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Abstract
Let K be a finite extension of the p-adic field Qp, of degree d, let F be a finite field of characteristic p and let D be
an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For

—univ — —]
the universal mod p pseudodeformation ring Rz of D, we prove the following: The ring R%s is equidimensional
—univ
of dimension dn? + 1. Its reduced quotient Ry .4 contains a dense open subset of regular points x whose associated

pseudocharacter Dy is absolutely irreducible and nonspecial in a certain technical sense that we shall define.
Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of

Spec Eugmv. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring

RV of D.
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1. Introduction

Let p be a prime number, and let K be a finite extension of Q,, of degree d = [K : Q,] with absolute
Galois group Gg = Gal(K®¢/K). In [Chel 1], Chenevier establishes the following results on the rigid

1
variety X}, of continuous pseudocharacters of Gk of dimension n with coefficients in Qa £

Theorem (Chenevier).

(@) The open locus of regular points of X, contains X",
(b) The open subvariety X' C X,, of irreducible pseudocharacters is Zariski dense in X,,.
(c) The variety X, is equidimensional of dimension dn® + 1.

Moreover, [Chel 1] gives a precise description of the singular locus of the varieties &, in terms of
representation-theoretic data. Note that from any continuous pseudocharacter x of dimension n of Gk

. . . al, .. . . . .
with coeflicients in ng, one can reconstruct a semisimple n-dimensional continuous representation

px: Gg — GL,,(Q;‘,lg) that is unique up to conjugation; one calls x irreducible if p, is irreducible.

The above results can be reinterpreted as results on the generic fibers of universal rings for pseu-
dodeformations of a fixed residual pseudocharacter of Gk as introduced by Chenevier in [Chel4].
Note that we use the term pseudocharacter for what Chenevier in [Chel4] calls determinant law and
what is called pseudorepresentation in [WE13]; the term Taylor-pseudocharacter we use for what in
[Tay91] was called a pseudocharacter. Pseudocharacters of dimension 7 of a group I" are certain poly-
nomial laws in the sense of [Rob63] that model the formal properties of the characteristic polynomial
of n-dimensional representations of I'. The simpler notion of Taylor-pseudocharacter refers to maps
that model the formal properties of the trace of n-dimensional representations of I". The two notions
agree for coefficient fields of characteristic zero or of characteristic p > 2n; see [Chel4, Proposition
1.29]. Taylor-pseudocharacters have some defects in characteristic p < n. Pseudocharacters behave well
independently of the characteristic (and n). Also, a pseudocharacter D of G g of dimension n with coef-
ficients in an algebraically closed field « is the pseudocharcter attached to a semisimple representation
pp: Gk — GL, (k) that is unique up to conjugation.

Let now F be a finite field of characteristic p with ring of Witt vectors W (FF), and let .er () be the
category of Noetherian W (F)-algebras with residue field F. Let D be a continuous pseudocharacter of
G g of dimension n with values in F. If F is sufficiently large, D can be thought of as the pseudocharacter
attached to a representation p: Gk — GL,(F), that is, morally as the characteristic polynomial law
attached to p. It is shown in [ChL14] that any residual D admits a universal pseudodeformatlon ring
Runlv that represents the functor .ArW(F) — Sets, that to any object R of ArW(F) assigns the set of

pseudocharacter Dp of Gk with values in R and with residual pseudocharacter D. The above theorem
now asserts that the absolutely irreducible locus of Spec R%mv [1/p] is dense openin Spec R%W [1/p] and
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contained in the regular locus of Spec R"DJiV [1/p], and that R%iv [1/p] is equidimensional of dimension
dn® + 1; here x in X"BniV := Spec R%iv with corresponding residue field «x(x) and pseudocharacter D

is called irreducible if the semisimple representation p, := p, ye: Gg — GL, (k(x)™®) is

x ®r(x) K (X
irreducible.

The present work concerns the special fiber of Spec R“Bm", that is, the mod p reduction E%W =
univ . univ . . —univ —univ .
RE /(p) of the ring R5 and the corresponding special fiber scheme X7 := Spec Ry . Our main
results are natural analogs of the assertions in the above theorem of Chenevier. Before giving them, we

point to some differences to the results of Chenevier and introduce some notions to deal with them.
Let {p € K alg denote a primitive p-th root of unity. A first simple observation is that, already for
n = 1, the space X5 D " has empty regular locus, whenever {p lies in K. To address this problem, we study

niv
the natural determinant map detg;: X5 » —X detD, D—detD, where detD is the constant coefficient
of the pseudocharacter D; that is, if D is attached to an n-dimensional representation p, then detD is
attached to the one-dimensional representation detp. Eventually, we show that detz is formally smooth

when restricted to a dense open subset of Y%ﬂv. This subset is (slightly) smaller than the open of locus

(X 5’1rved)i” of irreducible points of ng. There is a closed subset of the irreducible locus (of relatively
small dimension) spanned by points that we call special such that when we restrict det to the dense

—univ —univ
open subscheme of nonspecial irreducible points of Xz it is formally smooth. Because X 4.5 and its
—univ
induced reduced subscheme X 4.5 .4 are explicit and well understood, base change to reduced structures
—univ
gives us access to X5 .4 for which we deduce Chenevier’s dimension formula.

—univ .
There are several equivalent ways to describe the locus of special points of (X5 ..4)"™"; see Subsection
5.1 and some basic results on Clifford theory explained in Section 2; each has its benefits. Let ad,,,
denote the adjoint representation of p,, and let adgx be its subrepresentation on trace zero matrices. Let

x be a dimension 1 point of (Yug’]:ed)i“. The deformation theory as introduced by Mazur in [Maz89]
yields that the map detg is formally smooth at x if H?*(Gg, adgx) vanishes. We call such an x special,

if H*(Gg, adgx);ﬁO. An important observation is that special points are induced from representations
of smaller dimension of the group Gk for K’ a suitable extension of K. This link and induction give a

strong dimension bound for the special locus (Y%mv)s"d in (Yugj:ed)i", that is, the Zariski closure of the
special points of dimension 1 therein. More precisely, one has: If £, ¢ K, then x is special if and only
if px is induced from a representation of Gk (£,); if {;, € K, then x is special if and only if there exists

a degree p Galois extension K’ of K such that p, is induced from a representation of Gg-. To state our
—univ —univ —univ

main results, we also abbreviate (Y%iv)“‘sf’d = Xp )M\ (Xp )P and (Xp ) :=X5 \(Xp ).

Theorem 1 (Theorem 5.5.1, equidimensionality). The following assertions hold:

(a) (Y%mv)“'sf’d C Yuﬁva is open and Zariski dense.
(b) If¢p ¢ K, then (Yquv)“’gpd is regular.
(o) If¢ 3 € K, then (X D )n spel regular, and (Y%iv)reg is empty.

(d) XE is equidimensional of dimension [K : Qp]n2 + 1.

Theorem 2 (Theorem 5.5.5, singular locus). If {,, ¢ K, then the following hold:

(a) The closure of (X* )SPCl in XD1 lzes in (X— )Smg
®) Ifn>2o0r [K:Q,] > 1, then (X5 )y c (X ),
© Ifn=2 K=Qp and x € (Y%W)red is a direct sum D1 @ D> of one-dimensional characters D;,

then x € (Y%W)Si“g if and only if Dy = D{(m) for m € {+1}.
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Theorem 3 (Theorem 5.5.7, Serre regularity). The ring E%lj:ed satisfies Serre’s condition (Ry) ', unless
n=2K=0Q, and D is trivial.

We in fact determine the exact dimension of (Y%W)red and (Y%W)SPCI in Lemma 5.5.2 and Corollary
5.5.3. From this, depending on n and [K : Q) ], one can in general establish Serre’s condition (R,,) for
some m = mg , > 2.

—univ
It is a foundational and natural question to study the equidimensionality of X7 and to better

understand some geometric properties of fugmv, extending [Chel 1] to the special fiber. However, our true
motivation was the expectation, that the equidimensionality proved here should help proving expected
ring theoretic properties of the universal lifting ring Rg attached to any continuous homomorphism
p: Gg — GL,(F) by Kisin in [Kis09] as an important technical device to understand deformation rings
as introduced in [Maz89] by Mazur. There should be a bootstrap argument to deduce from the dimension

for ng found here, that Rg is flat over W (FF) of expected relative dimension (d + 1)n?. This in turn
would give the local complete intersection property of Rg, the normality of the special fiber ring Rg /(p),

and it should allow one to deduce a bijection between the irreducible components of RZ and of Rg‘etﬁ,
as expected from computations by us in the case n = 2 in [BJ15], and then in further cases in [CDP15],
[Bab19] and [Iye20]. This in turn might prove, in light of recent results of [EG19], the Zariski density
of crystalline points, and thereby to complete work of many others, notably [Nak 14, §4] by Nakamura,
extending previous important work of Chenevier, in the case where p is absolutely irreducible, and of
[Lye20] when p is trivial, under some technical hypotheses on K, p and n. This program has now been
completed in work of the first author with A. Iyengar and V. Pasktinas in [BIP21] and [BIP22].

Let us give some further ideas of the proofs and indicate some of the auxiliary results and techniques
developed in this article. Our overall strategy is similar to [Chel1]. But we face new phenomena that
have to be dealt with. iy

Above, we already mentioned special points x of (X7 .q)". They can exist when the cyclotomic
character has finite order, that is, on the special but not the generic fiber. At such x, the representations
Py is induced from a representation of G g+ for a proper cyclic extension K’ of K of degree dividing n.
So it is important for us to define an induction for pseudocharacters. This we work out in Subsection
4.6; our present approach incorporates significant improvements due to the referee. Using induction of
pseudorepresentation, we show that the locus of special representations can be covered by finitely many

—univ —_
X3 . where the D’ are continuous pseudocharacters of G- for the K’ just mentioned, and in particular
—univ
they are of dimension n/[K” : K] < n. Now, in an inductive procedure, the space X' is known to have
dimension (d[K’ : K])(n/[K’ : K])®> + 1 = dn?/[K’ : K] + 1, and this is much smaller than the lower
—univ
dimension bound dn? + 1 that we establish for (all components of) X35 . In particular, the special locus
—univ

is nowhere dense in X5 4. Another operation on pseudocharacters that we introduce in Subsection 4.5
is twisting by one-dimensional representations. We use it to prove the closedness of the special locus in

the case {, ¢ K.
A further important ingredient in our inductive argument to establish Theorem 1 is the proof that

every neighborhood of some x in the reducible locus (ng)red contains a point of (Y%W)i". Here,
we follow the argument used by Chenevier [Chell, Theorem 2.1], using, however, étale topology in
place of rigid geometry. The key point in our setting is that étale locally (Y%W)redHng is a closed

—univ —univ_ .
immersion. Hence, if a neighborhood U of some x € (X7 )™ does not intersect (X7 )™, the local
—univ —univ  —univ —_ = —
behavior at x in X35 is similar to that of X D, XXp, for pseudocharacters such that D = D & D>,
after completion at x. This will ultimately yield a contradiction by comparing dimensions (of tangent
spaces); see Theorem 5.2.1 and its proof. Following a suggestion of the referee, in Subsection 5.3 we

give a second independent proof of Theorem 5.2.1.

Isee Definition A.1.3
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—univ
On the technical side, we shall often work with dimension 1 points x € X757 . The set of these is

Zariski dense in Yuﬁmv, so they allow us to see all irreducible components. At the same time, their residue
fields «(x) are Laurent series fields over a finite field, and so finite-dimensional «(x)-algebras carry a
unique topology compatible with that of x(x). We make use of this in considering deformation functors
at such points. This is especially useful if D is irreducible or at least multiplicity free. This technique of
studying deformation rings at dimension 1 points was introduced by Kisin over p-adic fields. We need
to reprove some basic results, for instance in Subsection 3.3 and Subsection 4.8, building on [Chel4],
[WE18] for pseudodeformations and on [Nek06] for Tate local duality over general coefficient rings
such as «(x) or its ring of integers.

Outline

We now give an outline of this work. Section 2 presents parts of Clifford theory to be used in Subsection
5.1 when defining and characterizing special points. Section 3 reviews the theory of deformations of
Galois representation in the sense of Mazur with a strong emphasis on result related to deformation rings
at dimension 1 points where the residue field is a local equicharacteristic field. Section 4 is a detailed
review of pseudocharacters following largely [Che 1 4] with some noteworthy additions that are crucial for
the main results of this work: We consider the locus of reducibility in the context of pseudocharacters,
we introduce twisting and induction of pseudocharacters, and we give a special treatment to some
elementary facts on equicharacteristic dimension 1 points on pseudodeformation rings.

The final Section 5 contains the proof of the main results of this work, Theorems 1 to 3 on the
special fiber of universal pseudodeformation rings. We follow Chenevier’s proof for the generic fiber
[Chell] and explain how to overcome all complications that arise in the special fiber. Much of these
complications are packed into our definition of special points in Subsection 5.1; see Definition 5.1.2.
nonspecial (irreducible) points will take the role of irreducible points in Chenevier’s work; they describe
that part of the irreducible locus of the special fiber of the pseudodeformation space over which the
determinant map is relatively formally smooth.

Subsection 5.1 also contains some technical result on the comparison of universal pseudodeformation
and universal deformation rings over local fields where the residual pseudocharacter is a sum of two
irreducible ones; see Lemma 5.1.6. In Subsection 5.2, we describe the induction procedure that proves
the main result: Given a suitable induction hypothesis, we shows that the reducible locus is nowhere
dense. In Subsection 5.4, we show that the nonspecial points are open and Zariski dense in the irreducible
locus under some inductive hypotheses. By combining the previous subsections, it is then in Subsection
5.5 straightforward to prove Theorems 1 to 3.

Let us also note that in an appendix, we provide some results on commutative rings, on algebras over
a field and on absolutely irreducible mod p representations of the absolute Galois group of a p-adic field.
These results are mostly standard and they serve as a convenient reference. In addition, in Subsection
A4 we prove a variant of an important result of Vaccarino that we use in the construction of induction
for pseudocharacters in Subsection 4.6.

Some notation and conventions

o Throughout, we fix a prime number p and a finite field F of characteristic p.
o For any field E, we denote by E€ an algebraic closure of E and by G = Gal(E/E™2) its absolute
Galois group.

o We write Q,, for the p-adic completion of Q and fix an algebraic closure Q;,lg of Q. All algebraic

extension fields of Q, will be considered as subfields of Qaplg.

o We fix a finite extension field K of Q,, of degree d = [K : Q] inside Qa;,lg.

o Throughout, x will denote a finite field of characteristic p or a local field of residue characteristic p. It
will take the role of a coefficient field for deformations and pseudodeformations. If such a coefficient
field is meant to be finite, we usually write F.
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o For a point x on a scheme X, we write Ox  for the local ring at x and «(x) for its residue field; the
latter is the second way in which the letter « occurs; note that k(x) can be any field.

o For a complete Noetherian local ring R with finite residue field F, we call x € Spec R with corre-
sponding prime ideal p, C R a point of dimension 1 if R /p, has Krull dimension 1. The residue field
k(x) will then either be a finite extension of Q,, or of F((x)).

o By aring, we mean a unital commutative ring. Algebras over aring A do not need to be commutative.
To make clear that an A-algebra is commutative, we will always speak of it as a commutative A-algebra.

o The categories Arp and Ar A of certain (pro-)Artinian local A-algebras, that have the same residue
field as A, are introduced at the beginning of Subsection 3.1.

o The category Admp of admissible A-algebras is introduced at the beginning of Subsection 4.4.

2. Clifford theory

Clifford theory provides a crucial input in determining conditions that characterize the special points
that we will introduce in Definition 5.1.2, building on Lemma 5.1.1. In this section, we give the
representation theoretic background. We also include some results for coeflicient fields that are not
algebraically closed. The results in Subsection 2.2, and most importantly Corollary 2.2.2, are probably
well known. Those in Subsection 2.3, and in particular Lemma 2.3.1, seem of more exotic nature to us.
We give proofs whenever we could not locate the results in the literature.

Throughout this section, G denotes a (possibly infinite) group and H a subgroup of finite index. If G
is a topological group, we assume H to be open in G. We define N := (g g HE. It is of finite index
and normal in G and the largest subgroup of H with this property. If H is normal, then N = H; if G is a
topological group, then N is open in G. All representations will act on a free module of finite rank over
some ring or field.

2.1. Generalities

Definition 2.1.1. For a representation p: N — GL,,(A) over a ring A and g € G, we define the
conjugate of p by g as the representation

pS: N—GLy(4),  nr p(gng™).

Remark 2.1.2. Conjugation in the sense of Definition 2.1.1 defines an action of G on the set {[p%] : g €
G} of isomorphism classes [p#] of representations p& of N. Since N acts trivially, the action factors via
G /N and so, up to isomorphism, there are only finitely many conjugates of p.

For the remainder of this subsection, let E denote a field of characteristic p > 0. Unless said
otherwise, any representation will be of finite dimension over E.
The following lemma will be used repeatedly.

Lemma 2.1.3 (Mackey’s tensor product theorem for induced representations; [CR62, Corollary 44.4]).
Let p and p’ be representations of G and of H, respectively. Then
p ®Ind$p’ = Ind$ ((Res$p) ® p’).

We will also need:

Lemma 2.1.4. Let p be a semisimple representation of H, and let v = Res% p. Assume for parts (f) to
(h) that H is normal in G, and so in turn N = H and v = p. Then the following hold:

(a) For any separable field extension F O E the representation p ®f F is semisimple.

(b) One has Res§Indf p = @,/ (Resh p)E.

(¢) Ift is an irreducible representation of G, then Resgr is semisimple, and all irreducible summands
of Resg‘r are conjugate to one another in the sense of Definition 2.1.1.
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(d) If [G : N] is not a multiple of p, then Indgp is semisimple.

(e) If v is irreducible and ifG/N acts freely on {[v¢]:g € G}, then Ind%, p p is irreducible.

(f) The representation Ind$, p P is absolutely irreducible if and only if p is absolutely irreducible and
G /H acts freely on {[pg] g€G}.

(g) Let p’ be a second representation of H. Then Indg p = Indg p’ if and only if

D = D @ (1)

geG/H geG/H
(h) If p is irreducible in (g), then the isomorphism in (1) is equivalent to p’ = p8 for some g € G.

Proof. We denote by V the E-vector space underlying p. Part (a) is [CR62, Corollary 69.8] with the
ring A from there being the image of E[H] in Endg (V). Part (b) holds by [Ser77, Proposition 22]. Part
(c) follows from [CR62, Theorem 49.2]. For (d), note that p is a subrepresentation of Ind%Resg P, and
hence Indg p is a subrepresentation of Indg ResZp. By (c) applied to the irreducible summands of p,
we see that Resg p is semisimple. Now, the result can be found in [Web16, Chapter 5, Exercise 8].

To prove Part (e),let V' C Indg p be an irreducible G-subrepresentation. Then by (b) the representa-
tion Res NV’ contains v8 for some g € G. As V' is a G-representation, we deduce v8 C ResG V'’ for all
g € G.Byhypothesis, the v&, g € G /N, are pairwise nonisomorphic, and hence &P 2€G/N v& C ResG V.
By (b) the left-hand side is isomorphic to Res¥ Inde so that for dimension reasons we must have
V' = Ind% p.

We next prove Part (f). Because the solution space of a linear system of equations has the same
dimension over its field of definition and over any extension, one has

Homg [ (p, p%) ®F EM¢ = Homgas 1 (p ®F E"¢, p¢ @ E").

This allows one by base change E — E®£ to reduce one direction of (f) to (e). For the converse, assume
that Indg p is absolutely irreducible. Because IndG is an exact functor, p must be absolutely irreducible

and hence also p¢ for all g € G. Because Ind¥, p p is absolutely irreducible, Frobenius reciprocity yields

(c)
E = Endg(g)(Ind§; p) = Homg(g)(p,ResInd$ p) = Homg (G (0, ®gec/mp®)-

Hence, p is isomorphic to p& if and only if g € H, and this completes the proof of (f).

We now prove Part (g). Note that by (b) the only if direction is clear. For the other direction, note
first that by [CR81, Lemma 10.12] we have Indgp = IndI(_;I p8 for all g € G. Since induction and direct
sum commute, we also have

md( @ p*) = P (ndfjp?) = (Indfjp)*' .

geG/H geG/H

The same formula applies to p’, and so our hypothesis gives (Indg p)elGH] ~ (Indg p)®elGH] The

Krull-Schmidt theorem (see [CR62, Theorem 14.5]) now yields Ind%p = Ind$ p’. Part (h) follows
from the uniqueness of composition factors and the irreducibility of the p¥. O

2.2. Some results when p does not divide [G : H|

Suppose now that y : G — E* is a character of finite order m so that E contains a primitive m-th root of
unity { and m - 1 € EX. We also set H := ker y so that H is normal in G and note that p } m = [G : H].
The following is a standard result of Clifford theory, for example, [CR62, Theorem 49.2, Corollary 50.6].

Theorem 2.2.1. Let p: G — GL,,(E) be an absolutely irreducible representation such that p = p ® y.
Then the following hold:
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(a) The order m of y divides the degree n of p.
(b) There exists a Kummer extension E' = E( ¥) of E for some A € E* and an absolutely irreducible
representation p’: H — GL,,,, (E") such that

p®c E' =IndGp’.

(¢) The representations (p’)8, g € G/H, are pairwise nonisomorphic and absolutely irreducible, and
one has Res$ p ®p E’ = @geG/H (p))s.

(d) IfE is local field, G is a topological group and p is continuous, then so is p’.

(e) If in addition to (d), G is compact, then p can be defined over the ring of integers O of E and p’
can be defined over OF:.

Proof. Lacking a precise reference, we give a proof. Let A be an invertible n X n-matrix over E such that

Ap(g)A™" = x(g)p(g) forall g € G. ()

From equation (2), one deduces A" p(g)A™ = x"(g)p(g) = p(g) forall g € G. Since p is absolutely
irreducible, [CR62, (29.13)] implies that A™ = A - 1,, for some A € E. Define E’ := E(%/1). Let
A = W_IA in GL,(E’) so that equation (2) also holds for A’ and also (A”)™ = 1,. Since m - 1 is
invertible in E, it follows, using the Jordan form, that A’ is semisimple. Moreover, A’ is diagonalizable
over E’ since E contains a primitive m-th root of unity.

After a change of basis over E’, we may write A as a block diagonal matrix with diagonal blocks
Ai,...,Ap suchthatfori =1,...,m each A; is a scalar matrix {'1,,, withn; > Oand Y, n; = n.
Forall g € Gandi,j = 1,...,m, we decompose p(g) correspondingly into blocks p; ;(g) so that
equation (2) turns into

i i(8) = x(8)pi,i (). A3)

Choose g € G suchthat y(g) = £. Then p; ;(g) is zerounlessi—j = 1(mod m). Since p(g) is invertible,
all p;41,(g) and p,, 1(g) must be invertible and hence square matrices and of nonzero size. We deduce
that all n; are equal, hence nonzero, and hence equal to n/m. In particular, m divides n, proving (a).

Next, for h € H and for all i, j = 1,...,m, equation (3) becomes "~/ p; ;(h) = p; ;(h) so that
p(h) = EB;ZI pi,i(h) is a block diagonal matrix and each p; ;: H — GL,1(k), h — p;;(h), is a
representation of dimension n/m. In particular, the restriction satisfies

m

Res$p ®p E' = @pi,i~

i=1
We choose p’ = pj,1 and consider Indfl p’. By [CR62, (10.8) Frobenius Reciprocity Theorem], we have
Homg (Ind$ p’, p ®% E’) = Hompy (p’, Res$ p ® E’) # 0.

Let f: IndI(_;I p’ — p®g E’ be anonzero G-homomorphism. Since p is irreducible, it must be surjective,
and because dimp = n =m - n/m = dim Indg p’, its kernel must be zero so that f is an isomorphism.
Next, note that Indg is an exact functor; see [CR81, §10, Exercise 20]. Hence, p’ is absolutely irreducible
because p is so. This completes the proof of (b).

Part (c) follows from Lemma 2.1.4(b) and (f). Part (d) easily follows from the continuity of
Resg pREE = 2eG/H (p")8, using that all linear topologies on a finite-dimensional vector space
over E’ that are compatible with the topology on E’ are equivalent.

Concerning (e), we only prove the first assertion; the proof of the second then follows from (d). For
this, let V be the E-vector space underlying p, and let 7 be an Og-lattice in V. The stabilizer of T is an
open subgroup of GL,, (E) and hence, by the continuity of p, the latice T is fixed by an open subgroup G’
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of G. Therefore, G /G’ is finite. Thus, 77 := (g6 87T is an Og-lattice in V, and this lattice is clearly
G-stable. Choosing an O -basis of T7”, that is then also an E-basis of V, assertion (e) for p is clear. O

Corollary 2.2.2. Suppose that p: G — GL,,(E) is a representation that is absolutely semisimple; this
holds for instance if E is perfect. Then p = p ® y holds if and only if there is a separable extension E’ of
E of degree less than m™ - (n*)! and a representation p’: H — GL,,/m(E’) such that p ® E’ = Indgp’.
Furthermore, any such p’ is absolutely semisimple, and one has Resgp Qg E’ = @gec/H (p")8.

Proof. If p g E’ = Indgp’, then Lemma 2.1.3 implies
(p®E E)®x = (IndGp") ® y = Ind§ (0’ ® ResS v) = IndG p’ = p ®F E’,

and this implies p ® y = p by [CR62, 29.7].

Conversely, suppose that p = p ® y. After replacing E by a separable extension of degree at most
(n?)! (see Lemma A.2.7 and Remark A.2.8) we may assume that p is an absolutely completely reducible
G-representation over E’, that is, p = @ jer;' for absolutely irreducible representations p’, for j € J.
We regroup this decomposition according to orbits under iterated twisting by y. This gives rise to a

decomposition
mi—l )
p=@D(Driex). “)
iel  j=0

for integers r; > 0, absolutely irreducible representations p;: G — GLj, (E’), and divisors m; of m,
for i € I so that p; ® y™ = p;, and no p; is isomorphic to p;; ® y/ for some j € {0,...,m; — 1} and
i’ € I.Wehave G D H; :=ker y™ D H, [H; : H] = m;, and Resgi)( is a character of order m;.

By Theorem 2.2.1, we find Kummer extensions E of E’ of degree dividing m; and representations
p;" i Hi — GLy, /i, (E}) such that Indgiplf' = p; ® E]. Let 1y be the trivial representation of H on

E’. Then
m,‘*l . mi,] ) mi,] )
(@pi ® x') ® E} = Indfj p}’ ® (@XJ) = Indfj (o} ® @ Resf; x/)
Jj=0 Jj=0 =0

= Ind§ (p/ ® Indjy 1) = Ind] Ind}y (Resti o/’ ® 1p)
H;
= IndY; (Res;; p/’),
where the second and fourth isomorphism follows from Lemma 2.1.3. Let E”’ be the composite of the
E/, and set p’ := PB.c; (Resf["plf' ®F; E”)®"i g0 that clearly [E” : E’] < m™. The first assertion of the

corollary is now evident from the above and from (4). The remaining assertions follow from Lemma
2.1.4(b) and (d). O

2.3. Some results when p divides |G : H)]

Suppose for the remainder of this subsection that p = Char E > 0.LetV = E",andletp: G — Autg(V)
be a representation such that the canonical map E — Endg (V) is an isomorphism.

Lemma 2.3.1. Suppose that p is absolutely irreducible. Let H C G be a normal subgroup of index p,
and set Vi = ResIG{ p ®p E™2. Then the following hold:

(a) If Vy is reducible, then V ®g E alg ~ Indg W for any irreducible submodule W C V.
(b) If Vy is irreducible, then we have:
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(1) Any E[G]-module W with Reng = ResgV is isomorphic to V.

2) Indg Vi is indecomposable, its socle is isomorphic to V Qg Ed¥g

3) VR E alg is not induced Jfrom any H-module,

(4) All irreducible subquotients of Indg Vi are isomorphic to V ®p EY.

Proof. By Lemma 2.1.4(c), we have Vg = @geg/u+W#8 for some irreducible H-module W over E alg
and some subgroup H* ¢ G with H ¢ H*. Since G/H = Z/pZ, in Part (a) of the present lemma, we
must have H* = H, and then the assertion follows from Lemma 2.1.4(e).

We now prove (b). Let W be as in (1). By choosing the same underlying E vector space, we
assume that Reng = ResgV. Let g € G be a generator of G/H, and let A, B € Autg (ResgV) be
the automorphisms given by the action of g on W and V, respectively. Because ResgV is absolutely
irreducible, there exists a nonzero scalar A € E suchthat B = 1A. As g” € H,wefind A? = BP = AP AP,
Because Char E = p > 0, we must have A = 1, and so (1) is proved.

For (2), write Indg Vy = @i ¢; Wi with indecomposable G-modules W;. Let W/ be an irreducible
quotient of W; as a G-submodule. From Lemma 2.1.4(b) and (c) and the irreducibility of Vg, we deduce
Resg W/ = Vy for all i, and by (1), we find W/ = V ®g E alg The following inequality implies #/ = 1
and the uniqueness of W/ and thus gives (2):

#1 < dimga; Homg (P W;, V @ E"2) = dima, Homg (Ind§ Viy, V @ E“2)
i

= dimEalg HOII]H(VH,VH) = 1.

To see (3), observe that if V ® E*8 was induced, then by Lemma 2.1.4(b) then Vg had to be reducible.
For (4), note that we have Indg Vg = (Vg E alg) ®F IndgE . Now, clearly the semisimplification of
IndgE is the trivial module E”, and this shows (4). O

For the remainder of this subsection, we shall also assume that E is a topological field, that p is
continuous and that G is topologically finitely generated, and we let ®(G) = G?[G, G] so that G/D(G)
is the maximal p-elementary abelian Hausdorff quotient of G, and we set m := dimg, G/®(G). We
note that the hypothesis on G holds for G = Gk with K a p-adic field by [Jan83, Satz 3.6].

In the sequel, we shall write End(V) for the cokernel of the natural inclusion E<—Endg (V). We shall
relate the nonvanishing of the module of G-invariants E_ndg(V) of this cokernel to V being induced
from a subgroup of G of p-power index. We assume that p divides n, since otherwise the trace splits the
inclusion £ — Endg (V) G-equivariantly so that Endg (V) = 0 by our hypothesis E = Endg (V).

Let Endg; (V) be the subset of A € Endg (V) such that there exists a map A4: G — E, g — 14(g)
with

Vg € G: p(g)Ap() = A+ 2a(8)1n. (5)
Again, because E = Endg (V), one has the short exact sequence

0— E = Endg (V) — End}; (V) — Endg (V) — 0. (6)

We write A € Endg (V) for the class of A € Endy; (V) under this map. Recall that f € E[T] is p-linear
if f =3, a;TP" and that the set E[T]P" of p-linear polynomials in E[T] is a ring under addition and
composition. The following lemma provides some basic properties of End; (V).

Lemma 2.3.2. Let A be in End; (V). For A € E¥¢ let Vy and V', denote the eigenspace and generalized
eigenspace of A for A. Suppose from Part (i) on that p is absolutely irreducible.

(a) Each A4 is a continuous homomorphism G — (E,+).

(b) The groups Hp := Ker A4 and H, := (\{H4 | A € Endg;(V)} contain ®(G).

(c) Aa :=24(G) C (E,+) is a finite-dimensional F, vector space.

(d) The multiset of eigenvalues of A with multiplicities is a torsor under Ay = A4(G).
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(e) The map A,: A — A4 factors via an injective homomorphism
mG(V) — Homeon (G, (E, +)),Z = /1X~

(f) Endg; (V) is a module for E[T]P" ynder (f, A) — f(A) and one has Ara) = foda
(g) IfEndg(V) # 0, then there exist A € Endg; (V) such that Ay = (Fp,+) and [G : Ha] = p.
(h) The restriction p|p, commutes with A; it preserves Vy and V| for all A € E alg,

(i) A is semisimple over E¥.

() One has p ® E¥¢ = Indgj V) for any eigenvalue A € E¥2 of A.

(k) Over E™¢ the set End'GK (V) is simultaneously diagonalizable.

) Suppose dim]FP E > m, then there exists A € End’G(V) with H, = H 4.

Proof. (a) The continuity of 44 follows from that of p. It is a homomorphism because of
A+24(gh)1,=ghAh™ g7 =g(A+ 2a(W)1,)g 7 =gAg™" + Aa(M)1,=A + (1a(g) + A4 (M) 1.

To see (b) note that the image of 14 is p-elementary abelian because p-1 = 0in E. By (a) Hy = Kerd4 2
®(G), and hence H, 2 ®(G). Part (c) is clear from (a) and (b) since by assumption, G is topologically
finitely generated and hence so is G/®(G). For Part (d), denote by y(T) € E[T] the characteristic
polynomial of A. Then equation (5) implies ya(7) = xa(T +14(g)) forall g € Gk, and this proves (d).

For (e), one easily verifies that A, is the boundary map of cohomology H%(G, Endg (V)) — H'(G,E)
induced from the sequence (6); Part (a) shows that the target module is Homcy (G, (E, +)); the cocyle
condition is easily verified. Moreover, 14 is trivial if and only if A € Endg (V). Hence, A > Az is
defined and injective. The homomorphism property is straightforward.

(f) Raising equation (5) to the power p and using Char(E) = p we find

Vg € Gk : p(g)APp(g)™" = AP + A4(g)P 1.

