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When using maximum likelihood methods to
estimate genetic and environmental compo-

nents of (co)variance, it is common to test
hypotheses using likelihood ratio tests, since such
tests have desirable asymptotic properties. In par-
ticular, the standard likelihood ratio test statistic is
assumed asymptotically to follow a χ2 distribution
with degrees of freedom equal to the number of
parameters tested. Using the relationship
between least squares and maximum likelihood
estimators for balanced designs, it is shown why
the asymptotic distribution of the likelihood ratio
test for variance components does not follow a χ2

distribution with degrees of freedom equal to the
number of parameters tested when the null
hypothesis is true. Instead, the distribution of the
likelihood ratio test is a mixture of χ2 distributions
with different degrees of freedom. Implications
for testing variance components in twin designs
and for quantitative trait loci mapping are dis-
cussed. The appropriate distribution of the
likelihood ratio test statistic should be used in
hypothesis testing and model selection.

Maximum likelihood (ML) is the main method used
in practice to estimate variance components in
quantitative genetics applied to human, natural and
artificially selected populations. In particular, resid-
ual (or restricted) maximum likelihood (REML;
Patterson & Thompson, 1971) is used in mixed
linear models with large complex pedigrees in live-
stock and evolutionary genetics, and ML is heavily
used in structural equation models (which are also
mixed linear models) in human behavior genetics
(Martin & Eaves, 1977; Neale & Cardon, 1992).
With these methods, it has become feasible to test
hypotheses about parameters using likelihood ratio
tests (e.g., Mood et al., 1974). Such tests have
desirable asymptotic properties (Wilks, 1938),
although the distribution of the test statistic for
small samples is unknown. A fairly common
example of the use of likelihood ratio tests in quan-
titative genetics is to test the significance of
variance components (e.g., Foulley et al., 1990;
Martin & Eaves, 1977; Shaw, 1987). Usually, this is

done by calculating the ML values under two
models: one which includes the variance component
to be tested, and one which excludes this compo-
nent. The latter model is equivalent to the first
model with the restriction of the variance compo-
nent to be tested set to zero.

The standard theory regarding the asymptotic
distribution of likelihood ratio test statistics is that
it is distributed as χ2(k), where k is the difference in
the number of parameters estimated between the
full model, and the nested reduced model (Wilks,
1938). Meyer and Hill (1992) reviewed the use of
likelihood ratio tests to approximate sampling vari-
ances of estimated variance components using
REML, and many others have advocated their use
(e.g., Foulley et al., 1990; Shaw, 1987). In behavior
genetics, likelihood ratio test statistics are com-
monly used in model selection (e.g., Martin &
Eaves, 1977; Neale & Cardon, 1992). It is com-
monly assumed that the asymptotic distribution of
a likelihood ratio test statistic under the null
hypothesis of no variance of the random (latent)
effects is a (central) χ2 with one degree of freedom.
However, there is ample statistical literature to
show that this is not correct (e.g., Chernoff, 1954;
Miller, 1977; Self & Liang, 1987; Stram & Lee,
1994). For estimation of variance components in
twin research, this was recently also pointed out by
Dominicus et al. (2006).

The aim of this note is to demonstrate and high-
light that the asymptotic distribution of the
likelihood ratio is a mixture of χ2 with different
degrees of freedom when testing variance compo-
nents under the null hypothesis that they are zero,
and to suggest what to do in practical situations.
Although the results are not new as such, they are
still not well recognized in both the human behav-
ior genetics and animal genetics communities.
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Methods
Consider a balanced one-way design, with unit residual
variance, and s groups each with n observations within
the group. Under the null hypothesis of no between-
group variance, the between-group mean square (B) is
distributed as χ2(s–1), and the within group variance
component (W) as χ2[s(n–1)]. For a sample of s twin
pairs (of the same zygosity), the distribution of the
between- and within-pair mean squares are χ2(s–1) and
χ2(s), respectively, asymptotically (large s) identical (e.g.,
Visscher, 2004). 

