2,0, D, 4,) and ¢(y) = ¢(X) for ye 2y, D, 4,). In
these notations, we have

LemmA 24. The notation being as above, let O(X) = X* — sX + N*fin
and for a prime p, let A, a Z,-order of K(®), such that A, D Zp[}?]. Then
the followings hold.

(1) If p does not divide N, then ¢ induces a bijective map

@ ‘QP(O’ @’ AP) —_—> CP(O’ dj, AP) N Ep(Tn)/?fp ’

and 2,00, 9, 4,)] = 1.
(2) If p divides N,, then ¢ induces a bijective map

Q: Qp(”y Qa Ap) U ‘Q;(Vy @’ Ap) — Cp(”’ @’Ap) N U;-/'Ef;, s

where v = v,(N).

(3) If p divides N, then C,(v, @, 4,)N 5 ,(U,) # ¢ only if s =0 (mod p***)
and p =v 4+ p, and for ® with s =0 (mod p***) and A, with p=v + p, ¢
induces a bijective map
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@ ‘QP — Cp(”’ @’ Ap) N Ep(Uz)/’z}';, )
where v = v,(N), u = v,(f,) and

{ge 0,0, D, 4,)| D) % 0 (mod p»***)} if v = 2
{£e0,(v, 0, 4,)|9(&) # 0 (mod p»***1)
s # §mod p*** N} if v = 2p.

Proof. The assertions (1) and (2) are contained in Hijikata [8]. We
prove (3). The theorem of Hijikata quoted in [11] as Th. 2.4 says that
for 4, containing Zp[X’], ¢ gives a bijective map

0: 2,0,0, 4,) 0 2, O, 4,) —> Cyv, D, 4,)/U, .

By the definition of 5,(U,), we see s =0 (mod p***) if C,(v, @, 4,) N &,(U,)
is not empty. If ¢/(X)e5,(U,) for 5e 24y, ®, 4,), it must hold v+ p =
2v 4+ p and v+ g = v,(D(y)) — v — p, hence p =v + p and v,(D(y)) = 3v + 2.
But if p = v 4 g, then 7 saitsfies @(y) = 0 (mod p*****) hence ¢(X) ¢ 5,(U,).
Assume goé()? )e 5,(U,) for £ € 2,(v, D, 4,). Then as above, we have p =v + ¢
and v,(9(§)) = 3v + 2u. When these conditions are satisfied, goe(f( )e £,(U,)
if and only if & == s (mod p****!). We note the last condition is always
satisfied if v # 2u. For otherwise, put s = p***s’ and & = p***(s’ + p&),
then we have

p2v+4‘u(s/p$I + pZEIZ + n) = O (modp3v+2y) .

Since n is prime to p, this condition is satisfied only if » = 24. This
proves the assertion (3).

By means of this Lemma, in the same way as in § 2 of [11], we obtain
the following formula for tr U,T,.

THEOREM 2.5. The notation being as above, let n be a positive integer
prime to N, £ > 2, and C the constant in Cor. 2.2. Then it holds

tr U,T,| SAN, ¥) = Clte + & + £,) ,
where t,, t, and t, are given as follows.
W b= =5 BT ] e NG — 4mif).

Here s runs through all zntegers such that s* — 4n < 0, and f runs through
all positive integers which satisfy the condition f*|(s* — 4n), (f,1) =1, and
fi(s* — 4n)/f* =0 or 1 (mod 4). For a negative integer D such that D=0
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or 1 (mod 4), /(D) denotes the class number of the order of Q(vD) with the
discriminant D. « and B are the two roots of F(X)= X*—sX+ n=0.
The number c,(s,f) is given by

G 2 1(FOp )W, (¢ —8) if plf, and v # 2

£ mod p¥—
(26) (s, f) =1 6@ emeroan (resp. v = 2p)
1on(lvlfz)( ~Z ‘T’p(s - {:) + .,Z ‘T’p(’?» lf plfx
§€0p(v,Fg,4p) 760;,(H:F814p)

where A, is the order of K(F,) such that [4,: z,,[}?]] =p* for p=uv,(f), and
C, = Zp(sz;‘,/pz“““)tTfp(N f“/p”““) for v = v,(N) and p = v,(f,).

@ ti=—2—r— o d 7 2 [ eld + nld, Ne((n/d — d)f) .

Here d runs through all positive integers such that 0 < d < +'n, d|n, and f
runs through all positive integers satisfying f|(n/d — d) and (f,f,) = 1.
c,(d + n/d, f) is given by (2.6) for s = d + n/d, and ¢ is the Euler function.

(3) If there exists a prime divisor p of {, such that v,(N) is odd, then
t, = 0. Otherwise we have

(s-1)/2
n
tp =

B(n) 2 1 ex(m),
2 mmod N p|N
(m,fy)=1

where c,(m) = c,(24/n, m) for p which divides N, and 3(n) =1 or 0 according
as n is a square or not.

In the rest of this section, we assume + is the trivial character. Then
for a divisor L of N such that (L, N/L) =1, U,W, acts on S(N), and we
can give a formula for tr U W, T,. We write N= M, M,M,M, in such a
way N, = MM, and L = M,M,. For a prime p which divides M,, we define
a subset 5,(U,W,) of R(N)® Z, by

p2u+;¢ZI:< pv+2,uZp )

£, ={ge (pwﬂsz provzy )| PO =3 ),

and for a prime divisor p of M,, put

vZ ;ZX
5,(W,) = (p ? 4 > .
o(W2) rZ; pZz,

For g = (g 2) e 5,(U,W,), we put

@7 7(8) = 1.(ad/p**™),
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where v = v,(N), 1 = v,(f). Then for 7, ¥ € U,, we see

(2.8) 1787 = 1.(det 7 Nx(g) .

We define a union of U-double cosets 5(U,W_T,) by
EUW.T,)=1] E,U) ][] ELUW)]] &,Wy) [ E(T)XU.,
pIMy plMs pIMs PNM 1 MaMg

142

and for ge 5(U,W,T,), put
7(8) = 11 7.(8n I 785,
pIMy pIM2
where g, is the p-th component of g. Corresponding to Lemma 2.2, we
have
LeMmMA 2.6, The notation being as in Lemma 2.2, for a divisor L of N
with (L, N/L) = 1, the union
d
E(U,W.T,) N GL(Q) = U I'(N Doty 7B
(% =
is disjoint, where i and j runs through a complete system of representatives
of (Z[},Z)*.

Proof. As in the proof of Lemma 2.2, it is enough to prove the union

o EXU) 1110 U, W5 T w1y Eo(Wi) = Usj [ piaraarae, Upeti g, 1s disjoint.
But this follows easily from the proof of Lemma 2.2 and the fact that
E(UW,) = 5,(U)y, and 5,(W,) = U,y;.