Since Endé;(V) is clearly an E-vector space and A, is E-linear, Part (f) follows. To see (g), let A be
in End; (V)\E so that Ay C (E,+) is nontrivial and finite. Let A C A4 be a sub F,-vector space of
codimension 1, and let f be the p-linear polynomial [],c5 (T — 2). Then A (4) has order p by (f), and
H 4 has index p by its definition in (b).

In (h), the asserted commutativity is clear from equation (5); the assertion on the V; and V] is
then immediate. For (i), choose an eigenvalue A € E¥2 for which dimV, is minimal. By (c), we
have dimV, - #A4 < n with equality if and only if A is semisimple. Because A and p|y, ®r E2
commute, the action of H, preserves V. Let Viu, 1= V ®¢ E¥¢. Frobenius reciprocity gives a nonzero
homomorphism in

HomG(IndgAV/l, Vigae) = Homp, (Va, Vgaela, ).
Since Vgug is an irreducible G g -representation, it follows that
n < dimIndf Vi =[G : Ha] - dimV, = #A, - dimV; < n.
Hence, we must have equality and so A is semisimple. For (j), all but the last assertion follow from the

proof for (i).
(k) Using equation (5), we compute for A, B € Ende (V) and all g € Gk that

g(AB—BA)g™ = (A+2a(8)1,)(B+15(8)1n) = (B+15(8)1:)(A+2a(g)1,) = (AB - BA).

Since E = Endg(V), we conclude that AB — BA is a scalar matrix. We also know that A (and B)
is semisimple. To conclude, we may work over E2 so that we may assume that A has diagonal form.
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But then it is elementary to see that AB — BA has entries 0 along the diagonal and hence this scalar
matrix must be zero. It follows that any A, B € End; (V) commute, and we conclude using (j).

(1) We need to show that for all A, B € End; (V) there exist u,v € E\{0} such that H,a+yp =
Hy N Hp. Let W be the F,-vector space G/(Ha N Hp), and regard A4 and Ap as F-linear maps
W — E. Note that d := dil’l’le W < m. Let B := (by,...,bg) be an F,, basis of W. Suppose also
without loss of generality that dimpp Gk /Ha, dim]pp Gk /Hp < d since otherwise we are done.

For v € E¥ set C,, := 14 + vAp. Since the common kernel of 14 and Ag is 0 ¢ W, there exists
v € E¥2 such that C,, is injective, that is, such that the vectors (C, b;)i=....q are F p-linearly independent
in E. This means that the Moore determinant of these vectors is nonzero. In other words, the determinant
of the d X d-square matrix with (i, j)-entry given by (14(b;) + V/lB(bi))pJ_l is nonzero. As a function
of v, this is a polynomial of degree at most (p¢ — 1)/(p — 1). It is not identically zero because of its
value at v, and hence it can have at most p¢ — 1 < p™ — 1 zeros. It follows that for some v’ € E it is
nonzero because #E > p™, and this completes the proof of (1). O

We will later also need the following particular result:

Corollary 2.3.3. Suppose p is a nontrivial extension of an absolutely irreducible representation py by
an absolutely irreducible representation py. Suppose further that p| and p, are not isomorphic and that
the p; are not induced from any normal index p subgroup of G. Then Endg (V) = 0.

Proof. Assume on the contrary that we can find A € Endz;(V)\E . We may assume that A4 has order
p by Lemma 2.3.2(g), and we also may assume E = E? since this leaves dimz Endg (V) unchanged.
Then H4 has index p in G and we have p distinct subspaces V, of V. that are stabilized by H4. By
hypotheses and Lemma 2.3.1, the restrictions p;|n, are absolutely irreducible. This already implies
p = 2. We also find that the extension of p, by p; becomes trivial when restricted to H4, and that
these restrictions must agree with the two distinct V. It follows by Frobenius reciprocity that we have
a nonzero map Indf,A (p2lm,) — p fori = 1,2. By Lemma 2.3.1(b)(4) all simple subquotients of
IndgA (p2|m,) are isomorphic to p,. But this is absurd, since p is nonsplit and p; is not a submodule of
p. We reach a contradiction even for p = 2. O

3. Deformations of Galois representation

This section recalls and augments the classical deformation theory [Maz89] of Mazur. Throughout we
fix a profinite group G which often is G for K a p-adic field.

In Subsection 3.1, we fix the basic categories relevant for all deformations functors that we shall
study. We also recall some results on formal smoothness. Subsection 3.2 recalls Mazur’s deformation
theory and some extensions for residual representations G — GL,,(x) where « is a finite or a local
field. Subsection 3.3 studies dimension 1 points on universal deformation rings. Except for some results
on equicharacteristic dimension 1 points, all results are well documented in the literature. Subsection
3.4 gives a criterion for the determinant functor to be smooth. For this, we recall Tate local duality for
coeflicient modules over local fields.

3.1. Basic categories and functors and formal smoothness

The field « and the ring A: From now on, « is either (a) a finite field of characteristic p that carries the
discrete topology, or (b) a local field with its natural topology and with residue characteristic p. In the
latter case, « is a finite extension of Q,, or a finite extension of the formal Laurent series field F, ((¢)).
Depending on case (a) or (b), we define a topological ring A. In case (b), we set A = «. In case (a), A
is a Noetherian complete local ring with residue field « and equipped with the topology defined by its
maximal ideal my. _

The categories Ar, and Ar,: By Arp, we denote the category of Artinian local A-algebras A with
residue field isomorphic to x and with local A-algebra homomorphisms as morphisms. For any local
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ring A, we denote by my its maximal ideal. We regard any object A of Ar, as a topological ring. In
case (a), we give A the discrete topology. In case (b), the ring A is a x-algebra of finite k-dimension and
we give A the unique topology that arises from any structure on A as a normed «-vector space. This
topology on A is relevant whenever we talk about continuous maps to A or to any GL,,(A). We further
define Ar as the category of complete Noetherian local A-algebras with residue field « and with local
homomorphisms as morphisms. Any object of Ar is a limit of objects of Ar,. We equip an object A
of Arx with the weakest topology such that all maps A — A/m’}, m > 1, are continuous. In case (a),
this simply means that A carries the my4-adic topology.

In Ary, the coproduct of two objects A, A’ is their tensor product A ®, A’. For A, A’ € jrA, the
coproduct is the completed tensor product AQ A’ := lim A/m’l ®\ A’/m,,. Note that by [Gro64,
Lemma Opy.(19.7.1.2)] the ring A®,A’ lies again in XrA. From the discussion around the Cohen
structure theorem in [Stal8, §0323], one also deduces:

Proposition 3.1.1. Let A € Arpand h = dim, my /(my, mi). Then there exists a surjective continuous

homomorphism in ,Zl\r,\from the power series ring A[[x1,...,xp]] onto A. Moreover, h is minimal with
this property.

Further properties of Ar and .Zr,\ can be found in [Stal8, §06GB] and [Stal8, §06GV].

Functors on Ar, and .Zr,\: We follow [Sch68]; see also [Stal8, Chapter 06G7]. By «[e] :=
k[X]/(X?) € Ary, we denote the ring of dual numbers over k. Recall from [Sch68] that a small
extension in Ar is a surjection f: B — A in Ar, whose kernel ker f is isomorphic to « as a B-module,
and in particular ker f is annihilated by mp and thus (ker £)? = 0.

In the following, we consider covariant functors F from Ar, or uzl\r,\ to Sets such that F(x) is a
singleton.

Definition 3.1.2. A covariant functor F': le\rA — Sets is called continuous if the canonical map
F(A) — lim, F(A/m',) is bijective for all A € Ar,.

It is straightforward to see that there is a bijection between continuous functors Ar A — Sets and
functors Arp — Sets given by restriction. From now on, all functors on Arx will be continuous and
we use the same symbol to denote them and their restriction to Ar,. For any B € Ar, we denote by
hg: Arp — Sets the functor which is given by hp(A) := HomjrA(B, A). A functor F: Arp — Sets

is representable if it is isomorphic to hp for some B € Ar.
Definition 3.1.3 [Sch68, Definitions 2.2 —2.7]. Let F, F’: ./Zl\rA — Sets be functors.

(a) The tangent space of F is ty := F(k[&]).

(b) A natural transformation F’ — F is called smooth if for all small extensions B — A in Ar,, the
map F’'(B) — F’(A) Xp(a) F(B) is surjective; cf. [Sch68, Definition 2.2].

(c) A pair (A, ¢) consisting of an object A in .Zr,\ and a smooth natural transformation &: hy — F is
called a hull of F if the induced map #,, — fF on tangent spaces is bijective; note that by Yoneda &
corresponds to some element of F(A).

Hulls are unique up to isomorphism but in general not up to unique isomorphism. If F is representable
by some A € Ar,, it clearly has a hull. Moreover, one has tp = HomK(mA/(mf‘, mMy), k).

Definition 3.1.4 (Formal smoothness). We recall two notions of formal smoothness

(a) A homomorphism R; — R; of topological rings with R; and R; linearly topologized is called
formally smooth if for every commutative solid diagram
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R2*>A

N

R]HB

of homomorphisms of topological rings with B a discrete ring and B — A surjective with square
zero kernel, a dotted arrow exists which makes the diagram commute, cf. [Stal8, Definition 07EB]

(b) A morphism ¢: Y — X of locally Noetherian schemes is called formally smooth at y € Y, if the
induced morphism (’)X o(x) = (’)y .y of topological rings is formally smooth.

Formal smoothness is related to smoothness of natural transformations between representable func-
tors:

Proposition 3.1.5 [Sch68, Proposition 2.5(i)]. Let Ry — Ry be a morphism in ./Zl\rA, and set h =
dim R, — dim R. Then the following assertions are equivalent:
(i) R1 — Ry is formally smooth.
(ii) The induced map of functors hg, — hg, is smooth.
(iii) There is an isomorphism R [[x1,...,xn]] — Rz of Ri-algebras.
If any of (i)—(iii) holds, then h is called the relative dimension of R, over R.
Note that (ii)=(iii) is from [Sch68] and that (iii)=(i)=(ii) are straightforward. A consequence of
(ii))=(i) of Proposition 3.1.5 is that a morphism in Ar, is formally smooth if the lifting property in
Definition 3.1.4(a) holds for all small extensions in Ar .

3.2. Mazur’s deformation theory and extensions

Our presentation of deformation functors follows Mazur [Maz89] and Kisin [Kis09]. Consider a con-
tinuous representation

5: G — GLy(x). 7

We write ad; for Mat,,, (k) together with the action of G induced by 5 composed with the conjugation
action of GL, () on Mat,,», (x). By ad?, we denote the subrepresentation on trace zero matrices and by
ﬁ[—, the quotient modulo the center . In the following, for a representation p into GL,,(A;) and a ring
homomorphism A; — A we write p ®4, A, for the composition of p with GL,(A;) — GL,(A3), cf.
[KisO3, p. 433].

Definition 3.2.1. [GouO1, Definitions 2.1 and 2.2]. Let A be in Ar, with residue map A — «.

(a) A lifting of p to A is a continuous homomorphism p: G — GL,(A) with p ®4 k = p.

(b) The symbol I',(A) denotes the kernel of the canonical homomorphism GL,,(A) — GL,, (k).

(¢) A deformation of p to A is aT',,(A)-conjugacy class of a liftings of p to A.
(d) The deformation functor Dg, or Dy p if we wish to indicate A, of p is defined as

D5: Arp — Sets, A+ {p: G— GL,(A) : p is a deformation of p},

In the following, for a profinite group H and a continuous H-module M we denote by H'(H, M) the
i-th continuous group cohomology of H with coefficients in M. If M is discrete, details can be found in
[NSWO0O0, Chapter 1]. For other coefficients we refer to the introduction of Subsection 3.4.

The next definition is important in relation to the finiteness of Ds(F[£]).

Definition 3.2.2. The following finiteness conditions go back to [Maz89, §1.1].

(a) A profinite group G has property ®,, if H '(H, IF,,) is finite for all open subgroups H of G.
(b) The representation p satisfies condition ®5 if dim, H (G, ady) is finite.
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Proposition 3.2.3. The following assertions hold:

(a) The profinite group G satisfies Mazur’s condition @ .

(b) If a profinite group G satisfies @, then ®5 holds for any residual representation p of G.

Proof. Part (a) is immediate from class field theory. If « is finite, then Part (b) is well-known; to deduce
it one applies the inflation restriction sequence to G > H := Keradg. If « is a local field, the assertion
is proved later in Corollary 3.3.6. We invite the reader to check that there is no circular reasoning
involved. m}

The versal hull of Ds: Let p be as in (7). The following result for finite « is due to Mazur, with an
extension due to Ramakrishna. For « a p-adic field, a proof is given in [KisO3, Lemma 9.3] by Kisin.
The proof for local fields of positive characteristic is analogous.

Theorem 3.2.4 [Maz89, 1.1-1.6], [GouOl, Theorem 3.3, p. 53, Theorem 4.2]. Assuming condition @,

the following hold:

(a) One hastp, = H'(G, ad;), and h := dim, H'(G, ad;) is finite.

(b) The functor D5 has a hull; we write p;’,)er: G—>GLn(RXfi%) for a representative of its versal
deformation and Rj\e% € .,Zl\r,\ for a versal deformation ring of p.

(¢) If k = Endyp, then Dy is representable; we write p;i)ni": G— GL”(R;‘\“%’ ) for a representative of

its universal deformation and R}‘\“g € Ar for the universal deformation ring of p.

(d) There is a surjection ¢: A[[x1,...,xp]] — Rxe% in Ar A such that Ker ¢ is generated by at most
dim, H*(G, ad;) elements.

(e) If H*(G, ads) = 0, then the natural map A — RVCTO is formally smooth of relative dimension h, or
equivalently, the natural transformation D5 — hp, [p: G — GL,(A)] = A is smooth.

Remark 3.2.5. The existence of Rj\eﬂ (and of pver) as a profinite topological ring does not require
condition @z. The latter is needed for the rings to be Noetherian, that is, to lie in Ar A-
We shall later need to understand the change of Ry\e% under maps A — A’

Lemma 3.2.6 (Cf. [Wil95, p. 457]). Let A — A’ be a finite injective homomorphism of complete
Noetherian local rings with finite residue fields k and «’, respectively. Let o’ := p ®, k’. Let Rx be a
hull for D 5 and Ry for D . Then Ry = Ry @5 A,

3.3. Deformation rings at dimension 1 points

Suppose « is finite. Then for R in Ar A and we call x € Spec R with corresponding prime ideal p, C R a
point of dimension 1 if R/p, has Krull dimension 1. For such x the field «(x) is either a finite extension
of Q,, or of F,,((¢)). It has been first exploited by Kisin, for example, [Kis03], that points x of dimension
1 with k(x) D Q, on universal deformation rings can be much easier to understand than the closed point
SpecF. We recall this method and work it out further for dimension 1 points x with k(x) > F,((¢)). The
latter points will be an essential tool in our work.

Let « be a finite field of characteristic p with the discrete topology. Let A be the ring of integers of a
finite totally ramified extension L of W(k)[1/p]. Let p: G — GL, (k) be a continuous representation
that satisfies @5 with versal deformation

ver : G —GL, ( Rver

Consider a continuous homomorphism f: R"ei — E of A-algebras for a local field E. Denote by p

the prime ideal Ker f. Then via f the field E i 1s a finite extension of the fraction field E¢ of Rxerﬁ /P,
and ,0Ver induces a representation pr: G — GL,,(E). We may and will assume that £ = E; and that

PE (G) C GL,(O) for O the ring of integers of E — the latter by using strict equivalence.
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Suppose first that E is of characteristic 0, in which case we follow [Kis03, §9]. Then f factors via a
map f[1/p]: RVer [1/p] — E which is an L-algebra homomorphism, and E is a finite extension field

of L. We denote by R the completion of Rf,%[ 1/p] at the kernel of f[1/p]. Then E is the residue field
of R. From the finiteness of L — E, one easily deduces that in fact Ris naturally a E-algebra. Moreover,
we have a continuous homomorphism p: G — GL,, (R) induced from pVer Clearly, p is a deformation
of pg. Using Remark 3.2.5, this provides one with a homomorphism

@: RﬁrpE —R.

Suppose now that E is of characteristic p. Then E is isomorphic to a Laurent series field «’((x)) for
a finite extension «” of the finite field x and with ring of integers O = «’[[x]]. Denote by p» the map
pE with the range restricted to GL,,(O). It is a deformation of p’ := p ®, k". Let A" = A ®w () W(«’),
and consider the map

Lemma3.2.6 f®

fE Rveri/ Qn E = Rver Qp E —) E.ree I—)f(r) e.

In the present case, we define R as the completion of Rxa;r,ﬁ, ®n E at ker f. By definition, Risa

ver

E-algebra with residue field E. Moreover, Py ®Re R defines a continuous representation
P

p: G— GL,(R)
which is a deformation of pg. Again, this yields a homomorphism
¢: Rg,. —R.

Theorem 3.3.1. The map ¢ is formally smooth. If Ry\erﬁ is universal, it is formally étale, and hence an
isomorphism, by Proposition 3.1.5.

Remark 3.3.2. Before we give the proof, let us explain a difference depending on the characteristic of
E, that will be resolved in Lemma 3.3.5. Suppose that Ry is a universal ring. Let X2 = Spec Ry,
and let x € Xuniv be a point of dimension one so that E = k(x) is a local field.

If E has characterlstlc zero, that is, if x lies on the generic fiber of X““D' then R is the completion

of the local ring (’)X;i\ng . Now, by Theorem 3.3.1 this completion is 1somorphlc to the universal ring
P

R"EerpE and so from the latter one can transfer many ring-theoretic properties to O yamiv
o

—univ —~
If on the other hand E has characteristic p, that is, x lies on the special fiber X, 5, then R is not

isomorphic to the completion (94"1» of the local ring Ogum\ . It follows, however, from Lemma 3.3.5
A Rl A ol

below that we have an isomorphism R= OAmu n [[T]]- Via this route, Theorem 3.3.1 allows one again
A yoRl

Ver
to deduce ring-theoretic properties of (’)X;‘\lj%’ x fromRg .

Remark 3.3.3. In Corollary 4.8.8, we provide an analog of Theorem 3.3.1 for pseudodeformations.

Proof of Theorem 3.3.1. If Char E = 0, then this is [Kis0O3, Proposition 9.5]. We give the proof if
p = Char E > 0. It closely follows that of [Kis03, Proposition 9.5]. We consider a commutative diagram

Rver - S A (8)

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.82

Forum of Mathematics, Sigma 17

with A € Arg and I C A is a square zero ideal, with the solid arrows given, and we seek to construct a
dashed arrow g so that the two triangular subdiagrams commute. If Rverp is universal, we also have to
show that the dashed arrow is unique. Note that A and I are finite-dimensional E-vector spaces. Also,
the bottom arrow induces a pair of homomorphism Rvel, — A/I and E — A/I, where the second one
is simply the E-algebra structure map.

By possibly conjugating p by some matrix inI',, (E), we can assume that p 7 ® R, R= p. Following
the proof in [Kis03, Proposition 9.5], one shows that there exists an O-subalgebra A° of A such that

(a) A° is free over O of rank equal to dimg A and A° ®p E = A,

(b) the image of A° under A — E is O, and so A° € .Zr,(r

(c) the image of p) ®ryr, A lies in GL,,(A°),

(d) the homomorphism R Ve,rf, — A/I factors via A°/I° where I° = I N A°.

Write p - for pp7 @ Ry, A considered with its image in GL,,(A°). Then p 4- reduces to p"er ®Rver A°[I°
modulo /°, and thus by the versality of Rverf, there is a homomorphism g°: R Verf, Z5 A° such that

ver

Py Rver A° is strictly equivalent to p 4-. Let g: R — A be the homomorphism obtamed from g° ® id
under completlon It is now not difficult to see that both triangles in diagram (8) commute with this
choice of g.

It remains to show the uniqueness of g if R Verf, is universal. The argument in [KisO3, Proposition
9.5] shows that there is in fact a directed system An, n € Ny, satisfying (a) — (d) such that | J,, A;, = A.
Now if one has gl, g2 completing the diagram (8) to two commutative diagrams, there have to be
homomorphisms g7, g5 : R"el, — A; for n sufficiently large that give rise to g; and g», respectively.
The corresponding deformanom G — GL,(A;) of p’ do agree over A and hence they will agree for n
sufficiently large, that is, they represent the same strict equivalence class. Because R Xﬁrﬁ, is universal,
they define the same ring maps g7 = g5 and hence g; = g>. )

Applying Theorem 3.3.1 in the simplest nontrivial case will deduce the following corollary that will
be used in the proof of Lemma 3.3.5.

Corollary 3.3.4. Let « be finite, let k' be a finite extension of k and let L = «’((s)) be the Laurent
series field over k' with uniformizer s. Let q be the kernel of the multiplication map L ®, L — L. Then
X — s®1—1® s induces a continuous L-algebra isomorphism

v: L[[X]] — L®L :=lim(L®, L)/q".

n

Proof. We first show that  is an isomorphism in the case ¥’ = k. Let G = Z be the free profinite group
on one topological generator vy, and let 5: G — GL(«) be the trivial representation given by y + 1.
Because H' (G, k) = « and H*>(G, k) = 0, we have R;‘\“'ig = A[[T]] for the resulting universal ring with
universal deformation p*: G — GL|(A[[T]]) given l;y vy 1+T.

Let f: R;’\fiﬁv = A[[T]] — L be the specialization that is given by reduction mod p composed
with the injection ¢: k[[T]]—L = «((s)),T — s. The corresponding representation at L is py: I’ —
GL{(L),y — 1+ s, and for its universal ring we find Rz‘i;’L = L[[X]] with universal representation

pp: T —= GLi(L[[X]]), vy l+s+X.

Let R be the completion of R““g ®a L = «[[T]] ®« L at the kernel q of the homomorphism
Sr:k[[T]]®« L — L thatmaps g(T) ® h € «[[T]] ®« L to g(s)h € L. Under fi, the nonzero elements
of k[[T]] ® 1 map to L*, and therefore «[[T]] ®, L — R extends to k((T)) ® L — R, and completion
gives an isomorphism «((7))®,L — R. We now invoke Theorem 3.3.1. It asserts that the L-algebra
map

LI[X]] = Ry, — R =«((T)BL,
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that, by its very definition, sends p} (y) = 1+ s+ X to (p" ®x L)(y) = 1+ T ® 1, is an isomorphism.
Because s on the left is mapped to 1 ® s on the right, we find that X — 7' ® 1 — 1 ® s. This proves the
assertion on ¢ for k’ = k.

To complete the proof, it remains to explain the reduction of a general finite extension " O « to the
case K = « just treated. For this observe that L = «’((s)) = «((s)) ® «’ so that L ®, L — L can be
written as the map

K(s) @ k() ® (k' @ ') = &'((s), [f®g®a@B — fgap.

Since «’ D « is a finite Galois extension, the ring A := k’ ®, «’ is isomorphic to the product of fields
(«")[¥¢1 "and A contains a primitive idempotent corresponding to each factor. Under the multiplication
map A® A — «’,1® u — Ay, all but one of these map to zero. Hence, all but one of these primitive
idempotents lie in g, and so they vanish under completion at q. One deduces L®, L = L®, L, and this
completes the reduction to ” = k. O

The following result is needed in our applications of Theorem 3.3.1. Our focus is on the equicharac-
teristic case.

Lemma 3.3.5. Let R be in .,Zl\r,( so that Char R = p, let p € Spec R be a point of dimension 1 so that
dim R/p = 1. Let k(p) = Quot(R/p), and consider the homomorphism

¢: R k(p) = «k(p), r®ar (rmod p)-«a.

Set q := ker ¢, and denote by R the completion of R ®, k(p) at the maximal ideal q and by ﬁp the
completion of Ry at Ryp. Then the following hold:

(a) One has an isomorphism Ep [T] = R.
(b) If R is formally smooth over k(p) of dimension d, then Ry, is regular of dimension d — 1.

For a variant of Lemma 3.3.5 in the nonequicharacteristic case, see [BIP21, Lemma 3.36].

Proof. Consider R — R, — Ep. Tensoring with «(p) over k, it yields a diagram

R @ k(p) ————= Ry ® k(p) ——= Ry @ k(p) = (lim Ry/Ryp") ®y k()

R =1lim(R ® k(p))/q",

where ¢ denotes completion and where the dashed arrows " and ¢”” will now be constructed. For the
existence of ¢/, we use the universal property of localization. Thus, we need to show that R\p ® 1 is
mapped under ¢ to the units in R. The ring R is local with residue map induced from ¢, and therefore
we need to show that ¢ o t(R\p ® 1) lies in x(p)™, but this is clear from the definitions and the inclusion
R/p—«(p). Regarding "/, we first note that p ®, «(p) maps to q under ¢ and hence p" ®, x(p) to q".
Hence, the existence of ¢” gives a compatible system of homomorphisms R,/Rpp" — (R ®, «(p))/q",
and this provides the construction of ¢”’.

Let r denote the reduction map x: R — k(p), set ¢’ =mod and ¢”" = 7 o” and define q’ = ker ¢’
and q” = ker¢”. Then the arguments just given provide a commutative diagram with canonical
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isomorphisms in the bottom row

R 9y K(p) ——————> Ry @y k(p) ———= Ry @, k(p)=(lim Ry/ Ryp") &4 x(»)

! |
N t/ ‘ L" |
y v

R=lim(R ®, (p))/q" = R’ :=lim(R, ® k(p))/q"" —— R” =lim(R, ®, k(p))/q"",

where by slight abuse of notation we denote the middle and right vertical maps again ¢ and :”’. Note that
by the Cohen structure theorem in equal characteristic the ring ﬁp contains k() as a subfield. Focusing
on the right-most arrow and using that R, is regular if and only if Ep is so, it will suffice to prove the
following assertion.

Let R be a complete Noetherian local «x(p)-algebra with residue field «(p) and residue homomorph-
isma: R — «(p), let y: R ®, k(p) — «(p) be the homomorphism r ® x + 7 (r) - x, let Q = kery
and let R be the completion of R ®, k(p) at Q. Then we assert that R = RI[]].

To prove the assertion, note first that if S; and S, are «(p)-algebras with maximal ideals §3; and 3,
such that x(p) is in both cases the residue field, then the completion of S := &1 ®,(p) S2 at the maximal
ideal m := Py ®y(p) S2 + S1 O« (p) P2 is isomorphic to

1{i_m$1/‘l3f’§’,<(p) {EHSZ/SB;'

If furthermore S; is complete with respect to By and if limS>/P) = «(p)[[T]], then the
completion of & at m is S([[T]]. We apply this to S| = R, & = «(») ® «(p), P =
ker (k(p) ®« k(p) — «(p),x ® y = xy). Then by Corollary 3.3.4, we have lim S, /B) = «(p)[[T]],

and we deduce R = RIITT. O

Let us record the following consequence of Theorem 3.3.1 and Lemma 3.3.5.

Corollary 3.3.6. Suppose E is a local field and p: G — GL,,(E) is a continuous homomorphism. Let
K be the (finite) residue field of E, and let p be the semisimple reduction of p to k. Then

dimg H'(G,ad,) < dim, H'(G,ad;).

Proof. The corollary will follow from the simple fact that the rank of a coherent sheaf cannot decrease
under specialization: Let O be the valuation ring of E. By possibly passing to a finite extension of E,
we may assume that E” contains a p(G)-stable O-lattice whose reduction is p. Let R := R ;55 - We may
assume that R is Noetherian, that is, that dim, H' (G, adﬁ) is finite since else there is nothlng to show.
Let also R and R’ := Rf,rp be as in Theorem 3.3.1, and denote by f a map f: R — O given by the
versality of R.

Denote by ﬁR jo = lim, Qg Jmn) /O the module of continuous Kéihler differentials. Since R is a
quotient of a power series ring over O in finitely many variables, as an R-module Qxr Jo is finitely
generated. By Nakayama’s lemma, we have

dimg ﬁR/O ®r E < dim, ﬁR/O ®R K.

Let p = (Ker f), let mg = Ker(R, — E), with the map induced from f, and let g be the maximal

ideal of R. Then by [BKM21, Lemma 7.3], we have ﬁR/o Qr E = p/p* ®r E = mE/m , and
furthermore from Lemma 3.3.5 and Theorem 3.3. .1, again combined w1th [BKM21, Lemma 7.3], we
obtain mE/mE GF = mE/mE = QR/E QpE — QR//E ®pr’ E, where the last map is surjective. Hence,

dimg Qg /g ® E < 1 +dim, Qo O .
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By [Maz97, §17, §21], the dual of ﬁR/@ ®R K is the mod mp-tangent space of R at mg and the dual

of ﬁR, JE ®r’ E is the tangent space of R’ at mp/, and the latter can be identified with H (@G, ads) and
H'(G, ad,), respectively. This proves the corollary. O

3.4. Relative formal smoothness of the determinant functor

A generalized Tate local duality: We recall a generalization of Tate local duality from [Nek06]. Let
first G be a profinite group and M a discrete G-module. Then one defines the continuous cohomology
H (G, M) as lim,, H(G/U,MY), where U is the set of all normal open subgroups of G; they form
a basis of open neighborhoods near the identity of G. This applies for instance if M is a k-vector space
with a continuous G-action and if « is finite. Suppose, however, that « is a local field and that M is
a finite-dimensional k-vector space that carries the natural topology induced from « and a continuous
k-linear G-action. Let O be the valuation ring of x with maximal ideal m» and finite residue field
F. Because G is compact a standard argument shows that M contains a G-stable O-lattice L. Suppose
that G satisfies the finiteness condition (F) that for all open subgroups U C G and all i > 0 one has
dimp H i(U ,IF) < co. In this case, one defines continuous cohomology via

H(G,M) :=limH' (G, L/m} L) ®; «,

n

and one shows that this definition is independent of any choices; it follows from [Nek06, 4.2.2] that this
definition agrees with the one used in [Nek06]. Note that one also has H (G, M) = Z/(G, M) /B (G, M),
where Z/ (G, M) and B/ (G, M) denotes the continuous i-cocycles and i-coboundaries, respectively, and
one has H*(G,M) = MS. For i = 1, Z' (G, M) is the group of continuous maps c: G — M with
c(gh) = gc(h) + c(g) for all g,h € G. Note, also, that all 1-coboundaries are continuous by the
continuity of the action of G on M; the latter no longer holds for n-coboundaries with n > 2.

The next result is a generalization of Tate local duality from finite field to local field coefficients. In the
form needed, it is due to Nekovér. Let V be a finite-dimensional «-vector space with the topology induced
from «, and suppose that V carries a continuous «-linear action by G k. Write V" for the dual Hom, (V, «)
of V and V(1) for the twist of V by the cyclotomic character. Set h/ (K, V) := dim, H/ (Gg, V).

Theorem 3.4.1 (Tate and Nekovér). The following assertions hold:
(@) One has h/ (K,V) < oo for j € Zand h/(K,V) =0 for j ¢ {0,1,2};
(b) For j € {0, 1,2} one has natural isomorphisms
H* (G, V¥ (1) — H/(Gx.V)";
(c) One has the Euler characteristic formula
Z(—l)fhf(l(, V)=-[K:Q,] - dimg V.
j=0

Proof. If « is finite, the above statement is just the usual Tate local duality. If « is local, let O be its
valuation ring. Because Gk is compact, one can find an O-lattice 7 in V that is stable under Gg.
Let j > 0. Then [Nek06, Theorem 5.2.6] asserts that each H/ (Gg,T’), T’ € {T,TV(1)}, is a finitely
generated O-module and moreover it gives a spectral sequence

Extl, (H* 7 (Gk,T"(1)),0) = H™ (Gk,T). )

Because O is regular and of dimension 1, the groups Exté9 (-, O) are finitely generated O-torsion modules
and Ext, (-, O) = 0 for i > 2. After tensoring the spectral sequence (9) with x over O, Parts (b) and (a)
are clear. Part (c) follows from [Nek06, Theorem 4.6.9 and 5.2.11] applied to 7, again after tensoring
with « over O. O
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The determinant map: The determinant of representations induces a natural transformation
det: D/j g Ddetﬁ (10)

that maps the classof p: G — GL,,(A) to the class of detop. The induced map on adjoint representations
is the trace map in the short exact sequence

0—ad’ — ad; — adge = k—0. (11)
Using that ad; is self-dual it is easy to see that the sequence dual to the sequence (11) is

diag —
0—« — ad;—ad; — 0. (12)

We have the following explicit result on det for G = Gk and K a p-adic field with d = [K : Q,].

Lemma 3.4.2. Suppose that H*(Gg, ﬁﬁ(l)) = 0. Then det: Dy — Dyeyp is smooth of relative dimen-
sion d(n* — 1). This holds in particular, if p A n, k= Endgge(p) and (), € K.

Proof. Let A — B be a small extension in Ar,. Let I be its kernel so that I? ¢ myul = 0. For the
relative smoothness, we need to show the surjectivity of

Dj(A) — Dps(B) Xpyeys(B) Daerg(A)-

So suppose we are given deformations pp € Ds(B) and 74 € Dyeip(A) with detpp = 74 ®4 B €
Dyeip(B). We need to find a deformation p4 € D;(A) such that ps ®4 B = pp and detpy = 74.

