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Abstract

Two cumulative damage models are considered, the inverse gamma process and a
composed gamma process. They can be seen as ‘continuous’ analogues of Poisson
and compound Poisson processes, respectively. For these models the first passage time
distribution functions are derived. Inhomogeneous versions of these processes lead to
models closely related to the Weibull failure model. All models show interesting size
effects.

Keywords: Fracture theory; damage accumulation; gamma process; inverse gamma
process; Weibull distribution

2000 Mathematics Subject Classification: Primary 60G51; 60K10
Secondary 60G55

1. Introduction

Damage accumulation models play an important role in reliability, risk, and fracture theory;
see, e.g. Sobczyk (1987), (1997), Sobczyk and Spencer (1992), and Rolski et al. (1999).
An important class of such models consists of those in which it is assumed that there is a
point process on [0, ∞) of ‘events’ at which damage happens. Each instance of damage is
characterized by a positive damage magnitude. If the point process is a Poisson process,
then the model is called a compound Poisson process (Kingman (1993)). These magnitudes
accumulate until, at some time, a critical threshold is hit or exceeded. This first passage time
is the quantity of interest in this paper. In the reliability context it is the lifetime of the system
considered, in the risk context it characterizes the aggregate claim or total payment from a
portfolio over a period, and in fracture theory it characterizes the fracture strength of a loaded
sample.

In the fracture context, the points of the process represent loads at which breaks occur at
flaws in the material: the flaws fail under increasing load in order of their strength. In the
damage context, every failure adds some damage magnitude to an accumulating sum. Also in
the physics literature, more complicated models are considered which involve the geometrical
arrangement of the flaws; see, e.g. Duxbury and Leath (1994) and Todinov (2002), where
clusters of flaws play a role.

The damage model sketched above shows strong discontinuity: the events happen at isolated
points (with possibly large interpoint distances) and the magnitudes can be large, as shown in
Figure 1. This leads to first passage time distributions which can have strange behaviours. In
particular, when the threshold is small the damage accumulation process should be (nearly)
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Figure 1: Damage accumulation processes with unit jump heights (left) and exponentially distributed
jump heights (right).

continuous and nondecreasing if the results are to be reasonable. The latter property excludes
Gaussian processes, which leads to inverse Gaussian distributions; see, e.g. Onar and Padgett
(2000). Therefore, it may be useful to develop ‘continuous’ damage models in which the
interpoint distances and magnitudes are ‘broken up’ into small pieces. This paper presents two
models of such a type which are closely related to the gamma process.

A phenomenon of great interest in the fracture-theoretical interpretation of damage models is
the size effect. The question is: how does the mean fracture strength, σ̄ (V ), of a sample depend
on its size, V (e.g. volume or length)? For engineers it is very important to know what happens
when they go from the study of numerical simulations to that of scale models in the laboratory,
and from there to full-size engineering structures. There is a large engineering literature on
the size effect; see, e.g. Bažant and Planas (1998) and Krajcinovic (1996). The size effect is
also of interest in the context of accelerated tests; see, e.g. Onar and Padgett (2000). The size
effect can have various forms: σ̄ (V ) can be decreasing, increasing, or (nearly) constant in V .
A decreasing size effect is observed in the classical Weibull model (see Section 6), but also
in more complicated models; see Duxbury and Leath (1994) and Onar and Padgett (2000). It
is typical in materials such as ordinary concrete. One of the models considered here has an
increasing volume effect.

A nearly constant size effect is observed in materials such as ductile metals, glass ceramics
(Pompe et al. (1985)), and aircrete (Wolf et al. (2005)). Pompe et al. (1985) explained the
constant mean strength using a reliability model based on a network where many elements are
in parallel. Also, many of the models considered in the present paper have a nearly constant
mean strength and a variance of strength proportional to 1/V .

The paper concludes with a discussion of models in which the first passage time distributions
are similar to that in the classical Weibull model.

2. Damage accumulation and first passage

Let {X(t)} be a stochastic process on [0, ∞) which is nondecreasing and right continuous.
In the following we will refer to the parameter t as ‘time’ (in the fracture context it is ‘load’
or ‘stress’). Let τ be a positive real number, the critical threshold. The first passage time of
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{X(t)} over τ is
T = inf{t : X(t) ≥ τ }.