CoroLLARY 2.7. The notation being as above, then for fe S(N), it holds

fIUW.T, =C 2 2 (&)1gl

gETo(NN\E(UyWLTn) NGL2(Q)
C" = 1) ] x(A7) 11 2:(B)/a(0)*
pIM; pIM2
where A, = LN{{3[p*** and B, = LN{i3[p*** for v = v,(N) and p = v,(f,).

Proof. The right hand side of the above equality is independent of
the choice of the representatives because of (2.2) and (2.8). If g, is of the

form (8 3), then we see

(a(UM2 _ MM2)L b(l]M2 — MMZ) — idMM) (mod M4)
1

5= o M*ML MM — dNIM®
B = (L(b(ijM2:_ MM — idiIM  aGjiT — MM“’)) 4
L(bII*M — diIM?) o HIM (mod M),
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where M = N, and M = f,. Hence we have
¥ (@B = 2G)HC .

Our assertion follows from this and Lemma 2.6.
To express tr U,W,T, in an explicit way, we prove

Lemma 2.8. Let 9(X) = X* — sX + MIM;Lf/n, and for a prime divisor
p of N, let v =v,(N) and p = v,(f,). Then for an order A, of K(®), con-
tainint Z,[X], the followings hold.

(1) For p dividing M,, C,(v, D, 4,) N 5,(W,) +# ¢ only if s = 0 (mod p*)
and 4, = Z,,[X']. When this condition is satisfied, one has

1Cy, 0, 4,) N E,(Wo)] 5| = 1.

(2) For p dividing M, C,(,®,4,) N E,(UW,)+¢ only if s=0
(mod p**#) and [4,: Z,,[)?]] = p*, where p =v + 2u. When this condition is
satisfied, ¢ induces a bijective map

¢0: 3, —> C,(v, 0, 4,) N U, W)/ 5, ,

where 2, is a complete system of representatives modulo p*** of the set
{p>**¢|¢ e Z;, & # s[p™** (mod p)} (C 2,(v, D, 4,)) (resp. {p***¢|Ee Z), & %
s[p*** (mod p), D(p***&) # 0 (mod p*****")} (C 2,(, D, 4,)) U {p***3|pe Z},
n % s/p”** (mod p), D(p***y) = 0 (mod p****M)} (C 2,(v, D, 4,))) if v > 2 (resp.
if v = 2p).

Proof. The assertion (1) is contained in Yamauchi [18]. If C,(v, 2, 4,)
NE,(U,W,) #¢, then we see that s = 0 (mod p***) and [4,: Z,[X]] = p*,
where p = v + 2p. Assume this condition is satisfied. First we treat the

cd
g,(U,W.), hence gof,(X’) e S (UW,). If o(X)e 8,(UW,) for &eQ,@,?,4,),
then ¢ is of the form p**#¢’ with & € Z,. We note v,(D(p***&)) = 3v + 4yu
for & e Z,. Hence & =p»**& € 2,(v, 0, 4,) for & ¢ Z,, and p(X) e 5(U,W,)
if and only if & £ 0 (mod p**#**) and s — & % 0 (mod p**#**). This prove
the case v > 2u. Next assume v = 2y Also in this case, if ¢.(X) € 5,(U,W,)
(resp. go;(}? )€ 5, (U,W.)), then & = p»**¢ with ¢ € Z, (resp. y = p***y with
yeZ,) For &eZ, put & =p»*¢, then v,(P(€)) > 3v + 4p. Hence ¢ ¢
2,0, 9, 4,), and goe()?) e H,(U,Wy) if and only if ¢ % 0 (mod p®>*+*'), s — &
% 0 (mod p™*#**') and @(£) # 0 (mod p*****"). For 5 = p**#y with ' € Z,,

case where v > 2u. In this case, we note v,(b) =v + 2u for g = <a b) €
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7 € 2,(v, D, 4,) if and only if &(y) = 0 (mod p******), and for such 7’ € Z, go,,(X)
e 5,(U,W,) if and only if » % 0 (mod p****') and s — » = 0 (mod p**#*').
Our assertion follows from this.

By means of this Lemma, in the similar way as in §3 of [11], we
obtain the following.

THEOREM 2.9. The notation being as above, let L be a divisor of N such
that (L, N/L) = 1. We write f, = F\F,, where F, = (f,, M,) and F, = ({,, M,).
Then we have

tr UW,T,|S(N)=C'(t. + t,. + ¢,)

where C’ is the constant in Cor. 2.7, and t,, t, and ¢, are given as follows.

@ t= Z——————(LF‘)‘ 22 I els, f)
J pIM1M2My
X h.(Ff(LZF2 s? — 4Ln)/f?).

Here s runs through all integers such that L*F;s* — 4Ln < 0, and f runs
through all positive integers which satisfy the condition f*|(L*F;*s® — 4Ln),
(f,§,.L) =1 and FYL*F;*s* — 4Ln)[f* = 0 or 1 (mod 4). For s, put G(X) =

— LF ,sX + LF/n, then « and B are the two roots of G(X) = 0. The
number cy(s, f) is given by

7o(MF{ M [p™**) 22 GO if plM, and v > 2

& mod p¥—#
/s, f) = (s T T mod py (resp. v = 2p)
als,f) = LOLEMp™) 5 3@LEs/p™ — ) if p| M,
3,0, G, 4,)| + |2, (», G,, 4,)| if p| M, ,

where v = v,(N), p=uv,f), and A, is the order of K(G,), such that
[4,: Z,[X]] = p* for p = v,(f).
(2) If L is not a square, then t, = 0. If L is a square, then one has

= = N WRYES T WL FE + nld), f)

S pIMiMaMy

X o(WL F((njd — d)If) ,

where d runs through all positive integers such that 0 < d < +'n, d|n, and d +
n/d = 0 (mod vL F;), and f runs through all positive integers which satisfy
fl(n/d — d) and (f,T,L) =1. c(¥LFXd+ n/d), [) is the same as in (1) for
s = VL F}d + n/d).
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(3) t, does not vanish only if M, = F}, M, =1 or 4, and M, and n are
squares. When this condition is satisfied,

(s—-1)/2 1
b=—-2Ch 0 (1-2) Toa,
2 PIM1My D/ pirisan,

where ¢, = c,(2vLFi'n, 1).

8§3. A decomposition of S,(N, )
Let y be a character modulo N, and y, the primitive character as-

sociated with y. For y, we define

Ux = Uxoa Q(X) = Q(Xo) .