Recall from [Maz89, p. 398] that there is a canonical obstruction class O(pp) € H*(Gg, ady,) ® 1,
which vanishes if and only if there exists a deformation of p to A that lifts pp. Because of the existence
of the deformation 7, that maps to detpp, the obstruction class O(detpg) € H?*(G K> adgets) ®« 1
vanishes. By Theorem 3.4.1, the long exact sequence of Galois cohomology arising from the sequence
(11) gives the left exact sequence

H2
H(G,add) —= HX(G,ady) " H2 (G, k) —= 0

By Theorem 3.4.1 the sequence is dual to the right exact sequence

HO(diag(1
0 — HO(Gg k(1)) S

H"(Gk.ads(1)) — H(Gk.ads(1)),
that arises from the sequence (12). By our hypothesis, the map H°(diag(1)) is an isomorphism, and
so by duality the same holds for H?(tr). By a short explicit computation, one sees that O(pg) maps to
O(detpg) = 0 under H>(tr) ®, id;, and this implies the vanishing of O(pp).

We have now proved that there exists p/, € D;(A) mapping to pp € D;(B). However, this lift need
not satisfy detp/, = 74. At this point, we note that our hypothesis in fact implies that H 2(Gk, adg) =0
so that

H'(Gk,ads) — H'(Gk,adges) = H' (G, k) (13)

is surjective. Now, detp;x and 74 are deformations of 75 and the space of all such deformations is a
principal homogeneous space under H' (G, «), that is, the tangent space of the deformation problem,
by [Sch68, Remark 2.15], and likewise the deformations of pp form a principal homogeneous space
under H' (G, ad;). Since the map (13) is surjective we can thus alter p;‘ by a class in H'(Gg, ads)
into some other deformation p4 of pp that also satisfies detps = 74. This completes the proof of the
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formal smoothness. Note also that if p [ n, then the above two sequences are exact on both sides and
hence H%(Gg, ads(1)) =0.

By Proposition 3.1.5, it follows that the natural map Rg:tipY - Rg“i" is formally smooth of relative
dimension i = h! (K, ads) — h'(K, adgeys). It remains to identify # with the number in the lemma. Since
the map (13) is surjective, by the long exact sequence for H* (G, -) applied to the sequence (11), we

deduce
h=h'(K,ad}) — h°(K,adgp) + h°(K. ads) — h°(K,ad%) = k' (K, ad}) — 1+ 1 - k(K. ad)).

Since h?(K, adg) = 0 by hypothesis and the duality statement of Theorem 3.4.1, the Euler characteristic

formula of Theorem 3.4.1 implies 7 = d(n> — 1).

The last assertion is straightforward. If p } n, then the sequence (1 1) splits; the second assumption now
yields H%(Gg, adg) = 0. If now « has characteristic zero, then 0 = H*(Gg, k(1)) = H*(Gg, ads(1))
and we are done. If on the other hand « has characteristic p and {,, € K, then adf()3 = adg(l) and we are
done, as well. O

Let p;: Gk — GL;(x) be a continuous character, and denote by po: Gk — GL (k) the trivial
character. If « is finite, denote by p;: Gk — GL{(A) the Teichmiiller lift of gy, if « is a local field,
set p1 := pi. There is a natural isomorphism D, — D, mapping a deformation p: Gx — GL(A)
to p ® p1. As already observed in [Maz89, §1.4], D, is representable by the completed group ring

Al [G??’p 1], where G??’P is the completion of the abelianization sz of G g along normal open subgroups
of p-power index; the universal homomorphism

Gk — (A[[GP1)*

factors via G?’p and sends g € G??’p to itself as a unit element in A[[G;“?’p 1]. The reciprocity
homomorphisms of local class field theory, yields an isomorphism

b
rec?: K*P — G;’p,

where K*P is the pro-p completion of the multiplicative group K*. The torsion subgroup of K*-? is
naturally identified with the group - (K) of p-power roots of unity in K. Combining this with det from

diagram (10), we have the following chain of natural ring homomorphisms in Ar

Alpp=(K)] — A[[K*P]] — R{Y— Ry (14)

Corollary 3.4.3 (Cf. [Nak 14, §4]). Let « be finite or a local field of characteristic p, and suppose A = k.
Suppose that H*(G, ads(1)) = 0. Then the following hold:

(a) Both morphisms in diagram (14) are formally smooth.
(b) Both morphism in the following induced diagram are formally smooth:

A= Alpps (K)lrea — ALK P lrea — (RYgegphed — (RY S )rea:

The relative dimensions in both cases are d + 1 and d(n* — 1), respectively.
Proof. Let q := ord up~(K). By Lemma 3.4.2, the natural map Rgg;—mgniv is formally smooth of

relative dimension /2 = d(n? — 1). From the theory of local fields, one has K7 = ZLK:Q”]H X ppe (K),
where u = (K) is a finite cyclic group of p-power order g. By our hypothesis on the characteristic of «,
the right-hand morphism in diagram (14) can be identified with

k[x]/(x?) = k[[x1, ..., xa,x]]/(x7),
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and parts (a) and (b) for it are now obvious. To see the second part of (b), note that the kernel of

the reduction map k[x]/(x4) — « is nilpotent. Hence, the kernel of the induced map ¢: R}~ —

A.p
R X’% ®x[x]/(xa) K is nilpotent as well, and the map R Xe% — (R Xf%),ed factors via ¢. At the same time,
formal smoothness is preserved under base change. Hence, xk — R Xe% ®x[x]/(xa) K is formally smooth,
and therefore R |- ®[x](xa) k is regular and in particular a domain. We deduce that R ;- ®,[x}/(xa) K —

(R y\erﬁ)md is an isomorphism, and this completes (b). O

We end this subsection with a computation of H(Gg, ad; ® y) and a variant of Lemma 3.4.2 for
certain reducible deformations.

Lemma 3.4.4. Let E be a finite or local field with its natural topology. Denote by p;: Gk — GL,, (E)
pP1L C
0 p2
x: Gg — E* be a continuous character and write 1 for the trivial character. Suppose that

continuous Galois representations for i = 1,2, and let p = ( be an extension of p| by ps. Let

(a) Homg (p1,p2 ® x) = 0 and Homg, (p2, p1 ® x) = 0.
(b) Fori=1,2, we have Endg, (pi) = E if ¥ = 1 and Homg, (pi, pi ® x) =0if y # 1.
(¢) If x = 1, then the class c € ExthK (p2, p1) is nontrivial,

Then Endgy (p) = E if x = 1 and Homg, (p,p® x) =0if x # 1.

Proof. To determine Homg, (p, p ® x), we consider A;; € Maty,x,, (E) for 1 <, j < 2 such that

oL (A An)fpr c|_(p1®x c®x |\[An Ap
Az A J\ 0 p2 0 pex)\An An

_[Aupr Anic+Appy| _(p1®x-An+c®x- Ay prOY -An+c®yx-An
Az2p1 Azic+ Appr pP2® x - Azl pP2®x - Axn '

From hypothesis (a) and considering the (2,1)-entry, we deduce A;; = 0. From hypothesis (b) and
considering the (1,1)- and (2,2)-entries, we deduce, depending on y the following: If y = 1, then A;;
are scalar for i = 1,2, say equal to 4;1,, for some A; € E, respectively; if y # 1, then both A;; = 0.
Considering the (1, 2)-entry, we obtain the relation

Ajic—c®x A =p1® x - A — Apps.

If y # 1, the left-hand side is zero, and from (a) we deduce Aj, = 0 so that the proof in this case
is complete. If y = 1, then we have (1] — A2)c = p1A;p — A1202. Now, g — p1(g)An — Appa(g)
is a 1-coboundary with values in Homg, (02, p1), and so if A; # A, the last condition implies that
c is the trivial class in Extgk (p2, p1) which is excluded by hypothesis (c). This shows 1; = A;, and
Ajp € Homg, (p2, p1), and hence A, = 0, again by (a). This completes the proof. O

For Proposition 5.3.3, we also need a variant of Corollary 3.4.3 for certain reducible p. So for the
remainder of this subsection let p,: Gk — GL,, (k), i = 1,2, be absolutely irreducible, and assume
that p, is not isomorphic to p,(j) for j € {0, £1}. Let further g be a nonsplit extension of dimension
n = np + ny that fits into a short exact sequence 0 — p; — p — pp — 0. Define the subfunctor
Dj,cp € D by mapping A in Ar to the set of I', (A)-conjugacy classes of liftings p4 of p to A such
that p4 stabilizes an A-direct summand P4 of A" of rank n; so that the induced representation of p4 on
P 4 is a deformation of p1; because of the shape of p the deformations described by D, - are precisely
the ‘reducible’ deformations of p. In fact:

Lemma 3.4.5. Dy ,c; C Dy is a relatively representable subfunctor in the sense of [Maz97,§19].
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Proof. In lack of a reference, we give a proof. Given a diagram A — B « C in Ar, one has to show
that the induced diagram

Dpycp(Axp C) — Dp,c5(A) Xp, 5(8) Dpcp(C)

| |

Ds(AxpC) Ds(A) Xp,(8) Ds(C)

is a pullback in the category of sets. To see this, suppose (pa,0c) is an element in the top right
and pax,c in the bottom left, both mapping to the same element in the bottom right. Then (pa, pc)
gives rise to a pair of subrepresentations (pi‘, plc) that are deformations of p; and a pair of quotient
representations (pfx, p2c) that are deformations of p, and each pair maps to the same element on B,
say p}g and pé, respectively. By our hypotheses on the p; the respective deformation functors D, are
representable so that each pair patches to a deformations pAXB ¢ of p1 and piXB c of ppon AXxpC,
respectively. It now follows from [Urb99, Theorem] that p sx ;¢ lies in Dy, c5(A xpg C) with pl‘XB cas
a sub and pix,;c as a quotient representation. O

Now, by Lemma 3.4.4 we have Endg, (p) = « so that D, is representable. By Lemma 3.4.5, it
follows that Dy, 5 is a closed subfunctor that is representable by a quotient of RuniV in Ara. Let

p;’)‘l“cvp Gk — GL, (RE‘]“CVp) be a universal representation for Dy 5. By the shape of p and the

reducibility of ,o‘”“v we can choose a suitable basis for p”“"’_ so that

univ, 1 «
univ. _ P p1CPp
pﬁlcﬁ - 0 univ,2
p1CH

for representations p;l)mcvpl Gk — GL,, (Rgmg’ p) and = a suitable nontrivial extension class. Here, the
p;rl"cv pl are unique up to conjugation.

We now adapt the setting developed before Lemma 3.4.2 to the present situation. Namely, one has a
natural functor

2.
det”: Dﬁl s Ddetﬁ. X Ddelﬁz’

which for A € Ar, attaches to pa € Dp c5(A) with p-stable direct summand P4(= A™) of A" the
pair (det(pajp,),det(pa mod P4)) of deformations of (detp,, detp,). Let ads, 5 C ad; be the block
upper triangular subspace of matrices that preserve p;. Mapping matrices to the diagonal blocks gives
a surjection 7r: adg, 5 C ad; — adg, ® ad;,, and we denote by adgl cp C adp, cp the inverse image of
adg1 <) audg2 under 7, and by radg, 5 the kernel of 7.

Now, as in the proof of Lemma 3.4.2, obstructions to the smoothness of det? lie in the group
H?*(Gk, adgocp) Using the short exact sequence 0 — rads, 5 — adgoC 5 ad0 X adO — 0, and the
vanishing of H>(Gg, rads, cp5)* = H(Gg,Hom(p1, 52)(1)) = Homg,, (p1, pz(l)), that relies on local
Tate-duality from Theorem 3.4.1 and p; % p2(1), one finds

H*(Gk.ad)) ;) = H*(Gg,ad) @ad)). (15)
Again, from Tate local duality one deduces that det? is formally smooth if H°(G K,ﬁ (1)) =0 for
i = 1,2. Assuming this, the map of rings RU"Y &, RUY R“m"_ is formally smooth and the relative

deto; detpr
dimension is given by

h=dimim (H'(Gk,ads c5) — H'(Gk,ads)) — 2dim H' (G, «).
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To compute h, observe first that H' (G, adg, c5) — H'(Gg, ad;) is injective because adsfads 5 =
Hom, (51, p2) and Homg, (p1,p2) = 0. The quantity dim H'(Gk, k) was computed in the proof
of Corollary 3.4.3 to be 1 +d + 6,, where 6, = 01if {, ¢ K and 6, = 1 if {, € K. Finally,
dim H' (G, ads, c5) is computed by the Euler—Poincaré formula of local Tate duality: Lemma 3.4.4
yields H O(G K->ads c5) = HO(G K»ads) = «, and in the same way in which we deduced the isomorphism
(15), we obtain H2(G1<,adﬁlcp—) = Hz(GK,adﬁ1 ® adg,), and by local Tate duality the latter has
dimension 26 ,. In total, we find
h=(d-dimads c;+1+26,) —2(d +1+6,) = ddimad) ;- 1.

One also easily adapts the proof of Corollary 3.4.3. The following result summarizes the conclusions

needed later. For the last assertion, one does not consider the map det® but uses a variant of Theorem
3.2.4(e).

Proposition 3.4.6 Let « be finite or a local field of characteristic p, let A = k and suppose that p is a
nonsplit extension of py by p\ and that p is not isomorphic to py(j) for j € {0, +1}.
IfHO(GK,adp,.(l)) =0jfori=1,2, then:

(a) det’: Ds,cp — Ddeip, X Daeip, is formally smooth of relative dimension dn® —niny -2) - 1.

(b) The ring (Rg'l‘i;’p)red is formally smooth over k of dimension d(n* — nins) + 1.

If on the other hand H°(G, adg, (1)) = 0 for i = 1,2, then R;‘_)‘l‘icvp_ is formally smooth over k of
dimension d(n> — niny) + 1.

4. Pseudocharacters and their deformations

In this section, we recall main definitions and results on polynomial laws and pseudocharacters. We
assume that the reader is familiar with [Chell; Chel4; WEI8]. Nevertheless, we will give many
reminders. Each subsection gives a short survey over its contents. In Proposition 4.3.9, we prove an
analog of the locus of reducibility of [BC09, Proposition 1.5.1] in the context of pseudocharacters.
In Subsections 4.5 and 4.6, we introduce twisting and induction as operations on pseudocharacters.
In Proposition 4.7.4, we sketch the existence of a universal ring for continuous pseudodeformation
where the residue field is a local field and in Proposition 4.7.6 we consider such rings under change of
coefficients. These are adaptions of well-known results. Subsection 4.8 presents in detail several results
on dimension 1 points in universal pseudodeformation spaces.

Throughout this section, A will be a commutative unital ring with 0 # 1. If A is local, we write 14
for its maximal ideal and x(A) for its residue field. We write Alg 4 for the category of A-algebras and
CAlg 4 for the full subcategory of commutative A-algebras. By R, S, we always denote objects of Alg 4
and by B an object of C.Alg 4. For an A-algebra R, we denote by R the A-algebra with the multiplication
of R reversed. By G, we denote a group and by B[G] the group algebra over B for any B € C.Alg 4. The
letters m, n (also with indices) will denote nonnegative integers. If p: G — GL,,(B) is a representation,
then by p'": B[G] — Mat,, (B) we denote its linearization given by 3, b;g; > X bip(g:).

4.1. Pseudocharacters

In this subsection, we introduce pseudocharacters, Azumaya algebras and Cayley—Hamilton A-algebras.
Of particular importance is Proposition 4.1.10, which says that a pseudocharacter is determined by its
characteristic polynomial coefficients.

For an A-module M, we define the functor M : CAlg, — Sets, B+ M ®4 B.

Definition 4.1.4 [Chel4, §1.1]. Let M and N be A-modules.

(a) An A-polynomial law P: M — N is a natural transformation M — N. that is, P is a family of
maps Pp: M ®4 B — N ®,4 B forall B € Ob(CAlg,) that induce commutative diagrams for every
morphism in CAlg 4.
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(b) An A-polynomial law P: M — N is called homogeneous of degree n if
Pp(bx) =b"Pp(x) forall Be Ob(CAlg,), b€ Bandx € M ®4 B.

We let P’ (M, N) denote the set of all such.
Let S, S’ be objects in .Alg 4 so that in particular they are A-modules.

(¢c) An A-polynomial law P: S — §’ is called multiplicative if
Pp(l)=1 and Pp(xy)=Pp(x)Pg(y) forall Be Ob(CAlg,)andx,y € S ®x B.

(d) We write M, (S, S’) for the set of multiplicative A-polynomial laws P: S — S that are homoge-
neous of degree n.

(d) A pseudocharacter on S of dimension n is an A-polynomial law D : § — A that is multiplicative
and homogeneous of degree n. We let PsR¢(A) be the set of all such.

(e) If S = A[G] in (d), we call D an A-valued pseudocharacter on G of dimension n, and we write
PsR¢ (A) for PSRZ[G] (A); occasionally we write D: G — A for D: A[G] — A, and then we
explicitly refer to D as a pseudocharacter on G.

Remark 4.1.2 [Chel4, after Example 1.2]. A homogeneous polynomial law P of degree n is uniquely
determined by P47y, .. 1,,1: M[T1,...,Tn] = N[T1,...,Ty] forallm > 0.

Facts 4.1.3. The following facts are easy to verify.

(a) The only multiplicative polynomial law of degree zero is the constant map with value 1.

(b) Multiplicative polynomial laws that are homogeneous of degree 1 are A-algebra homomorphisms
and vice versa.

(c) The composition of polynomial laws is a polynomial law; if both are homogeneous, the composition
is homogeneous and its degree is the product of the individual degrees.

(d) The composition of multiplicative polynomial laws is multiplicative.

(e) If D: S — A is an A-valued pseudocharacter, then for any B € C.Alg 4, the base change D ®4
B: S ®4 B — B is a B-valued pseudocharacter.

Definition 4.1.4 (pseudocharacter of a representation). Let p: G — GL,,(A) be a representation. The
pseudocharacter D, attached to p is the polynomial law that to any B € CAI g 4 attaches the composition
of the determinant det: Mat,,x,,(B) — B with the morphism (p ®4 B)"™.

Let D be a pseudocharacter on G over A. Because D is multiplicative, we have D(gh) = D(g)D(h)
for g,h € G and D(1) = 1. Thus, the map ¢: G — A*, g — D(g) is a group homomorphism, and
Definition 4.1.4 associates the pseudocharacter D, to ¢.

Definition 4.1.5 (Determinant of a pseudocharacter). We call det(D) := D, the determinant of D.

Reminder 4.1.6. From [Mil80, §IV.1 —IV.2], we recall the notion of Azumaya algebra and some of its
properties. Let first A be a local ring with residue field . An algebra C € Alg 4 is called an Azumaya
A-algebra if C is free of finite rank as an A-module and if in .Alg 4 the map

C®4C°—Ends(C), c®c +— (x> cxc’),

is an isomorphism; equivalently, there exists a finite étale morphism A — B such that C ®4 B =
Mat,,,xm (B) for some m. One calls m the degree of C; it satisfies rank,C = m?. Moreover, C carries a
reduced norm map detc: C — A characterized by the property that detc ®4 B is the determinant on
Mat,;;xm (B). Its extension to C[¢] defines a reduced characteristic polynomial y. := detcy,(t —¢) €
A[t], monic of degree m, for any ¢ € C. Lastly, C ® k is a central simple algebra over «.

Let now X be a scheme. An Ox-algebra C is called an Azumaya algebra over X if C is coherent as an
Ox-module and if for all x € X, the stalk C, is an Azumaya algebra over Ox ; equivalently, there exists
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a Zariski cover {U;} of X and for each i a finite étale surjective cover U] — U; and an isomorphism
C ®oy OU{ > Mat,,; sm; (OUi') for suitable m; € N . In particular, the degree function m: X — Ny

such that rankp, C = m? is locally constant. Also, the reduced norm exists as a map detc: C — Ox.
For X = Spec A affine, one calls C = C(X) an Azumaya A-algebra.

Example 4.1.7. Let C be an Azumaya A-algebra of degree n with reduced norm detc: C — A.

(a) The family of reduced norms (detc ®4 B: C ®4 B — B)pecig , defines a pseudocharacter, also
called detc, of dimension n; see [Chel4, §1.5].

(b) If D: C — A is any pseudocharacter of dimension n’, then by [Che14, Lemma 2.15], we have n|n’
and D = det’é/".

An important notion for pseudocharacters is that of characteristic polynomial.

Lemma 4.1.8 [Chel4, §1.10]. Let D € PsRs(A). Define xp,p(-,1): S ® B—>B[t] by the formula
s+ Dp;(t = s) forall B € Ob(CAlg ) and s € S ®4 B. Then the following hold:

(@) xp(-,1): S — Alt] is a multiplicative homogeneous polynomial law of degree n.
(b) There exist unique A-polynomial laws Ap ;: S — A of degree i, i =0, . .., n such that

n

Xp (1) = D (=D Api ()",

i=0

(¢c) Apo=1and Ap, = D.
(d) Themapss— X! (=1)'Ap ;(s)s"~ forall B € Ob(CAlg,) and s € S®4 B define a multiplicative
A-polynomial law xp: S — S that is homogeneous of degree n.

Definition 4.1.9. [Chel4, §1.10] Let S, D, xp(-,t) and Ap ; be as in Lemma 4.1.8.

(a) The polynomial law yp (-, ) is called the characteristic polynomial of D.
(b) The polynomial law Ap ; is called the i characteristic polynomial coefficient of D.
(c) The A-linear map 7p := Ap ; is called the trace associated with D.

An important tool to extract properties of multiplicative homogeneous polynomial laws is Amit-
sur’s formula; see [Chel4, Formula (1.5)]. It expresses values of such laws in terms of characteristic
polynomial coefficients. Using this, one deduces the following result:

Proposition 4.1.10 [Che 14, Corollary 1.14], [WE13, 1.1.9.15]. Let D € PsR¢ (A).

(a) The characteristic polynomial coefficients (Ap ;: G — A);=1,....n characterize D.
(b) Let C C A be the subring generated by {Ap ;(g) : g € G,i = 1,...,n}. Then D factors through a
unique C-valued pseudocharacter D¢ on G of dimension n.

A natural operation on pseudocharacters is the formation of direct sums.?
Definition 4.1.11 [WE13, §1.1.11]. Let S, Sy, S» be Alg, and B in CAlg 4.

(a) The direct sum of multiplicative homogeneous A-polynomial laws P;: S; — B ofdegreen;,i = 1,2,
is the multiplicative homogeneous A-polynomial law of degree n; + n, given by

P1®Py: S1 X852 = B, (x1,x2) — Pi(x1)P2(x2).

(b) Thedirect sum of pseudorepresentations D;: S — A of dimensionn;,i = 1,2, is the pseudocharacter
of dimension n| + ny given by D1@®D;: S — A,x — D (x)Dy(x).

Remark 4.1.12. Note that det” /" from Example 4.1.7 could now also be written as det®" /™

2We use the term direct sum in analogy with the case of representations; Chenevier uses the term product.
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Lemma 4.1.13 [WE13, Lemma 1.1.11.7]. Fori = 1,2, let p;: G — GL,,(A) be a representation, and
set p == p1 ® pp. Then D, = D, ®D,, for the associated pseudocharacters from Definition 4.1.4.

Lemma 4.1.14 [Chel4, Lemma 2.2]. Let Sy, Sz be in Alg 4. Let B # 0 be in CAlg 4 such that Spec B
is connected. Let P: S; X S — B be a multiplicative A-polynomial law that is homogeneous of
degree n. Then there exist for i = 1,2 unique n; > 0 with n| + ny = n and multiplicative homogeneous
A-polynomial laws P;: S; — B of degree n; such that P = P1®P>.

To any D € PsRg(A), one can naturally assign its kernel Ker(D).
Definition 4.1.15 [Che 14, 1.17]. Let P: M — N be a polynomial law for A-modules M, N.
(a) The kernel ker (P) of P is the A-submodule of M defined as

{xeM:P(x®b+m)=P(m) forall Be Ob(CAlg,), b€ Bandm € M ®4 B}

(b) Ifker (P) = 0, then P is called faithful.
Proposition 4.1.16 [Che 14, 1.19-1.21]. For D € PsR(A), the following hold.

(a) ker D is a two-sided ideal of S; there exists a unique D € Png/kerD(A) such that D = D o « for
7 the projection S — S/ker D, and ker D is maximal with this property.

(b) If Cis an Azumaya A-algebra, then its reduced norm detc is faithful.
Over fields, the following is a fundamental result on faithful pseudocharacters.

Theorem 4.1.17 [Chel4, Theorem 2.16]. Let k be a field such that k is perfect, or k has characteristic
p >0and [k : kP] < oo. Let D: S — k be a pseudocharacter of dimension n. Then S /ker D is of finite
k-dimension and semisimple as a ring.

Choose a k-algebra isomorphism S [ker D = [1;_, Si, where each S; is a simple k-algebra. Let n;
be the degree of S; over its center k;, let f; := [k; N k%P : k], and let q; be the smallest p-power such
that k?i C k%P, note that all q; = 1 if k is perfect. Then under the above isomorphism one has

S
— ®&m;
D= @ detsi
i=1

for some uniquely determined integers m; > 1, and one has n = },; m;n;q; f;.
Over algebraically closed field, the following consequence of Theorem 4.1.17 is important.

Theorem 4.1.18 [Che 14, Theorem 2.12]. Suppose that k is an algebraically closed field and S is a k-
algebra. If D: S — k is an n-dimensional pseudocharacter, then there is a semisimple representation
pp: S — Mat,x, (k) unique up to isomorphism with associated pseudocharacter D, and one has
ker p'[i;’ =kerD.

Definition 4.1.19. Let & be a field, and let D € PsR{; (k).

() We call ppy g, gae from Theorem 4.1.18 the semisimple representation associated to D ® kde,
(b) We call D
(1) irreducible if ppg, e is irreducible and reducible otherwise;
(2) multiplicity free if ppg, yae is a direct sum of pairwise nonisomorphic irreducible k*2-linear
representations of S ®; k%¢;
(3) splitif D = D,, for some representation p: S — Mat,x, (k);

Note that if « is finite, then every irreducible representation is split.
We record the following consequence that will be used in the proof of Lemma 12.

Corollary 4.1.20. Let . D: F[G] — F be an n-dimensional pseudocharacter. Let F' be the extension of
F of degree n!. Then D ®g F’ is a direct sum of irreducible representations.
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Proof. Over finite fields the Brauer group is zero. Thus, by Theorem 4.1.14 we have an isomorph-
ism F[G]/kerD —> [];_, Matg,xq, (F;) for integers d; > 1 and finite field F; over F such that

n = Y;difim; for f; = [F; : F]. In particular, all f; divide n! and hence F* > F; for all i. Over
perfect fields semisimple rings are absolutely semisimple (see Definition A.2.1 and Remark A.2.2) and
thus F'[G] /ker (D ®r F') — T[], ]‘[”}’(.":1 Maty, 4, (F'). We conclude using Lemma 4.1.14, Example
4.1.7(b) and Remark 4.1.12. O

Next, we recall the concept of the Cayley—Hamilton property for pseudocharacters.
Definition 4.1.21 [Che 14, 1.17]. Let S be an A-algebra, and let D be in PsR(A).

(a) The Cayley—Hamilton ideal CH(D) of D is the two-sided ideal of S generated by the coefficients
of the polynomials?

XD, Alty,..., tm](s) ES[tl""’tmL

where m ranges over all positive integers and s over all elements of S[zy, ..., #,].*
(b) One calls D Cayley—Hamilton if CH(D) = 0, or, equivalently, if yp is identically zero.

Proposition 4.1.22 [Che14,1.20f.], [WE13,1.1.8.6]. For D € PsRg(A), the following hold.

(a) ker (D) > CH(D), and hence D factors via some De Png/CH(D) (A).

(b) If D is Cayley—Hamilton and S’ C S is any A-subalgebra, then D|s: is Cayley—Hamilton.
(¢) For any morphism S — S’ in Alg 4, one has S’/CH(D ®s S’) = (S/CH(D)) ®s S’.
Definition 4.1.23 [Che 14, 1.17]. Let S be an A-algebra, and let D be in PsR(A).

(a) One calls S%H := §/CH(D) the Cayley—Hamilton quotient of S with respect to D.
(b) One calls the induced A-algebra homomorphism p%H: S — S/CH(D) D the Cayley—Hamilton
representation attached to D.

Any pseudocharacter D € PsR(A) possesses a factorization

pCH =

s 2, sou D, (16)
with D from Proposition 4.1.22(a). In the special case S = A[G], the factorization is a composition
of a group homomorphism G — (SIC)H)>< with D, that is, D = D o ng: A[G] — A. Because of the
following result and the good behavior of CH(+) under base change, one might think of p%ﬂ as a natural

substitute of a representation p with D = D, when such a representation does not exist. First, we need
one more piece of notation.

Definition 4.1.24. Let B € CAlg,, D € PsR(B) and X := Spec B. Let x € X with residue
homomorphism 7, : B — k(x), and let X be a geometric point of X above x so that «x(x)—«(X).

(a) We call Dy := 7, o D the pseudocharacter of D at x and set Dz := D ®,(x) k(X).
(b) We call px := pp.: G — GL,(«(X)) the (semisimple) representation at X.°
(c) We say that x has a property if D5 (or px) satisfies this property.

If B is a universal ring for some space of pseudocharacters and x € Spec B, then by writing D, it will
be implicitly understood that D refers to the corresponding universal pseudocharacter.

The following is a significant generalization of Theorem 4.1.17 to families.

Proposition 4.1.25 (Cf. [Chel4, Corollary 2.23]). Let D € PsR{;(A) be such that D is irreducible
for all x € Spec A. Then C := A[G]gH is an A-Azumaya algebra of degree n, and D = detc o pg{ for
plC)H: A[G] — C the Cayley—Hamilton representation restricted to G.

3Observe that xp A[r....,tp,] is from Lemma 4.1.8(d).
41t suffices to let the s range over all elements of the form Z;'n:1 sjt; withs; € S.
5We sometimes ignore the subtlety of geometric points and simply write px.
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Remark 4.1.26. We shall use the notation pp for D € PsR;(A) in two situations: Either A is an
algebraically closed field and then it is the semisimple representation pp from Theorem 4.1.18. Or A
is arbitrary and D is irreducible for all x € Spec A, and then it is an abbreviation for pIC)H. Because of
Proposition 4.1.25, this assignment is well-defined.

4.2. Universal rings of pseudocharacters

Here, we recall the existence of a universal pseudodeformation ring and that irreducible points form an
open subscheme. Moreover, we introduce morphisms related to the addition of pseudocharacters.

Proposition 4.2.1 [Che 14, Proposition 1.6, Example 1.7]. The functor PsR(-): CAlg, — Sets is
representable for any S in Alg, by some ring Rg“;" € CAlg 4. Moreover, for any B € CAlg 4, the
univ __, Runiv ’

S Boas. IS an isomorphism.

natural map B ® 4 R

The above means that there is a natural isomorphism Home 4;¢ (Rgninv, ) — PsRG(-). Let the
pseudocharacter corresponding to id Runv be

univ , univ univ
DY S @4 RYN—RYW.

Definition 4.2.2. The commutative A-algebra Rg“ilv and the A-scheme Xgnz' := Spec Rg“ilv are called

the n-dimensional universal pseudocharacter ring and space, respectively, and Dg“in" is called the n-
dimensional universal pseudocharacter.
— : univ ._ puniv univ ._ yuniv niv ._ yuniv
For S = Z[G], we abbreviate RGN = RS,n , DG’n =Dy and X“G,n = Xgn .

Remark 4.2.3.

(a) In [Chel4], the ring Rg‘jilv is denoted by FX(S)ab; in our notation A is implicit in the structural map
of S as an A-algebra.

(b) For A-schemes X there is an obvious notion of O(X)-valued pseudocharacter S — O(X) of
dimension n. The space Xg“;lv represents the resulting functor of pseudocharacters on the category
of A-schemes.

Example 4.2.4. Recall the determinant det(D) € PSRIG (A) of any D € PsR{;(A) from Definition
4.1.5. If we apply this to D“A“[ié] ,» We obtain

univ 1 univ
det(DYiE) ) € PSRy e (R

The last assertion in Proposition 4.2.1 and the universality of R‘[‘An[i(v;] ; how yields a homomorphism in
CAlg,

det: RZ“[%],I — RZ“[ié]’n

and an induced morphism of schemes det: X‘A“[ié] — XZ“FELI, both of which we denote by det.

SN

Lemma 4.2.5 [Rob63, Théoreme II1.4]. The following assertions hold:

(a) The canonical map Rg?ixv&,n - EB:’:O Rg‘l“f ® Rg’;fZH., induced from the universal property of these
rings, is an isomorphism in CAlg 4.
(b) Let B #+ 0 be in CAlg, such that Spec B is connected. Then any A-algebra homomorphism

univ ; : univ univ :
SixSon B corresponding to P factors via some summand R51 0 e RSz,n—i in Part (a).

Corollary 4.2.6 [WE13, Lemma 1.1.11.7]. Suppose ny + ny = n for n; > 0. Then the map

. niv niv niv
Ly, - Xg',nl XA Xg,nz _)Xg,n ,(D{,D3) —» D®&D;
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is a morphism of affine A-schemes that corresponds to the ring homomorphism

4.2.5(a) RUniv ®Runiv

A .
univ univ
RS,n R S,ny S,ny?

SxS,n

where A is induced from the diagonal map S — S X S and the universality of the rings.