This random variable is called the lifetime (or, in the fracture context, the fracture strength). It
satisfies

P(T ≤ t) = P(X(t) ≥ τ) for t ≥ 0.

In the context of the size effect studies in this paper, the threshold τ is taken to be of the
form

τ = αV, (1)

where α, as in Jeulin (1994), is a positive model parameter and V is the sample volume; in the
models below, {X(t)} also depends on V in some way. The idea behind (1) is that the sample
breaks when some percentage of its flaws are broken, and the mean number of broken flaws
allowed is proportional to V . Similar combinations of threshold and drift appear in Onar and
Padgett (2000).

A popular class of models for {X(t)} are compound processes of the form

X(t) =
N(t)∑
i=1

Xi,

where N is a point process on [0, ∞) and N(t) denotes the number of its points in [0, t].
The Xi are random variables, the damage magnitudes, which can be independent and identically
distributed or more general. Formulae for such processes are well known; see, e.g. Rolski et al.
(1999) and Sobczyk (1997). In the present paper we use compound processes as the starting
points in constructing refined models.

3. Models of damage accumulation

In the following, four models of damage accumulation are introduced which are both natural
and promising. All four processes can play the role of {X(t)} in Section 2.

3.1. Poisson process

Let {Pλ(t)} be the homogeneous Poisson process on [0, ∞) with intensity λ as defined in
Daley and Vere-Jones (2003). The accumulation process has jumps of height 1 at the points of
a Poisson point process with intensity λ, so the damage accumulated up to time t is a random
integer with Poisson distribution with parameter λt .

The strong discontinuity of the Poisson process may detract from its attractiveness in
applications, so the following models, all of which can be seen as generalizations of the Poisson
process, were developed.

3.2. Inverse gamma process

Let 0 < b, λ < ∞. The probability measure on [0, ∞) with density function

gb,λ(x) = λb

�(b)
xb−1e−λx for x ≥ 0

is called the gamma distribution with shape parameter b and scale parameter λ. The corre-
sponding distribution function is denoted by Gb,λ(x).

The gamma process {γb,λ(t)} is a stochastic process on [0, ∞) with γb,λ(0) = 0 and
independent, homogeneous increments such that γb,λ(t) has a gamma distribution with shape
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parameter bt and scale parameter λ; see Ferguson (1974), Çinlar (1980), Kingman (1993), and
Applebaum (2004). (In Çinlar’s notation, our {γb,λ(t)} is written �0(b, λ).) The samples are
nondecreasing and right continuous, and the countably many discontinuities are everywhere
dense in [0, ∞). The points

ti = γb,λ

(
i

b

)
, i = 1, 2, . . . ,

form a Poisson point process with intensity λ. Gamma processes can serve as approximations of
compound Poisson processes; see Dufresne et al. (1991). In the reliability context, the gamma
process appears, e.g. as a model for initial damage in Park and Padgett (2005).

The inverse gamma process {γ −1
b,λ (t)} is defined in Ferguson and Klass (1972) by

γ −1
b,λ (t) = inf{s : γb,λ(s) ≥ t} for t ≥ 0.

However, in order to obtain a right-continuous process it is necessary to define {γ −1
b,λ (t)} by

γ −1
b,λ (t) = inf{s : γb,λ(s) > t} for t ≥ 0.

Also, {γ −1
b,λ (t)} is nondecreasing, but in comparison with the Poisson process it only has small

jumps, which follows directly from the fact that the gamma process is a Lévy process of infinite
activity and thus has an infinite number of jumps on every compact interval (see Applebaum
(2004)). It can be seen as a generalization of the Poisson process with intensity λ, since

γ −1
b,λ (ti) = i

b
for i = 1, 2, . . . ,

i.e. the process {(1/b)Pλ(t)} is embedded in or coupled to {γ −1
b,λ (t)}. Figure 2 shows a simulated

sample of {γ −1
b,λ (t)} together with the corresponding Poisson process sample.
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Figure 2: A sample of an inverse gamma process {γ −1
b,λ (t)} with λ = b = 1 (thick line) and the

corresponding embedded process {(1/b)Pλ(t)} (thin line).
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Figure 3: Realizations of two composed gamma processes {γc,κ (γ −1
b,λ (t))} with λ = b = κ = c = 10

(left) and λ = b = κ = c = 50 (right).