For characters y and ' with prime power conductors, we have

THEOREM 3.1. For positive integers N and k, let » be a character modulo

N such that y(—1) = (—1)~. Let p be a prime divisor of N, and y, x' charac-
ters with {, = p*, f, = p* which satisfy the condition (1.1). Suppose p <
[0, (N3], ¢ < [,N)/3], and v,(3,) < [U(N)/3l. Then for fe SXN, ¥), it
holds

fIOUy = Arpo(—= D p(P)\Uye  if x# X

FIU U, = (= 1)y, o(PYf fr=1,
where P = p* for v = v, (N).

Proof. We may assume y and y' are primitive. For integers i, j, 7/,
and j/, put

o5 el e o= ol e

x

Then by the definition of U, and U,, we have

AUU, = L 5 @il -
sre(y e
Since f|U,U, = f|U, U, for fe SN, ) by (1) of Prop. 1.4, we may assume
p= .
Case 1. First we assume p > 4. Let a,al;, =— pu+2pl(1é g), then by

the assumption on f,, f,, and {,, we have

A= —p** 4 i,j,p” (mod p***)
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= —i,p*** (mod p***)
C Ejopzw-,‘ (mod p2v+2,u)
D = —p*** (mod p***),
where i, = i + p* *7 and j, = j + p**j’. Since det a;;a},;, and det «,,;, are
powers of p, by Lemma 2.1 we see 8 = —p™* a,a; 0, € I'(N) and y-(B)

=1, where a,,;, = (0" ;,ﬂ) . (%" ;0#)%' For the other prime divisors

of N, we have

If

B (‘P *) mod (N/P) .

0 —P!

Hence we obtain

Fllasjerie s ] = (= D Vrw o(— P)f ool -

Since Y(—1) = (— 1), we see
1.0, = VDB, 5 o= i = )

i’,77 mod pr’

X X @I | [tuasle
— ‘P'P(——IZ‘I’J:’I/PZ(P) o Z z«l _p#—;«’i/)(l - p#ﬁu’j/»z/(i/j/)
sy v woasw
X 20 W Goio eyl -

10,70 mod p#

We note (c.f. Shimura [16, Lemma 8])

1 N 1
(1 — (@) = .
6(e(@) Bty KL~ PO 8(xx)

Thus we obtain

fIU,U, = ¥p(— D o(P)|U,, .

Case II. Next we assume f, = f,, = {,,. In the same way as above,
we obtain

fl[“n“w']: = Yp(— 1)‘[—’N/P(P)f[[a’zojo]: s

where i, =i+ ¢ and j,=j +j. We note a,, € 5(U,T,) NGL(Q) if and
only if i, and j, are prime to p. Taking notice of (c.f. ibid.)
1 - N 1
—— 2, M =WC)=—;
g(e(¥) ot o 8(xx’)

we have
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10Uy = (= D¥uePY U, + 8 + S: + Sy,

where

S, = V(= DY w,»(P) (G — )Gs — INTOTG i .
s aT) 221G — o — INTEX G sosle

Here the summation is extended over i, j,, i/, j/ modulo p* which satisfy
the condition (1) i, 0 (mod p), j, =0 (mod p), (2) i, =0 (mod p), j, = 0
(mod p) or (3) i, = 0 (mod p), j, = (mod p) according as k= 1,2, or 3. We
show S, =8,=8,=0. Let f= 3,5 @, be the Fourier expansion of
f. In the case of S, put i, = pu. Then we see

4/ mod p#

P

= Z A, Z Z(pu - il)z,(i/)ez”ip“mlpl‘e%imz
= Z O Z Z(pu - 1) Z Zzl(i,)ez"ip“m/p-"ehimz
m % P

WD) =1
=0,

2. Wpu — D Ef

since the conductor of yy’ is p*. This shows S, =0. We can treat the
cases of S, and S, in the same way, and we omit the proof.

Case III. Finally we assume f, = {,, > f,,.. Put ¥’ = yy/, then y = 3.
By Case I, we have U, = ¥(— ¥y (P)U,U,.. If we prove U,U,
= (Yp(— DV, P)), we obtain UU, = ¥s(— DYy (P)U, Uz Uy =
Ye(—D¥y,s(P)U,.. Hence it is enough to show U,U, = (¢s(— D¥y,(P)),
and we may assume ¥y = 5. As in the case II, we have

U.U. = V(=D w/o(P) T +T,+T,+T),
e e N

where
T, = 22 2(Go — o — JMCET etsosle -

Here the summation is extended over i, j,, i, j/ modulo p* which satisfy

the condition (1) i, %= 0 (mod p), j, 0 (mod p) (2) i, = 0 (mod p), j, =0

(mod p), (8) i, =0 (mod p), j,%0 (modp), or (4) i,=0 (modp), j,=0

(mod p) according as k=1, 2, 3, or 4. Let f= 3,5, @™ be the Fourier
- expansion of f, then a, = 0 if p divides m. We see

Ti= Qax@ — @) 2, Fllawl.

i9,p) =1
(G0 =1
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and

p* io)] ___{—f ifp=1
ioew/Zp#Z)x fl[(O pt/ds 0 otherwise ,

S - ) = —(-D =1,

2/ mod p
From this we obtain

r - (At el
0

otherwise .

In the similar way, we can verify

T,=T, = {(p —Ol)fl[vﬁn], if p=1

otherwise
- {(p — DRl ifu=1
p*fllp%l. otherwise .

Our assertion follows from this and Lemma 1.1. This completes the proof.
By the above theorem and Cor. 1.3, we obtain

CoroLLARY 3.2. Let y and y’' be the characters which satisfy (1.1). Sup-
pose U,(f,) < v ,(N)/3, v,(i,) < v,(N)/3, and v,(f,) < v,(N)/3 for each prime
divisor p of {,i,. Then for fe S)N, ), it holds

flﬁzﬁx’ = flﬁu’ .

Let M be a divisor of N such that M*|N, and assume 3v,(f,) < v,(IV)
for any pirme divisor p of M. Let X(M) be the group of all characters
defined modulo M, and U the group consisting of operators U acting on
SXN, ) for X(M). Then Cor. 3.2 says that the map U: y — Uz gives a
homomorphism from X(M) to U. By means of this homomorphism, we
can decompose S(IV, 4) as follows;

SN, ¥)= D  SAN,¥,0a),
a€(Z/MZ)X

where
SN, ¥, @) = {fe SAN, WIf|U, = yla)f  for ye X(M)}.