4.3. Generalized matrix algebras

Generalized matrix algebras are important in the study of Cayley—Hamilton pseudocharacters over
Henselian local rings and were introduced for that purpose in [BC09, §1.3] in the context of Taylor-
pseudocharacters. This subsection recalls some basic result. In Proposition 4.3.9, we shall generalize
[BCO9, Proposition 1.5.1], in Proposition 4.3.9 on the ideal of total reducibility to pseudocharacters.
Definition 4.3.1 (Cf. [BC09, Definition 1.3.1]). A generalized matrix algebra (or simply GMA) over A
(of type (ny,...,n,))is an A-algebra S together with
(i) a set of orthogonal idempotents ey, ..., e, € S with 3)7_; ¢; = 15, and
(ii) a set of A-algebra isomorphisms y; : e;Se; S Maty, i, (A) fori=1,...,r
such that the associated trace map 7 : § — A,x — Y;_; tr(¥;(e;xe;)) is central, that is, it satisfies
7(xy) = 7(yx) for all x,y € S. The tuple & := {e;, ¥, }i=1,....r is called the data of idempotents of S. If
we wish to emphasize the entire structure of a GMA, we write (S, £) instead of S. The dimension of S
will be }; n;.
Notation 4.3.2. Let S be an GMA over A of type (ny,...,n,). For 1 <i <rand1 < k,l < n;, we
denote by E:"l the unique element in e;Se; that maps under y; to the matrix in Maty,x,, (A) that has
1 in the (k,[)-entry and O everywhere else. For later use, we also introduce elements EJ = El‘+{ for
j=1,...,n, wherei,i’ > 1 are unique such that j = ny +...+n; +i’ with 1 < i’ < n;,;. We write A/
for E/SEJ and ¢/ for the isomorphism A/ — A induced from .
The following result explains why GMA are generalizations of matrix algebras.
Lemma 4.3.3 (Structure of a GMA [BCO09, p. 211t.]). The following assertions hold:
(a) Let (S,E) be a GMA over A of type (ny, . .., n,), and define the following data:
(1) A-modules A; j := E;"'SE"! for 1 <i,j <r,
(2) isomorphisms A; ; = A under T fori=1,...,r,
(3) A-linear maps ¢; j x * Aij ®a Aj x — Ak induced from the product in S.
Then they satisfy the following conditions:
(UNIT) For 1 <i,j <r, we have A; ; = A and both ¢, ; j and ¢; ; ; agree with the A-module
structure on A; ;.
(ASSO) For 1 <i,j,k,l <randx®y®z¢€ A;j®s Ajr ®a Ax 1, we have

ik i(pijk(x®@y)®2) =i j1(x®@@jki(y®2)) in A

(COMM) For1 <i,j<r,xeA;jandy € A;; we have ¢; ; i(x®y) =, i(y ®x).
Then the structures in (1)—(3) induce an A-algebra structure on
Matnlxnl (Al,l) e Matnlxnr (Al,r)
: . : (17)
Mat,,, s, (A1) -+ Maty, xp, (Ar )
and the latter is isomorphic to S.

(b) Conversely, suppose we are given a family (A; j)1<i,j<r of A-modules together with A-linear maps
@ik Aij®aAjx = Air for 1 <i,j,k < r satisfying the above conditions (UNIT), (ASSO)

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.82

32 G. Bockle and A-K. Juschka

and (COMM). Then there is a unique structure of a GMA of type (ni,...,n,) on the A-module
S = ®£j:1Matn.-><n_,- (.Ai,j).

Next, we provide some technical lemmas:
Lemma 4.3.4. Let S be a GMA over A of type (ny,...,n,) over A, and B € Ob(CAlg 4). Then S ®4 B
is a GMA over B of type (ny, . ..,n;).

The proof of Lemma 4.3.4 is straightforward and left as an exercise.

Proposition 4.3.5 [WE18, Proposition 2.23]. Given a GMA (S, £) over A of dimension n, there exists a
natural n-dimensional Cayley—Hamilton pseudocharacter det(s ¢y: S — A, called the determinant of
the GMA (S, ), and given, for any B in CAlg 4, by the formula

detsey(n) =y sene) || ob([]ExET?) (18)

oeC, cyclesy of o ley

for any x € R ®4 B. Here, the product is first over the cycles vy in the cycle decomposition of o and then
over the elements | of the cycle 7y taken in the order that they appear in the cycle, where 1y is a choice
of initial element of y, and ¢ is from Notation 4.3.2. We also have T = Ang‘

The next results are auxiliary for Proposition 4.3.9 on the locus of reducibility of a GMA.
Lemma 4.3.6 [Chel4, Lemma 1.12(i)]. One has D(1 + ss’) = D(1 + s’s) forall s, s’ € S.

Lemma 4.3.7. Let (S,€) be a GMA, and let D: S — A a pseudocharacter. Then for any x €
Maty,xn; (Ai,j) for some 1 < i, j < rwithi # j, we have D(1 +e;xe;) = 1.

Proof. By Lemma 4.3.6 we have D(1 +e;xe;) = D(1 +eje;x) = D(1) = 1. O

Lemma 4.3.8 [Che 4, Lemma 2.4]. Let S be an A-algebra, e € S be an idempotent, and D: S — A be
a pseudocharacter of dimension n. Suppose that Spec(A) is connected.

(a) The polynomial law D.: eSe — A, s — D(s + 1 — e), is a pseudocharacter; its dimension r(e)
satisfies r(e) < nand one has r(1 —e) +r(e) = n.

(b) The restriction of D to the A-subalgebra eSe & (1 — e)S(1 — e) is the sum D .®D|_.. It is a
pseudocharacter of dimension n.

(c) If D is faithful or Cayley—Hamilton, then D, is faithful or Cayley—Hamilton, respectively.

(d) Suppose that D is Cayley—Hamilton. Then e = 1 if and only if D(e) = 1, and e = 0 if and only
if r(e) = 0. If ey, ...,es is a family of nonzero orthogonal idempotents of S, then s < n and
iy r(ei) < n. Further, 3;_,r(e;) = nifand only if 3.;_ e; = 1.

The next result is the adaption of [BC09, Proposition 1.5.1] to pseudocharacters.

Proposition 4.3.9. Let (S, £) be a GMA over A, and let A; j and ¢; j x be as in Lemma 4.3.3. Define
I =3z AijAj.i as the ideal of total reducibility in A.

(@ (1) IfI =0, thenthemapn: S — Y;e;Se; C S,x ¥ ), e;xe; is a ring homomorphism.
i d
(2) Denoting by D; the map e;Se; i> Mat,;, xn, (A) s Afori=1,...,r, one has

det(s,e) =®;_D; omrmod I.
(b) Suppose that there exist m;-dimensional pseudocharacters D}: S — A with m; > 0 for i €

{1,...,r} such that one has det(s gy = ®_,D]. Then I = 0 and for a unique permutation o € S,
we have D’U(i) = D; o r with D; and 1 from (i).
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Proof. Part (1) of (a) is a straightforward matrix calculation using A; ;A;; = 0 for all i # j from
{1,...,r}. To see Part (2) of (a), observe that equation (18) for = 1 is simply the Leibniz formula for
matrix determinants. Hence, by our definitions we have the explicit formula

D;modI: e¢;Se;— A/l, x+— Z sgn(oy) 1_[ tpl(l_[Ele”(l)) mod 1,
i €Sy, cycles y; of o ley;

and using distributivity for x € S

r

ﬁ(Di om)(x)mod I = l_[ Z sgn(oy) l—l gol( l_[ Ele‘T(l)) mod /
i=1

i=1 o‘iEGni cycles y; of o ley;
r
= Z Z l_[sgn(O',-) 1_[ gol(l_[Ele"(l)) mod /.
T1€6,, 0 €6,, i=1 cycles y; of o ley;

We have to compare the latter expression to

det(s.g)(x) mod I = Z sgn(o) l_[ golo(l_[ Eleo'(l)) mod 1.

oeB, cycles y of o ley

Now, in the last expression, the term ¢/ ( [liey E XE ‘T(l)) mod [ vanishes unless vy is contained in a

single factor under the inclusion &,, X ... X &, —&,, by the definition of / and using Lemma 4.3.3.
This shows that

r

det(s.g)(x) mod I = Z 1—[ sgn(oy) 1—[ gol(’( 1_[ Ele‘T(l)) mod I,

o=(o1,..., 1) €Gy X...XGp,. =1 cycles y of o ley

and it completes the proof of (a).
We now prove (b). We begin by proving the following Claim: There is a unique permutation o € S,
such that D; = (D;(i))ei and (D},).; = 1 fori’ # o (i). For this, we restrict &,_, D/, to e;Se; so that

D; = (dets,g))e; = ®ir(D}))e; -

By Lemma 4.3.8 the (D7,),, are pseudocharacters of dimension m;» ; := dim(D/,),, < m;,. Now, under
addition in the sense of Corollary 4.2.6 dimensions are added, and it follows that

r
n; = E mij: ;.
i =g

But because e;Se; = Mat,;,x,, (A), it follows from Example 4.1.7(b) that each m; ; is divisible by n;.
Hence, there is a unique map o : {1,...,r} — {1,...,r} such that ms;; = n; and my; = O for
i’ # o (i), and moreover D; = (D’ (i) )e; - It remains to show that o is bijective. It will suffice to show
that o is surjective.

For this, let S, := @;c,-1(;eiSe; so that § = @&;S),. The restriction of Dj, to S, is zero if i # i’,
and the restriction of D, to S}, is a pseudocharacter with

4.3.8
s ’ . ’ .
mp > dlmDi'|S,’., =dime},_,D;, |5'{, = dimdets ¢) |Sl{, = Z n;.

ieoc1(i")

Summing over all i” in the image of o implies Xy co((1,....r}) Mir = n. However, all m;: are strictly

,,,,,

positive and }}7,_, m; = n, and this implies that o~ is surjective, and hence the claim is proved.
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For simplicity of notation, we assume from here on, without loss of generality, that o = id. We
now show that / = 0. For this, it suffices to show that A; ;. A;; = 0 for all i # j. By restricting to the
subalgebra §” = e;Se; +e;Se;+e;Sej+e;Se; withE' = (e, ¥i, e, ¢, ), thatis, by considering D, +e;
and using det(s ¢)|s» = det(sr /), we may assume r = 2 for the proof of / = 0.

Let b be in A; 5 and ¢ in Ay 1, and write x for elEll’lezl’lez and y for ezEzl’lce - 1%e; with El("l
from Notation 4.3.2. Using the description of GMAs from Lemma 4.3.3, one easily verifies that

l+xy=1 +E11’1bc ceSei+(l1—ep), 1+yx=1 +E21’1bc € (1—ep)+ezSes.

Note moreover that by Lemma 4.3.6 we have D(1 + xy) = D(1 + yx) for every pseudocharacter
D: § — A.1If we apply this to D} and our earlier observations on (D?),,,, we find that

Dj(1+xy) =D}(1+yx) = (D}, (1= €2) - (D})e,(e2+ Ey'bc) =1-1=1,

and similarly D} (1 +xy) = 1, and hence from hypothesis (2) that det(s g)(1 + E ;’lbc) = 1. From the
formula for det(s ¢) on e;Sej + e2Sez = Maty, xp, (A) X Mat,,xn, (A), we deduce that

det(s,e)(1+E}"'be) = 1 + b,

and hence that bc = 0, as was to be shown.

For the second assertion, observe that by Lemma 4.3.7 we have D{(1 + e;xe;) = 1 for any i # j and
x € Maty,xn; (A;, ). It follows that D/(1 +u) = 1 for any u in the kernel of 7. And now the second
assertion follows from knowing the restriction of D to }}; e;Se; given in the first claim of the proof of
(b). m]

The following result of Chenevier gives an application of GMAs to pseudocharacters.

Theorem 4.3.10 [Chel4, Theorem 2.22], [WEI13, Theorem 2.27]. Assume that A is a Henselian
local ring with maximal ideal ma and residue field k(A). Let S be an A-algebra and suppose that
D € PsR(A) is Cayley-Hamilton. Denote by D =D ®4 k(A): S/maS — k(A) the residual pseu-
docharacter of D. Suppose that D is split (see Definition 4.1.19). Then the following hold:

(a) If E is irreducible, then D = det o p for some A-algebra isomorphism p: S — Mat,y, (A). .
(b) If D is multiplicity free, then S is a generalized matrix algebra (S,&) and D = det(s ¢). If D =
@5:1 D; for irreducible D, then the type of S is (n1, . .., n;) for n; the degree of D;.

4.4. Continuous pseudocharacters

In our application, mainly continuous pseudocharacters (of a profinite group G) will play a role. In this
subsection, we will recall this concept and some of its properties. We denote throughout this subsection
by G a profinite group. Let us refer to [Gro60, Chapter 0 §7, Chapter 1 §10] for a more thorough
introduction to topological rings and formal schemes.

We introduce in Definition 4.4.2 a category of admissible «-algebras that is perhaps not standard. In
Lemma 4.4.7, we prove a finiteness statement for continuous pseudocharacters on G with K p-adic
and values in a finite field of characteristic p.

Definition 4.4.1 (Cf. [Che14, §2.30]). Let A be a commutative topological ring. Then D € PsR{;(A) is
called continuous if and only if the characteristic polynomial functions (restricted to G) Ap ;: G — A
are continuous fori =1, ..., n.

We shall study continuity only for two types of commutative rings A that we now describe. Consider
a directed set J with minimal element O and an inverse system A, 4 € J, of topological commutative
rings with continuous transition maps and such that A; — Ay is surjective with nilpotent kernel for any
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A € J. Then the inverse limit

lim A 1
lim A, (19)
is a topological ring with respect to the weakest topology for which the projections to all A, are
continuous.

Definition 4.4.2. Let « be a local or a finite field with its natural topology.

(a) We say that a commutative topological ring A is k-admissible if there is an inverse system (A ) ey
as above expression (19) and an isomorphism of topological rings A = lim,e; A, such that each
A, is a finite-dimensional topological «x-algebra with the natural topology of a finite-dimensional
K-vector space.

(b) We denote by .Adm, the category whose objects are k-admissible commutative topological rings
and whose morphisms are continuous k-algebra homomorphisms.

Note that Ar is a full subcategory of .Adm,., but objects in .Adm, are in general only semilocal and
with residue field of finite k-dimension.

Definition 4.4.3 [Che14, §3.9]. Let W(F) be the topological ring of Witt vectors over F.

(a) A commutative topological ring A is admissible if there is an inverse system (A,) ey as above
expression (19) and an isomorphism of topological rings A = lim,c; A, such that each A, carries
the discrete topology.

(b) We denote by Admy () the category whose objects are admissible commutative topological rings
A together with a continuous homomorphism W (FF) — A and whose morphisms are continuous
W (F)-algebra homomorphisms.

Remark 4.4.4. Suppose A is admissible or k-admissible, and suppose that A = lim,¢; A, for an inverse
system (A ) ey as in the above definitions. Then one can form the completed group ring as the inverse
limit

Al[G]] = lm A, [G/H],

where H ranges over all open normal subgroups of G; it contains A[G] and is in fact the completion of
A[G] with respect to the topology of A[G] inherited from A[[G]].

Using Amitsur’s formula, one can verify that the above definition of continuity is equivalent to the
condition that for every commutative topological A-algebra B, with B € Adm or Adm,, respectively,
the map Dp: B[G] — B is continuous; see [WE13, Definition 3.1.0.10]. This allows one also to extend
Dp to a (continuous) pseudocharacter B[[G]] — B.

The following is the basic result on continuity if A is discrete.

Lemma 4.4.5 [Che 14, Lemma 2.33]. Let A be a discrete, and let D : A[G] — A be a pseudocharacter.
Then D is continuous if and only if ker (D) is contained in the kernel of the canonical map A[G] —
A[G/H] for some normal open subgroup H C G. In this case, the natural representation G —
(B[G]/ker (D))* factors through G /H.

We record the following consequence:

Corollary 4.4.6 [Che 14, Example 2.34]. Let k be a discrete field, and let D € ”PsR’é(kalg) be contin-
uous. Then the representation pp: Gg — GL, (k™) associated by Theorem 4.1.18 is continuous, its
image is finite and it is defined over a finite extension of k.

Proof. We provide a proof, expanding on [Che14, Example 2.34]: Because D is continuous, we know
by Lemma 4.4.5 that ker D contains the kernel of k[G] — k[G/H] for some open subgroup H of G.

By Theorem 4.1.18, the kernels of p'[i)“ and of D are the same, and hence pp is continuous since it is
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trivial on the open subgroup H. Since G/H is finite, this also shows that pp(G) c GL,,(k¥£) is finite.
It follows that the entries of the matrices in the image of pp lie in a finite extension of &, and this proves
the last assertion. m]

When combined with earlier results, we deduce the following finiteness statement:

Proposition 4.4.7. Let F be a finite field of characteristic p, and let n > 1 be an integer. Then there exist
only finitely many continuous pseudocharacters D: Gg — F on G of dimension n.

Denote by F' o F the unique field extension of degree n!. Then for any D as above D @z F is a direct
sum of split irreducible pseudocharacters D;: Gxg — F on Gg.

Proof. The second part is immediate from Corollary 4.1.20. Hence, it suffices to prove the first part for
split irreducible D. It moreover suffices to assume that F contains the unique extension of the residue
field of K of degree n!. The result follows from Lemma A.3.1. O

The next result shows the existence of a minimal ring of definition for any continuous pseudocharacter,
and it gives an important result on their structure.

Lemma 4.4.8 [Chel4, Lemma 3.10]. Let A be in Admy (), let D: A[G] — A be a continuous
pseudocharacter and let C C A be the closure of the W(F)-algebra generated by the characteristic
polynomial coefficients Ap ;(g) forg € G andi > 1.

(a) The ring C is an admissible profinite subring of A. In particular, C = l(iLni C; is a finite product of
local W (F)-algebras with finite residue fields.

(b) If further 1: A — A’ is a continuous W (F)-algebra homomorphism, D’': A’[G] — A’ is the
induced pseudocharacter and C' C A’ is the closure C' C A’ of the W (F)-algebra generated by
the characteristic polynomial coefficients Aps ;(g) for g € G and i > 1, then ¢ induces a surjection
C — C'"in Admw (r).

We use the Lemma 4.4.8 to make the following useful definitions.
Definition 4.4.9 [Chel4, Definition 3.11]. For a finite field F, one defines

|G(n)| :={z € Spec(RuW“i("]F) [G]’n) : z is closed and «(z) is finite}.

Definition 4.4.10 [Che 14, Definition 3.12]. Let A be in Admw (g), let D € PsR;(A) be continuous, let
C C A be the ring from Lemma 4.4.8 and let D¢ : C[G] — C be the pseudocharacter from Proposition
4.1.10.

(a) We call C the ring of definition of D over W (F).
(b) If C is local so that k(C) is finite, one calls D residually constant.
(¢) One calls D residually equal to D, for some z € |G (n)|, if Cislocal and D, = D¢ ®c k(C).

4.5. Twisting of pseudocharacters

In this subsection, we introduce a twisting operation for pseudocharacters that is the analog of the twist
of a representation by a character, and we state some of its basic properties. Our approach require us to
recall a number of results on the universal pseudocharacter that go back to Roby. Our main construction
is only carried out for pseudocharacter of a topological group G. Our exposition of background material
follows [WE13, Section 1.1].
Definition 4.4.11. Let M be an A-module. The divided power algebra of M relative to A is the commu-
tative A-algebra I'4 (M) that is the quotient algebra of the polynomial algebra generated by the symbols
mll m e M,i € N, subject to the relations

() m9 =1 forallm e M,

(i) (am)l =a'm! forae A,me M,i €N,
(i) mlilmlil = ("J;j)m[""«” form e M,i,j € Nand
iv) (m+n)lil = Z’;.:Om[f]n“‘f] form,ne Mandi € N,

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.82

Forum of Mathematics, Sigma 37

The ring T'4(M) is a graded A-algebra T'y(M) = @l>0 A(M) with its i-th graded piece I' (M)
being the A-module generated by the element m!’l, m € M. The construction M — T'4(M) deﬁnes
a functor from A-modules to graded A-algebras. If ¢: M — N is an A-module homomorphism, the
induced map T4 (¢): Ta(M) — T's(N) is characterized by m!!! — (o(m))!!), m € M, i € N. One has
compatibility with base change, that is, natural isomorphisms I" X(M )®sB=T g (M ®4 B).

Definition 4.5.2. The universal degree d homogenous polynomial law L{, € P4(M,T'4(M)) is defined
by the maps

LY g M®sB—T{(M)®4 B=T5(M®4B),m®b— (bm)'l, meM,beB.

The universality of L is expressed by the following result:

Theorem 4.5.3 [Rob63, Théoreme IV.1]. Let M, N be two A-modules, and let d be in N. There is a
canonical isomorphism

Homu ([4(M),N) — PL(M,N), f —> folLd,.

To describe the map in the converse direction, let P € PX(M , N). Define the index set I; := {a =
(ay,...,aq) € N? | Za,- =d}. Given @ = (ay,...,aq) € [gsetTY = I—[d T, "7 for indeterminates
(Ti,...,Ty), and set m!® de | m; Lail l"d(M) form = (my,...,my) € Md. Define now for all
a € I, simultaneously maps PL@!: M4 — N by

Pari, .. ) (Timy + .+ Tamg) = Y Pl ()T

acly

for m = (my,...,my) € M?. In the proof of Theorem 4.5.3 by Roby, it is shown that given any
Pe PX(M , N), there exists an A-module homomorphism f: Ffi(M ) — N such that

f(m'y = PlelGm), Vo e I,andm € M9, (20)

and that f o L%[ =P.
If M is a free A-module, the A-module I" X(M ) has the following explicit description.

Theorem 4.5.4 [Rob63, Théoreme IV.2]. Suppose that M is a free A-module with basis (e;);cy. Then
ford € N, the A-module F/‘_l‘(M) is free with basis

h
{el.[lkl] . 'el[fh] | heN,(i,...,ip) € Ih,(kl,...,kh) € NZI’Zkh Id}.

If M is an A-algebra R, then [Rob80] defines an A-algebra structure on each FZ (R), different from
that on I'4(R), by defining a multiplication FZ(R) s fi(R) - FZ(R), that we now recall. The
multiplication map is defined as the composition of two maps. The first map exists for any A-module
M, the second is built from the ring structure of R. Let first M be an arbitrary A-module. Then the map
Bu:MdM — M4 M,(m,m") —» m®m’ is ahomogeneous polynomial law of degree 2, and thus
L4, 4y © Bu liesin PZd(M ® M, M ® M). By Theorem 4.5.3, we have LY, .\ o By =nar 0 L34

MeM
for a unique A-linear map

nv: T3(M @ M) — T9(M ®4 M).

[Rob63, Théoréme II1.4] gives an isomorphism (P;_ I, (M) @ T§™/(M) — T'%(M) for any e € N. It
is further shown in [Rob80, p. 869] that the maps FZ(M )® Fi‘l_i(M ) — Fg(M ® M) induced from
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ny are zero for i # d, and that the induced map 77y : Fg(M) ® Ff‘(M) — Fg(M ® M) is given by the
explicit formula

v (ml) @ nlfl) = Z 1—1 (m; ® nj)liil, 1)

yeMat®P () (i,/) €{1,....d}?

dxd

form,n € M?, a, 3 € I;, and where Mats’fi (N) denotes the set of all matrices y = (y;;) in Matgyq (N)
whose rows sum to S and whose columns sum to «. Let now M = R be an A-algebra. Then the
multiplication map ugr: R ®4 R — R is A-linear, and thus it induces a graded map I'4 (ug) whose d-th
graded piece is a homomorphism I'{ (ug) : T'4(R ® R) — I'{(R). Roby defines

1 = T4 (ur) o r: T4(R) ®a T4(R) = T4(R)

It is shown in [Rob80, p. 870] that if R is unital, associative or commutative, respectively, then the same
property holds for I" ji(R) with the multiplication ,u%, for any d € N. It turns out that L% is multiplicative
with respect to this multiplication on I i (R). The key result is the following description of multiplicative
polynomial laws:

Theorem 4.5.5 [Rob80, Théoréeme]. For A-algebras S, S’, the following map is a bijection
Homa. 41 (T4 (8), 8') — MY(S.8"), f = f o L.

Suppose now that R = A[G] for a group G. Note that the elements of G form an A-basis of A[G], and
hence an A-basis of I} (A[G]) is described in Theorem 4.5.4. Let D : A[G] — A be a pseudocharacter
of dimension d. From Theorems 4.5.3 and 4.5.5 and using equation (20), we deduce:

Proposition 4.5.6. There exists a unique homomorphism fp: I' X(A [G]) — A such that
fo(gll) =Dl (g), Vael;andge G

It is multiplicative for the product on FZ(A [G]) given by ,ui[G].
Letnow y : G — A* be a group homomorphism. Define fora = (ay,...,ag)andg = (g1,...,84) €

G4 the notation y(gl?!) to by y(gl?!) := I—[f=1 x(g)% . Because {gl?! | @ € I;, g € G?} is a basis of
FX(A[G]) we have a unique A-linear map fp , : FX(A[G]) — A such that

fox (') =Dl (g) - x(g!®), Va el andge G

Proposition 4.5.7. Suppose that D € PsR(,(A) and that x : G — A is a group homomorphism. Then
the following hold:

(a) The map fp, defined above is multiplicative.
Define the d-dimensional pseudocharacter D ® x to be fp , o Lz[ GI

(b) The characteristic polynomial coefficients of D ® y satisfy the identities

Apey.i(8) =Ap,i(g) - x(g)' foralliandallg € G.

(¢) If D and y are continuous, then sois D @ y.
(d) If D = D, for a representation p of G, then D ® x = Dyg,.
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Proof. To see Part (a), we need to show that fp (g - h) = fp ,(8)fp, (k) for g = (g1,...,84). h =
(h1,...,hq) € G and for - the multiplication given by ,uZ[G]. Using equation (21), we compute

glal . il :ﬂi[c](ﬁM(g[a] ®h[,3])) - #f;[c]( Z l_[ (gi®hj)[7ff])

yeMat$? () (L) e{l,....d}
= Z 1_[ (gihj)iil.
y€eMat () (i, ) e{l,....d}?

Observe that 3; ; yi; = dfory € Mat;';(ﬁd (N) and that index pairs (i, j) with y;; = 0 can be ignored. We
write y for the flattening of  truncated to length d, that is, we first regard y as a d>-tuple in one index and

then omit the highest d> — d indices, where y; ;= 0. Using in () the definition of Matgfi(N), we find

fox(gleh-nthy = % fD,x( [1 (gihj)["i-f])

y€eMatg gy (N) (i) ell,nnd)?

= Z D[Z]((gihj)a,j)ez)( ﬂ X(gihj)”f)

yeMat®? () (i.j)e{l,....d}?

dxd
© 3 DYy ey x (s (hP)
yeMats? ()
= x (& Dy (hP) i (gl - n1PY)
o (gl (W) £ (1) fo (WEY) = fio (81) fy (W),
Concerning (b), note that

d
Darry(1-Tg") = Dayr,...., Td](ZTigi)|g:(e ,,,,, e.8).T=(1.0,...0.")

i=1

so that

Apey.i(g) = (=)' (D ® )00 e, e g)
— (_l)iD[d—i,O,A..,O,i] (e, e, e, g,)/\/((e, e, e,gl) [d—i,O,..A,O,i])
= (=1)/ D700l e e g x(g)" = Ap.i(g)x(g)".
Part (c) follows from (b) and Definition 4.4.1, Part (d) follows from (b) and the theorem of Brauer—
Nesbitt. m]

Definition 4.5.8 (Twist of pseudocharacters). We call the multiplicative polynomial law D ® y €
PsR¢; (A) from Proposition 4.5.7 the twist of D by x.

Remark 4.5.9. It should be interesting to define the tensor product of two pseudocharacters of any
dimensions n, n’.

Lemma 4.5.10. Let D, D’ be in PsR (A), and let xy: G — A* be a group homomorphism. Then
D' =D ® y ifand only if Apr ;(g) = Ap.i(g) - x(g)! forall i and all g € G.

Proof. Proposition 4.5.7(b) shows that the condition given is necessary. That it is also sufficient fol-

lows from Proposition 4.1.10(a), which says that a pseudocharacter is determined by its characteristic
polynomial coeflicients. m}
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Corollary 4.5.11. Let D be in PsR{;(A), and let x: G — A* be a character of finite order. Suppose
that x(g) — 1 lies in A* whenever g € G\ker y. Then the following hold:

(@) D =D ® y ifand only if

Vg e G,Vi=0,...,n:Ap,(g) =0orord y(g) divides i.
(b) Let I be the ideal of A generated by the set

{Ap.,i(g): (g,i) € G x{1,...,n} such that ord x(g) fi}.

Then the locus of Spec A on which D = D ® y is the closed subscheme Spec A/I.
Proof. To see Part (2a), note that by Lemma 4.5.10 we have D = D ® y if and only if

Ap.i(g) =Ap.i(g)-x'(g) foralliandall g € G.

Since 1— y(g) is aunitin AX whenever ord y(g) 1 i and is zero otherwise, the latter is clearly equivalent
to the condition given in the corollary.
By Part (a), we have for any ideal J of A

(D®sAlJ)@x=D®sAl] — IclJ,

and this implies Part (b). O

4.6. Induction for pseudocharacters

In this subsection, we introduce the operation of inducing a pseudocharacter from a finite index subgroup.
The main result is Theorem 4.6.7. Following a suggestion of the referee, we describe a construction
that works in all cases.® The idea is a pullback to a universal situation. For this, we use Theorem A.4.4
which is a variant of an important result of Vaccarino. The uniqueness of the construction, that is,
its characterizing property, is guaranteed by explicit formulas for the characteristic polynomial of the
induction. The present subsection begins by recalling the construction of induction of a representation
and then analyzes it to give in Lemma 4.6.6 a formula for the resulting characteristic polynomial. This
is then used in the main result, Theorem 4.6.7.

We fix a group G and a subgroup H C G of finite index m. As in Section 2, we set N := (g HE.
It is of finite index and normal in G, and the largest such subgroup contained in H. If G is a profinite
group, we require H to be open, and then N C G is open, as well.

Lemma 4.6.1. Let C be an Azumaya A-algebra. Consider a representation p: H — C*. There exists a
representation p*: G — GL,,,(C)* such that for any étale extension A — A’ that splits C, there is an
isomorphism p* ®4 A’ = Indg (p ®4 A’) of G-representations over A.

The linearization (p*)'™: A[G] — Mat,xm(C) of p* takes values in the Azumaya algebra
Mat,;;5m (C), and by Example 4.1.7 the associated pseudocharacter D, takes values in A.

Proof. To prove the lemma, we adapt the description of the induced matrix representation from [CR81,
pp- 227-230] to the setting of Azumaya algebras. Let g1, . . ., g, be a set of representatives of left cosets
of G/H so that G = | || g;H. We extend p from H to G by defining

p(g) ifg € H,

prG—0C g'_){ 0ifg € G\H.

6In an earlier version, using a different argument, our construction had some technical limitations but was nevertheless sufficient
for the main result of this work.
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Consider the map

p(g7'gg1) -+ plg7'ggm)
0" G — Mat, i (C), gr+—
p(glegr) - plgrlegm)

Define for g € G and j € {1,...,m} the element i; € {1,...,m} by the condition gg;H = g; H so
that the map j ~ i; is a permutation of {1,...,m}. This shows that p*(g) is a monomial matrix over
the skew field C which in each column j has a unique nonzero entry P(gi_jl ggj) € C*inrow i;. In
particular, this also shows that p*(g) lies in GL,,(C).

We claim that p* has the properties asserted in the lemma. Let A — A’ be finite étale so that
C Q@4 A’ = Mat,, (A’) for a suitable r € N . Then by our construction, that follows [CR81], p* ®4 A’
is the matrix representation of the induced representation of

p®s A" H— GL,(A").

This implies the multiplicativity of the map p*, that is, that it is a homomorphism. Moreover, it shows
that p* ®4 A’ is the usual induced representation of p ®4 A’. O

Remark 4.6.2. It can be shown that p — p* in Lemma4.6.1 is uniquely characterized as the right adjoint
of the restriction homomorphism from G-representations to H-representations on Azumaya algebras.
In particular, up to isomorphism p* is independent of the chosen representatives g1, ...,gm of G/H.

Definition 4.6.3. We call p* from Lemma 4.6.1 the representation induced from p under H C G and
denote it by Indg p.

The reason for introducing induction with Azumaya algebra coeflicients is to be able to formulate
Theorem 4.6.7(¢e); see Remark 4.6.9.

Example 4.6.4. Since we have just seen an explicit form of p*, for later use we consider the following
example: Let H C G be a normal subgroup of index p. Fix go € G\H, and set g; := gé fori=1,...,p
sothat G = | |7 | ¢;H and the map

A:G/H — Z/(p),gf)H — i(mod p)

is a group isomorphism. Let C be an Azumaya E-algebra for a field E of characteristic p, and let
p: H — C* be a representation. Define the induced representation p*: G — Matyx, (C)* as in the
above proof. Let A € Mat,x, (C) be the diagonal matrix with diagonal (i - 1¢)io,...,p—1. Then we claim
that one has for all g € G the relation

.....

p*(8)Ap*(g7") = A = =2(8) Imat e, (C)-

The reader is advised to compare this with Lemma 2.3.2. The claim asserts that A defines a nontrivial
class in HY(G, C/E) with G acting on C/E via the adjoint representation of p.