The probability that the ANOVA estimate of the
between-group variance is negative when the popula-
tion value is zero, is Prob F[s–1,s(n–10)] < 1, a probability
involving a standard central F-distribution.
Asymptotically (for large s), this probability is half.
When using REML, the ANOVA and REML estimates
are equivalent when B is greater than W, but when B is
less than W the between-group variance is set to zero
and an estimate of the residual variance is obtained by
weighting B and W by their degrees of freedom
(Thompson, 1962), that is, T = [(s–1)B + s(n–1)W]/
[(s–1)+s(n–1)] = [total Sum of Squares]/[sn–1]. In that
case, the likelihood under the full model (between- and
within-group variance) and reduced model (within-
group variance only) are the same. When ML is used to
estimate variance components, the resulting estimates
are biased under both the full and reduced models.
However, this bias is small if the number of fixed
effects and covariates is small relative to the total
number of observations. Because of the simple relation-
ship between ANOVA and REML estimators for
balanced designs, we have used REML in this study.
However, the same principles apply to ML estimation.

The relationships between the F ratio (B/W) and the
likelihood ratio test statistic (LRT) for finite samples can
be derived. The residual log-likelihood equation for the
full model, that is, including the between component of
variance, is

[1]

where �2
b is the variance between groups

�2
w is the variance within groups

and the likelihood equation for the reduced model,
that is, the model with a residual within group vari-
ance only, is

[2]

When B is less than W, the ML for the full and
reduced model are equivalent, because the estimate of
the between-group variance (�2

b) in the full model is
zero. When B is greater than W, it can be shown that
the likelihood ratio test is equal to:

[3]

and, since F = B/W,

[4]

Equation 4 immediately implies that the relationship is
valid only if F > 1, and that if F = 1, LRT = 0 for a
one-way ANOVA model. Conditional on F > 1, the
likelihood ratio test for �2

b = 0 behaves like a standard
likelihood-based test for a nested design, that is, its
asymptotic distribution is a central χ2 with one degree
of freedom. Hence, if the null hypothesis is true and
the sample size very large, in 50% of the cases the test
statistic is zero (or, follows a χ2[0]), and in 50% of the
cases it follows a χ2(1). 

In a two-way design, for example twin pairs nested
within schools, the asymptotic distribution of the test
statistic under the null hypothesis of zero pair and
zero school variance will be a mixture of χ2(0), χ2(1),
and χ2(2), corresponding to the ANOVA estimates of
both variances less than 0, either pair or school variance
less than 0, or both variance estimates greater than 0,
respectively. Asymptotically, that is, for a large number
of schools and a large number of pairs per school, the
distribution of the likelihood ratio test statistic under the
null hypothesis that both variances are zero will be
1/4χ2(0) + 1/2χ2(1) + 1/4χ2(2), because the probability of
obtaining nonzero school and pair variance estimates is
.25, and the probability of obtaining either a zero school
component alone or a zero pair component alone is .25.
For a two-way cross-classified design, the asymptotic
distribution of the likelihood ratio test statistic under the
null hypothesis that both variances are zero will also be
1/4χ2(0) + 1/2χ2(1) + 1/4χ2(2) (from Thompson, 1962).

A formal and rigorous way of generalizing the distri-
bution of likelihood ratio test statistics where parameters
are on the boundary of the parameter space was given
by Self and Liang (1987), and explained by Stram and
Lee (1994) for variance component estimation in linear
mixed models.

These are not just esoteric examples. An incorrect
assumption about the distribution of the likelihood ratio
test statistic for variance component estimation will lead
to the wrong p values and may lead to incorrect infer-
ence in model selection procedures. The widely used
versatile statistical package Mx (Neale, 2005) calculates
p values for nested models from LRT, assuming that all
LRT statistics, whether for fixed or random effects,
follow central χ2 distributions. As pointed out by
Dominicus et al., (2006) and in this note, this leads to
incorrect p values for variance components. 

Discussion
It was illustrated with simple examples of balanced
designs why the commonly applied likelihood ratio
test for testing zero (co)variance components is
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conservative. Many researchers in quantitative genet-
ics (both in human behavior genetics and in livestock
genetics) mistakenly assume that the distribution of
the test statistic asymptotically follows a χ2(p), with p
the number of (co)variance components tested. In
these cases, the actual asymptotic distribution of the
likelihood ratio follows a mixture of χ2 distributions,
and the statistical inference may be incorrect. As
stated before, these results are not new, and can be
found in the statistical literature (Chernoff, 1954;
Miller, 1977; Self & Liang, 1987; Stram & Lee,
1994), the human genetics gene mapping literature
(e.g., Duggirala et al., 1996) and recently for twin
studies (Dominicus et al., 2006). Shaw (1987) dis-
cussed this problem briefly in the application of ML
approaches to quantitative genetics of natural popula-
tions. The key paper in the literature on this subject is
that by Self and Liang (1987). Without reproducing
the extensive mathematical proofs given by Self and
Liang (1987), and partly reproduced by Stram and Lee
(1994), I have attempted to explain and illustrate the
behavior of the likelihood test statistic under the null
hypothesis intuitively. Essentially, the mixtures of χ2