On these subspace, the Hecke operator 7T, acts and the trace of T, on
them are given by

L > 3(@) tr U,T,|SIN, v) .

tr Tn[S:(N’ ¥, @) = W 1 €X (M)
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the trace tr (7,T,,lS£(N, ¥) are given by Hijikata [8] for the trivial y and
by Th. 2.5 in this paper for general y. In the case where + is the trivial
character, we can consider also the action of W, to decompose S(IN). Let
W denote the group of all W, for L|N, and E(W) the character group of
W. We define SYN, a, ¢) for a e (Z/MZ)* and ec E(W) by
SIN, a,¢) = {fe SANIfIU, = x@f  for ye X(M),
fIW, =e(W)f  for W,e E(W)}.

Then we have

SSN)y= @ D SiN,ace),

a€(Z/MZ)X ecEW)

and the trace of 7T, on SXN, a, e) is expressed as follows;

0 — 1 H)s T 0
tr T,|SAN, a, e) = (Z]MZ) | E(W)] zﬁ%}g)x(a)e(W) tr U W, T,|SYN) .

a formula for tr U,WT, is given by Yamauchi [18] for the trivial y and by
Th. 2.9 for the general .

Now we take N = p* with a prime p and a positive integer v > 3 and
4 the trivial character. Under such a condition, we have given in [9] a
decomposition of S?(p*) into four subspaces S, Sy, Su,, Si. We compare
this decomposition with that given above. Put M = p®”?, Then for ex-
ample, the subspace S; is defined by

St = {feSXMIfIU. =1, fIWy =},

where ¢ is the quadratic residue symbol modulo p. This space is expressed
by our spaces SXN, a, e) as follows;

S= @ SWal,
ae B

where 1 denotes the trivial character of W. This shows that even in the
case where v = 3 our decomposition of SXIV) gives a finer one that in [11].
In the next section, we give a numerical example in the case where p =
11, « = 2, and v = 3.

We prove two more properties of U,.

PropositioN 3.3. The notation being as above, let f be a primitive form
in S)N, ). For a character y with §, = p* which satisfies (1.1), let f| ff,
=c,f. For ceGal(Q/Q) and { = &?*, let {* = {" with ne Z, and for f =
gl €™, put f° = mZZII aze™™,  Then it holds
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10,0 = ) (W p IV PYeif .
Proof. Let G, = {xe GL(Q,)|det x.. > 0}, and Q,, the maximal abelian
extension of Q. Let p be a homomorphism of G, onto Gal (Q,,/Q) obtained

by defining p(x) to be the action of (det x)~! on Q,,. Let G be a subgroup
of G, X Gal(Q/Q) given by

G = {(x,0) e G, X Gal(Q/Q)|p(x) = o on Q.;} .

Then Shimura [17, Th. 1.5] defined an action of G on modular forms. We

denote the action of (x,0) by f©”. Let ¢t be an element of [[, Zy such

that o(x) = ¢ on Q,, for x = <(1) 2) Let «;; and 7 be the same as in the

proof of Th. 3.1, and consider the action of (x,s) on the both sides of

V(= DbrlPHIIED) 5 5 pfl ). = e
g() 7

where P = p*. Then the right hand side becomes ¢;f°. Observe that (g(7)")°

= y(n)"g(x") and ferD@) = (fo)="t«mD_ Choose f, e Z such that # =¢,

(mod ¢*) for each prime g|N. Let i and j/ be integers such that i’ = ¢

(mod P*) and f,j’ =j (mod P*), and let A be an integer such that A

=p#—tj +j) (mod (N/P)*) and A = 0 (mod P*). Then we see

Xl = ((1) “i>ai,, (mod NY) .

Hence feu0@0 = (fo)«D and we obtain
(f| [ 1) = (Vo IV )Yf* |law ). -
Noting x(a;;) = ey ;), we obtain

V(=D »(P)x’(N|P)
g’y

Since fe SXN, ¥°), this prove our proposition.

@) ol = Ky (B WD e

COROLLARY 3.4. Let f be a primitive form in SXN, ), and K, the field
generated by all the Fourier coefficients a,, of f over Q. Suppose v,(f,) <
v,(\N)/3 and p = [v,(N)/3] > 1 for a prime divisor p of N. Then K, contains
F,. = Q(&/*" + e */**) (resp. F,.-.) if & is even and p is odd (resp.
p=2), and K+ p) contains F,, (resp. F,.-,) if x is odd and p is odd
(resp. p = 2).

Proof. We prove only the case where ¢ is even and p is odd. The
other case can be treated in a similar way. In this case, it is enough to
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prove that for ¢ e Gal (Q/Q) ¢|F,u = the identity if ¢|K, = the identity.
Assume ¢ | K; is the identity, then f* = f and ¢ = 4. In the above no-
tation, we may assume fe S)N, ¥, a) for some a. Then ¢, = y(a) for y e
X(p*). From this and the above proposition, it follows
2@ = x(m)xlayWp VP,

for all y € X(p*), where n is an integer such that (e***/?*)’ = ¢***/?* Since
x is even, y(n*) = 1 for all y e X(p*), and n* = 1 (mod p*). If p is odd, this
implies n = +1 (mod p*) hence ¢|F,, = the identity. This proves our
corollary.

ProposiTioN 3.5. The notation being as in Prop. 3.3, assume vy — 2u
> 0 and v,(1,) <v — 2 for v = v,(N) and p = v,(f,). Then it holds

fIUzWP =f|WPU1 ’
where P = p* .

Proof. First we note 7, normalizes the set Z(U,T)) N GL(Q). For
g£= (a 3) e 5(U,T)) N GLAQ), we note

(d —c(ip") (mod PY)

1 —bp’
7p° &Y = )
(2 %) @moa aipy,
cp’ d

and ¥,(—d/p***) = ¥,(—a/p***) by the assumption on . Our assertion
follows from this and Cor. 2.3.

§4. Numerical examples and a congruence between cusp forms

We shall gives examples of characteristic polynomials of Hecke opera-
tors taking N = 11%, ¥ = 2 and + = the trivial character and discuss a
congruence property between cusp forms. We use the notation in § 3. Let
Si: be the subspace of S)(p*) given by

S = {fe SXIN)IfIU. =f, fIWp = —f},

where ¢ is the quadratic residue symbol modulo p and P = p’. In our
case, we find dim S; = 15 and dim S;;; = 35. By means of the decompo-
sition introduced in § 3, these subspaces can be written as follows;

SI = @ Sz(lla, a, 1) ’ 1 = ('B Sz(llsy a, _1) )

a mod 11 a mod 11
e(a)=1 s(a)=1
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where —1 denotes the non-trivial homomorphism from {W,, 1} to {+1}.
For a such that ¢(a) = 1, we find dim S,(11%, a, 1) = 3 and dim S,(11%, @, —1)
= 7. Taking a = 4, we give characteristic polynomial of Hecke operator
T, acting on these subspace for some n.