3.3. Gamma–Poisson process

The gamma–Poisson process {ηc,κ,λ(t)} can be formally defined as

ηc,κ,λ(t) = γc,κ (Pλ(t)) for t ≥ 0,

where the processes {Pλ(t)} and {γc,κ (t)} are as defined above and independent.
A simpler form of definition is as a compound Poisson process. Consider a homogeneous

Poisson point process on [0, ∞) with intensity λ and construct a random step function,

hi =
i∑

j=1

ej ,

which has jumps of random heights ei at the Poisson process points ti , letting the jumps
be independent, identically exponentially distributed random variables with mean κ−1. The
corresponding stochastic process on [0, ∞) is well known and used in, e.g. risk theory; see
Rolski et al. (1999). It can be generalized by replacing the ej by gamma-distributed variates
with parameters c and κ , producing a gamma–Poisson process.

3.4. Composed gamma process

The composed gamma process {γc,κ (γ −1
b,λ (t))} is constructed by composition of two indepen-

dent processes, namely a gamma process with shape parameter c and scale parameter κ and an
inverse gamma process defined (as above) in terms of a gamma process with shape parameter b

and scale parameter λ. Again, such processes are nondecreasing and right continuous, and are
more variable than inverse gamma processes.

Figure 3 shows two simulated composed gamma processes with different parameters λ, b,
κ , and c.

4. First passage distributions and their parameters

In this section we present formulae for the lifetime distributions of the four models in
Section 3. They are well known for the first and third models, simple for the second model
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and more complicated for the fourth model. The distribution function (DF) of T is denoted by
Fτ (t) and its density function, mean, and variance by fτ , µ(τ), and σ 2(τ ), respectively.

4.1. Poisson process

For the Poisson process,

Fτ (t) = 1 −
n−1∑
i=0

(λt)i

i! e−λt for t ≥ 0,

fτ (t) = λntn−1

(n − 1)!e−λt for t ≥ 0,

µ(τ) = n

λ
, (2)

σ 2(τ ) = n

λ2 , (3)

where
n = �τ� + 1,

�·� denoting the integer-part function.

4.2. Inverse gamma process

By construction of the inverse gamma process, T has a gamma distribution with parameters
bτ and λ, i.e.

Fτ (t) = Gbτ,λ(t).

Consequently,

µ(τ) = bτ

λ
, (4)

σ 2(τ ) = bτ

λ2 . (5)

4.3. Gamma–Poisson process

The formulae for the gamma–Poisson process with c = 1 can be found in the literature, and
the details of this are sufficient in the present paper. According to Rolski et al. (1999, p. 104)
and Sobczyk (1987, p. 663),

Fτ (t) = 1 − e−λt

(
1 +

∞∑
n=1

λntn

n! (n − 1)!γ (n, τκ)

)
,

where

γ (x, y) =
∫ y

0
tx−1e−t dt

denotes the (lower) incomplete gamma function (see Gautschi (1998) for its properties). For the
mean and variance we have

µ(τ) = 1 + τκ

λ
, (6)

σ 2(τ ) = 1 + 2τκ

λ2 . (7)
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4.4. Composed gamma process

Lemma 1. Let τ > 0 and let m be a nonnegative integer. Then

lim
x→∞ xm γ (x, τ )

�(x)
= 0.

Proof. From Gautschi (1998, Equation (5.4)), for x > 1 it follows that

0 <
γ (x, τ )

�(x)
< (1 − e−τ )x.

Since 0 < 1 − e−τ < 1, we have limx→∞ xm(1 − e−τ )x = 0 and, hence,

lim
x→∞ xm γ (x, τ )

�(x)
= 0.

Theorem 1. (Standardized case.) For c, b, κ, λ = 1, the DF of T is given by

Fτ (t) =
∫ t

0
e−v

∫ ∞

0

vx−1

�(x)2

∫ τ

0
ux−1e−u

(
�′(x)

�(x)
− ln u

)
du dx dv,

and its mean and variance are respectively

µ(τ) =
∫ ∞

0

γ (x, τ )

�(x)
dx

and

σ 2(τ ) =
∫ ∞

0
(2x + 1)

γ (x, τ )

�(x)
dx −

(∫ ∞

0

γ (x, τ )

�(x)
dx

)2

.