distributions occur because the true parameters are on
the boundary of the parameter space, and in that sense
they are properties of likelihood ratio tests under non-
standard conditions (Self & Liang, 1987). Perhaps the
simplest illustration is when testing the equality of two
means estimated from different populations, with the
null hypothesis µ1= µ2 versus the alternative hypothesis
µ1 > µ2. Under the null hypothesis of µ1= µ2, the
asymptotic distribution of the likelihood ratio test will
be distributed as 1/2χ2(0) + 1/2χ2(1). This example
applies, for example, to gene mapping by allele
sharing methods, when the null hypothesis is 50%
sharing of affected sibling pairs, and the alternative
hypothesis is more than 50% sharing. If the observed
amount of sharing is less than 50% then convention-
ally the test statistic is set to zero, leading to the
mixture of zero and χ2(1) under the null hypothesis.
More complicated examples occur in multivariate
applications, as described by Carey (2005).

When testing different variance component models
in linear models in quantitative genetics, we are
usually not dealing with balanced nested designs.
However, with unbalanced designs the asymptotic dis-
tribution of the likelihood ratio under the null
hypothesis of zero (co)variances will also be a mixture
of different χ2 distributions. When testing a single vari-
ance component, the asymptotic distribution under
the null hypothesis is 1/2χ2(0) + 1/2χ2(1) (Chernoff,
1954). In practice this means that we have been too
conservative and not rejected the null hypothesis of
zero variance often enough. For example, when testing
the null hypothesis of common environmental vari-
ance from a standard twin design at � = .05 (threshold
from χ2[1] is 3.84) and the test statistic is, say, 3.0, the
null hypothesis will not be rejected. However, the null
hypothesis should have be rejected because the

asymptotic distribution of the test statistic is
1/2χ2(0) + 1/2χ2(1), corresponding to a 5% significance
threshold of 2.7. For testing, for example, zero addi-
tive genetic (co)variances in a multivariate linear
model, the asymptotic distribution of the likelihood
ratio test statistic is 1/2χ2(q-1) + 1/2χ2(q), with q the
number of traits, that is, the order of the covariance
matrix in the full model (Stram & Lee, 1994). In this
case, the null hypothesis is that the covariance matrix
between (q-1) traits is positive-definite, and that an
additional trait being tested has zero variance and
zero covariances with the (q-1) other traits. For
example, under the null hypothesis that one trait in a
trivariate analysis has zero genetic variance and zero
covariances with the two other traits, the distribution
of the likelihood ratio test is asymptotically
1/2χ2(2) + 1/2χ2(3). When testing for a zero covariance
matrix, that is, for several zero variance components
simultaneously, for example for zero between school
and between-twin pair variance in a two-way design,
the distribution of the LRT is asymptotically a
mixture of as many χ2 distributions as there are vari-
ance components, with mixing proportions factors of
1/2. This case was not discussed by Stram and Lee
(1994), who assumed that either only one random
effect would be tested at a time, or that the test would
be conditional on a positive-definite part of the com-
plete covariance matrix.

These boundary problems are not restricted to esti-
mating (co)variance components in mixed linear
models. For example, Elsen et al. (1997) tested the null
hypothesis of no quantitative trait locus (QTL) segre-
gating at a marker locus in a balanced halfsib design
using an approximate ML method, and found by simu-
lation that about 50% of the test statistics were zero,
and that the mean and variance of the test statistic were
close to what would be expected if it had been distrib-
uted as 1/2χ2(0) + 1/2χ2(1), that is, a mean of 1/2(0) +
1/2(1) = 0.5, and a variance of 1/2 E[χ2(0)]2 + 1/2

E[χ2(1)]2 – E2[1/2χ2(0) + 1/2χ2(1)] = 1.5 – 0.25 = 1.25.
Baret et al., (1999) explored the case of QTL mapping
using either ML or linear regression in balanced halfsib
designs further, and showed that there was a clear rela-
tionship between the distribution of the test statistics
for the different methods, and they were able to predict
the exact proportion of zero LRT for different designs.