n | en) a, fr(X) N(fr.(a,)
2| —1 0 X*+a*—3a—3 199
3 1| —a'—2a°+3*+5a—2 | (X—a'+3a)? 199°
5 1| —a*+ba*—a—5 X—a+1) 199°
199 1| —6a*—13a*+30a? (X—4a*+8a*+13a? (11-23-43-199)*
+39¢—18 —16a+11)

Here « = &¥" 4 e %" and N denotes the norm from F,, = Q(«) to Q.
For an explanation of the table, we remark that S,(11% 4,1) contains a
primitive form 6; associated with a Grossencharacter of Q(v—11). a, de-
notes the n-th Fourier coefficient of 4,, that is, the eigenvalue for T,,. f,.(X)
denotes the characteristic polynomial for T, on the orthogonal complement
S? of the one dimensional subspace spanned by 6;.. We note N(f;,(a,)) is di-
vided by the prime 199 in our table and this suggest a congruence between
6; and a primitive form fe S modulo a prime ideal p in K, which divides
199. In fact, Prop. 4.2 in [11] implies such a congruence, and this propo-
sition has been proved as an application of the Shimura’s theory on the
construction of class fields over real quadratic fields [15].

Now we take S,(11°, 4, —1). This space also contains a primitive form
6. associated with a Grossencharacter of Q(+/—11). Let b, be the n-th
Fourier coefficients of 6;;;, and SJ; the orthogonal complement of the one
dimensional subspace spanned by 6;;;. We denote by g, (X) the charac-
teristic polynomial of T, on S%;.

n | «n) 8r.(X)
2 -1 X —(a*—8a+12)X* +(—2a* + Tat* 4 8a* — 21+ 85) X *
—(—140* +4a®+ 560" — 18— 4)
3 1 X —(—at—a*+ 30>+ 3a) X2+ (— ot — 20° +a* + B — 2) X
— (20 — T — 20+ 3))?
5 1 (X2 —(Qat—Ta*+4)X*+ (ot — a* — 3a*— 5) X
—(—8a* —5a® -+ 28a* + 11 — 15))*
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n b, N(g:,(b.))
2 0 2899527

3 | o'+2¢—3a"—6a+2 | (11-99527)

5 | —2+Ta*+a—1 (1429- 99527y

Here @ and N are as above. This table also suggests a congruence be-
tween 6;; and a primitive form g in Sf; modulo a prime ideal p in K,
which divides 99527. By virtue of the theory of Shimura, we may prove
this congruence if we can compute gr,,.,,. However, it is difficult. So we
proceed in quite another way.

For positive integers IV and A, let 4 be a character modulo N such
that y(—1)=(—1)~. For a prime divisor p of N, put v=v,(N), v,=[(v—1)/2],
and M = N/p*. Let £/ and be £’ positive integers such that r =« + "
and w be a character modulo p such that w(—1) = (—1)". First we prove

LemMmA 4.1. The notation being as above, for a primitive form fe
SH(N, yw) and g e G.{pM, @), put F(z) = g(p2)f(2). Let y be a character
with §, = p*, and assume 1 < p < v, and v,(f,) < v,(N)/3. Then F(2) belongs
to SN, V), and it holds

F@)|U, = g(p"(f@)|0,) .

Proof. The first assertion is obvious. We prove the above equality.
By the assumption 1 < ¢ < v, we have

F(2)|R, = g(p"2)(f(2)| R,) .
Let P = p’, then we see g(p*2)|W, = h(p*2) for he M.(pM, »), since we

have
P NE YY) e

(p”" O)v _ 1 0/\0 1 0 1
0o 1= p"°<€ (1))<p"—0"°-1 (1)) (mod (N/P)Y) ,

and v — y, — 1 >y, Hence we obtain

F(2)U, = (Wp2)f(2)| R,Wp)| R,Wp
= g(p"2)|Wx(f(2)|U)
= o(—1g(p*2)(f(2)|U,) .

This proves our lemma.

https://doi.org/10.1017/50027763000019097 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019097

CUSP FORMS AND TRACE FORMULA 153

CoROLLARY 4.2. The notation being as above, let N = p* with an odd
prime p and v > 3. Then F(2) is contained in SXN, ).

Proof. This follows from (2), (3) of Prop. 1.4, and the above Lemma
4.1 by taking, for example, y = e.

We apply this Lemma taking as f a primitive form associated with a
Gréssencharacter of Q(+v/ —11) and as g an Eisenstein series. First of all,
we study the eigenvalues for ﬁx of primitive forms associated with Groés-
sencharacters. Let p be a prime congruent to 3 modulo 4, and a Gros-
sencharacter of @(v —p) which satisfies

4.1) (@) = (l-j—[)

for a € Q(W —p) with a = 1 (mod (v —=p)*), where « is a positive integer. For
A with u = £ — 1 put

0,(2) = Z Z(a)Na(‘—l)ﬂeZniNaz ,
where the summation is extended over all integral ideal of @(v —p) prime

to (v/—p). Then it is known [14] that 6, belongs to S.(P, ) for P = p=*!
and a character ¥ modulo P defined by

(@) = z«a»(:al’i) for 0+ ac Z,

and 6, is a primitive form in SXP, ) if 21 is of conductor (v —p%).

ProposITION 4.3. Let 2 be a Grissencharacter of Q(v/'—p) of conductor
(W—=Dp") for a positive integer «, and y a character with |, = p*. Assume
1 < af2. Then it holds

6.|0, = 3@y > N)/g*)0; ,

where N is the norm from Q( —p) to Q, and g(iy-N) and g(2) are the
Gauss sum of AyoN and A respectively.

Proof. For a Grossencharacter 2 of Q(v'—p) with the conductor
(V=p"), by means of the functional equation of the L-function of %, we
obtain

0x/le— (*/ 1)2‘H g(:3/2) 0
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where P = p**'. Observe 6,|R, = 0,,.». From this, it follows 6,|U, =
—(@@x > N)a(2)[p)6,. Since g(A)g(2) = (—1)*"'p*, we obtain

0.| U, = (=1)(g(x > N)/g(2)d, .
Since (—1) = (—1);, this proves the proposition.