To prove the claim, let g € G. We shall verify p*(g)A — Ap*(g) = A(g)p*(g). Observe that
p(g'ggj) = p(gy'ggy) = Ounless gH = g/ H, that is, unless A(g) = i — j. In the following, we write
a lower subscript ; ; to indicate the (i, j)-entry of a matrix in Mat,, (C). Then

(P (A= Ap™(§))i; =p ()i J —i-p (i = (j—1) Plg'8g))
obs_erv.

=" -Ag) P (2>

and this completes the proof of our assertion, and ends our example.
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Presumably formulas for the characteristic polynomial of Indg p are well known. But we could not
locate suitable references. So we develop this from scratch. We need to fix some notation: Let C be
an Azumaya A-algebra of degree n. Recall from Reminder 4.1.6 that elements ¢ € C have a reduced
characteristic polynomial y.; we define its coefficients A. ; by x. (1) = 2o (=1) Ac i ()", We write
X7 for the reduced characteristic polynomial (of degree nm) of an element ¢ € Mat,x;, (C).

Lemma 4.6.5. Let ¢ = (c; ;) be in Mat ., (C). Suppose that there is a permutation o € S, such that

ci,j =0fori# o (j) and such that c »(;),; lies in C* for all j. Then x* has the following description.:
Write o in its cycle decomposition o = oy - ... - oy, where the oy are disjoint cycles of length m;

such that 33)_, m; = m, and let j; be in the support of o such that oy = (ji, o (ji), ..., a™=1(j)). Then

v
Xén(t) — 1_[ /\/C(l) (tml) Wllh C(l) = Cj[’o_ml—l(J-l)co_ml—](jl)’o_ml—Z(jl) St Co—(jl),jl’
=1

Proof. Letsj=my+...+my_jforl=1,...,v,withs; = mg =0, and let 7 € S, be the permutation
whose inverse is given by

s1+1 s14+2 - s1+m . ) sy +1s,+2 -+ 5, +m,
oGy oo™ Gy ) T gy o) ™G )

andlet p = p. in Mat,,,, (C) be the permutation matrix attached to 7, that is, with p; ; = O fori # 7(j)
and p-(;),; = 1c for all j. Then one verifies that p,c p;l is a block diagonal matrix in Mat,,;x,, (C) with
v blocks on the diagonal, the 1™ block lies in Mat,,;xm, (C) and is of the form

0 0 Ciomi=1(jp)
Co(ji).i 0 o 0
B; = '
1 0 Co2(j),o (i)
0 . 0 Comi=1(j),o™2(j;) 0

By conjugating B; with the block diagonal matrix with entry at spot (i,i) the block given by
Coi-1(jp),ai2(j1) “Cori=2(jy), -1 (i) "+ - Cor(jp).jy SO thatat (1, 1) the entry is 1, the matrix B; is transferred
to the block companion matrix

00 ...c()

10 ° 0
Bi=|o 1

0...0 1 0

It suffices by a genericity argument to assume that A is an algebraically closed field so that C is split
over A. Then the claim that B; has characteristic polynomial y.(;(#™) is a simple linear algebra
calculation. In the case when c¢(/) is a diagonal matrix, after an obvious change of basis B] becomes the
direct sum of standard companion matrices each with the same type of last row as B; and hence with
characteristic polynomial ™ — c¢(/);; so that one finds yg,(¢) = xc) (™). In the general case, one
uses that semisimple matrices are dense open in the set of all matrices, or a devissage argument once
c(1) is in Jordan form.

A more heuristic argument for g, () = x.;) (™) runs as follows. The matrix B;"’ is block scalar
with diagonal scalar factor ¢(/) € C*. So by the Cayley-Hamilton theorem B;"’ is annihilated by
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Xc() (1), and hence By is annihilated by y. ;) (#™*), and for a generic ¢(/) one would expect y. () (™)
to be the minimal polynomial of B;. O

Lemma 4.6.6. Let the hypotheses be as in Lemma 4.6.1 with N ¢ H C G, and let g € G. Let
Ye1 € G, L =1,...,vg, form a set of representatives for the double coset space (g)\G/H so that G =
Llizt,...v, (8) Vg, H, and let my = [(g)yg,1H : H] so that m; > 0 is minimal such that g""yg 1 H = yg,1H.
Then one has

Xlndgp(g)(t) 1_[ Xp(w“, & yen) )

.....

Moreover, on any left coset g’N, g’ € G, the map § — vg is constant, and the double cosets space
(g)\G/H is independent of g, and hence so are the m;, and also one can choose uniform representatives
Y1 for (¢)\G/H, independently of g € g'N .

If H is normal in G, the double coset space (g)\G/H is in bijection with the right coset space
(eYH\G, and sovg = |G : (g)H] and m; = m’ := ordg,y (¢H) is independent of I.

Proof. We first recall the construction of Ind, g p from the proof of Lemma 4.6.1. As a convenient set
of coset representatives for G/H, we take |_|l_1 _____ ve {8/ves : j =0,...,m — 1}. With this choice,
p*(g) is already in block diagonal form with v, blocks and the size of the I-th block is m;. Moreover,
by expllclt computation, one finds that the /-th block has nonzero entries only at index pairs (j, j — 1),
Jj=2,...,my, where the entry is 1 € C, and at (1, m;), where the entry is p(y L™y, 1). The asserted
formula is now an immediate consequence of the formula in Lemma 4.6.5

Concerning the constancy statement for all g in a fixed coset g’N, observe that all assertions follow
from the following observation: Let § = gn for some n € N, and let (g)yH be a double coset for some
v € G. Then by normality of N in G and using N ¢ H, we have

g'yH =g'yNH = §'NyH = ¢g'NyH = g'yH,

and thus we have equality of double cosets (g’)yH = (g)yH. The remaining assertions when H is
normal in G we leave as exercises to the reader. O

Let now
Dy: B[H]—B

be a pseudocharacter of dimension n with values in a commutative ring B. If G is a profinite group, we
assume that Dy is continuous. The following result establishes the existence of the induction of Dy .

Theorem 4.6.7. There exists a unique pseudocharacter D¢ : B[G]| — B whose characteristic polyno-
mial for each g € G is given as follows. Let yg;, | = 1,...,vg, be elements of G that form a set of
representatives for the double coset space (g)\G /H, and define m; = [{g)yq,1H : H]. Then

xp6.8@0 = [ xous(gr g™ vent™). (22)

I=1,...,vg

The pseudocharacter D has the following properties.

(a) One has

Res$ D¢ = EB (ResiDpr)®.
geG/H

(b) For any left coset g'N, g’ € G, in formula (22) the value of v, and the elements yq; can be taken
independent of g € g’N. Hence, if G is profinite and D g is continuous, then so is Dg.
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(¢) The formation of DG commutes with base change, that is, the following holds. Let B — B’ be any
homomorphism. Set Dy := Dy ®p B’ and D, := DG ®p B’. Then equation (22) holds with Dy
and D¢ replaced by D, and Dy, respectively.

(d) For any geometric point X — Spec B the representations pp,; ; is isomorphic to the semisimplifi-
cation ofIndngHi.

(e) Suppose U = Spec B’ c Spec B is affine open such that Dy  is irreducible for all x € U and
set Dy = Dy ®p B’ and C := B’[G]/CH(DY,) so that by Proposition 4.1.25, C is an Azumaya
B-algebra and ¢ = ng : G — C* is a representation such that detc o ¢ = D7,. Then for
Indg(//: G — GL,,,(C)* from Definition 4.6.3, we have

Dg ®p B’ = DIndgzp'

(f) One has Dg = Dg ® x for any character y : G — B* whose kernel contains H.

(g) Suppose H is normal in G. Then xp, p(g,t) is a polynomial in 1°"6/0 (& H) - and in particular its
coefficients satisfy Ap,,.i(g) = 0 whenever ordg i (gH) 1 i.

Proof. Let us first consider the situation irrespective of any topology, that is, G is an abstract group
and Dy : B[H] — B is a pseudocharacter on H of a finite index subgroup. Let 7: FG(X) — G be a
surjective group homomorphism from the free group on a suitable set of symbols X. By the Nielsen—
Schreier Theorem, any subgroup of FG(X) is free again, and so let Xy C FG(X) be a subset of free
generators of 7~! (H), and write 7y : FG(Xy) — H for the restriction of 7 to 7~ (H).

Recall from Theorem A.4.4 the following description of the universal pseudocharacter of the group
ring Z{X};} = Z[FG(Xg)]. Let Fx: (n) =Z[éxi,j 1 x € Xy, 1 <i,j < n][m 1 x € Xgy| be the
commutative Z-algebra of the coefficients of the generic invertible n X n-matrices éx = (éx.i, )i, j=1
Mat,,,, (F’ X (n)) of all x € Xp. Define the representation

.....

Px: - Z{X;—-—]}ﬁMatnxn(FX,_*,(n)), X+ &y,
and let Ex (n) be the subring of Fx: (n) generated by det o px: (Z{X};}). Then by Theorem A.4.4
DXI%I :=det o pXIi:I : Z{X;} —_—> EXI‘; (I’l)

is the universal n-dimensional pseudocharacter of Z{X7, } (up to isomorphism).
Leta: Ex: (n) — B be the unique ring homomorphism (by universality of D xz)suchthataoDy: =
Dy oy : Z{X};} — B. Define

FG(X) — FG(X) . +
IndFG(XH)DXfI :=deto IndFG(XH)prI Z{XF}— FX;I (n)
with Indiggil ) as in Lemma 4.6.1. Now, Lemma 4.6.6 shows that all characteristic polynomials of

elements in FG(X) lie in E Xz (n), and it follows from [Chel4, Corollary 1.14] (a consequence of
Amitsur’s formula) that Indiggi’ )

a pseudocharacter

Dxz has ring of definition contained in E Xz (n), and we regard it as
FG(X

IndFGEXL)DX; L Z{X*} — Ex: (n).

We now claim that the composition

FG(X)

@ o IndFG(XH)

Dx:: Z{X*}— B
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has kernel containing K = Ker(7: FG(X) — G). For this, note first that by Lemma 2.1.4(b) we have

FG(X) FG(X) _ FG(Xm) g
Res; 2\ Indici, o, = €D (ResTE o)

geG/H

for § € FG(Xp) a preimage of g under x. If we compose the equation with det and «, this gives

RGSI:SI((XI\)U (0/ o Iﬂdiggl)l)x;—;) = @ (ResgDH)g omy. (23)
geG/H

The kernel of the right-hand side clearly contains K, and this proves the claim. As a consequence
ao IndiggL)D xz factors via : FG(X) — G, and using Proposition 4.1.16 we define
DG :G—B

as the unique pseudocharacter such that Dgomr = ao Indllzggl)’)
and by Lemma 4.6.6, Ind?gg,),)D xz satisfies formula (22) and the formula is preserved under compo-
sition with @, and under passage via 7 from FG(X) to G. This implies formula (22) for D¢. Since by
Proposition 4.1.10, the characteristic polynomial yp,; (-, ) completely characterizes D¢, the required
uniqueness of D¢ is also shown.

We now prove Parts (a) to (f). Part (a) follows from equation (23) and our definition of D¢. The first
part of (b) follows from the construction of D and Lemma 4.6.6. To prove the continuity assertion
in (b), we need to show that the characteristic polynomial coefficients of D are continuous. But this
follows from the first part of (b), equation (22) and the continuity hypothesis on D .

Part (c) is immediate from our construction which is based via pullback to the induction
I“digg,),)D xz ina free group setting. To see (d), note first that by Part (c) formula (22) is preserved
under base change to «(x), that is, the formula holds if we replace simultaneously Dg by D¢ 5 and Dy
by Dy 5. By its definition, pp,, .. has characteristic polynomial yp,, ., and by Lemma 4.6.6, the right-
hand side of equation (22) over k(X) is equal to X1ndG p This proves (d). For Part (¢), note that over B’

we have equality of characteristic polynomials yy = xp;, from Proposition 4.1.25. Using Lemma 4.6.6

D . Note that by its very construction

for Indgt// and formula (22) and Part (c) for D7, , we deduce xp,ezB.8 = X1ndS y and hence Part (e).

The proof of (f) will follow after pullback to FG(X). To carry this out, let d be the order of y and Z[ y|
the extension of Z obtained by adjoining a primitive d-th root of unity. In an analogous way, we define
Fx:(n)[x] and Ex+(n)[ x] and we extend @: Ex:(n) — B to a homomorphism a: Ex=(n)[x] — B.
Let now yg: G — Ex=(n) be the unique character such that @ o yg = y. By surjectivity of 7 (and by
applying @), it will suffice to show that

FG(X)

_ 1 gFG(X)
FG(Xn) =1Ind

XE ® Ind FG(Xs)

D Xz D X%
But by construction of D X% and Proposition 4.5.7(d) this reduces to the same formula with p X and
this formula holds by Mackey’s tensor product theorem formulated in Lemma 2.1.3.

Finally, Part (g) follows from the last part of Lemma 4.6.6: The normality of H in G implies that
my = ordg/y (gH) foralll = 1,...,v,,and so the formula for X104G () (¢) in that lemma is a polynomial

in rordG/n (8H) O

Definition 4.6.8. We call the pseudocharacter D from Theorem 4.6.7 the induced pseudocharacter of
Dy under H C G and write Indg Dy for it.

Remark 4.6.9. Our construction of Inng g does not need the generality of Azumaya algebra coeffi-
cients in Definition 4.6.3. However, over the absolutely irreducible locus of Dy, one has an elementary
construction of induction indicated in Theorem 4.6.7(¢e). In fact, if B is for instance reduced and Noethe-
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rian and if the set U in Theorem 4.6.7(e) is dense in Spec B, one can uniquely reconstruct Indg Dy
from this elementary construction. This approach had been pursued in an earlier version of this work.

Remark 4.6.10. In our approach to Theorem 4.6.7, we strongly rely on the explicit but somewhat
technical formulas from Lemma 4.6.6. We use them to uniquely characterize the induction, once
existence is shown. We also use these formulas in the existence part to show that Indigg,),)D X% takes
values in Ex= (n); initially the corresponding representation is only known to be defined over Fx: (n).
V. Paskiinas suggested in personal communication that perhaps one could avoid using Lemma 4.6.6, at
least for the unique characterization of Inng g - His remarks led to the following discussion, which
sketches an alternative proof of Theorem 4.6.7:

Suppose first that the target B of Dy : H — B is a domain, and let 77 be the generic point of Spec B.
Then Inng g is uniquely characterized by Theorem 4.6.7(d) for the geometric pointx: Spec K(T])alg —
Spec B because it states that (Indf,D H )x arises from Indfl PDy <

To handle the case of general B in a similar way, one can regard induction as a functorial type
construction in the sense that for any group epimorphism ¢ : G — G, any surjection of ringsa: B’ — B
and any pseudocharacter D’,,: H' — B’ with H’ := ¢~ (H) such that @ o Dy, = Dy o ¢, one requires
that @ o (IndG/,D y) = (InngH) o ; this compatibility can be shown for our construction. Assuming
this compatibility, the uniqueness of Indf,D # follows from that of Ind$, D yy for a suitable D7,,. And
now one can apply the observation of the previous paragraph to the universal situation from the proof
of Theorem 4.6.7, where D}, = D X3 and where B’ = E X3 (n) is a domain. This shows that uniqueness
follows from the stated functoriality and Theorem 4.6.7(d).

Lastly, we indicate how to deduce that £ X2 (n) is the ring of definition of Indliggl)i ) D Xz without the
use of Lemma 4.6.6. For this, it suffices to assume that X is finite: To see this, let Y C X be finite such
that ¥ U Xg generates FG(X). Then one verifies that it suffices to consider the restriction of D xz 1O
FG(Y”’) for all finite subsets Y’ C Y U Xy that contain Y. Assume now that X is finite and, by possibly
adding generators, that X contains at least n + 4 elements. We also assume that Dy is of degree n > 1,
and we set m = #Xg so that m > n +4.

Consider the morphism 7: Spec Fx: (n) — Spec Ex: (n). The ring Ex: (n) is a normal domain
because it is the ring of invariants under the connected reductive group GL,, of the normal domain
Fxz (n). Let U C Spec F, X% (n) be the open subscheme over which the generic matrix representation
pxz Z{X3} — Matnxn(FX;l (n)),x — &, is irreducible, cf. [Chel4, Example 2.20]. It is known that
U is dense in Spec Fx: (n), and we will give a much stronger result in the next paragraph. It is also
known that the induced map U — V := n(U) is a PGL,-torsor, and V is open nonempty and hence
also dense in the integral scheme Spec EXé(n), see [Nak00, §3 and Corollary 6.5]. It follows that
dim Ex: (n) = dimV = 1+ mn® — (n*> = 1) = (m — 1)n* + 2 because clearly dim Fxz (n) = 1 +mn®.

We claim that V contains all points of codimension at most 1 of Spec Exz (n). For this, we shall
show that the reducible locus Z := Spec Fx: (n)\U has dimension at most (m — 1)n* from which it
follows that 7(Z) = Spec E X3 (n)\V has codimension at least 2. Because Z is of finite type over Z,
it suffices to analyze the dimensions after base change from Z to an algebraically closed field k. Then
px; is reducible at a closed point if and only if there is a proper parabolic subgroup P of GL, that
contains the set of matrices px: (Xg), that is the set can by simultaneously conjugated by GL,, to a
standard parabolic P of GL,,. The stabilizer of this conjugation action is P itself and the dimension of
P is at most n> — n + 1, and there are only finitely many such standard P once a maximal torus and a
Borel are chosen for GL,,. It follows that the dimension over k of the set of reducible points is at most
mdim P + (n* —dimP) = (m — 1)dim P + n*> = (m — 1)n* — ((m — 1)(n — 1) — n?) and the claim on
dim Z follows from our hypothesis m > n + 4.

We now give an argument independent of Lemma 4.6.6 that show that Ind 8%

FG(XH)DXE takes values
in Ex: (n): Let Spec B C V be any affine open subset. Then by Proposition 4.1.25 the pseudocharacter
Dy FG(Xy) — Ex: (n) — B factors as a representation pg: FG(Xyg) — C* for C an Azumaya
B-algebra of degree n followed by the pseudocharacter associated to C in Example 4.1.7. By change
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FG(X)
FG(Xu) P X5

PXz takes

of coeflicients to an algebraic closure K of the generic point of Fx:, it follows that Ind

and TndFEX) FG(X)
FG(X;)PB> FG(Xp)
values in B. But because V contains all points of codimension at most 1 of the integral normal scheme

Spec Ex: (n) it follows that the intersection of all such rings B (inside Frac(EX:l (n))) is equal to
Ex: (n), and we are done.

from Definition 4.6.3, are isomorphic over K. Hence, det o Ind

For later use, we formulate the following simple finiteness result related to induction.

Lemma 4.6.11. Let k be a field, let y : G — k™ be a character of finite order m with kernel H := ker y
and let D be in PsR”(;(kalg). Define

Sp = {D’ € PsR}/"™ (k") : nd% D’ = D}.

Then the following hold:

(a) Sp is finite.
(b) Sp is nonempty if and only if D = D ® y.

If moreover G is profinite, k™2 carries the discrete topology and D is continuous, then there is a finite
extension of k in k™€ over which all D’ € Sp are defined and split.

Proof. By Theorem 4.1.18 and Corollary 4.4.6, the map p — D, from semisimple representations
of G over k¥ to pseudocharacters of G over k%2 is a bijection, and the same holds over H. We also
have D, ® xy = D,g, by Proposition 4.5.7(d). Thus, (a) and (b) are really assertions on semisimple
representations. Now, if p is a representation and if p = Indg p’ for some representation p’, then p’ is a
direct summand of the semisimple representation p|y by Lemma 2.1.4. Since up to isomorphism there
are only finitely many such summands and since these are unique up to permutation, Part (a) follows.
Part (b) is now immediate from Corollary 2.2.2. The last assertion is a consequence of Corollary 4.4.6
since Sp is finite. ]

4.7. Pseudodeformations and their universal rings

This subsection recalls in Proposition 4.7.4 the main object of our interest, the universal pseudodefor-
mation ring of a residual pseudocharacter D. Here, continuity plays a major role. We state basic results
relevant to the present work. In addition to the usual treatment, we also give some special attention to
functors Ar « — Sets where « is alocal field. The subsection also contains some results on deformations
over formal schemes and on the locus of irreducibility.

We let F be either a finite or a local field; in the former case, A is a complete Noetherian local
commutative W (IF)-algebra with residue field F. In the latter case, A = F. Recall the categories .Arx and
Ara from Subsection 3.1 and the topological conditions we impose on there objects and morphisms.
By A, we denote a ring in Arz; its maximal ideal is m4 and it comes with a natural reduction map
ma: A — A/my = F. We let G be a profinite group and we denote by D: F[G] — F a continuous
pseudocharacter of dimension 7.

Definition 4.7.1 [WE13, §3.1.4.3].
(a) A pseudodeformation of D to A is a continuous pseudocharacter D: A[G] — A suchthat D®sF =
nao0D: F[G] — Fisequal to D.
(b) The functor
PsDg: ,ZrA — Sets, Avr— {D: G —> A is a pseudodeformation of D},
is called the pseudodeformation functor of the residual pseudocharacter D.

Note that unlike in parts of [WE13] for us all pseudodeformations will be continuous.
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Definition 4.7.2. Let 7: B — F be a morphism in CAlg,, and let D: B[G] — B be a pseudocharacter
such that D ® g F = D.
An ideal I of B is called D-open if the following conditions hold:

(a) The map x factors via B/I and B/I is a local Artin ring.
(b) D; := D ®p B/I is continuous if we equip B/I with the topology of an object in Ar,.

Lemma 4.7.3. With the notation from Definition 4.7.2, the D-open ideals form a basis of a topology
on B.

Proof. (Cf. [WEI3, Theorem 3.1.4.6]) One has to show that if 7, I’ are D-open ideals, then sois I N 1’.
Consider the injective homomorphism

©:B/(INT")— B/Ix B/I'.

For both A that we consider, it is straightforward to see that ¢ is a topological isomorphism onto its image.
Now, a pseudocharacter is continuous if and only if this holds for its characteristic polynomial functions;
cf. Definition 4.4.1. Since both I and I’ are D-open, it is now immediate that / N I” is D-open. O

The following result is proved in [Chel4, Proposition 3.3] for A = W(F) and in [WE13, Theorem
3.1.4.6] for A € Arw (p).

Proposition 4.7.4. The pseudodeformation functor ‘PsD is prorepresentable by a topological A-

algebra R i“% that is a filtered inverse limit of objects in Ar p, together with a universal pseudodefor-
mation ’

univ ., univ

D AD: G—R AD"

Proof. We recall a sketch of the proof from [WE13, Theorem 3.1.4.6] to indicate that it also applies

to the case when A = « is a local field. Consider the universal ring R;’\“[icv;] ,, from Definition 4.2.2 with

its universal pseudocharacter D;’\“[‘V G—>R;‘\"[‘2’;] on G. By definition, R;‘\"[ié]’n is a A-algebra. The

map D induces a A-algebra homomorphism 7: R}‘\"'[‘CV;] i F. By Lemma 4.7.3, the D-open ideals of
R;l\n[lé] form the basis of a topology on RXH[I(V;] and one defines R;l\r’l% as the completion of RYIY

with respect to this topology. It is then straightforward to establish the asserted properties for R;‘\“%

l.n

together with the pseudocharacter D;ni" = D““[lv G ® R R;‘\“% by verifying it for the restriction of

PsDy to Arp. O

Definition 4.7.5. The ring R i"% from Proposition 4.7.4 is called the universal (A-)pseudodeformation
ring of D, the pseudocharacter D““il' Ruml[G] — R “ml the universal (A-)-pseudodeformation of D

and the space X unl := SpecR unty the universal (A- )pseudodeformatton space of D; we write R 'g‘/‘; 5
if there is a need to 1nd1cate G; we often drop the index A if it is clear from context.

The ring R i“% behaves well under change of the coefficient ring A.

Proposition 4.7.6 (Cf. [Wil95, p. 457]). Let f: k — &’ be a homomorphism between either two finite
or two local fields, and let f: A — N’ be a local homomorphlsms of complete local Noetherian
commutative rings that reduces on residue fields to f. Define D =D ®« k' kK'[G] — «’. Then one
has a natural isomorphism

R — RGN,

Proof. The proof is as in [Wil95, p. 457] for deformation rings: If f is the identity, one can proceed
as follows. Any A € Ar,  can be regarded as a ring in Ar, via the action induced from f; the residue
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fields of A, A and A’ are the same. Then the assertion follows rapidly by using the isomorphism
Hom Ara (A, B) = Homp (A®p A’, B) for A € Arp and B € Arp together with the universal properties

of R"Y_, and R"MY.
N D' AD

In the general case, define for any B’ € Ary the ring B” as the subring of B’ of elements whose
reduction to &’ lies in the subfield « so that B” € Ar». The argument just given applies to A — A”.
For A” — A’ note first that any D’ € PsD A/,B’(B/) takes values in B” because D’ takes values in «
so that D’ defines a D" € PsD ,, 5(B"). Conversely, if such a D" is given, we may form D" @~ A’
and compose it with the natural A’-homomorphism B”” ®» A’ — B’ to get back to D’. This yields the
following chain of isomorphisms

Homy (R B') = PsD,, 7(B') = PsD,, 1(B”)

= Homy, (R™Y_, B”) = Homy»(R™"_, B')

AN, D A”.D
= Homp (R ®s» A', B)
N7, D
We deduce R, = R" @x» A’ because any B’ € Ar can occur as test objects. o

The previous proposition justifies the following definition.
Definition 4.7.7. If F is finite, we call E%N =R ;‘%’ the universal mod p pseudodeformation ring of D
and we call Y%W =X ;n% the special fiber of the universal pseudodeformation space of D.

We shall also need to consider Cayley—Hamilton quotients. Recall from Remark 4.4.4 that DZ“%

induces a continuous pseudorepresentation (for which we shall use the same name)

univ . puniv univ
DA,B' RA,B[[G]] _)RA,B'

Let the following be the diagram induced from diagram (16)

CH pCH-univ
univ A.D CH-univ ._ univ CH A.D univ
RA,E[[G]] — SA,B L (RG,B[[G]] D/u\n% — RA,B. (24)

Definition 4.7.8. For ‘object’ the algebra SiHB‘“““’, the CH-representation piHB, or the pseudocharacter

DiHB‘““iV, respectively, we use the term universal Cayley—Hamilton object attached to D.

Remark 4.7.9. As explained in [Chel4, Proposition 1.23], the factorization in diagram (24) has indeed
a universal property.
Definition 4.7.10 (Cf. [WE13, 3.1.5]). Suppose FFis finite. Then we define condition ®; to be condition
<I>p5® cale from Definition 3.2.2.

F

We recall a criterion for R i“% and S/C\f%miv to be Noetherian.
Proposition 4.7.11 [WE18, Propositions 3.2 and 3.6]. The following hold if F is finite and @5 holds:
(a) The topological A-algebra R in% lies in Ary.
(b) The CH-representation p/c\% is a continuous homomorphism.
(¢c) The ring Si%‘““iv is module-finite as an Ri’%-algebra, and therefore Noetherian.
(d) On S/C\%miv the profinite topology, the mgy-adic topology, and the quotient topology from the
surjection pi L are equivalent.

H
,D
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Remark 4.7.12. Suppose G = Gk for K a p-adic field. Then by Propositions 3.2.3 and 4.7.11, the ring
R “n% is Noetherian.

Corollary 4.7.13. Suppose F is finite and @ holds. Let A be a quotient of R := R 'é;l(vp) o+ Then A is

the ring of definition of D 4 = D%‘V ®gr A over W(F) in the sense of Definition 4.4.10.

Proof. Let C C A be the ring of definition of D 4 over W(F), and let D¢ be the pseudocharacter over
C such that D¢ ®c A = D 4. By the universality of R we have a unique W (F)-algebra homomorphism
R — Csuchthat D¢ = Dgi" ®g C. We deduce that the composition R — C<—A is equal to the initially
given quotient map. Hence, C< A must be the identity. O

We shall also need the following result which in parts can be traced back to the proof of Proposition
4.7.11 in [WE13].

Proposition 4.7.14. If F is finite and condition @5 is satisfied, then the following hold:
(a) Forany ¢: R l/‘\n% — Ain .ZrA giving rise to the pseudocharacter D 4, the induced maps
(ATIGIT @A)y = (RYBIIGT @ ANl — (ALIGIDG; = SI5™ @ A
are isomorphisms.

(b) The F-algebra (F[[G]] %H is finite-dimensional as an E-vector space.

Proof. For (a) consider the maps in

Al[G]] @ A — RG] @ A — A[[G]]. 25)

They are injective with dense image. By the definition of the Cayley—Hamilton ideal, this still holds
after passing to Cayley—Hamilton quotients. By [WEI13, Corollary 1.2.2.9 and Proposition 3.2.2.1]
the A-algebra (A[[G]] lc)‘: is a finitely generated A-module and hence Noetherian. It follows that its

subrings (A[[G]] ®a A)gl/;I c (R ;"%[[G]] ® guniv_ A)gl;\I are also finite A-modules. By completeness
» A.D

of A and their density in (A[[G]])}], the inclusions must be equalities. By Proposition 4.1.22(c), we
also know that the formation of the Cayley—Hamilton quotient commutes with base change. Hence,
(R“"l[[ 1] Dps A)CH — SCH UiV @ aniv A is an isomorphism, and this completes the proof of (a).

AD
Part (b) follows from [WE13, Theorem 1.3.3.2]; it is also a consequence of Part (a) and Proposition
4.7.11. o

The next result concerns the reducible locus for multiplicity free D.

Corollary 4.7.15. Suppose 5 is split and multiplicity free over F and equal to D, ® D». Then the
morphism %5, B, X”E“”QX %“" — X“E“'V, (D1, D) — D & D, is a closed immersion.
> 1 1

Proof. We need to show that the ring homomorphism

univ umv
RE B RUD

corresponding to iz 7, is surjective. Since both sides are complete Noetherian local rings with isomor-
phic residue field, it suffices to show the surjectivity for the induced map of the duals of their tangent
spaces; that is, the injectivity of

77sD51 (Fle]) x 77sD52 (Fle]) — PsD5(Fle]), (Di1,D2) +— Dy ® D;. (26)

Consider n;-dimensional pseudodeformations D;, D] € 'PSDEL_ (Fle]) for i = 1,2 such that D :=
D, ® Dy = D] ® D). We need to show D; = D] fori =1,2.
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Let A = F[g] and let S be the Cayley—Hamilton algebra A[G]/CH(D). Observe that CH(D) is
contained in both, CH(D;) and CH(D?): We explain this for D;. Recall s — xp g(-) = xp,B(t,5)li=s
from Lemma 4.1.8(b). The equality D = D| @ D, implies

XD, Alt1etn] (i Siti) = XDy Altrsotn] (X Sili) * XDa, Ayt ] (24 Sili)s

forn € N, s1,...,5, € S. The ideal CH(D;) is generated by the coefficients of all polynomials
XD, Altr,....t,]1 (2 8it;). It follows from the displayed formula, that CH(D) is zero modulo CH(D;), and
this gives CH(D;) > CH(D). As a consequence, we find that D; and D/ factor via S.

By Theorem 4.3.10(b), the Cayley—Hamilton algebra is a GMA over A with D = det (g ¢) for a datum
of idempotents &€ = {e;, ¥} ;=1,...,r. The proof in [Chel4, Theorem 2.22] shows that the idempotents
e j correspond bijectively to the irreducible summands of D, and so we write D = 69]-56]. in the notation
of Lemma 4.3.8. Write J = {1, ..., r} as a disjoint union J = J; U J, such that D; = ejgjiﬁej, using
that D is mulitplicity free.

Because S is a GMA, the algebra ¢ Se; is isomorphic to Maty; xn; (A) for some n; € N, and where
2jn; = n. It follows from Example 4.1.7 in particular that (D )e is n; f; j-dimensional for some

fi.j € No. Using (D;)., mod (&) = (D; )e;» we find f; ; = 1for j € J; and f; ; = 0 for j € J5-;.
Let E; = }.;cy, ej. Then by Lemma 4.3.8, we have dim((D;)g;) = dlm(D ) and dim((D;)g, ;) =0

and thus D; = (D;)g;, = (Di)g;, ® (D3-;)E;, = Dg,. But the idempotent E; only depends on D;, and so
arguing in the same way for the D}, we find D} = Dg, = D/, which concludes the proof. O

The locus of irreducible points shall be of special importance.

Definition 4.7.16. The irreducible locus of X %iv is defined as
nivyirr ,__ niv ., univ P .
(XUE yYTi={xe X”E : (D5 )y is irreducible}

and its reducible locus (X %ﬁv)md as the topological space X %iv\(X %iv)irr. We overline the notation for
—univ
the corresponding subsets of X5 .

The argument in [Che 14, Example 2.20] also proves.
Proposition 4.7.17. The subsets (X @V)i“ cX Eiv and (Yuﬁmv)irr c Yugmv are Zariski open.

By Proposition 4.7.11(c), we can associate to SCHDunlv a sheaf of coherent OXum[v) -algebras S CHD‘““V
under the finiteness condition ®z. The next result is not stated verbatim in [Che14]; however, its proof
is that of [Che 14, Corollary 2. 23] with a continuity requirement added.

Proposition 4.7.18. Over (X‘/’C%)irr, the sheaf Sf%“mv is an Azumaya O)in% -algebra of rank n® equipped
with its reduced norm.