For QTL mapping in complex or simple pedigrees
using variance components, Blangero and colleagues
were, to the author’s knowledge, the first to point out
that the distribution of LRT is a mixture of zero and
χ2(1) (e.g., Duggirala et al., 1996). The existence of
mixture distributions of test statistics in genetics has a
much longer history. A likelihood ratio test for the
recombination parameter (�) in parametric linkage
analysis is traditionally performed with the null
hypothesis of � = 1/2 and the alternative hypothesis of
� < 1/2, also leading to a 50:50 mixture of zero and
χ2(1) (e.g., Sham, 1998, pp. 63-64). However, there is
an additional implicit assumption which is not usually
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stated for variance component QTL linkage analysis,
and that is that the statistical power to detect (addi-
tive) genetic variance under the null model is large.
That is, there is an implicit assumption that a genetic
variance component for family resemblance (e.g., a sib
correlation in a nuclear family design) will always be
detected. If this assumption is not met then the result-
ing test statistic for the QTL variance has a larger
probability than half of being zero. This occurs
because the full model is trying to partition the
observed genetic variance into a QTL component and
a residual polygenic component of variance. If there is
no evidence for genetic variance under the null model
then there also will be no evidence for QTL variance
under the full model. If there is no additive genetic
variance then one would expect the LRT for the QTL
variance to be zero with a probability of three quar-
ters, and χ2(1) with a probability of one quarter.
Visscher and Hopper (2001) simulated this case and
reported an expected ML test statistic of ~.2, close to
the expected value of .25. A similar finding was
reported by Macgregor et al. (2005) for REML analy-
sis of longitudinal data. For complex (multivariate)
models involving many (co)variance components in
practice, the power to detect certain (co)variances may
be compromised even under the null model of no QTL
components of variance, so that the distribution of the
LRT for the QTL is likely to be a complicated mixture
of many χ2 distributions. I believe that the issue of
power under the null model (i.e., when QTL compo-
nents are not fitted) is one of the reasons why there
has been controversy over the distribution of the test
statistic for QTL linkage in multivariate models
(Amos et al., 2001; Macgregor et al., 2005; Marlow et
al., 2003; Wang, 2003).

One question is what one should do in practice.
There are at least three different actions that could be
taken, (i) ignore the problem, (ii) assume asymptotic
properties to calculate p values, and (iii) set empirical
thresholds for significance testing or calculate empiri-
cal p values. If we ignore the problem which has been
described in this note, the statistical tests tend to be
too conservative. Hence, the power of detecting a sig-
nificant variance component will be reduced. For
example, Shaw (1987), in a landmark paper for the
evolutionary genetics community, found through sim-
ulation that the empirical power to detect a significant
nonzero variance component was lower than expected
when testing against a threshold obtained from a
central χ2 with one degree of freedom, even when the
simulated value of the variance component was
nonzero (Table 1 of Shaw, 1987). This may have
occurred because the probability of obtaining a zero
test statistic was large for the small population sizes
studied by Shaw (10 sires, three dams per sire, and
two progeny per dam). Although Shaw (1987) simu-
lated an ‘unconstrained REML’, that is, estimates of
variances were allowed to be negative, there still was
an implicit constraint in the model of Shaw, because

the likelihood function can be written in a form
similar to Equation 1, which implies, for a halfsib
design, that n� 2

b + n�2
w  should be greater than zero.

The author simulated the design of Shaw (1987) with
the usual constraint that estimates of the variances
should be positive, and powers were calculated for the
null hypothesis of a zero between-sire variance com-
ponent. This corresponds to Shaw’s test of a zero
additive genetic variance. Results for 10,000 replicates
(Table 1) show that the powers were similar to those
obtained by Shaw (1987) when testing against a χ2(1)
distribution, that is, against a 5% threshold of 3.84,
and that the proportion of zero likelihood ratio tests
varied from .12 to .39. On average, the powers that
Shaw (1987) found were slightly higher, presumably
because of the different constraints used. However, the
results are similar enough to conclude that the reduced
power when testing the LRT against a χ2(1) distribu-
tion is because of the relatively large probability of
obtaining a zero test statistic.