ProposITION 4.4. The notation being as in Prop. 4.3, put c(y) =

a(Ay o N)Ja@®). If 5 is a Gréssencharacter of Q(v—p) of conductor (v—p)
which satisfies (4.1) for u = kK’ — 1, then it holds

czq(X) = c(x) ,
for any character y which satisfies p < /2.
Proof. To prove this proposition, it is enough to show g(Ayy o N)/g(y - N)
= g(An)/a(2). Let o be the ring of integers of Q(+—p), and for a e o, put
—(s-1) - (" ~1)
W@ = 2@(;%) T @ =@ (%)

la| la|
Then we have

8D = (BB T Zlaernie e,

a€omod(v—=p%)

where b = v/ —p**' and tr denotes the trace from Q(v—p) to Q. Since
the function 271 + v —p""'x) = (1 + v —p"“'x) is additive in xeo, we
can find an element y in o such that

20(1 + ‘/_pd-lx) — ezzi tr (xy/¥Y=p% ,
for xeo. Then we see

Z 207]0((1)62“: tr (a/b) Z Rovo(a)ezxi tr (a/b)

a€o mod (V=p%) acomod (V=p2T1)

X Z A1+ «/:vl;“—lx)e%n' tr (az/V=p%

2€0mod (vY=p)

=p Z zovo(a)ezxt tr(a/b)

a€omod (V=p%"%)
a+y=0mdd (V-p)

= 770(—.’)’) Z B zo(a)ez,n- tr(a/b)

a€o mod (V=p%

Hence we obtain

(4.2 8(an) = (0/|b])" (= 3)3(2) -

If we note
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N1 + +—p“'x) = 1 (mod pt=7) ,
we see the above argument also gives

(4.3) g(anx o N) = (8/16])"~'9(—¥)g(x > N) .

From (4.2) and (4.3), we obtain g(Ayx N)/g(Ax° N) = g(a9)/¢(y). This com-
pletes the proof.

Let P = p*, and + a character modulo P such that v,(f,) < [»/2]. For a
primitive form 6, in S(P, ) associated with Grossencharacter 2 of Q(v/ —p),
put

8@ = {fe SAP, WIfIU, = cy)f for ye X(pte->7)}

where 01|l71 = ¢(x)f;,. Then the above proposition shows that if « > 2, we
can find a Gréssencharacter 7 and a modular form g such that F(2) =
g(pt*~1412)4,(2) belongs to S(6,).

Now we return to our example. In the above notation we have

S(w) = §;(11, 4, 1) @ 811, 4, —1) .

We can choose primitive forms fe SJ(11,4,1) and g*e S°(11,4, —1),1 < i < 3,
so that 6;, 6, f, fIR., g%, and g*|R,(1 < i < 3) form a basis of S(f;;), where
¢ is the quadratic residue symbol as before. Let w be a character modulo
11 such that o(—1) =—1, and E,(2) the Eisenstein series in M,(11, @), that
is,

L(O o)

Ea(z) + Z Z m(d)erznz

n=1 dln
Then we can find a uniquely determined Gréssencharacter of Q(v —11)
modulo (v —11%) which satisfies 6, € S,(11%, ») and F(2) = E,(p2)d,(2) € S(Om).
By noting F(2)|R, = F(z), we see F(z) can be expressed as follows;

@8 F@=ab + b+ of + IR + Y dig* + gYIR) -

Let K be the field generated by all the Fourier coefficients of F(z), 6;, 0,
[, and g¢, then qa, b, ¢, and d, are contained in K. Assume a = 0, and
let p be a prime ideal of K which divides the denominator of a. If we
can verify that b/a, c/a, and d,/a are p-integral and b/a = 0, c¢/a = 0 (mod p),
then by Deligne and Serre [2, Lemma 6.11], we can find a primitive form
g in {g%, g*|R,} such that
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01 = g (mod p).

Let us check this. First we must calculate . In order to do this, the
following Lemma is useful.

LemmA 4.5. Let f, and g, (1 < i < n) be primitive forms, and F(z2) o
cusp forms such that

F(2) = af + 3 puti -

Let a,, b, and c, denote the n-th Fourier coefficients of f, g, and F re-
spectively. For a polynomial T(X) = 3., A,X’ and a prime q, assume
T(®i) =0 for i, 1< i< n. Then one has

Tea= 2 5 ((™) = (7))@ Y emrAn

r r—

where (’;‘) = mri(m — r)!.

This is an easy consequencee of Exercise 3.27’ in [13], and we omit
the proof. As T'(X), we can take the characteristic polynomial of T, acting
on the space spanned by g,.

Applying the above Lemma taking w =¢, we find ¢ =0, and we cannot
proceed anymore. In stead of F(z) for w =&, we take the following as F;

Fi(z) = 2. Ex(p2)0,(2) ,

where w runs through all characters modulo 11 such that o(—1) = —1 and
7 is the Grossencharacter of Q(v'—11) such that 6, € S)(11%, w). Put

(4.5) F'(2) = a6 + 0w + ¢(f + fIR) + 2, di(g" + &'|R)

as before. Then we find

o’ = (5/22)(200e* + 314a* — 612a° — 856a + 54)/(262a* 4 368c’*

— 8954 — 1003« + 353)
N(200a* + 3140° — 6120* — 856c + 54) = 2°-11*-23-197
N(262a* + 368a* — 895¢* — 1003« + 353) = 11*-23-99527 .

Let p be a prime ideal of K which divides (262«* + 368a® — 895« — 1003
+ 353) and 99527. We note the Fourier coefficients of 22F”(2) are integral.
By means of Lemma 4.5 and some calculation, we can check the condition
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on &, b/, ¢, and d; mentioned before. For example, the assertion that
d;/d’ is p-integral can be verified in the following way. Let a,, b,, fr.(X),
and g, (X) be as in the table. Let ¢ be a prime such that «(g) = 1, then
gr(X) (resp. fr(X)) is of the form g (X)* (resp. (X — c,)’), where g,(X) is
a polynomial of degree 3. To prove d; /a’ is p-integral, it is enough to show
g.(a,) and g, (c,) are prime to p and g,(X) = 0 mod p does not have mutiple
roots for a prime g with «(¢q) = 1. We take ¢ = 3. Then we have

8(a;) = —6a* — 2a° + 240” 4 6 — 18, N(gyas) = 2°-11
gic;) = 4a* + 60 — 8a® — 140 — 8, N(gi(c;)) = 2°-11%.

Hence g,a;) and gc;) are prime to p. The second condition can be
checked easily, since we know one root b; of gy(X) = 0 (mod p). We omit
the details. Thus we obtain

ProrosITION 4.6. Let 6i; € S(11, 4, —1) and S{; (CS,(11, 4, —1)) be as
before. Let K be the field generated by the Fourier coefficients of 6 and
the primitive forms in S{, and p be a prime ideal of K which divides
262¢* + 368a® — 895a* — 1003« + 353 and 99527. Then there exists a primitive
form g in S which satisfies

6ir = g (mod p) .