Over affine open subsets of (X“A“%)i”, Proposition 4.7.18 is a variant of Proposition 4.1.25 under
some continuity constraints. |

4.8. Pseudodeformations over local fields

In this subsection, we develop some results analogous to Subsection 3.3 for continuous pseudodefor-
mations of a fixed one D: k[G] — «, where « is a local field. Also, continuity is an important theme;
for instance, to deduce under weak hypotheses from the continuity of a pseudocharacter that of its
associated representation.

Lemma 4.8.1. Let k be a local field with valuation ring Oy, and let D: k[G] — « be a continuous
n-dimensional pseudocharacter. Then the following hold:
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(a) There exists Do € PsR;(Oy) such that Do ®p, k = D.

Let C C Oy be the admissible profinite subring of O, from Lemma 4.4.8, and let D¢ € PsR{;(C) be
such that D¢ ®c Oy = Do. Then furthermore:

(b) Cis local, its residue field k(C) is finite, either C is a finite field, or k is a finite extension of the
fraction field of C, D := D¢ ®c «(C) is equal to D, for some z € |G(n)| and Do is residually
equal to D in the sense of Definition 4.4.10.

Proof. Let ppg e be the representation from Theorem 4.1.18. For (a) observe first that the character-
istic polynomial coefficients Ap ; of xp (g, - ) are continuous for 1 < i < n, and hence the sets Ap_; (G)
are compact in k. Assume that for some g € G, Ap ;(g) does not lie in O,. Then at least one eigenvalue
of ppg, iz (g) has valuation different from 0, and, since we can pass to g, we may assume that this
valuation is negative. Let A1,..., 1, € k¢ denote the eigenvalues of Ppe,. e (g) and index them so
that Ay, ..., A; are precisely those with negative valuation. Then for n > 0, the valuation of Ap ;(g") is
the valuation of (1; - ... - 2;)". The latter valuations are unbounded. This contradicts the compactness
of Ap,;(G) and thus proves (a).

We now prove (b). By Lemma 4.4.8, the ring C is a finite product []; C; of local admissible profinite
W (FF)-algebras C; and the residue field of each C; is finite. Let m be the maximal ideal of O,. Then
C N m is topologically nilpotent and C/(C N m) is a finite field that surjects onto the product of the
residue fields of the C;. It follows that C is local with finite residue field «(C).

It remains to show the assertion on the fraction field of C, since the last part of (b) follows from
Lemma 4.4.8. For this, we may assume that C is infinite. Let «” be the fraction field of C. Because
C is infinite and «(C) is finite, we find f € C\«k(C) so that f has strictly positive valuation. Then
k' 2 k(C)((f)) is a nontrivially valued locally compact subfield of the locally compact field «. It now
follows from [Wei67, 1.§2. Corollary 2 of Theorem 3, p. 6] that [« : «’] is finite. O

The following result is a generalization of Corollary 4.4.6.

Corollary 4.8.2. Let k be a local field, let A be in Ar, and let D € PsR{;(A) be continuous. Define D
as in Lemma 4.8.1, and assume that condition ®5 holds. Then the following hold:

(@) If A =k, then ppg, e is continuous.

(b) If D is split and irreducible, then pp = p H from Proposition 4.1.25 is a continuous representation
to Mat,x,, (A).

Proof. We first prove (a), and so here we assume A = k. Set A := O, and consider the diagram

CH

i AD iy 1 ®@ S id®¢

R\lnl[[G]] SCH—unlv E—— SCI_DJHIV ® niv OK —_— SCH univ ® niv. K lg
AD AD AD D AD RS

where ¢: R ““% — O is the map induced from the universal property of R uniy - and where t: O — « alg

is the natural inclusion. The first map is continuous by Proposition 4.7.11 (b) the second by Proposition
4.7.11(d), which says that SiHB““” carries the my-adic topology, By Proposition 4.7.11(d), the ring
Si}%‘“iv ®pniv Oy is finitely generated as an O,-module, and hence the m-topology also coincides
> A,D .
with the topology inherited from SiHﬁ'“mV ®pniv K € Ar,; it follows that also the last map is continuous
> A,D

and that Sil%mi" ® pniv. %2 has finite x*'¢-dimension. But then also the map
] A,D
S @ 118 e (RGN —— k¥ [[G]] Jker (D)

is continuous. Hence, in the factorization of D : k[G] — € via x*2[[G]]/ker (D) given in Proposition
4.1.16, the first map is continuous. From Theorem 4.1.17, we know that *¢[ [G]] /ker (D) is semisimple
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and finite-dimensional over %2 and that its determinants are given by determinants of the simple matrix
algebra factors of x¥2[[G]]/ker (D). Hence, the second map in the factorization given in Proposition
4.1.16 is continuous and thus so is the composition p.

The proof of (b) is analogous. One has to replace x by A in most places and substitute Theorem
4.1.17 by Theorem 4.3.10. O

Remark 4.8.3. In an abstract setting, ® in Corollary 4.8.2 seems hard to check. In our concrete
applications, we know D because of Proposition 3.2.3, so then the formulation is useful. A more natural
condition to require would be ®p; we do suspect that this condition also suffices. Also, we wonder if
the conclusion of Corollary 4.8.2 might hold without assuming @3, and without invoking Lemma 4.8.1
just because A € Ar,.

Corollary 4.8.4. Let « be a local field, and let D € PsR, (k) be continuous. Define D as in Lemma
4.8.1, and assume that condition ®5 holds. Then there exists a finite extension k" of « and split
irreducible continuous D; € PSR'C';" ("), i=1,...,r such that

Dok =D®...8D, 27)

Moreover, D € PsR{,(Oy) and D; € PsRE(Op) fori=1,...,r.

Proof. By Theorem 4.1.17, the k-algebra S := «[[G]]/ker (D ®o, k) has finite k-dimension. Hence,
Lemma A.2.3 allows us to find a finite extension «” of « such that § ®, «’/Rad(S ®, «’) is a product
of matrix rings over «’. It follows that «’[[G]] /ker (D ®¢, «’) is a product of matrix algebras over «’.
Hence, we have D®, k" = @!_, D; for splitirreducible D; € PsR'g (x’). We find that (@{zlppi)®,<r/<a'g =
PDee, xie- Since the latter is continuous by Corollary 4.8.2, so are the pp, . Finally, Lemma 4.8.1 shows
that the D; can be defined over O, and D over O,. m]

To prove a more general result than Corollary 4.8.4, we need some preparations.

Lemma 4.8.5. Let F be a finite field, let A € ,,Zl\rﬂ: be a domain and let p € Spec A be a prime of
dimension 1, and consider the completion ;fp as a topological ring in A\rk(p). Then the canonical map
tA—> Xp is continuous and injective, and A — 1(A) is a homeomorphism if t(A) is equipped with the
subspace topology.

Proof. The injectivity of ¢ is clear, since A — A, is injective, as A is a domain, and completion is
injective since A, is Noetherian.

Recall that A carries the m4-adic topology and that the topology on Xp is the weakest topology such
that the canonical maps ;\\p = R, = Ay /p"Ap = Zp /p";ﬁ\p are continuous for all n, with R, carrying
the unique topology as a finite-dimensional vector space with a continuous action of the local field «(p).
Lett,: A — Ay — R, be the canonical map. Because A and A, are topological modules, it remains to
prove continuity near 0, that is, we have to show the following two assertions: (i) Forn e Nand U C R,,
an open neighborhood of 0, there exists m € N such that Ln(mf;‘) c U. (ii) For m € N, there exists n € N
and U C R, open such that m’f > 4, ().

Before we tackle (i) and (i), we show the following assertion (iii): There exists w € my4 with
nonzero image in A/p such that for each n > 1 there exists a coeflicient field K,, for R, such that
Ky, O F[[tn(w)]] — we also gather further properties of F[[¢,(w)]]; recall that being a coefficient field
means that K,, C R, is a subfield that under the reduction map R,, — «(p) maps onto «x(p).

For the proof of (iii), let O be the ring of integers of the local field K; = «(p). The ring O is also
the integral closure of A/p=¢;(A) in x(p). By [Wei67, 1.§4. Proposition 6, p. 22], for any w € m,4 with
ti(a) # 0 the ring O is finite over F,[[¢1(w)]], and hence a finite free F, [[¢1 (w)]]-module. Because
A/p and O have the same quotient field, the field A/p is also a full F,,[[¢; (w)]]-sublattice of x(p) and
it follows that there exists j > 0 such that A/p> ¢{ (w)’ O. Thus, for a uniformizer ¢t € O, all sufficiently
large powers of ¢ lie in A/p. We now choose (a new!) w € A such that ¢;(w) = t¢ for some e > 0
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coprime to p. One easily verifies that ¢; (w) is a p-basis of «(p). It follows from [Hoc14, Theorem 12],
that K,, := () Ri,’n [tn(w)] is a coeflicient field for R,. Because K, is complete, it contains F[[¢, (w)]].
Let O, be the ring of integers of K. Then O, is finite free over F[[¢,(w)]]. Also, A/pC K] is finite
free over F[[¢1(w)]], and A/p[1/t1(w)] =k(p).

We now prove (i). Let p"”) = LZI(O) D p™. Then A/p" — A/p"™ A is surjective, and the induced
map A/p™WA — R, is injective. Because the A/p-modules p’/p*! are finitely generated over A/p
and thus over F[[¢;(w)]], as a module over F[[1,(w)]] the ring A/p™ A is finite free. Moreover, it
is an F[ [, (w)]]-lattice in the F((,(w)))-vector space (A/p"™ A)[1/t,(w)] C R,. By induction on n
one also sees that (A/p™ A)[1/t,(w)] = R,: This is clearly true for n = 1 by the previous paragraph.
In the induction step, we know that under reduction (A/p"™ A)[1/t,(w)] maps onto R,_;. Moreover,
" [1/ta(w)] is a k(p) = A/p[1/11(w)]-vector space, and it follows that (A/p"™ A)[1/t,(w)] is
a k(p)-vector space and thus equal to R,,. Now, the topology of R,, as a K,, or as a F((¢;(w)))-vector
space is the same, and it follows that ¢, (A) is a compact open neighborhood of 0 in R,;, and hence there
exists j > 0 such that ¢, ((w)’A) € U, and also t,,(A) /1, (w/ A) is finite. It follows that A/(p™ + w’/A)
is a local Artin ring, and so there exists m > 0 such that m’}’ C p™ +w/A, and also «(m’) c U. This
proves (i).

For (ii), we show first that there exists n € N such that mgn o) p("): To see this, note that the ring maps
A— Ay — Zp are injective and the p-adic topology on A}, is separated, that is, we have ), p"”) = 0.
The existence of n now follows from Chevalley’s lemma, [Che43, Lemma 7], which asserts that the
topology on A generated by the ideals (p™),,5 is finer then the m 4-adic topology.

Now, by the choice of w we have wA C my. Therefore, w™A + p(") C m;‘”. It follows that
U = 1,(w™A) is an open neighborhood of 0 such that ¢,,! (¢,,(A) N U) ml. O

Proposition 4.8.6. Suppose @5 holds. Let ng — A be a morphism in Arg, and let D5 be the
corresponding pseudodeformation. Suppose A is a domain with fraction field K and that D := D4®4K
is multiplicity free. Then there exist

(i) a finite extension K’ of K with integral closure A’ of A in K’, and
(ii) continuous irreducible pseudocharacters D;: A'[G] — A’,

such that Dy ®4 A’ = @&;D!. The ring A’ lies in ,Zl\ry for some finite field F' > F. If D is split, the ring
of definition A; C A’ of each D, lies in Admy and one has D= ®; (D] ®4; k(A;)) over F.

Proof. Define the rings
Sa = SCH—univ v A dSx =S K
A= AD ®Runi an K =94 ®4 K.
4 A,D

Then by Proposition 4.7.11, the A-algebra S, is finitely generated as an A-module, and the induced
homomorphism G — 7 is continuous if S is equipped with the m4-adic topology as an A-module.
In particular, the K-algebra Sk is of finite K-dimension.

Now, Lemma A.2.3 gives a finite extension K’ of K so that §” := Sg ®x K’ /Rad(Sx ®x K’) is a product
of matrix algebras S” = []; Mat,, xn, (K’). Since Dy := Dg ® K’ factors via §” and is multiplicity free,
itis the composition of G — 8% — (8”)* with []; det,,, where det,,, is the determinant of Mat,,,x,, (K”).
Write Dgr = EBl. D; with D; corresponding to det,, on the i-th factor of S’.

Let A’ be the integral closure of A in K’. Because A is Nagata by Lemma A.1.1(a), the ring A’ is finite
over A and hence lies in Admp. Because A is complete Noetherian, so is A’, and because A’ must be
semilocal, it is a product of local rings. But A’ is also a subring of the field K’, and thus A’ lies in Arg
for some finite field extension F’ D F. Let S := S4 ®4 A’, and write (S4)’ for the image of S in S’.

Because Dy = @i D;, the attached characteristic polynomials satisfy

HXD;(-,I) = XDy (1) € K'[1].
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By hypothesis, the coefficients of Dy liein A ¢ A’ ¢ K’. Now, because A’ is integrally closed, by
[Mat89, Theorem 9.2] the coeflicients of the XD, (-,t) liein A’. Hence, by Amitsur’s formula in the form
Proposition 4.1.10, the D/ take values in A”.

Now, note that the proposition is trivial if A has Krull dimension 0, and so we assume it to be strictly
positive from now on so that Spec A’\{my4 } is a nonempty Jacobson scheme and thus the points of
dimension 1 of Spec A’ are very dense in it; see Definition A.1.10 and Proposition A.1.11. Moreover,
the locus of irreducibility of each D; is open in Spec A’ by Proposition 4.7.17 and contains the generic
point of Spec A’ by construction. Also, by Lemma A.1.1 the complete Noetherian local ring A’ is a
Nagata ring and so the regular locus is open in Spec A’; it is nonempty because A’ is a domain. Hence,
there exists a point p € Spec A’ of dimension 1 at which all D; are simultaneously irreducible and
such that A} is regular local. The former condition on p implies by Proposition 4.7.18 that each D;
when considered as a pseudocharacter Aj[G] — Aj is equal to the reduced norm composed with a
representation G — (C;)* for C; an Aj-Azumaya algebra. The latter condition implies that one has an
inclusion of Brauer groups Br(A;)<—Br(K’) by [AG60, Theorem 7.2], and hence that all C; have trivial
Brauer class by the choice of K, that is C; = Maty,xs, (Ap) for suitable n; > 0. It follows that over Ay,
we have that D’ is the determinant of a direct sum of representations

G — [ [ Matyn, (A7)".

By our hypothesis, G — §’ is continuous as is the induced pseudocharacter D: S4 — A. Let S, be

SA® AZ\’p /CH(D'). Thenby Lemma4.8.5 also G — S} is continuous, as is the induced pseudocharacter
Sp — A’. From the above and Proposition 4.3.9, it follows that S, is a GMA with trivial ideal of total

reducibility. Now, the continuity of G — S} implies that of D;: G — Maty,xp, (1’4\",)X < :4\’,) obtained
by applying the i-the projection and the determinant, and again from Lemma 4.8.5 we deduce that
D;: A’[G] — A’ is continuous.

It remains to prove the last assertion, assuming that D is split: Let A; € A’ be the ring of definition of
D/, denote by D;: A;[G] — A, the corresponding pseudocharacter and let D; = D; ®a, k(A;). Note
that the x(A;) are the rings of definition of D;. Let F” be the smallest extension of F that contains all
k(A;). Then D @z F” = P, D; ®x(4,;) F’. However, D is split over F and so all D; are defined over F,
and this shows «(A;) = F for all i by Lemma 4.4.8. We deduce A; € Admg. ]

Corollary 4.8.7. Let « be a finite or a local field, and let p: G — GLj (k) be a continuous absolutely
irreducible homomorphism with associated pseudocharacter D. Suppose that ® holds for D attached
to D as in Lemma 4.8.1. Then the natural map RR‘}}D" — RR‘?Z induced from ps — Dy, for A € Ar is
an isomorphism.

Proof. 1f k is finite, the assertion is [Che 14, Example 3.4]. For local k, we need to show that the natural
transformation of functors Ar, — Sets defined by

{continuous deformations p4 of p to A}

{continuous pseudodeformations D 4 of D to A}
is an isomorphism. Well definedness is clear. Injectivity follows from Theorem 4.3.10(a) since pp is
absolutely irreducible. To prove surjectivity, consider a pseudodeformation D 4: A[G] — A of D and
note that by Theorem 4.3.10(a) there exists a deformation p4 of pp to A with D4 = D,,, . The continuity
of p4 follows from Corollary 4.8.2(b). O

We now give an analog of Theorem 3.3.1 for pseudocharacters.
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Corollary 4.8.8. Let F be a finite field and let D € PsRE (F) be continuous. For x € X“n% such
that k(x) is a local field and with residue map ny : R‘/’\n% — k(x) and associated pseudocharacter
D, : k(x)[G] — k(x), define the morphism f, = 7, ®id: R "An% ®n kK(x) — k(x), and the completion
RofR i"% ® k(x) at p = Ker(fy). Denote by

(i) D: G — RY “niv — R the completion at p of the pseudocharacter D@i" ® Kk(x), and by

(ii) Dumv G — R “IZI)Z) o the universal pseudodeformation from Proposmon 4.7.4 attached to Dy.
Then the map ¢: R ‘g’iv — R induced from the universal property of R ‘g‘i" is an isomorphism.

Proof. We adapt the proof of Theorem 3.3.1. Thus, we need to show that ¢ is formally étale. We
abbreviate k = k(x) and let O be the ring of integers of x. Consider the commutative diagram

G—>Runiv 2 A

7
-
y Ga 7
-
- 7~

R%“” ®A K : R A/l K,

where A € .ArK, the ideal I c A satisfies /> =0, and D A[G] — A is continuous pseudodeformation
of D,. The maps &4,; and a4 are homomorphisms in .ArK. We will construct the dashed arrow @4
so that the extended diagram commutes and show its uniqueness. Our first claim is that there is an
O-algebra Ag C A that as an O-module is an O-lattice in A and such that D is valued in Ay.

The proof is an induction over j for the composition D ; = D (mod mi) of D with the quotient map

A—A;= A/mi. For j = 1, the claim holds because D, = D, is valued in O C «. Suppose in the
induction step that we have defined Ay C A; as in the claim and we wish to construct A, o C Aj,y.
Because the characteristic polynomial coeﬂicwnts A; Dol i = 1,...,n,are continuous and G is profinite

and hence compact, the joint image of the A;, Dja (G) is bounded in A, and hence there exists an
O-sublattice L C A4 that contains this joint image as well as O - 1, and such that L(mod mi‘) =Ajo.
Now, using that A o is aring and that m" is annihilated by My, it follows, for instance by considering a
suitable O-basis of L and the quotient L +m’, / L inside m”, a/ (m] YA mi), that L - L is an O-algebra
that can be taken as A4 o.

Let C, be the ring of definition of D . It is a quotient of R“"l and a subring of O C «. We let B be the
subalgebra of Ag that is the inverse image of C, under the reductlon map Ay — O modulo my4. Then
Be Ar A and B is a coeflicient ring for D. Denote by Dg: B[G] — B the pseudocharacter such that
Dp ®p A = D. If « has positive characteristic, it follows from Lemma 4.8.5 that D p is continuous with
B carrying the mp-adic topology. The same holds if « is a p-dic field: Then B is a finite free Z,,-module,
and so the p-adic topology on B agrees with the mpg-adic topology on B. Therefore, the continuity of
D with respect to the topology on A as a continuous k-module implies the continuity of Dp for the
mp-adic topology on B.

Now, the universal property of R;’\“% yields a unique homomorphism SBp: R;‘\“% — B such that

D = Bp o Dp. Then Bp ®, id, is a homomorphism R;‘\“% ®A k — A. Its composition with A — «
has kernel p, and thus it induces a map (R;‘\“% ®a K)p — A. If m denotes the length of A, then p™

maps to zero under that map so that it factors via R — A. This is the wanted map @4: The top
triangle in the diagram commutes by construction, the bottom triangle because 84 (mod ) and the map
R;‘\“% — B/(I N B) c A/I must agree since they both give rise to D(mod I).
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Let us show the uniqueness of @4, and so let @/, be a second map R — A that makes as a dashed
arrow the diagram commute. Observe that by construction we have the equality of pseudocharacters
o DuniV =()o (Duniv ®a k). Now composing the equality with either @4 or @/, gives the same

pseudocharacter. We claim that @4 o (- ) =ajo( ) as maps Runlv ®p k — A. If the claim is shown, then

uniqueness follows, because the induced dlagonal map is reconstructed by localization and completion
— the ideal p™ is mapped to zero in A.

To prove the latter claim, by the universal property of the tensor product of rings, it suffices to
understand the ring maps on both factors of Runiv ®a k — A separately. On the second factor, both maps

are the scalar multiplication 1somorph1sm k— k- l,a— a-1,by the deﬁmtlon of ( ) and the condition
that the diagonal map be in .ArK The restriction of either map &4 o ( )ora), o ( ) to the first factor R““‘g

gives when composed with Dunlv ®, « the pseudocharacter D. Both restrictions to R“““’ are subject to

the universal property of this rlng, and hence these restrictions agree, and the claim is shown O

Remark 4.8.9. We think that [Chel4, Corollary 2.23(ii)] has to be formulated in a way similar to
Corollary 4.8.8; only if k(x) is a p-adic field, one can simply complete (R “ni)px to obtain a universal

pseudodeformation ring for D . In Corollary 4.8.8 we have only verified this for dimension 1 points.

Corollary 4.8.10. Let « be a local field and let D € PsR{; (k) be continuous. Suppose that condition
@, for D from Lemma 4.8.1, is satisfied. Then the following hold:

(a) The ring R ﬂ“g is Noetherian.
(b) Suppose that D is irreducible and that H*(G, adp) =0 for p := ppg, sae. Then R i“g is formally
smooth over k of relative dimension dimae H' (G, ad,).

Proof. Let C be the ring of definition of D, let D¢ : C[G] — C the continuous pseudocharacter from
Lemma 4.8.1 such that D¢ ®c k = D and let D = D¢ ®c k(C); note that x(C) is finite; note
also that continuity is clear because C carries the subspace topology of « and we only require the
continuity of the characteristic polynomial coefficients as functions G — C. By Proposition 4.7.4 and

univ univ
our hypotheses, the ring R W (x(C)). D is Noetherian. Part (a) follows by choosing x € X W ()T 2

the point corresponding to D, and by applying Corollary 4.8.8 with this x; note that R (in Corollary
4.8.8) is Noetherian as the completion of a Noetherian local ring.

To see Part (b), let k” O « be a finite extension over which D is split. Let p := ppe «: G — GL, (k")
be the continuous and absolutely irreducible representation with D,. = D ®, «’. Our hypotheses
gives H*(G, ad,y) = 0 and it will suffice to show that R“m}’) is formally smooth over «’ of dimension
dim, H' (G, ad,). This follows from Corollary 4.8.7 and Theorem 3.2.4(e). O

For later use, we also need variants of Corollary 4.8.7 and Corollary 4.8.8 for deformations of pairs
of representations and pseudocharacters. Let D, D,: F[G] — F be continuous pseudocharacters of
dimensions n; and n, such that q)B,- holds for i = 1, 2. Consider the functor

PSD@I’EZ) : .ZrA — Sets, Ar— {(D,D;) | D;: G— A is a pseudodeformation of D;}.

Itis straightforward to see that PsD 5, 5, is represented by R ‘:R‘VD By =R ““l ®R ““l and that the

uniy is Noetherian, using Propositions 4.7.4 and 4.7.11.

(A,D,D>) '

Letx € X ‘(‘gv By = = Spec R ?gv By be a point of dimension 1 such that D;  is irreducible fori = 1,2
1,72

for the corresponding pair (D1 x, D2 x). As above, one can define a deformation functor for this pair an

Ar (). It is representable by R ;‘((‘;’) (DruDry) = R KT)Z) Dy ®wR 2’2’;’) D, ,» Which is again complete

ring R

local Noetherian. Let: R, := R “A“‘(VD By & k(x) — k(x) be the homomorphism induced from x, and
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let
¢ RS, (DyauDsn) — Ry

be the natural homomorphism constructed as in Corollary 4.8.8, where R, denotes the completion of
R, atpy := Kern.

Let finally L be a finite extension of k(x) over which there exist absolutely irreducible representations
pi: G = GL,, (L) such that D,, = D; « ®(x) L fori = 1,2. Define the functor

Dp,.py) - Ara — Sets, A +— {(p1,4,02,4) | pi,a: G—> GL,(A) : p is a deformation of p;},

Since the p; are absolutely irreducible, it is represented by R E“i(vpl oy =R ‘ffip"l ®LR %‘fgz, and the latter
ring is Noetherian local by Proposition 3.2.3 and Theorem 3.2.4 since we assume Op,. 1= 1,2. As in

Corollary 4.8.7 one has a natural homomorphism

. puniv univ
Vi RL o1 ™ R (D1 D) Br) L
Proposition 4.8.11. The following hold:

(@) The maps y and ¢ are isomorphisms. _
(b) Suppose G = Gk and H°(G,ad,,) = 0 for i = 1,2. Then R;‘j‘(pl,pz)zmd is formally smooth over
univ

N . 2 2 . .
L of dimension d(ny + n3) + 2 and hence x is a smooth point on X (D, Do) rod

with tangent space

. . 2 2
dimension d(ny +n3) + 1.

Proof. The two assertions in (a) are proved exactly as Corollary 4.8.7 and Corollary 4.8.8, and we omit
the details. The first assertion in (b) follows from our description of R}", | ., as a completed tensor
product and from Corollary 3.4.3. The second assertion now is a consequence of (a), of Proposition

4.7.6 and of Lemma 3.3.5. ]

5. Equidimensionality and density of the regular locus

This section proves the main result of this work, the equidimensionality of the special fiber of universal
pseudodeformation rings of expected dimension. The proof follows the steps of Chenevier’s proof of
the equidimensionality of the generic fiber of the universal pseudocharacter space from [Chel1]. The
main contribution is to overcome the complications that arise in the special fiber.

There are certain points in the special fiber that have no counterpart in the generic fiber. We call them
special points and describe them in Subsection 5.1; see Definition 5.1.2. nonspecial (irreducible) points
will take the role of irreducible points in Chenevier’s work. Subsection 5.1 also contains some technical
result, Lemma 5.1.6, on the comparison of universal pseudodeformation and universal deformation
rings over local fields where the residual pseudocharacter is a sum of two irreducible ones.

In Subsection 5.2, we prove the inductive Theorem 5.2.1 to obtain our main result. If the nonspecial
irreducible points are Zariski open dense in universal pseudodeformation spaces for D of dimension
less than n, then irreducible points are Zariski dense for D of dimension n. Subsection 5.3 gives an
alternative proof of Theorem 5.2.1 following a suggestion of the referee. The main point of Subsection
5.4 is to show in Theorem 5.4.1 that the nonspecial irreducible points are dense open in the irreducible
points. This uses induction of pseudocharacters from Subsection 4.6 as a main tool, and the proof in
dimension r relies on results for dimension n” < n.

Then in Subsection 5.5, we complete the proof of our main theorem Theorem 5.5.1 in a straightforward

manner. In Theorem 5.5.5, we determine the singular locus of ﬁqumv when £, ¢ K. This allows us in

Theorem 5.5.7 to establish Serre’s condition (R;) for E%N except for one single D.
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In this section, we use the notation K > Q,, d, Gk, {p, D: G k — F (continuous) with F finite, as
— —univ
before. Often, we write n for dim D. To emphasize K in universal objects, we sometimes write Rg 15

for R”GniVFE and Yl;(n% for Spec El,l:%. All results of this section only concern the special fiber of
«.F , ,

pseudodeformation spaces.

5.1. Special points

Let ycye: Gg — ZIX, denote the p-adic cyclotomic character. Let A be in er(F) (or a localization of
such a ring), let p: Gk — GL,(A) be a continuous representation and D: Gg — A be a continuous
pseudocharacter. For i € Z, we shall denote by p(i) and D (i) the twist by X(l;yc of p and D, respectively.
An elementary but crucial observation in [Chel 1] was that HZ(G k»>ad,) = 0 whenever a p: Gg —
GL, (E) is a continuous absolutely irreducible representation into a p-adic field E; this follows from
local Tate duality in the form given in Theorem 3.4.1, which gives

H*(Gk,ady)" = Homg, (p, p(1)), (28)

together with the fact that y.y. has infinite order. For representations into local (or finite) fields of
characteristic p the order of y.,.(mod p) is finite, and so the situation has to be further analyzed.

Lemma 5.1.1. Let E be a finite or local field of characteristic p, and let p: Gk — GL,(E) be a
continuous absolutely irreducible representation. Then the following hold:
Suppose that {,, ¢ K (Case I). Then the following assertions are equivalent:
(i) H*(Gg, ad,) is nonzero.
(ii) The Gk -representations p and p(1) are isomorphic.
(iii) There exists a finite separable extension E’ of E such that p g E’ is induced from a continuous
representation T of Gk over E’ for K’ = K({}).
Suppose that {, € K (Case II). Then the map H*(Tr): H*(Gk,ad,) — H*(Gk.E) = E is
surjective, and the following assertions are equivalent:
(") H*(Gg, adg) is nonzero.
@i HO(GK,EP) is nonzero.
(iii’) There exists a finite extension E’ of E and a Galois extension K’ of K of degree p such that p ®g E’
is induced from a continuous representation T over E’ of Gg-.
(iv’) The restriction p ® E™€|g . is reducible for some Galois extension K’ of K of degree p.
In both cases, if T exists, then it is absolutely irreducible, and in particular Endg,, (1) = E.

Proof. The equivalence of (i) and (ii) follows from the isomorphism (28) and the absolute irreducibility
of p. The duality in Theorem 3.4.1 also yields the equivalence of (i’) and (ii’), in a similar way. In all
cases, the continuity and absolute irreducibility of 7, if it exists, is implied by Lemma 2.1.4(b) and (f).

The equivalence of (ii) and (iii) now follows from Theorem 2.2.1. The equivalence of (iii’) and (iv’)
is a consequence of Lemma 2.3.1. The implication (ii’)=({ii’) follows from Lemma 2.3.2(g) and (j),
and the implication (iii’)=(ii’) is shown in Example 4.6.4. ]

Definition 5.1.2. We call x € (Y;n’%)irr special if one of the following two conditions holds

(i {pekK and D, = Dx(1),
(ii) {p € K and D|g,, is reducible for some degree p Galois extension K’ of K;

—univ —univ _. —univ
otherwise x is called nonspecial. We write (X g 15)*P for {x € (X g 5)" | is special} and (X x 75)"*P¢!
—univ . —univ
for (XK’B)IH\(XK’B)SPC].

Lemma 5.1.3. The set (Y?’%)Spd is closed in (Y?’lvﬁ)i“.
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Proof. If {,, ¢ K, then the condition D = D(1) is a closed condition in 71,1;% by Corollary 4.5.11, and
this concludes the argument.

If {, € K, then note first that the set of Galois extensions K’ of K of degree p is finite. Since by
class field theory (G gw)/ (G;‘?)Xp is finite if K is a p-adic field. By [Chel4, 2.20], the reducibility of
a pseudocharacter over a field can be detected by the vanishing of certain determinants whose entries
are traces of the pseudocharacter, evaluated at certain elements of the group in question. If n = dim D,

then x € (Y?’%)“’d if and only if for some degree p Galois extensions K’ over K and all n? tuples
(gi) € G™ one has
det(AD,l(gigj)i,j:l n2) =0.

.....

—univ —univ _.
Hence, (X g 15)*! is Zariski closed in (X x 75)"™ as a finite union (over K’) of closed subsets. ]

For X C Yugmv locally closed, we set X := X \{mﬁ&m }. The following holds:
‘D
Facts 5.1.4.

—univ
(a) iy is the unique closed point of X5 .
D

(b) Fori > 1, the dimension i points of Y%W are the dimension i — 1 points of ?%w.
(c) If X is nonempty, then the dimension 0 points of X are very dense in X; see Lemma A.1.8.

—univ —univ
We call x € X5 regular, if Ry is regular at x, and singular otherwise.

Notation 5.1.5. Let X be a locally closed subset of fuﬁmv.

(a) We use the superscripts irr, red, reg, sing on X to denote the subset of irreducible, reducible, regular
and singular points, respectively; cf. Definition 4.7.16.

(b) We write Xeq (subscript!) for X with its induced reduced subscheme structure.

(c) For attributes a, b, c of X, if they apply, we write X%? for X¢ N X?, Xp for X* N Xp, Xap for
X, N Xp, and so on.

. . . . . . . . _unlv
The remaining results in this section concern dimension 1 points on X5 .

Lemma 5.1.6. Let x be a closed point of U := (fuﬁmv)irr, let D', be the pseudocharacter k(x)[G] —

k(x),g = 1®ww® Dx(g) and let R be the universal pseudodeformation ring for D', from Corollary
4.8.8. Then the following hold:

(a) Suppose that {,, € K and that x is nonspecial. Then Ris regular of dimension dn’* + 1. If in addition
U™l is nonempty, it is regular and equidimensional of dimension dn?.

(b) Suppose that {,, ¢ K and that x is special. Then Risa complete intersection ring with dimR €
{dn?* + 1, dn?* + 2}. Moreover, U is of dimension at most dn® + 1.