Proof. Denote by Dτ (x) the distribution function of γ −1
1,1 (τ ). Then

Dτ (x) = 1 − P(γ −1
1,1 (τ ) ≥ x)

= 1 − P(γ1,1(x) ≤ τ)

= 1 − Gx,1(τ )

= 1 − 1

�(x)

∫ τ

0
ux−1e−u du.

Hence, Dτ (x) has a density

dτ (x) = 1

�(x)

(
�′(x)

�(x)

∫ τ

0
ux−1e−u du −

∫ τ

0
ux−1e−u ln u du

)
.

Let {γ̃1,1(t)} and {γ1,1(t)} be independent and identically distributed. Because γ̃1,1(x) has a
gamma distribution with shape parameter x and scale parameter 1, the DF of T can be written
as

Fτ (t) = P(γ1,1(γ̃
−1
1,1 (t)) ≥ τ)

= P(γ̃1,1(γ
−1
1,1 (τ )) ≤ t)

=
∫ ∞

0
P(γ̃1,1(x) ≤ t)dτ (x) dx

=
∫ ∞

0

1

�(x)

∫ t

0
vx−1e−v dv dτ (x) dx.
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Since γ̃1,1(x) ∼ Gx,1, for all n = 1, 2, . . . we have

E[γ̃1,1(x)n] =
∫ ∞

0
zn 1

�(x)
zx−1e−z dz

= 1

�(x)

∫ ∞

0
zn+x−1e−z dz

= �(n + x)

�(x)

= x(x + 1) · · · (x + n − 1)

=: Qn(x).

With Dτ (x) = 1 − Dτ (x), Lemma 1 implies that limx→∞ Qn(x)Dτ (x) = 0, and it is easy to
see that Qn(0)Dτ (0) = 0. Therefore, we obtain

E[T n] = E[(γ̃1,1 ◦ γ −1
1,1 )n(τ )]

=
∫ ∞

0
Qn(x) dDτ (x)

= −
∫ ∞

0
Qn(x) dDτ (x)

= −[Qn(x)Dτ (x)]∞0 +
∫ ∞

0
Dτ (x) dQn(x)

=
∫ ∞

0
Dτ (x)Q′

n(x) dx

=
∫ ∞

0

1

�(x)

∫ τ

0
ux−1e−u du Q′

n(x) dx

=
∫ ∞

0

γ (x, τ )

�(x)
Q′

n(x) dx.

The theorem is then proved by inserting Q′
1(x) = 1 and Q′

2(x) = 2x + 1 into µ(τ) = E[T ]
and σ 2(τ ) = E[T 2] − E[T ]2.

Theorem 2. (Generalized case.) For general choices of c, b, κ , and λ, the DF of T is given by

Fτ (t) =
∫ λt

0
e−v

∫ ∞

0

vbx/c−1

�(bx/c)�(x)

∫ κτ

0
ux−1e−u

(
�′(x)

�(x)
− ln u

)
du dx dv,

and its mean and variance are respectively

µ(τ) = b

λc

∫ ∞

0

γ (x, κτ)

�(x)
dx (8)

and

σ 2(τ ) = b2

λ2c2

[∫ ∞

0

(
2x + c

b

)
γ (x, κτ)

�(x)
dx −

(∫ ∞

0

γ (x, κτ)

�(x)
dx

)2]
. (9)

Proof. Since {γc,κ (t)} ∼ {(1/κ)γ1,1(ct)} and {γ −1
b,λ (t)} ∼ {(1/b)γ̃ −1

1,1 (λt)}, the arguments
of the proof of Theorem 1 can be repeated with some minor modifications.
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5. Size effects in the homogeneous case

It is assumed now that τ = αV and λ = aV . This corresponds to the assumption that the
sample breaks if a certain percentage of its flaws break, and that the mean number of broken
flaws allowed is proportional to V .

5.1. Poisson process

In the Poisson process model there is a (piecewise-)decreasing size effect; see (2) and the
left-hand graph in Figure 4. Also, the variance decreases with increasing volume V ; see (3)
and the right-hand graph in Figure 4. There are discontinuities at V = k/α, k = 1, 2, . . . .