Now the coefficient @ in (4.4) can be written as follows;

a = {0, F(2))
O, Orry

where {, ) denotes the Petersson inner product, and the coefficient o’ in
(4.5) can be expressed as a sum of such numbers. By means of a result
of Shimura [16], we can relate the number a to the special values of zeta

’

functions. We introduce some notations. For positive integer N, ¢ and
a Dirichlet character » modulo N such that w(—1) = (—1),, put

EX (2, 8,0) = > o(d)cz + d)*|cz + d| >, 7= (a b) ,

1€\ 0(X) c d
where ', = {((1) l{)lbe Z}, and
E, (2, s, 0) = > 0(n)(mNz + n)*|mNz + n|™*,

where the summation is taken over all (m, n) e Z% =+ 0. These are abso-
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lutely convergent for Re (2s) > 2 — k, and we have
E, \(z, 8, 0) = 2L,(2s 4 k, 0)E} (2, s, w) ,
where Ly(s,®) = X v.m=-1 @(m)n=%. For £ > 0, we put
Eon(z,0) = Eon(2,0,0), E*y(z,0) = E*,(2,0,0) .
If £ + 2, or w is not trivial, E, \(z, w) and E, y(2, ») belongs to G.(N, ).

ProposiTION 4.7. For a prime p = 3 (mod 4), let w be a character
modulo p and 0, (resp. 6,) a primitive form associated with o Gréssen-
character A(resp. 7) of Q(v—p) belonging to SYP, ) (resp. SY(P, yw)) for
P = p’ and a character y» which satisfy v,(f,) < v/3. Assume that £ > ¢’
and that k — ¥’ #+ 2 or w is not trivial. Put F(2) = E,_,., (p'* """z, 0)d,(2).
If F(2) belongs to S(6,), then

K6 F) _ 4 —Dr*  L((x— )2, XLk — £)[2, 77 ")
6,60,y  peTYAL(,€) L(1, 22) ’

where X(a) = A(@), 7'(a) = »(@) for an ideal a in Q(v —p).

Proof. Let @ denote a fundamental domain of § with respect to I'y(P).
Put p=[(v — 1)/2]. Let I' be a subgroup of I'(P) given by

r— {(‘c‘ 3) er(P)a=d=1 (modp“)},

and ¢ a fundamental domain for I'. We note I" is a normal subgroup
of I'(p***). Let {a,} be a complete system of representatives of Z modulo

p*, then I'(p**") = U, I'(P)a, is a disjoint uniqn, where «; = ( pl“}la ’ 2)

For the sake of simplicity, we put
E(Z’ S) = En—-s',P(29 8, a))3 .E(Z, S)* = E:k—:',P(z, S, CD) .
We note E,_,, ,.(3, s, 0) = E,_. (P2, s, ), and

E:k—t',p[l‘Fl(z’ S, (t)) = Z E(Z, 3)* I [“j] s
J

where E(z, 8)*|[r] = o(d)(cz + d) “""|cz + d|*E(y(2), 8)* for y= (g 3)
e SL(Z). We have

(4.6) I= f D0,E, o (2, 5, o)y dady

— o0) 33 |, 00,8z, 5" |y *dxdy
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where c(s) = 2L,(2s + £ — ¢/, 0)[[['(P): I']. If a; =0 (mod p*), then for
Re(2s) > 2 — (¢ — ') as in §2 of [16]

@D | 0.0.(E, 9% ey dedy
— [['(P): I L 0,6,E(z, s)*y" - *dxdy
= [I'(P): [(dn)~“+ (s + £ — )D(s + £ — 1,6,, 0,) ,

where D(s, f, 8) = > =, a,b,n* for f(2) = > v, @€ and g(2) = > 7., b
X is the Gréssencharacter given by 1'(a) = 2(@). If a, % 0 (mod p*), then
put a; = yp*~*'~" with a positive integer r and v prime to p. If we define
8, by

el ).

then «j' = 93'fmp. Since «,el'(p**') and I' is a normal subgroup of
I'(p**"), we see

[ 00,8, 511y dzdy
= f | GG, [ "1 Ez, s)*y'*dxdy
= f @I W=1B,1)(0,) Wa8.1.)E(z, 8)*| Waty*+**dxdy,

where E(z, 9)*| Wi = E(3'(2), s)*(—p?2)~*|p"?z|"*. Now we have

LEMMA 4.8. For a character « modulo p*~!, let f be a primitive form
in SAP, ) for P=p*. For a character y, put f, = f|R,. If v > 2, for B,

=<(1) v/f) ”) with > 1 and (v, p) = 1, it holds

L e, ife=1
D — 1%

1 .
e — ) (2] otherwise
p(l—1/p) = *
where y runs through all characters modulo p if = = 1 and all characters
with the conductor p* if = > 2. For the trivial character x,, we put g(x,)
=—1.

fl [‘Bv]; =

Proof. By the definition of the twisting operator, we have
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sf, =, 2. 1f|led.

(u,p)=1

where {, = p° and «, = <(1) u:/Lp">. If - =1, we see

istpx(v)g(X)f, = Z x(v) Z X(u)f el — f
Z x(v)x(u)fl[au]

(up) 1

= (p — Dfle. .

This prove the case where r = 1. We can treat the case where r > 2 in
the same way, because for y’ with, f,, < p°~!, we have

> A Of el =0

P
(v,p)=1

and we omit the details.
Put f=6,|W;', g =0,|W3, and E'(z,s) = E(z,s)*| W5 .

For B, with = 1, we have

f (FIB.1)E[8.))E (2, 8)y***~*dxdy

v mod
(v, p)=1

T NI ORTAPIPLOT AR
(p—17Joe%s % 7
X E'(z, s)y****dxdy

— 1 AN \NF / s+k-2
= o=y Jo TIOR8 @ 9y

We have by Prop. 3.5
(F | WeXg, | W) = (6:| W5 'R, Wp)(@,| W5'R, W)
= (0,|1U,R)0,|U,R,)
= (0:|R)(0,|R;) ,

since F(2) € S(§,). Hence we obtain

48 I = P-D 1) 2. Q(x)g(x)f (F: | We)(8, | Wr)E(z, 5)*y* =" *dxdy

= 5-7 Zg(x)g(x)f @1R,)0, |RYE(z, s)*y**dxdy

= (p — DII'(P): I'(4x)~“**""I'(s + £ — 1)D(s + £ — 1; 04, 6,) .
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For g, = (%) v/{o r) with z > 2, we can show in the same way

@9 3 | FIBIEIBIIE G sy dsdy

1

=_—~—(p°— 2p" +p)(4n) O (s + £ — 1)
(p—1

D(s+r—1,0,,0,) .
By (4.6), (4.7), (4.8), and (4.9), we obtain
I=2Ly2s5+ k — &, 0)p*(4a)~C**"I'(s + k£ — 1)D(s + £ — 1,6, 0,) .
By Lemma 1 of [16], this is equal to

;« - (s+&-1) _ £E—£& £E— K .
2p*(4r) I'(s+rt—1)L(s + 5 , Ap)Lls + 5 , A7),

where 7/(a) = 7(a) for ideals a in Q(v/—p). Putting s = 0, we obtain

0 F@) = 2pny T = DL(EZE, 1) L(E2 5, 2y).

On the other hand, by (2.5) in [14], we have

<021 01> = (477)_‘[1(/5)%13(1 + l/p) Ress=t D(S, 61', 03) .