(c) Suppose that {, € K and that x is nonspecial. Then Ried is regular of dimension dn® + 1. If in

addition U:e_;pd is nonempty, it is regular and equidimensional of dimension dn>.
Proof. Consider the Galois representation p: Gx — GL, (L) with D, = D/ from Theorem 4.3.10

that is defined over a finite extension L of x(x). For (a) note that we have H>(Gg, ad, ) = 0 by Lemma
5.1.1, Case I and the definition of special. The Euler characteristic formula of Theorem 3.4.1 now yields

dim R = dim; H' (G, ad,,,) = dn® + dim; H*(Gk,ad,,) = dn® + 1.

It follows from Lemma 3.3.5 and Remark 3.3.2 that x is a regular point of X5 D ¥ of dimension dn?+1-1 =
dn?. Since x lies on U, it is also a regular point of U. To see that U is regular, let ¥ ¢ U be the
closed subscheme of singular points. We know that points of dimension at most 1 will be dense in the
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constructible set Y. Since the unique closed point of Y%w isnot in U, points of dimension 1 are dense in
Y c U. However, as we just saw, such points are regular and cannot lie in Y. Therefore, ¥ must be empty.
And again by the density of dimension 1 points in U, it follows that U is regular and equidimensional
of dimension dn?, proving (a).

For (b), we observe H* (G, ad, )V = H(Gk, ad, (1)) = Homg, (px, px(1)) = L using Theorem
3.4.1, and in the last step that p, = p,(1) and that p, is absolutely irreducible. This time, the Euler
characteristic formula provides a presentation

0—1I— «kX)[X1,.... Xzl = Ry — 0,

where the ideal / is generated by at most one element over k (x) [ X1, . . ., X242 ]]. This proves the claims
on Ry. The remaining assertion follows from the density of dimension 1 points in U and Lemma 3.3.5.

For (c), it follows from the nonspecialness of D, and from Corollary 3.4.3 that (E;iw)red is regular

local of dimension dn”+ 1. From Proposition 4.7.6 and Corollary 4.8.7 we deduce Eu;xw ®u(x) L = Eumv,

Px
and the assertion on I?fe 4 follows. The remaining assertion follows from the density of dimension 1 points
in U and Lemma 3.3.5. m}

We also need a similar result in certain reducible cases. It is adapted from [Chel 1, Lemma 2.2].

iv

Lemma 5.1.7. Fori = 1,2, let D;: Gx — F be pseudocharacters over a finite field F, let x; € Yu.ﬁnl

be irreducible nonspecial dimension 1 points and let L be a finite extension of both x(x;) over which
there exist absolutely irreducible representations p;: Gk — GLy, (L) with Dy, = Dy, ®(x) L. Let
p: Gk — GL,(L) be a nontrivial extension of py by pi. Assume that Dy, # Dy,(m) for any
m e {1,...,p— 1}. Then the following hold:

(a) The representation p exists, it satisfies L = Endg, (p); onehas D, = D, ®D,, as pseudocharacters
into L; the functor D,,: Ary — Sets is pro-representable.

We write Rg“iv for the representing universal ring of D, and p/‘j“i" :Gg — GL,,(R;‘)““’) for a universal

deformation and X;j“i" for Spec Rg“iv. Denote by R the universal pseudodeformation ring for D, to

Arp, by ¢: Xlgni" - X = Specﬁ the map of L-schemes induced by sending pgm" to its associated

pseudocharacter D punis and by do: tX;)miv p — tg . the induced L-linear map on tangent spaces.

(b) Suppose that p’ € kerdg C thniv’p = D,(L[¢€]), that is, that D,y = D,. Then with respect to a
suitable basis p’ is upper triangular and is the trivial deformations on the diagonal blocks.
©) If{p ¢ K, then Rg“iv is formally smooth over L of dimension dimy, txpunivnn =dn® +1,

dimykerdg = dniny — 1 and dimzimde = dn® — dnins +2.

(d) If ¢y € K, then R;nrié’d is formally smooth over L of relative dimension h — 1 for h := dimy, t)())miv,p =

dn? + 2. Denoting by ¢req: (Xgni")red — ()? )ed the morphism on reduced L-schemes associated to
pand by dgreq: t XU 4o t( Dot x the induced map on tangent spaces, there furthermore exists
6 € {0, 1} such that

dimzkerdg, g = dniny —1 -6 and dimpimdg,q = dn® —dniny +2 +6.
Proof. We begin with (a). The Euler characteristic formula in Theorem 3.4.1 now gives
dimy, ExtIGK (Pxys Px,) = dimp, H' (Gk,px, ® p;’z)

=dniny +dimy, HO(GK,,OXI ®p¥2) + dimy, HZ(GK,pX1 ®p¥2),

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.82

62 G. Bockle and A-K. Juschka

which is strictly positive. Thus, there exists an nonzero element ¢ € ExthK (Pxy5 Px,)- Setting p =

0 p
later, that in fact our assumptions imply that

(p uo € ) and applying Lemma 3.4.4 and Theorem 3.2.4 completes the proof of (a). We observe for
X2

dimg, HZ(GK’pxl ® p,\r/z) =dimg, HO(GK’p;c/] ® px, (1)) = dimg Homgy (px,. px, (1)) =0,

and HO(GK,pX] ® P}/z) = Homg, (px,, Px,) = 0, so that dimy, ExthK (Pxy» Px,) = dnyna.
For the proof of (b), we use the canonical identifications (see [Maz97, Proposition, p. 271])

Dp(Lle]) = tymv , and PsDp,(L[e]) = tg ;, (29)

to identify ker de with the L-subspace of D, (L [&]), which consists of the deformations of p to L[g] that
map under dg to the trivial pseudodeformation to L[&] of the residual pseudocharacter D, associated
with p. Let p’ be a deformation of p whose associated pseudocharacter satisfies D, = D,. The
linearization of p’ gives a continuous homomorphism

Lle][Gk] —

Matannl (L [8]) Matnlxnz (»A12) )
Matngxnl (AZI) Matnzxnz (L [8]) ’

which when composed with the determinant gives D, so that by Theorem 4.3.10(b) p” factors via
a GMA. By hypothesis, we must have A, = L[e] and Ay; C L. Also by hypothesis, the residual
pseudocharacter D, is multiplicity free and split so that by Proposition 4.3.9(b) the ideal of total
reducibility A;.4;; vanishes, and hence Ay, = 0, and p’ is upper triangular. Let D; and D; be the
pseudocharacters described by the upper left and lower right diagonal blocks of p’. then again by
Proposition 4.3.9(b) (and by the nonsplitness of p) we have D; = D, i = 1,2, and hence by Theorem
4.3.10(a), p’ is the trivial deformations on the diagonal blocks.

For (c) and (d), we first compute tX;nw’ o = dim; H' (G, ad,). It follows from Lemma 3.4.4 that

H°(Gk,ad,) = L, and now formula Theorem 3.4.1(c) yields
dim; H'(Gk,ad,) = dn* + 1 +dim;, H*(Gg,ad,).

By Theorem 3.4.1(b), we have dim; H*(Gk, ad,) = dim;, Homg, (p, p(1)). The claimed expressions
for dimy, tywiv , NOW follow from Lemma 3.4.4 with y = F(1) and our hypotheses. The claim on R/‘;“iv

in (¢) now follows from Theorem 3.2.4. The claim on R;‘)“i" in (d) follows from Corollary 3.4.3 provided

that we show that H(Gg, ﬁp) = 0. But under our hypotheses this follows from Corollary 2.3.3.
For the assertions on dy and dg.q in (c) and (d), we first give a formula for dimy ker d¢y in either
case. We consider lifts pj, p2 of p to L[e] whose associated deformation classes satisfy [p(] =

[p2] € kerdp C tXva = D,(L[e]). By assertion, (b) we have p; = p + .9( 0 ¢ for some cocycle

00

ci € Z'(Gk,px, ® p}c’z). In order to obtain dimy, ker de, we determine when p; is equivalent to p;. In
this case, there exists a matrix U € Mat,,«,, (L) such that

002
pte 00 =p2
=(1+el)p (1 -¢el)

_ +8U)(p+£(8 " ))(1 — sU)

_ 06‘1
—p+s(Up—pU+(O O)).
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Ui Uz

If we write U =
(U21 Un

) with matrices U;; € Matnixnj(L) for 1 <i,j < 2, then the above equality

is equivalent to

0cr—c _ (Unpx, Unic+Unpx, | _ [ pxUn +cUa1 px Uiz +cUn
0 0 Uz1px, Unic+Unpy, Px,U21 Px, U '

Because dim;, H(Gk, py, ® py,) = 0 and dim;, HY(Gk,px, ®py)=1for1 <i,j<2andi# j, we
deduce that U,; = 0 and that U;; and U, are scalar matrices. Finally, the map

—Px U12 + Ulszz € Bl (GK7 Px ® p;c/z)
is a coboundary. Therefore, ¢, = (Uy; + Un)c + ¢y € H! (Gk,px, ® PL) and
dimy ker dp =dimg Extl;K (P Px;) — 1 =dimg H (G, px, ® Px,) = l=dniny -1, (30)

by the computation for (a). Using dim V = dimkery + dimimy for a vector space V and a linear map
¢ with domain V, and the already computed dimension of tywiv the proof of (c) is complete.

For (d), consider the following diagram with left exact rows and where the middle and right vertical
arrows are injective (by definition of t):

de
0 ker ¢ tXFL).mv’p t}?’Dp

]

0 ——=ker greg — tixwn) o = > R,

By a simple diagram, chase one deduces ker ¢4 = ker¢p N t(XEmV)md’ o C thmv, - Next, consider the
diagram

0 ——kerd o —> th"iv,p imd @ 0

T

0 ——=kerd Pred — t(X,(';miv)red’p ——imd Pred —— 0

with exact rows and where the left and middle vertical arrows are injective. Because of ker ¢,.4 = ker ¢ N
t XU eg.p the map v is injective, and we deduce from the 9-Lemma that dim coker @ + dim cokery =
dim coker 5. From the tangent space computations for (d) made so far, we deduce dimcokerg = 1.
Letting ¢ := dim coker @, we must have 0 < ¢ < 1 and dim cokery = 1 — 6. Arguing as for (c) and using

dimp, tywiv req , = dn® + 1, the proof of (d) is complete, as well. O

5.2. Zariski density of the irreducible locus

The aim of this subsection is to formulate an inductive procedure to prove Zariski density of the
irreducible locus the special fibers of universal pseudodeformation spaces, and to establish some key
steps. Our procedure is an adaption of an analogous result of Chenevier for the generic fiber; see [Chel 1,
Théoréme 2.1]. We shall prove the following main result.

Theorem 5.2.1. Let n > 2 be an integer. Suppose that for all pseudocharacters D:G k = Fon Gk of
dimension n’ < n the following hold:

(a) Y%’fv is equidimensional of dimension [K : Ql,,](n’)2 +1,
(b) (YUBH/W)“’SPCl is Zariski dense in YHDJ'W.
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Then for all n-dimensional pseudocharacters D: Gg — F on Gk the subspace (Y%w)i" C Y%w is

Zariski dense.

Let us begin with some preparations. Letn1,n, > 1 beintegers such thatn = nj+n,. Let D;:Gx —>F
be residual pseudocharacters on G g of dimension n;. Addition (D1, D;) +— D®D; of pseudocharacters
yields a morphism

—univ , —univ —univ

X5, XeXp, — Xp GD

—univ .

for D := Dy @ D». If D; # D>, we define XD] Dz =Xp, FXD and write D, D, for the above

morphism. In the other case we let Z/2 act on X7 51 X]FX 5: by exchanging the factors; it preserves the
diagonal, which we denote by A“m" and one has an induced morphism

—univ —univ , —univ —univ
%5, 5, Xp,p, = (Xp, XeXp, )/(Z/2) — Xp (32)
niv , —univ — univ . . . .
Note that away from the A““‘V the morphism X5 D, XFXp, — Xp, p, is an étale Galois cover with

monodromy group Z/2.

Lemma 5.2.2 [Chell, Lemme 1.1.]. Fori = 1,2, let x; € X%“;V be irreducible points of dimension 1,
and let L be a finite common extension of the residue fields k(x;). If D\ = D, assume also that x| # x.
Letx € Y%W be the point of dimension 1 with D, ®,(x,) L. Let X: Speck(x) — Y%N be a geometric
point over X.

Then there is an étale neighborhood (U, u, oy : U — Y%mv) of X such that the base change

, —univ w
U =UXx —univ Xp5 5, — U
wiv___ AD, D,
PU-A D LD] D,
red _
of 'D,,Bs along ¢y is a closed immersion with image U™® = {u € U | u is reducible}. Moreover, if

D\ = D, then we may choose U such that ¢y (U) is disjoint from %5, B, (A“m")

Proof. As recalled above Definition 4.7.8, the universal pseudodeformation D%‘V factors via the uni-
versal Cayley—Hamilton pseudodeformation and CH-representation

CH . DCH-univ .
—umv P —CH-univ “5 —univ

b Gkl D D

Consider the strictly local ring O;h := colim(y 3)O(V) for O(V) := Oyuiiv(V), where (V, V) runs over
D

all connected étale neighborhoods of X in Y%N [Stal8, Lemma 04HX]. Since by Proposition 4.1.22 the
—CH-uni

formation of the Cayley—Hamilton quotient Sz "™ commutes with arbitrary base change, for any étale

neighborhood (V, V) of X there is an isomorphism

univ

OW)[[Gk])/CH(DIE @ O(V) = 55 " @ O(V) =: S

From Theorem 4.3.10, it follows that § = colimy V)SV is a GMA of type (n1,n2). In particular,

there exists idempotents e, ez € S w1th e;+ep =1and fori = 1,2 an isomorphism yx ; : e; S+ € —
Mat,,, xn, ((’)}h) Denote by & = (e, ¥x,i)i=1,2, then also the induced pseudocharacter to Oif factors via
the natural Cayley—Hamilton pseudocharacter Ds_ ._ from Proposition 4.3.5.

— CHouni -
By Proposition4.7.11, the ring S5 "™ is module-finite as an R%W-algebra and Noetherian. Note also
that we constructed S5 and (’);h as direct limits over étale neighborhoods. Using spreading out principles
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from [Gro66, §8.5], we can thus find a connected affine étale neighborhood (u, U, ¢: U — Y%w) of x
such that the e; can be defined e + e> = 1, and such that one has isomorphism

Y it eiSyer — Matyxn, (O(U)),

whose base change under O(U) — O;h isy ;. Hence, Su together with & = (e, Y. )i=1,2 is a GMA.
By choosing U sufficiently ‘small’, we may also assume that the pseudocharacter Dy : O(U)[G] —
O(U) induced from D™ factors via the induced CH-representation G — (Sy)* composed with the
natural Cayley—Hamilton pseudocharacter DEU, o

Let us write

E ~ Matnlxnl (O(U)) Matn]xnz (AIZ)
v= Matnzxnl (AZI) Matnzxnz(o(u))

with finitely generated O(U)-modules .4, and Aj;; together with the structure of a GMA described in
Lemma 4.3.3. Let I = A;p Ay + A21. A2 = Ajp Az be the ideal of total reducibility. From Proposition
4.3.9(b), we deduce that there exist unique pseudocharacters D;: ¢;Sye; — O(U)/I fori = 1,2 such
that

(Dy mod I) = D®D>.

Denote by Z := Spec(O(U)/I) the locus of total reducibility, by f: Z — U the induced closed

immersion and by g: Z — Y%I:Tﬁz the morphism corresponding to the O(Z)-valued pseudocharacters
(D1, D3). Then the morphism ¢y o f corresponds to the O(U)/I-valued pseudocharacter Dy mod 1
and there is a commutative diagram

Z H Dl Dz (33)
l Dl D,
—uan

since gy o f and 15 75, © g both correspond to Dy mod I = D1®D,. We need to show that this diagram
is Cartesian; then ¢y = f is a closed immersion, by construction, that is, by [Stal8, Definition 01JP]

given any connected affine scheme W together with morphisms f': W — Uandg’: W — Xuﬁn:\’lﬁ2 such
that in the following diagram the solid square commutes

—univ
Z XD] D>

8
Jf \L D,.D,

7194 —univ
U——X5

we need to check that there exists a unique dashed arrow & making the diagram commute.
The morphism ¢y o f’ = 1 b,.D,°8 " defines an O(W)-valued pseudocharacter Dy, , and the morphism
g’ apair (D’, 2) of O(W)- valued pseudocharacters of dimension n; for j = 1, 2 By Lemma 4.3.4,

the base change Sw of Sy along f’ is a generalized matrix algebra over O(W) of type (n,nz). The
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definition of %D, D, implies that D{,V = Di @D;, and from Proposition 4.3.9(b) we conclude that the ideal
I' =1®ow),r) OW) = Ain A ®ow), sy O(W)

of total reducibility of Sy vanishes. Hence, there exists a unique morphism i: W — Z such that (f’)*

factors as O(U) f—> 02) LN O(W). Note the g* o h* determines a pair (D', DY) of pseudocharacters
G — O(W) on G. From Proposition 4.3.9(b), we deduce {D{, D}} = {D{’, DY'}. The universal property

—univ , —univ . —univ . . 2N % % *
of X3, XXp, , and our definition of (¢ 5,, X5, 5,) implies that (h)* = g" o h*.

Next, we prove Z = U™ under the closed immersion f. By the definition of ', b, the inclusion €
is obvious. Let therefore y be any point of U™, To see that y lies on f(Z), let D, be the reducible

pseudocharacter corresponding EuD*mV — O(U) — «(y). By Lemma 4.3.4, the base change S, :=
Sy ®o(U) k(y)¥8 of Sy is also a generalized matrix algebra of type (n;,n,). Since Dy, is reducible,
there exists pseudocharacters Dy, D,: Ggx — K(y)alg on Gk such that Dy, = D®D,. By again
applying Proposition 4.3.9, we find that the ideal of total reducibility of the generalized matrix algebra
Sy vanishes. Hence, O(U) — «(y) factors via O(Z) as was to be shown.

For the final assertion, suppose from now on that D, = D5 so that m := ny = ny. Consider the maps

NG — 5y 2 Endow) (O™ L5 Endow, @) (D) -5 ow)

fori=1,2and j =1,...,m, where /\j denotes the exterior power map on endomorphisms. For every
g € G, the vanishing locus of A']’ (g) - Aé(g) € O(U) is a closed subscheme Y, of U, and hence the
intersection Y := ﬂgec Y, is closed in U. Since x| # x2, we have (x1,x2) ¢ ¢(Y), and thus U’ = U\Y
is an étale neighborhood of X as required for the last assertion. O

Proof (First proof of Theorem 5.2.1). We suppose to the contrary that there exists a nonempty open
affine V C YUD*HW such that (Yuﬁmv)m NV = @. Since V # SpecF and the points of dimension 1 are

very dense in Y%N by Lemma A.1.8, there exists a point x € V of dimension 1 that defines a reducible

pseudodeformation
Dy: Gg — k(x)

of D. By Corollary 4.8 4, there exist a finite extension L’/ (x) with finite residue field F’ > F, residual

pseudocharacter D;: Gk — F on Gg of dimension n; for some n; € Ny with n; + n, = n, and
—Uuniv—univ
pseudocharacters D, Dy: Gx — Oy of Gk corresponding to points (x1,x) € Xp, XXp, such that

Dy ®x) L= (D1 ® D7) ®p,, L’. By Lemma 5.2.6, we may and will assume F = F’.
The inverse image of V under Y%I:VSZYUBH;V — ng, (D1, D7) — Di+ D, is an open neighborhood

of (x1,x2). By hypothesis (b) of Theorem 5.2.1, we may within this neighborhood replace the initially
chosen pair by (x,x7) such that both are irreducible and nonspecial, and by Lemma A.1.7 we may
further assume that D is not isomorphic to any of the finitely many D»(m), m € {1,...,p — 1}, since

dim Y%‘:v > 2. LetU; := (Y%‘:V)H'Spd. Then we observe that by Lemma 5.1.6 the schemes (U;)eq are
regular, and if £, ¢ K, then U; = (U} )red.
Let ¥ be a geometric point above x. By Lemma 5.2.2, there exists an étale neighborhood

(U,i,op: U — X %iv) of x such that the pullback of 15 7, along ¢y

— univ
W:=UXx —univ XBlaBZ —U

vu.Xp 5, B,

is a closed immersion with image U™, We may replace U by goal (V), which is nonempty since x € V,
and is étale over V, and we may shrink W accordingly. By further replacing U by an open subset (and
accordingly W), we can assume that U is connected and affine. Since W — U is a closed immersion,
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the scheme W is affine. But we also have that W — U is surjective as a map of topological spaces
since all points of V are reducible. Hence, the nil-reduction of W — U is an isomorphism of schemes
Wied — Uted, and as a map of topological spaces W — U is a homeomorphism. Since the base change

of étale morphisms is étale, so is the map W — Yuﬁmvﬁ that is the base change of ¢y under i55, 75, . Let
U; be the preimage of U; under the i-th prOJCCthl’l X D Dz - Xp D ", We shrink W (and hence U) to a
connected affine open so that the image of W in X5 D] i D , lies in U, N U,.” We display the situation in the

following diagram:

—univ '5,.D, —univ

l~]1 ﬂﬁzc—> X5,D, Xy oV

\\\\\\\T ou

W————=U

Note also that ¢y (U) intersects trivially with ip, BI(A“B"“’) if D; = D,. Hence, in all cases, the
’ 1

—univ~ —univ —univ ~ ~
morphism X5, XpXp, — Xp, b, is an €tale Galois cover above Uy N U, with group Z/2 or trivial

group.
Let w € W be the point corresponding to # € U under the homeomorphism W — U. We complete
at w and its images and pass to nil reductions. This gives

OUl N0, (x1,x2),red

6W ,w,red 6U,u,red 6V ,x,red-

By Lemma A.1.14, the maps a and 3 are finite étale. The completion 651 Dy, (x1,x2),red €N be compared
with the deformation ring RE’“& ) using Proposition 4.8.11, it follows that the ring OUl . (x1 .x2).red
is formally smooth over L of dimension d (n + ”z) + 1, because by Lemma 5.1.6 and by hypothesis

Theorem 5.2.1(a) the rings R“““’ are formally smooth over L of dimension dn + 1. Hence, by Lemma

A.1.14 all local rings in the above diagram will be formally smooth over L of dimension d (n1 + ”2) +1.
Let now p: Gk — GL, (L) be a nontrivial extension of p, by p; for n = n; + ny as constructed
in Lemma 5.1.7 (a). It possesses a universal deformation ring Runlv for deformation to Ar, because

L = H'(Gg, ad,). Let also R be the universal pseudodeformation ring for D, and write ¢ for the
natural morphism between associated space:

@: X/‘)miV := Spec Rg“”—»? := Spec R.
The relation to the above is given by the following isomorphism obtained by combining Corollary 4.8.8
and Lemma 3.3.5

R =0y [[T]. (34)

We now consider the map d¢: txpuniv’ o — tg . induced from ¢ on tangent spaces at p and D,
respectively, or rather the induced map on nil-reductions

dgored: tX;,miV,red’ p — tX\redsX.
By Lemma 5.1.7 (¢) and (d) we have 6 € {0,1} (and § = 0 if {p ¢ K) such that

dn* — dnin, +2 + 6 = dim;, Im(dgreq )

7The intersection U; N U, is strlctly bigger than Uy XUs. If for instance X; = Spec L[[7;]],i = 1,2 and U; = Spec L((T;)).
Then U; N U, = Spec L[[T1,T>]] [TI 5 ] contains all but 3 points of Spec L[ [T}, T>]].
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From (34) and the dimension found for 6V,x, we have dimtg ox = 1+d (n% + n%) This gives the
inequality

dnz—dn1n2+2+5sd(n%+n§)+2

Using n = ny + ny, we deduce dnn; + 6 < 0, which is absurd since both n; > 0. O

5.3. Alternative proof of Theorem 5.2.1

Following a suggestion of the referee, we now present a second proof of Theorem 5.2.1. It is technically
easier than the proof given above, and might be of independent interest. The approach makes no

assertion on the geometry of ng near a reducible point x as in Lemma 5.2.2 but focuses directly on
the completed deformation ring at such an x and a dimension estimate.

Let R be a Noetherian F-algebra, and let A be an associative (possible noncommutative) unital R-
algebra, which is finitely generated as an R-module. For x € Spec R, write A, := A ®g k(x), where
k(x) is the residue field of x; that is, A is the fiber at x and not a localization. Let

U= {x € SpecR : Ax ®(x) AP — End,(x)(Ay) is an isomorphism}

be the Azumaya locus of A in Spec R.
Lemma 5.3.1. The Azumaya locus U is a constructible subset of Spec R.

Proof. By [Stal8, Lemma 0517] and Noetherian induction, we can find a flattening stratification of A
as an R-module, that is, a finite increasing chain of open subsets Uy C ... € U, = Spec R such that if
R; is the reduced quotient of R with Spec R; = Spec R\Uj;, then Uy, 1 \U; = Spec (R;) for some f; € R;
and A ®g (R;);; is finite flat over Spec (R;)z. Hence, to prove the assertion on U, we may assume that
A is finite flat over R.

Now, let C and K be R-modules fitting in the exact sequence

0— K— A®r A® — Endg(A) — C — 0. (35)

Because C and K are finitely generated modules over the Noetherian ring R, their support is closed, and
we deduce that U = Spec R\ (SuppC U SuppK) is open in Spec R and hence constructible. O

Lemma 5.3.2. Let x be in Spec R, let IE be the completion of k(x) ®r R at the kernel of the natural map
k(x) ® R — k(x) and let A = A ®g R. Let y € Spec R be such that A, is an Azumaya algebra. Then
U is nonempty and x lies in the closure of U in Spec R.

Proof. Let z be the image of y under Spec R - Spec R, and note that we have induced maps
t: R/p, — R/py and k(z) — «(y) for p, € R and p, C R the primes corresponding to z and y,
respectively. Since Ay = A; ®x(z) k(¥), and k(z) — «(y) is faithfully flat, the diagram (35) with A,
and «(z) in place of A and R, respectively, implies z € U so that U is nonempty.

Moreover, by our definitions, the residue map R — R — k(x) factors via R/p, N ﬁ/py — k(x)
with ¢ injective. Hence, x € Spec R/p, = {z_} C Spec R so that x lies in the closure of {z} and hence in
the closure of U D {z}. O

Let now R := ng be the special fiber of the universal deformation ring for D so that R is complete

—CH-
Noetherian local with finite residue field. Let A = Sy untv be the corresponding Cayley—Hamilton

R-algebra so that by Proposition 4.7.11 the ring A is finitely generated as an R-module and hence

Noetherian. In this setting, U is precisely the absolutely irreducible locus of Y%W as explained in
[Chel4, Corollary 2.23]; see also Proposition 4.7.18.
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Proposition 5.3.3. In the setting just described, the closure of U in Spec R contains all points x € Spec R
of dimension 1 such that Dy = D + D,, where the D; are nonspecial pseudocharacters of absolutely
irreducible representations p;, i = 1,2 such that p; % p2(j) for j € {0, =1},

Proof. In view of Lemma 5.3.2, we only have to explain how to find y. By Corollary 4.8.8 the ring R can
be identified with the universal pseudodeformation ring of D, and we need to show that the reducible
locus in Spec R is not the whole of Spec R.

To show this, we compare R with the universal deformation ring E;mv, where p is a nonsplit
extension of p; by p;. The existence of p and of Er,mv was established in Lemma 5.1.7(a). Moreover,

by Lemma 5.1.7(c) and (d), respectively, the ring R’ := (E;niv)red is formally smooth over «x(x) of
dimension dn” + 1. The map that sends a representation to its associated pseudocharacter induces a map

Spec E;mv - Specl?, and it will suffice to show that the generic point of R’ = (Ezmv)red gives rise to an
absolutely irreducible representation of Gx. Let m’” C R’ be its maximal ideal.

Denote by p’: Gk — GL,(R’) a representation corresponding to R’. Because D, is multiplicity
free, by Theorem 4.3.10(b) the linearization of p’ factors via a GMA of type (n;, ny) inside Mat,x, (R")
and thus gives a continuous surjective homomorphism

Matnlxnl (R,) Matnlxnz (J/)

R/ G ’ ’
[ K] - Matnzxyll (I ) Matnzxnz (R )

for suitable ideals 7/, J’ of R’. The reduction modulo m’ of the right-hand side arises from the nonsplit
extension p of p, by p; so that we must have J' = R’, and I’ ¢ m’.

If I is nonzero, then after passing from the regular local ring R’ to its fraction field, say E’, we obtain
Mat,,x,, (E’) as the image of the linearization map, and by the theorem of Burnside the corresponding
representation is absolutely irreducible. If on the other hand I’ = 0, then p’ is reducible and we apply
Proposition 3.4.6 and the discussion preceding it. It follows that dim(R"Y )eq = d(n* — niny) + 1

. P1CP
and that the induced map of reduced rings R” — (R;'Y,)wed is an isomorphism. This contradicts
dim R’ = dn® + 1 found above, and so the case I’ = 0 cannot occur. O

Proof (Second proof of Theorem 5.2.1). Let U = (ng)irr be the open locus of irreducible points on
ng. We need to show that the closure of U is the whole space. By the reduction steps given in the

first two paragraphs of the first proof of Theorem 5.2.1 on page 68, it suffices to show that all points

X € ng of dimension 1 such that D, = D| + D, with D; irreducible nonspecial and D, # D () for
J € {0, 1} lie in the closure of U. This follows from Proposition 5.3.3. )

5.4. A dimension bound for the special locus

As before, we denote by D: Gx — F a residual pseudocharacter on G, and we let n be its di-
mension. Theorem 5.2.1 of the previous subsection provided part of an inductive procedure to prove

the equidimensionality of YuKn% for the dimension [K : Qp] - n*> + 1. It remains to be proved that
(Yl,l:’%)“'sl’d C (YL,I:’%)M is Zariski dense. In this subsection, we shall prove the following result.
Theorem 5.4.1. Let n > 2 be an integer. Suppose that for all pseudocharacters D’ :Ggr > Fon Gk
of dimension n’ < n with K’ a p-adic field the Krull dimension of the space Yl;(ni%’ is bounded by
[K':Qp] (n')2 + 1, Then for all n-dimensional pseudocharacters D: Gxg — F on Gk one has:

(a) The Zariski closure of (YuKrleB)SPCI has dimension at most %[K : Qp]n2 + 1.

(b) (Y?%)“'SPCI C (Y?%)m is Zariski dense.

Before giving the proof, we need the following auxiliary result.
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Lemma 5.4.2. Let EG 5D — A be a surjective homomorphism such that A is a domain with field of

fractions K, and set D 5 = D%i" ®g _ A.Let H C G be an open normal subgroup and suppose the
G.E,.D

following hold:

(i) Dy is split over F and condition O, is satisfied.
(ii) Dx := Da ®a Kis irreducible and p := pp gy is induced from H.

Then there exist a domain A’ € .ZrF that contains A and is finite over A, and a g}nti@ous irreducible
pseudocharacter D' A’[H] — A’ that is residually equal to a direct summand D’ of Dy such that the
following hold:

(@) Ind§ D" =D s ®4 A’

(b) The homomorphism R + — A’ that results from D’ is surjective.

H.,F,.D
In particular, dim A = dim A’ < dim_H P D

Proof. Note first by Lemma 2.1.4(b) and (f) that p = Indg p’ for some irreducible representation
p’: H — GL,, (K¥2) such that the representations (p’)¢, g € G/H, are pairwise nonisomorphic, and
that Resg p=P ceG/u (P))%. Hence, Dg|n is multiplicity free so that we can apply Proposition 4.8.6
to it.

By what we just observed, conjugation by G/H acts simply transitively on the continuous pseu-
docharacters D! from Proposition 4.8.6, and so the A; from Proposition 4.8.6 are independent of i.
Define A’ as any of the A;, and let D’: A’[H] — A’ be that pseudocharacter D; for which D] ® 4/ Kals
is the pseudocharacter attached to p’. Then Inng’ Q4 K¥& = Dy ®4 K¥2. Now, Indf,D’ is defined
over A’ and A is the minimal field of definition of D 4 by Corollary 4.7.13. Hence, A is contained in A”.
By Proposition 4.8.6 it is then clear that A” is finite integral over A and lies in Arg, and moreover that
®gec/u (D)8 = D for D’ := D’ ®4 k(A’). Part (a) is now clear.

It is also clear that D" is a deformation of D’. Since A’ € Arg, we have a corresponding homomorph-

ism R yrp — A, and the latter must be surjective by Corollary 4.7.13 since A’ is the ring of definition
of D’. Now, by Lemma A.1.2 we have dim A’ = dim A, and the inequality dim A" < dimRH D 1S
trivial. oo

Proof of Theorem 5.4.1. By Lemma 3.2.6, by possibly enlarging F, we may assume that D is split over
F. Since the number of Galois extensions K’ of K of degree p is finite, we may, by the same reasoning,
also assume that D |G'z< is split for any such K’ and for K’ = K({,). Itis also clear that Mazur’s condition
®,, holds over any such K’ and hence q)ﬁ\c,(, holds.

To prove (a), let  be any generic point of (Y%W)Spd. Let
¥ EK,]F,B — A

be the corresponding surjective ring homomorphism so that = Ker(¢). Because D, is irreducible,
P = P, oy k()" is defined. Since 7 is special, there exists a Galois extension K’ of K such that
either K’ = K({,) or K’ has degree p over K and such that p is induced from G g-. From Lemma 5.4.2,
we deduce

_ 1
dimA < dimR

=K' :Q,](n/[K": K])* +1 = ———([K : Qp]n?) + 1.