Depending on the purpose of the data analysis,
losing power because the significance test is conserva-
tive can be unsatisfactory. For example, QTL
experiments are costly and usually not very large, so
that reducing the type-II error is important. For finite
samples, we usually ignore the fact that we do not
know the distribution of the LRT but use its asymp-
totic properties. The same principle could be applied
when we know that the parameters to be tested are on
the boundary of the parameter space. For example,
when testing a single variance component, one could
assume that the asymptotic distribution of the test sta-
tistic is 1/2χ2(0) + 1/2χ2(1), and for testing a set of q
(co)variance components corresponding to an addi-
tional random effect, that the asymptotic distribution is
1/2χ2(q–1) + 1/2χ2(q) (Stram & Lee, 1994). It is not clear
how bad these assumptions are for finite, unbalanced,
samples. If the (assumed) asymptotic distribution of the
test statistic is 1/2χ2(0) + 1/2χ2(k), then a practical

Table 1

The Power of Likelihood Ratio Test and the Proportion of LRT = 0 (P0)
under REML Analysis

VA:VD:VE Power P0 Power (Shaw, 1987)

0.2:0.1:0.7 5.1 .39 8.2
0.2:0.5:0.3 5.5 .38 6.2
0.2:0.7:0.1 5.2 .38 7.6
0.5:0.1:0.4 16.2 .21 14.8
0.5:0.25:0.25 15.3 .22 11.6
0.5:0.4:0.1 15.0 .22 14.8
0.8:0.1:0.1 28.5 .12 29.0

Note: The power of likelihood ratio test (x100) and the proportion of LRT = 0 (P0) under
REML analysis of 10,000 data sets drawn from a balanced two-way design with
10 sires, three dams per sire, and two progeny per dam. Empirical power is given
as the frequency of the LRT > 3.84, when testing that the additive variance is
zero. All variances are constrained to be nonnegative. Parameterization of Shaw
(1987) is used, in which VA, VD, and VE are additive, dominance, and environmen-
tal variances, respectively.
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consequence is that the appropriate p value for an
observed test statistic is easily calculated by halving the
corresponding p value from a χ2(k) distribution. In the
simple case of testing A and C components in an ACE
model using Mx (Neale, 2005), the p value supplied by
Mx can simply be halved (Dominicus et al., 2006).

One method which would not make any a priori
assumptions about the distribution of the test statistic
is the permutation test. This method, which shuffles
the observations over levels of fixed and random
effects, is an empirical way to set a significance thresh-
old. In the case of the one-way design, observations
within groups would be randomly assigned to groups.
This method has become the method of choice to set
significance thresholds for QTL mapping (Churchill &
Doerge, 1994). However, this approach may be com-
putationally too demanding when using large data sets
and REML. Computations can be reduced, however, if
the only parameter of interest is the mixing proportion
for the assumed χ2 distributions. For each permuted
data set, one could calculate the likelihood for the
variance component at zero (i.e., for the reduced
model, which is usually easier to calculate), and the
likelihood for a small positive value (e.g., 10–6).
Comparing these two likelihoods will immediately
show whether the LRT is at zero for the permuted
sample. Hence, implementing a permutation test like
this is possible, even for large data sets. When dealing
with ML analyses for simple designs, for example
QTL mapping using sibling pairs, then a permutation
test is easy to implement and can be used to calculate
both pointwise and genome-wide empirical p values.
However, if the design of the experiment and/or the
hypothesis to be tested are complex then permutation
testing is not straightforward or even impossible to
implement. For example, for QTL mapping in an arbi-
trary complex pedigree there is no simple permutation
analysis that keeps the parameter estimates under the
null hypothesis of no linkage the same.

Another resampling scheme which has been pro-
posed to find the empirical distribution of the LRT is
the parametric bootstrap (Shaw & Geyer, 1997). In
particular, these authors present an asymptotic para-
metric bootstrap which is computationally feasible,
and is recommended when inequality constraints (e.g.,
variance components are greater than 0) are enforced
in covariance component estimation.

In conclusion, recognizing the problem that the
distribution of a likelihood ratio test asymptotically is
a mixture of χ2 distributions when parameters are on
the boundary of the parameter space should be taken
into account when testing hypotheses and performing
model selection, thereby maximizing the power of the
experiment and drawing the correct inference.
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