Furthermore, µ → α/a and σ 2 → 0 as V → ∞.

5.2. Inverse gamma process

In the inverse gamma process model there is a constant size effect, i.e. considered as a
function of V , µ(τ), given in (4), has the constant value bα/a, and the variance (see (5))
decreases with increasing volume V ; see Figure 5.

5.3. Gamma–Poisson process

In the gamma–Poisson process model there is a decreasing size effect; see (6) and the left-
hand graph in Figure 6. Also, the variance decreases with increasing volume V ; see (7) and the
right-hand graph in Figure 6.
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Figure 4: Mean (left) and variance (right) in the Poisson process model. The values of the parameters
are α = 0.95 and a = 5. The discontinuities result from the constant jump heights of the Poisson process.
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Figure 5: Constant mean (left) and variable variance (right) in the inverse gamma process model.
The values of the parameters are α = 0.95, a = 5, and b = 2.
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Figure 6: Mean (left) and variance (right) in the gamma–Poisson process model. The values of the
parameters are α = 0.95, a = 5, and κ = 5.

5.4. Composed gamma process

Lemma 2. For y > 0,

1 ≤ 1

y

∫ ∞

0

γ (x, y)

�(x)
dx ≤ 1 + 1

y
.

Proof. Since γ (x, y)/�(x) is decreasing in x > 0 and less than 1, we have

γ (1, y)

0! ≤ γ (x, y)

�(x)
≤ 1, x ∈ (0, 1],

and, for all n = 2, 3, . . . ,

γ (n, y)

(n − 1)! ≤ γ (x, y)

�(x)
≤ γ (n − 1, y)

(n − 2)! , x ∈ (n − 1, n].

Hence,

∞∑
n=1

γ (n, y)

(n − 1)! ≤
∫ ∞

0

γ (x, y)

�(x)
dx ≤

∞∑
n=2

γ (n − 1, y)

(n − 2)! + 1 =
∞∑

n=1

γ (n, y)

(n − 1)! + 1.

Since

γ (n, y) = (n − 1)!
(

1 − e−y
n−1∑
k=0

yk

k!
)

= (n − 1)! e−y
∞∑

k=n

yk

k!
(see Gautschi (1998, Equation (1.2))), we obtain

∞∑
n=1

γ (n, y)

(n − 1)! = e−y
∞∑

n=1

∞∑
k=n

yk

k! = e−y
∞∑

k=1

k∑
n=1

yk

k! = ye−y
∞∑

k=1

k
yk−1

k! = y, (10)

which completes the proof of the lemma.

Lemma 3. We have ∫ ∞

0
x

γ (x, y)

�(x)
dx ≤ 1

2
y2 + 2y + 1.
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Proof. Similar to the proof of Lemma 2, we have

x
γ (x, y)

�(x)
≤ 1, x ∈ (0, 1],

and, for all n = 2, 3, . . . ,

x
γ (x, y)

�(x)
≤ n

γ (n − 1, y)

(n − 2)! , x ∈ (n − 1, n].

Hence,

∫ ∞

0
x

γ (x, y)

�(x)
dx ≤

∞∑
n=2

γ (n − 1, y)

(n − 2)! n + 1 =
∞∑

n=1

γ (n, y)

(n − 1)! (n + 1) + 1.

From (10) we have

∞∑
n=1

γ (n, y)

(n − 1)! (n + 1) =
∞∑

n=1

γ (n, y)

(n − 1)! (n − 1) + 2
∞∑

n=1

γ (n, y)

(n − 1)!

=
∞∑

n=1

γ (n, y)

(n − 1)! (n − 1) + 2y,

and from the proof of Lemma 1 we have, for m = 1,

∞∑
n=1

γ (n, y)

(n − 1)! (n − 1) = e−y
∞∑

k=1

yk

k!
k∑

n=1

(n − 1) = e−y
∞∑

k=1

yk

k!
1

2
k(k − 1) = y2

2
.

This completes the proof of the lemma.