As above, we have

Lis—k+ 1, Y2)L(s — ¢+ 1,1)
D ’ 0 2y 0 =
(6, 0: 62 Lp(25 — 2k + 2, x,)

where y, is the trivial character and 2,(a) =1 if a is prime to p and 2,(a)
= 0 otherwise. Hence we obtain

0, 0,y = (4m)~*"“I'(k)(2a")'PL(1, Z2)L(1, ¢) ,
and thus

O, Fy _ 4k — Dr* Lk — £)/2, V)L((x — &)[2, A7'7")
O, 0:)  p*L({1,¢) L1, 22

This completes the proof.

Appendix
I. Let N= 13, £ =2, and y = the trivial character. Then we find
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dim S;(13% 4,1) = 6, and dim S,(13%, 4, —1) = 8. Letf,; (X) and g,,(X) denote
the characteristic polynomial of 7T, on the spaces S,(13% 4,1) and S,(13
4, —1) respectively. Then for n = 2 and 3, £, (X) and g, (X) are given by

n fr.(X)

2 X — (—a® + 3a + 8)X* + (¢° — a* — 9a* + 3a® + 1Ta + 15)X*
— (—a® — 5a* + & + 17a* + 6a — 1)
3 (X2 — (—=2)X2 + (o* — B)X — (a* — o* — 4 + 5))*

n 8r,(X)

2 X® — (0 — 3a + 13)X°® 4+ (—8a® — o* + 240® + 3a* — 420 + B1)X*

—~ (—18a® + 108a® — 8a® — 145 + 80)X*
+ (—17a® — a* + 910® — 92 — 108 + 41)
3 | (X' —2X + (—a — B)X® — (—20° — 20 + 9 + Ba® — 8a — 9)X
+ (—40® — 20 + 160° + 82 — 10a — 2)),

where a = e*/* + e~ We remark the following. Let IV denote the
norm from Q(x) to Q, then

N(f7,0)) = 443, N(g.,(0)) = 53-79.

On the other hand, let ¢ = (34++/13)/2 be a fundamental unit of Q(+'13),
then

Novin (e — 1) = —8-53-79-443 .
Such a relation has been noticed in [3, Remark 2.1.] for the case N = 5°.

II. Let N=19, £ = 2, and + the trivial character. Then we find
dim S,(19%,4,1) = 12 and dim S,(19°, 4, —1) = 16. Let 6,(2) = 3 a,e** € S,(19°,
4,1) (resp. O(2) = > b,e™"* € 819, 4, —1)) be a primitive form associated
with a Grossencharacter of Q(v' —19) and S¥(resp. Sfy) the orthogonal com-
plement of the space spanned by 6; (resp. ;). We denote by fr (X) (resp.
gr.(X)) the characteristic polynomial of T, acting on S{(resp. Sfi;). Let «
= ¥ 4 =% gnd let (x,, %,, -, %;) denote the number >3, x°* in
Q(c). Then we have

In the preparation of the tables in the Appendix, we used FACOM M190 at Data
Processing center of Kyoto University.
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frX) = X2 — A, X9 + AX — AX + AX — AX' + A,

A, = (0,0,0,0,0,0,0,0, 18)

A, = (0,8,0, —21, 0,42, 0, —21, 120)
. = (0,30, —3, —210, 17, 419, — 24, — 209, 373)
, = (—2, 94, —4, —655, 76, 1298, —136, — 651, 558)
A, = (—18, 99, 103, —687, —124, 1356, — 50, — 711, 351)
A, = (—21, 26, 145, —176, —291, 336, 163, — 187, 44)

NS

a, = 0, N(fr,(a,) = 37*- 56536856647

frX) = (X° — AX° + AX' — AX* + A X" — A X + A
A, =(0,0,0,0,1,1, —4, —3, —1)
A, =(0,1,0, -7, —2,11,9, 3, —15)
A; = (—4, —4, 82,27, —91, —61, 105, 50, —2)
A, = (4, —5, —26, 82,59, — 31, —73, —60, 38)
A} = (18,2, —119, —10, 354, 18, — 356, —22, 47)
Aj = (16, 18, —113, —105, 233, 141, —125, 19, 10)

a; = (Oa 1> 0, _7y "‘19 13, 5, '_4’ ""5)
N(fras)) = —37-227-150707 - 56536856647

gr(X) = X* — B, X" + B,X"” — B, X" + BX* — BX"®
+ BX* — B,X* + B,
B,=(,0000,0,0,0,27)
B, = (0, —3,0, 21, 0, —42, 0, 21, 294)
B, = (0, —57, 1, 399, —7, — 799, 12, 404, 1657)
, = (4, —398, —13, 2795, —51, —5639, 164, 2928, 5157)

&

B, = (32, —1263, —149, 8940, — 108, — 18340, 844, 9980, 8723)
B, = (53, —1847, —2b4, 13227, — 255, — 27848, 1845, 16178, 7321)
B, = (15, —1076, —67, 7756, — 325, — 16788, 1453, 10589, 2464)

o

= (—24, —110, 168, 708, —418, — 1458, 450, 1112, 194)
@, = 0, N(gp(a)) = 2°-19°- 5736557 6463381

8r(X) = (X*— B X" + BX* — BX’ + BX' — B.X’ + B,X* — B.X + By’
B;=(0,1,0,—~17,0,14,1, —6,2)
B;=(0,3,0, —21, —2, 42,8, —17, —19)
B; = (4, —10, —29, 67, 54, —127, —29, 49, —30)
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B, = (7, —217, —51, 175, 126, — 335, —143, 145, 112)

B; = (—35, 21, 254, —143, —492, 246, 243, — 35, 121)

B, = (—56, 43, 395, —236, — 857, 383, 664, —133, —196)
B; = (44, —18, — 313, 109, 574, — 189, —264,0, —98)

B, = (43, —4, —281, 6, 505, 13, —248, —32, 13)

b, = (0, —1,0,7,1, —13, —5, 3, 5)
N(g,(as) = 571345751679 28579723 - 5736557 - 6463381.

Here N denotes the norm from Q(«) to @ We remark N(fr(a,)) and

N(fr(a5) (resp. N(g,(a,)) and N(g,(a;))) have a common factor 56536856647
(resp. 5736557 -6463381).
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