By substituting τ = αV , λ = aV , and V = y/κα into (8) and (9), we obtain

µ(τ) = µ(y) = bκα

ac

1

y

∫ ∞

0

γ (x, y)

�(x)
dx

and

σ 2(τ ) = σ 2(y) =
(

bκα

ac

)2 1

y2

[∫ ∞

0

(
2x + c

b

)
γ (x, y)

�(x)
dx −

(∫ ∞

0

γ (x, y)

�(x)
dx

)2]
.

Hence, by Lemmas 2 and 3, the composed gamma process model has a decreasing size effect
with µ → bκα/ac as V → ∞ (see the left-hand graph in Figure 7) and

σ 2 ≤
(

bκα

ac

)2( 1

y

(
4 + c

b

)
+ 1

y2

)
.

Thus, σ 2 → 0 as V → ∞ (see the right-hand graph in Figure 7).
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Figure 7: Mean (left) and variance (right) in the composed gamma process model. The values of the
parameters are α = 0.95, a = 5, b = 2, c = 2, and κ = 5.

6. Weibull-like models

The Weibull DF results from the Weibull model, which is a good explanation for its frequent
use in reliability and fracture theory. However, it depends on only two parameters, which is
often not enough in applications. In the following we introduce some generalizations of the
Weibull distributions which are not formal but are rather based on stochastic models.

The Weibull model can be explained as follows. In the considered sample body, of size V ,
there are flaws of different strengths. Under increasing load t the flaws fail according to an
inhomogeneous Poisson process with intensity function λ(t) and points ti , 0 < t1 < t2 < · · · .
The intensity function satisfies

λ(t) = λ0V tm−1 for t ≥ 0, (11)

where m is called the Weibull modulus. When the sample breaks at load t if

t1 < t,

it is said to suffer a ‘weakest-link’ fracture. In terms of the treatment in Section 2, we consider
the case in which τ = 1 and {X(t)} is an inhomogeneous Poisson process. Consequently, the
DF of T is

F(t) = 1 − exp

{
−

(
t

t0

)m}
for t ≥ 0, (12)

which is called the Weibull DF with modulus m and t0 = (m/λ0V )1/m.
The corresponding mean and variance are respectively

µ =
(

m

λ0V

)1/m

�

(
1 + 1

m

)
(13)

and

σ 2 =
(

m

λ0V

)2/m(
�

(
1 + 2

m

)
− �

(
1 + 1

m

)2)
; (14)

see Evans et al. (1993) and Mann et al. (1974). Equations (13) and (14) show that there is a
decreasing size effect with σ 2 → 0 as V → ∞.

The other models in Section 3 can also be generalized, either by introducing an inhomo-
geneity according to (11) or a time change as in Çinlar (1980). The formally simplest approach
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is to use the time transformation

t �→ λ0V
tm

m
,

i.e. replace the process {X(t)} by {Y (t)} with

Y (t) = X

(
λ0V

tm

m

)
for t ≥ 0. (15)

With TW denoting the first passage time of {Y (t)} over τ and T denoting that of {X(t)}, (15)
implies that

P(TW ≤ t) = P(Y (t) ≥ τ) = P

(
X

(
λ0V

tm

m

)
≥ τ

)
= P

(
T ≤ λ0V

tm

m

)
. (16)

For a weakest-link fracture, i.e. with τ = 1, for the various other processes this leads to the
following DFs, where without loss of generality we can set λ = 1.

Inverse gamma process. By (16), for the inverse gamma process we have

F(t) = Gb,1

(
λ0V

tm

m

)
= 1

�(b)

∫ λ0V tm/m

0
xb−1e−x dx,

where for b = 1 the Weibull DF in (12) is obtained. Hence,

µ =
(

m

λ0V

)1/m
�(b + 1/m)

�(b)

and

σ 2 =
(

m

λ0V

)2/m(
�(b + 2/m)

�(b)
− �(b + 1/m)2

�(b)2

)
.

Gamma–Poisson process. For the gamma–Poisson process, the first passage time TW has
distribution function

F(t) = 1 − exp

{
−λ0V

tm

m

}(
1 +

∞∑
n=1

(λ0V tm/m)n

n! (n − 1)! γ (n, κ)

)

and its mean and variance are respectively

µ =
(

m

λ0V

)1/m(
�

(
1 + 1

m

)
+ e−κ

∞∑
l=1

κl

l!
l∑

n=1

�(n + 1/m)

n! m
)

and

σ 2 =
(

m

λ0V

)2/m(
�

(
1 + 2

m

)
+ e−κ

∞∑
l=1

κl

l!
l∑

n=1

�(1 + n + 2/m) − n�(n + 2/m)

n!

−
(

�

(
1 + 1

m

)
+ e−κ

∞∑
l=1

κl

l!
l∑

n=1

�(n + 1/m)

n! m
)2)

.
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Composed gamma process. For the composed gamma process, the first passage time TW
has distribution function

F(t) =
∫ λ0V tm/m

0
e−v

∫ ∞

0

vbx/c−1

�(bx/c)�(x)

∫ κ

0
ux−1e−u

(
�′(x)

�(x)
− ln u

)
du dx dv,

and its mean and variance are respectively

µ =
(

m

λ0V

)1/m ∫ ∞

0

γ (cx/b, κ)

�(cx/b)

�(x + 1/m)

�(x)

(
�′(x + 1/m)

�(x + 1/m)
− �′(x)

�(x)

)
dx

and

σ 2 =
(

m

λ0V

)2/m( ∫ ∞

0

γ (cx/b, κ)

�(cx/b)

�(x + 2/m)

�(x)

(
�′(x + 2/m)

�(x + 2/m)
− �′(x)

�(x)

)
dx

−
(∫ ∞

0

γ (cx/b, κ)

�(cx/b)

�(x + 1/m)

�(x)

(
�′(x + 1/m)

�(x + 1/m)
− �′(x)

�(x)

)
dx

)2)
.

Since (16) implies that

E[T n
W] = E

[(
mT

λ0V

)n/m]
=

(
m

λ0V

)n/m

E[T n/m],

and for a weakest-link fracture, i.e. with τ = 1, T does not depend on V , in all Weibull-like
models there is a decreasing size effect for µ.

In comparison to the Weibull model, the Weibull-like models are similar but more variable
since they have more parameters. In particular, when varying parameter b and fixing both µ and
m, the corresponding model based on the inverse gamma process can have a smaller variance
(b > 1) or a larger variance (b < 1) than the Weibull model.

By composing the ideas of damage accumulation and inhomogeneity, we obtain another
class of models which can also have increasing size effects. With λ(t) as in (11), for τ = αV

the inverse gamma process model has a first passage time with distribution function

Fτ (t) = 1

�(bτ)

∫ λ0V tm/m

0
xbτ−1e−x dx,

mean

µ(τ) =
(

m

λ0V

)1/m
�(bτ + 1/m)

�(bτ)
,

and variance

σ 2(τ ) =
(

m

λ0V

)2/m(
�(bτ + 2/m)

�(bτ)
− �(bτ + 1/m)2

�(bτ)2

)
.

It is easy to see that m = 1 corresponds to the homogeneous case (see Section 4). For m < 1
the mean first passage time is decreasing in V , whereas for m > 1 there is an increasing size
effect; see Figure 8.
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Figure 8: Mean in the inverse gamma process model. The values of the parameters are α = 0.95, λ0 = 5,
b = 2, and m = 0.6 (solid) and m = 2 (dashed).

7. Conclusion and discussion

As the results of the paper show, plausible models can be created which have different size
effects. The Weibull model, the discrete accumulation model with exponentially distributed
damages, the corresponding continuous model, and a variety of Weibull-like models exhibit
a decreasing size effect; the discrete accumulation model with constant damages exhibits a
piecewise-decreasing size effect; its continuous generalization exhibits a constant size effect;
and inhomogeneous generalizations of the latter can exhibit either increasing or decreasing size
effects.

Two issues related to the fracture-theoretic application of the model considered here remain
open for further research. The Poisson processes in Sections 3 and 6 result from spatial Poisson
process models for the distribution of flaws in the sample. The question is: are there spatial
models (perhaps of random measures) for the spatial distribution of ‘flaws’ which lead in a
similar way to in the Poisson case to the processes considered here, in particular to the inverse
gamma process? Furthermore, in some fracture-theoretic models with flaws of variable sizes
(leading to variable jump heights) the flaws fail in order of size: first the large flaws and then the
small ones. In such models the ej in the compound Poisson process would appear in decreasing
order. Refining the considered models in this sense is an interesting problem.
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