K',]F,BI [K/ : K]

As the schemes Spec A cover (YuKn%)SPC' and as [K’ : K] = 2, the proof of (a) is complete.
To prove (b), we argue by contradiction and assume that there exists an open subset V C Yl;(n% that

is entirely contained in (YUKH’WB)SPCI. Then dimV < %[K : Qp]n2 + 1 by (b), for V the Zariski closure
of V. Let x be any dimension 1 point of V, and let p: Gk — GL, (L) be an absolutely irreducible
representation over a local field L containing «(x) such that D, = D, ®,(x) L. Let Rg“iv be the universal
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ring for deformations of p to Ary. Then (57 LT = RE,““’ by Corollary 4.8.8 and Lemma 3.3.5. On
the other hand, dim Rg“iv > [K : Q,]n? +1 by a standard argument using Theorem 3.4.1. It follows that

1
E[K:Qp]n2+1+l > [K:Q,,]n2+1,

and hence2 > [K : Q p]nz, which implies n = 1. But then x cannot be induced, and hence not special,
and we reach a contradiction. m]

5.5. Main results
Let K be a p-adic field, let D:G k — F be a residual pseudocharacter on Gg, and set n :=dimD.

Theorem 5.5.1 (Theorem 1]. The following assertions hold:

(a) Y%w is equidimensional of dimension [K : Qp]n2 + 1.
(b) (XUD*HW)“'SPCl c X%W. is open and Zariski dense.
(©) If{, ¢ K, then (ng)“'sl[’Cl is regular.

(d) If¢{p € K, then (Y%w):e';p s regular, and (Y%w)reg is empty.

Proof. Part (a) follows from Corollary 3.4.3, Theorem 5.2.1 and Theorem 5.4.1 by induction on dim D
and [K : Qp]. The same results also prove (b). Parts (c) and (d) follow from Lemma 5.1.6; the last part
of (d) uses Corollary 3.4.3(a). m]

Lemma 5.5.2. One has the following estimates:
(@) Ifn > 1, then

—univ

dim(Xp ) = dim Xy - 2[K : Qp](n—1) +1,

and in particular dim(Y%w)“’d < dimY%w —2 unless n = 2 and K = Qp,. In the latter case
dim(Xp ) =dimXp - 1.
i —univ

() dim(Xp )™ <dimXp - 2.

_unlv S . . . . . . .
Proof. Since (X7 )**°!isempty forn = 1, because nontrivially induced representations have dimension

at least 2, Part (b) is immediate from Theorem 5.4.1. For Part (a), we may assume that D is split by
Lemma 5.2.6. Then (Y%W)md cUp,ep,-p 'D,.D> (YUD*H:TBZ), and now Theorem 5.5.1(a) yields

—univ — —
dim(X5 )™ = max dimX,, +dimX,, = max d(n% +n%) +2=d((n-1)%*+1)+2.
n|+n2:n 1 2 nl+n2:n
ny,ny>0 ny,ny>0

The wanted estimate in (a) is immediate. For the remaining assertion note that (Y%nw)red is empty when
n=1. m]
Corollary 5.5.3. Suppose that {,, ¢ K and that (X?V)Sr’cl is nonempty so that e := [K’ : K] divides n,
for K’ = K({p). Then the Zariski closure of (Y%W)SPCI has dimension é[K :Qpln* + 1.

Proof. Letp € Spec E%iv be a generic point of (Y%lv)sf’d, let A = Spec E%”/ p with fraction field K
and let D 4 be the corresponding pseudocharacter. Then Spec A contains a dense subset of dimension 1
points at which D 4 is irreducible and special. But then D 4 ® 4 K must be irreducible and it also must be
special, that is, it is invariant under twisting by the mod p cyclotomic character y : Gal(K’/K) — Ff,
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Let K’ > Kbe afinite extension over which there is an absolutely irreducible representation p: Gx —
GL,,(K’) such that D4 ®4 K’ = D, and so that p = p ® y. Then by Theorem 2.2.1 we have e|n and
after possibly enlarging K’ there exists an absolutely irreducible representation p’: Ggr — GL,/(K’)
with n’ = n/e such that IndGK " = p. Moreover, letting D’ = , the pseudocharacters (D’)8,
g € Gk /G are pairwise nomsomorphlc and ResGK D = @gEGK/GKr(D )8. In particular, ResGK’D
is multiplicity free Moreover, (D 4)|G,. is a continuous pseudodeformation of D |Gx+» and so it arises
from a map RK, 5 — Ain Arg.

We deduce from Proposition 4.8.6 (and its proof) that after possibly enlarging K’ again there is a
continuous pseudocharacter D’,,: Gg- — A’ on Gk for A’ the integral closure of A in K’ and with
ny ®s K’ = D, and moreover A’ lies in .er for a finite extension F’ of F. Letting D = D;‘,
(mod my/), there is a map a’: R, K/,B’ — A’in Arg inducing D’,,. Moreover, the pseudocharacters
(D',,)8, g € Gk /G- are pairwise distinct.

Let g be a generic point of E?,I’VB' that lies in the kernel of a’, let B = E?WB /a with quotient field L,
and let D', be the associated pseudocharacter. Then D ®p L is irreducible and the pseudocharacters
(D%)8, g € Gk /Gk- are pairwise distinct. Then by Theorem 4.6.7, Dp = Indgl’;D;g: B[G] — Bis
a continuous pseudodeformation of Indgi ,5/ = D ®g F’ such that D ®5 Quot(B) is irreducible and
special (invariant by the twist with y). In particular, D g arises from a homomorphism a: E?VB@FF, — B

—univ
and the point Ker @ of Xp 5. must be special. By our construction we have a commutative diagram

—univ / f \ ,
o

K .,D@®pF

s

where we write AF’ for the F’ subalgebra of A’ generated by F’ and A, and initially without the dashed
arrow. We deduce that Ker « is also the kernel of the map to AF’, and so the dashed arrow exists and is
injective (by the definition of A). But then restricting the corresponding pseudocharacters to Gk, one

deduces that the maps from EuKn%' to B and to a finite extension of AF have the same kernel, and so B

and A’, and hence A must have the same dimension. But dim B = é[K : Qp]n2 + 1 by Theorem 5.5.1,
and this concludes the proof. O

Lemma 5.5.4. Let k be a local or a finite field. Suppose p > 2. Let D;: Gq, — K, i = 1,2, be continuous
pseudocharacters on Gq,, of dimension 1, and let D = Dy @ D. Then

(@) If D1 # Dy(m) for m € {0, 1}, then

(1) there exists a unique nontrivial extension p: Gg, — GLa(«) of D2 by Dy,
(2) the natural map Equv — E;mv is an isomorphism,

(3) and both rings are formally smooth over k of dimension 5.
(b) If Dy = D2(m) for some m € {£1}, then EE“V is not regular.
(c) If Dy = Dy, then Equv is regular.

Proof. The idea for (a) stems from the proof of [Chell, Corollary 4.4] and goes back to Kisin. We
regard the D; exchangeably as pseudocharacters or as representations because they are of dimension
1. Lemma 5.1.7(a) guarantees the existence of p as in (1). Since D| ¢ {D», D2(+1)}, Theorem 3.4.1
yields dim Ext};Qp (Di,Dj) = 1fori # j, and this implies the uniqueness of p up to isomorphism.

Note that once (2) is proved, Part (3) follows from Lemma 5.1.7(c). To see (2), let X, := Spec ﬁzmv,
—univ

Xp :=Rp for D := D & D,, write ¢ for the map in Part (1), and denote by

d(,DZ tXp,p — tXD,D
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the induced map on tangent spaces. By the formula in Lemma 5.1.7(c), the kernel of dg is zero. Because
p > 2, we also have dim Exté;Q (D, D;) =2 fori = 1,2. Consider now the following exact sequence
v

from [Bell2, Theorem 2] with p; = D;

0— P Extg;, (pir pi)— dimtx,, p ) L (36)
i=1,2

h
— Extg, (p1,p2) ® Extg (p2, p1) — ED Exts, (o pi).
i=1,2

It implies dim tx,, p < 5. Hence, d¢ must be an isomorphism and dim tx,, p = 5. This implies that ¢
must be surjective, and hence an isomorphism since the target is formally smooth over «.

To prove (b), note that we have Extz(pi, pi) = 0 and Ext! (pi, pi) is of dimension 1, while
Ext! (p;, pi(m)) is 2 form = 1 and 1 for m = —1. Hence, diagram (36) yields dim, tx,,,p = 6. However,
dim Xp = 5 by Theorem 5.5.1, and hence R'}" is not regular.

Finally, we show (c). Because p > 2, we may apply [Chel I, Théoréme 3.1] in exactly the same way,
asdone in [Chel 1, Lemme 2.5]: Using that the mod p reduction of G“b is isomorphic to (Z/p)?, one has
dim, Hom(Gg,, k) = 2, dim, Sym(Gq,,, ) = 3 and dim, Alt(Gq,, K) 0, and hence dim, tx,, p = 5.
‘We now conclude using dim Xp = 5 by Theorem 5.5.1. O

We now characterize the singular locus when £, ¢ K.

Theorem 5.5.5 (Theorem 2, [Chell, Théoreme 2.3]). If {;, ¢ K, then the following hold:

o (umiv spel TV L. Uiy sing
(a) The closure of X, := (X5 )¥ in X5 liesin (X1 )"
—univ

®) Ifn>20r [K:Qp] > 1, then X, := (X5 ) c (X5 )ine.
(c) Ifn=2,K =Qp, and x € X; corresponds to a pair (D1, D») of one-dimensional pseudocharacters,

then x € (Y%iv)smg if and only if Dy = D{(m) for m € {£1}.

Proof. We know from Proposition 4.7.11 that ﬁgw is a complete Noetherian local ring so that by

Lemma A.1.1(a), (Yuﬁmv)smg is closed in Xugmv. Observe that if X; # @, then its Zariski closure Y,- has
dimension at least 2: for X», this is clear from Lemma 5.5.2(a), for X; from Corollary 5.5.3. Hence,
Proposition A.1.11 shows that the points of X; of dimension 1 are dense in X;.

To prove (a), let x € X; be of dimension 1. A standard computation of tangent spaces as in the proof
of Lemma 5.1.7(c) shows dim H'(G K,adpx) = dn® + 2, while dim RumV = dn? + 1. Tt follows from

Lemma 3.3.5 that x is not regular on XD v.

For the proof of (b), we assume without loss of generality that D is split. Then (X D )red is the
image of the maps D, D, from (32) for all Dl, D2 such that D = D1 @ D,. Fix such a pair, and

let n; be the dlmensmn of D;. Because of Theorem 5.5.1 it suffices to consider pairs x = (x1,x2)
with x; € (X )“ spcl; and we may also assume that D, is distinct from the finitely many D, (m),

m € {1,..., p—1}. We compute the tangent space dimension of R Di this time, using (36) from [Bel12,
Theorem A] which also holds for py, in place of p;. We conclude as in the proof of [Chell, Lemme
2.4):dim; H (G, ady,.) > 1+dn?, dimy, Extgk (Px;> Pxs.;) = dniny, and the second extension groups
vanish since the D, satisfy D, # D, (1). Hence,

o 2 2
tSpecE';: = d(n] +n2) +2+d*n? n2 > dn® + 1+ (dniny — 1)%.

This dimension is strictly larger than dn? + 1, unless dnin, = 1, that is, n; = n, = 1 and K = Qp.

However, dim E‘g‘f = dn® + 1 by Lemma 3.3.5 and Theorem 5.5.1, and it follows that x cannot be
regular, proving (b).

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.82

74 G. Bockle and A-K. Juschka

Concerning (c), note that if x = (Dj, D3) is any point of dimension at most 1, then the assertion
follows from Lemma 5.5.4. Since such points are Zariski dense in the closure of any point of dimension
at least 2, the assertion in (c) follows in general. O

Remark 5.5.6. Note that Theorem 5.5.5 reproves a result of PaSkunas, namely [PaS13, Proposition
B.17]: suppose that n = 2, p > 2, K = Qp, and D: Gq, —» Fisa dlrect sum D; & D> of one-

dimensional characters D; sucht that D, # D (m) for m = 0, =1. Then Rﬁ = F,[[X1,...,X5]].

Theorem 5.5.7 (Theorem 3). The ring Eg;:ed satisfies Serre’s condition (Ry), unlessn =2, K = Q,
and D is trivial.

Proof. By Theorem 5.5.1 and Lemma 5.1.6, the subset (X%’j:ed)n-sml is regular, open and Zariski dense
in Y“,%“rvcd Thus, Lemma 5.5.2 implies the theorem unless n = 2 and K = Q,,. Also, if D is irreducible,

then so is any lift, and so (X D. red)“’d is empty. Now, again we conclude by Lemma 5.5.2. Suppose from

now on that K = Q,, and D = D, & D for one-dimensional pseudocharacters D;: Gq, » FonGq,,
and suppose now also p > 2 which was excluded in this case.

The locus of x € X; := (Y%w)red corresponding to a pair (D1, D;) of one-dimensional pseudochar-

acters such that D, = D(m) for m € {£1}, can be realized as the image of Y%nlw. Hence, it has
dimension at most 2 because of Corollary 3.4.3. Outside this, locus points are smooth by Theorem 5.5.5

(and the density of points of dimension 1). It follows that (Yuﬁmv)red’smg has dimension at most 2 which

is less than 5 — 2 = 3 so that then Y%w satisfies (R;), also. O

A. Appendix. Auxiliary results on rings, algebras and representations

In this appendix, we collect some results used in various parts of this work. We also prove some minor
facts that could not be found directly in the literature.

A.1. Commutative algebra

Complete local rings, integral extensions and regularity

A domain B with quotient field K is said to satisfy N-2 if for any finite field extension L of K, the integral
closure of B in L is a finite over B. A ring A is called a Nagata ring if A is Noetherian and for every
prime ideal p of A the ring A /p satisfies N-2; see [Stal8, §032E].

Lemma A.1.1. If A is complete Noetherian local ring, then the following hold:

(a) A is a Nagata ring, and hence the set of regular points of Spec A is open in Spec A.
(b) If A is a domain with fraction field K and perfect residue field, then [K : KP] < oo.

Proof. Part (a) is [Stal8, §032W] combined with [Gro65, Théoréme (6.12.7)]. Part (b) is proved in
[HocO7, Proposition (d), (g)]. O

Lemma A.1.2 [Mat80, 13.C, Theorem 20]. If B is a domain and if B’ C B is a subring such that B if
finite over B’, then dim B = dim B’.

Recall that for a prime p of A, the height of p is defined as ht p = dim R,,.

Definition A.1.3. A commutative ring A is said to satisfy (Serre’s) condition (R;), if A is regular in
codimension at most i, that is, if the local ring A, is regular for every prime p of height < i.
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Density of points of dimension one

The next series of results stems from [Gro66, §10.1-10.5], except in one case where we give a direct
reference. Let X be a topological space. It is called Noetherian if every descending chain of closed
subsets becomes stationary. It is called irreducible if it is not the union of two proper closed subsets.
If X is Noetherian, a subset is called constructible if it is a finite union of locally closed subsets of X,
that is, of subsets that are the intersection of an open and a closed subset of X. The closure of a subset
Z c X is denoted by Z. For a subset Z of X, its dimension dim Z € N U {co} is the maximal length n of
achain¥y CY; C...CY, C Z of irreducible closed subsets ¥; in X.

Definition A.1.4. A subset X, of X is called very dense in X if every nonempty locally closed subset
Z C X satisfies Z N Xy # @.

If Xy is very dense in X, it is clearly dense in X.

Lemma A.1.5. If X is very dense in X, then Xo N Z is very dense in Z and dense in Z for any locally
closed set Z in X.

Proposition A.1.6. For a subset X, of X, the following conditions are equivalent:

(@) Xy is very dense in X;
(b) Under X' — Xy N X', the open subsets in X are in bijection to those in Xy.
(¢) Under X' — Xo N X', the closed subsets in X are in bijection to those in Xj.

In the following, we set X<; := {x € X : dimx < 1}. Since the union of finitely many irreducible
subsets of dimension at most i has dimension at most i, we find:

Lemma A.1.7. If U C X satisfies dimU > 2, then no finite subset of U< is dense in U.
An important source for very dense subset of schemes comes from the following result:

Lemma A.1.8 [Mat80, (33.F) Lemma 5]. Let X = Spec A for a Noetherian ring A. Then the set X< is
very dense in X.

From Lemma A.1.8 and Lemma A.1.5, one deduces:

Corollary A.1.9. Let X = Spec A for a Noetherian ring A, and let Z C X be constructible. Then X<1NZ
is very dense in Z and dense in Z.

Definition A.1.10. The space X is called Jacobson if {x € X : dimx = 0} is very dense in X.

A scheme is called Jacobson if the underlying topological space is Jacobson; a ring A is called
Jacobson if the scheme Spec A is Jacobson. For us, the following result is of importance:

Proposition A.1.11. For a Noetherian local ring with A maximal ideal my, the scheme Spec A\{mu}
is Jacobson.

Besides our reference to [Gro66], Proposition A.1.11 can also be found in [Stal8, 02IM]
Etale morphisms and étale neighborhoods
We recall some terminology and a result on étale morphisms to be used in Section 5.
Definition A.1.12 [Stal8, §00UO and Definition 02GI].

(a) Aring map A — B is called étale if it is a smooth ring map of relative dimension zero.

(b) A morphism f : X — Y of schemes is called étale at x € X if there is an affine open neighborhood
Spec(B) = U C X of x and an affine open Spec(A) = V C Y with f(U) C V so that the
corresponding ring map A — B is étale. We say that f is érale if it is étale at each point x € X.

Definition A.1.13 [Stal8, Definition 03PO]. Let X be a scheme.
(a) A geometric point of X is a morphism x: Spec k — X, where k is an algebraically closed field.

(b) One says that x is lies over x € X to indicate that x is the image of x.
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(¢) An étale neighborhood (U, u, ¢) of a geometric point X € X is a commutative diagram

2|
7
Speck = . X,

where ¢ is an étale morphism of schemes and u is a geometric point of U.

Lemma A.1.14. Let ¢: U — X be an étale morphism between schemes U and X. Let u be a point of U
and denote by x its image ¢(u). Consider the local homomorphism ¢, : Ox x — Oy, induced from
. Then

(@) The completion @, : (’Q\X’x — 6U,M of @, is finite étale; its degree is equal to [« (u) : k(x)].
(b) Thering Ox y is regularif and only if Oy ,, is regular, and in this case both have the same dimension.

Proof. Part (a) is [Stal8, Lemma 039M] and the remark following it. For Part (b), note that by étaleness
the tangent spaces at the closed point have the same dimension, and by finite étaleness the ring Oy, is
free of finite rank over Ox . and hence they have the same dimension. From this, (b) follows easily. O

A.2. Finite-dimensional algebras and modules

Let K be a field. We gather some results, mostly from [CR62], on not necessarily commutative K-
algebras S and modules M over them, assuming that either the algebra or the module have finite K-
dimension. Our intended applications are to S = K[G] for a possibly infinite group G, or to G-modules
of finite K-dimension; note that if G is profinite, K is a topological field and M is a K[G]-module of
finite K-dimension with a continuous G-action, then all G-subquotients of M carry a continuous action.
So we need not worry about continuity in the following.

Let first S be a K-algebra of finite K-dimension. In this case, the sum of all nilpotent left ideals of
S is a two-sided ideal of S, the radical of S and denoted Rad(S), see [CR62, §24]. It is the maximal
nilpotent two-sided ideal of S. The radical is zero if and only if S is semisimple; in this case, S is the
product of simple K-algebras (of finite K-dimension). If K’ is any field extension of K, then

Rad(S) ®x K’ ¢ Rad(S & K). (37)

Definition A.2.1. We call a K-algebra S of finite K—dimension absolutely semisimple if S @z K¢ is
semisimple.

Remark A.2.2. Suppose that S is absolutely semisimple. Then by the containment (37) it is semisimple.
By the theorem of Artin-Wedderburn, the algebra S ®x K¢ is a product of matrix algebras over K2,
From this one deduces, by repeated application of the inclusion (37), that S ®g K’ is semisimple for any
field extension K’ of K. Suppose now that S is only semisimple. By considering simple factors D; of S,
one shows that § is absolutely semisimple if and only if the center of each D; is separable over K.

Lemma A.2.3. Let S a K-algebra of finite K-dimension, and write S’ for S ®g K’ and any field extension
K’ of K.

(@) There exists a finite extension K’ of K such that S’ /Rad(S’) is absolutely semisimple.

(b) If S/Rad(S) is absolutely semisimple over K, then there exists an extension K’ of K with [K’ : K] <
(dimg S)! such that S’ /Rad(S’) is a product of matrix algebras over K'.

(¢) IfKis finite, and if we write S/Rad(S) = []; Maty, x4, (K;) for d; > 1 and X; finite over K, then we
may find K as in (b) so that [K’ : K] divides [];[K; : K].

Proof. For (a) note first that for 32 := S ®x K2 the ring $7¢/Rad(5%2) is semisimple and trivially
absolutely semisimple. Let K’ be a finite extension of K over which S’ := § ®¢ K’ contains a sub-K’
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vector space I with I @ K22 = Rad($%2). Considering / inside Rad($%2), it follows that / is a nilpotent
ideal of S’ so that I ¢ Rad(S’). But then using the inclusion (37) and the faithful flatness of K’ — K22,
it is straightforward to see that / = Rad(S”) and that S’ /I is absolutely simple.

To prove (b), note first that we may replace S by S/Rad(S), again by the inclusion (37) so that we
may assume that S is absolutely semisimple. Write S as a product of division algebras D;, for i in a
finite index set /, and write K; for the center of D; and let d; € N be such that d% = dimg,; D;. We
consider all finite field extensions of K as subfields of a fixed algebraic closure K¢ of K. Let K’ ¢ K2
be the join of the normal hull of all ;. By Remark A.2.2, K’ is separable over K and for each i we have
K; ®x K = (K")™ for m; = [K; : K]. Note also that [K’ : K] < [];¢; m;!. Let E; € D; be a maximal
subfield over K; so that D; ®, E; = Maty,xa, (E;). Let B’ > K2 be the join of K’ and the fields E;,
i € I. Then

SexE = [ |(Diox, (Ki@xK) @x B) = [ [(Di @, BY™ o [ TMatya, )™, (38)
iel iel iel

Hence, E’ is a field as in (a). Moreover, [E’ : K] < [1;e;(d; - m;!) < Tlier(d; - [K; @ K])!. Since
Sier(di[K; : K]) <€ Yier di2 - m; = n, using that multinomials are integers, we deduce [E’ : K] < n!,
and this proves (b).

To see (c) note that each K; is normal over K and for each degree there is a unique extension of K
of that degree in a fixed choice K¥¢. Hence, in the proof of (b) we find [K’ : K] < lem;¢; [K; : K].
Moreover, over K; the ring D; is already split, and so we can take E’ = K’. The assertion now is clear. O

Remark A.2.4.

(a) Note that the hypothesis in Lemma A.2.3(b) holds whenever K is perfect.

(b) A version of Lemma A.2.3(a) only under algebraicity hypotheses for S over K can be found in
[Chel4, Lemma 2.14].

(c) Itis possible to give effective bounds in Lemma A.2.3(b) also without any separability hypotheses.
But the proof is longer and we do not need the result.

Let now S be any K-algebra, not necessarily of finite K-dimension. Let M be an S-module of finite
K-dimension. If M is semisimple, the representation M ®y K2 need in general not be semisimple over
58 = § @ K.

Definition A.2.5. We call M absolutely semisimple, if M ®x K2 is semisimple as an S¥2-module.
We call M absolutely completely reducible if it is semisimple and all its irreducible summands are
absolutely irreducible.

Remark A.2.6. If M is absolutely completely reducible, it is clearly absolutely semisimple. If M is
absolutely semisimple, it is absolutely completely reducible if and only if for each irreducible summand
N of M the natural map K — Endg(N) is an isomorphism, see [CR62, 29.13]; the latter condition is
equivalent to Endg (M) being a product of matrix algebras over K.

For the following note, that if N is a second S-modulo of finite K-dimension and K’ is any field
extension of K, then by [CR62, 29.2] one has

Homg (M, N) ®g K’ = Homgg, ' (M ®x K', N ®x K). (39)

Lemma A.2.7. Suppose M is absolutely semisimple. Then the following hold:

(@) The K-algebra Endg (M) is absolutely semisimple.
(b) IfK’ o Kis an extension such that Ends (M) ®x K’ is a product of matrix algebras, then M ®g K’
is absolutely completely reducible.

8If S is a purely inseparable finite field extension of K and M = S, then S ®x S is not semisimple.
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Proof. To prove (a) it suffices to assume that M is irreducible. Then D := Endg(M) is a skew field of
finite dimension over K. By the isomorphism (39), we have

D ®x K" = Endgg, gae (M @ K*2).

By hypothesis, M ®y K¢ is semisimple over S ®¢ K*¢. By Remark A.2.6, D ®g K2 is then a product
of matrix algebras over K2, This proves (a). Part (b) is immediate from the isomorphism (39) since it

implies K’ = Endge,x’ (N) for every irreducible summand of M ®g K'. O
Remark A.2.7. For K’ as in Lemma A.2.7(b), one can bound [K’ : K] by ((dimg M)?)! using Lemma
A.2.3(b).

A.3. Absolutely irreducible mod p representations of the absolute Galois group of a p-adic field

This subsection gives the proof of the classification of irreducible finite-dimensional representations of
Gk for a p-adic field K over a finite field of characteristic p, and some complements.

We begin with some preparations and reminders: Recall the classification of tame characters of the
inertia group Ix of Gk from [Ser72]: Let m denote some natural number. Let k28 be the residue field
of K2 and set ¢ := |k|. Let in the following o € Gg be any element that maps to Frobenius in G.
Let K™ c K' c K*¢ denote the maximal unramified and maximal tamely ramified extensions of K,
respectively. Denote by K,, ¢ K™ the unique extension of K of degree m and by k,, C k¢ its residue
field. If @ is a fixed choice of uniformizer of K and K, = K™ ( *" /@), then K' = lim, ., KJ,. The
characters

(")
q’"% ’

form an inverse system, I, = l(iLn{ ky,:meN} is pro-cyclic and Itp = I;; see [Ser72, Propositions 1 and 2].

W Ii:=Gal(K'/K™) — Gal(K;, /K™) = pgm1 (K™) = pgm_1 (k"¢) =k;y,, 0+

A continuous character w: I; — (k¥2)* is called of level m (with respect to k) if m is the smallest
integer such that w factors as w = ¢ o w,, for some homomorphism ¢: k), — (}Faplg)x; since I; is
procyclic this is equivalent to w having order a divisor of g™ — 1 with m minimal; in particular, the

number of such characters is finite. For any m > 1, let P, := Homg (k,,,, F;lg), and set Wy, r =T O Wy

for T € P,,. For any T € P, we have P,,, = {qu |i=0,...,m—1}. Moreover, oo € Gk as fixed above
satisfies oro ™! = 74.
If w is of level dividing m, it can be written as w = wy, , forany 7 € P, andsomer € {1,...,4™ -2}

(that depends on 7). Call r € {1,2,...,q™ — 2}primitive for m (and q) if there is no proper divisor d
of m such that r is a multiple of (g™ — 1)/(¢? — 1); equivalently, r is primitive, if its base g expansion
r=[em-1€n—2...e1e0]y, withdigitse; € {0,...,g—1}, is preserved under no cyclic digit permutation
but the identity. Then the level m is minimal for w = wy}, . if and only if r is primitive for m. In the latter
case, the orbit of w under conjugation by o has exact length m.

To extend w;,,r to G,,, recall that the local Artin map is an isomorphism E;jl — G??m that maps
leqn to the inertia subgroup of G%’m; the latter surjects onto I;/(1))4"~'. The choice of @ gives an

isomorphism KX = Z x Ok, ; itinduces a homomorphism pr,: Gg,, — It/ (I)9"~". We define

Omr: G, —5 L))" 28 1 s (ke)*,
Finally, for A € (k¥¢)* and a finite extension field K’ > K, we write fig, ;: Gx» — (k¥€)* for the
unramified character of G- that sends a Frobenius automorphism to A1 e golg,
The following is the main result of this subsection.

Lemma A.3.1 (Berger, Muller). Let p: Gx — GL, (k¥2) be an n-dimensional irreducible continuous
representation. Let F C k™2 be a finite field that contains k. Then the following hold:
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(a) There exists A € (k*)*, T € P, and a primitive number r € {1,2,...,q" — 2} such that

—_ o~ GK —r
0 =g, ®IndGann,T .

(b) p can be defined over F if and only if A € F.

In particular, given n there are only finitely many isomorphism classes of absolutely irreducible repre-
sentations G — GL,, (F).

Proof. The proof of (a) is essentially that of [Ber10, Corollary 2.1.5] for K = Q,, as extended in [Mul13,
Proposition 2.1.1] to any K. We give a complete proof of (a), since it also serves to prove (b). Note that
the last assertion is immediate from (a) and (b).

To prove (a), let p: Gk — GL,, (F*2) be irreducible. Then the wild ramification subgroup Px of
G acts trivially via g: the group Pk is normal in Gg and a pro-p subgroup. If its action on (F*¢)”
was not trivial, then the invariants ((F22)")P¥ would be a nontrivial proper subrepresentation of G .
But this is impossible, since p is irreducible.

We deduce that the restriction p|r, factors via I, and hence is a direct sum of one-dimensional
continuous characters of /. Fix one such character w and write w = wy, , for m the level of w, some
T€Pyandr e {l,...,q" — 2} primitive, and let & := @}, .. It follows that 0 # (plg,, ® ok,
and hence we can find 2’ € (k¥#)* such that fix,, v ® @ is a subrepresentation of Plcy,,- Letd € ke
be such that A = A’ so that fik,, v = fix 1lGx,, - Then by Frobenius reciprocity

R

Indgim (@ ® fk,, 1) (Indgim ©) ® fik.a
admits a nonzero homomorphism to the irreducible representation p. By the primitivity of r, the orbit
of w under conjugation by ¢ has length m = [Gk : Gk,,], and it follows that Indg’; @ is irreducible
by the criterion of Mackey, see Lemma 2.1.4(e). This yields the isomorphism

— Grx —~r —

p= (IndGimwm,T) ® Hk >
and moreover that m = n, proving (a).

For (b), assume first that 5 is defined over F. From our definitions and our hypothesis on |F| is it

clear that p’ := Indg’; " _ is defined over k, C F. It follows that detp’ (o), deto(o) € F*. Since

m,T

detp(o) = A" - detp’(0), we deduce A" € F. For the converse, let 1 € (ﬂ-'*j;‘,lg)X satisfy A" € F. From
Lemma 4.6.6, one deduces that the characteristic polynomial of any o € Gk acting via p lies in
F[z]. It follows from the triviality of the Brauer group of a finite field and [CR62, Section 70] that the
representation p can be defined over F. )

A.4. A variant of a result of Vaccarino

In Theorem A.4.4 of this subsection, we prove a variant of the main theorem of Vaccarino from [Vac09]
for group rings of free groups instead of free associative algebras. We use this result in the construction
of induction for general pseudocharacters in Theorem 4.6.7.

Let us first introduce some notation. For a set X, let FM(X) be the free monoid over X and let FG(X)
be the free group over X; we regard FM(X) as a submonoid of FG(X). We define Z{X} := Z[FM(X)]
as the monoid ring of FM(X) over Z; in other words, Z{X} is the free associative Z-algebra in the
indeterminates x € X. We also define Z{X*} := Z[FG(X)] as the group ring of FG(X) over Z and note
that Z{ X} is a subring of Z{ X*} via the inclusion FM(X) c FG(X). Let further Fx (n) be the polynomial
ring Z[éx;; 1 x € X,1 < i,j < n] in indeterminates ¢, ; ;, that is, the commutative ring of matrix

coeflicients of generic n X n-matrices over X. Then one has the natural generic matrices representation

px: Z{X} — Mat, (Fx (1)), x> &x = (Exiji<i,j<n-
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Let Ex(n) C Fx(n) be the subring generated by the coefficients of the characteristic polynomials of
the matrices px (w), w € FM(X). The associated degree n pseudocharacter D, , cf. Definition 4.1.4,
factors through a unique Ex (n)-valued pseudocharacter

Dx = DPX . Z{X} —>Ex(n),

as follows for instance from [Che 14, Corollary 1.14] using Amitsur’s formula.

Let DY : Z{X} — R%‘?;}’n be the universal n-dimensional pseudocharacter of Z{X} from Propo-

sition 4.2.1 so that one has a unique homomorphism ax : R%‘?}V(} ., — Ex(n) in CAlg; with
ax o DY = Dx. The following result is an important theorem of Vaccarino.

Theorem A.4.1 (Vaccarino; [Vac09, Theorem 28]). The map ax : R%I?)V(} . — Ex (n) is an isomorph-

ism, and in particular R%‘?}V(} ,, I8 a domain and a free Z-module.

In the remainder of this section, we shall extend the pseudocharacter Dy : Z[FM(X)] — Ex(n) to
an explicit pseudocharacter Dx= : FG(X) — Ex=(n) on FG(X) and prove that the extension has again
a universal property. The following lemma provides some required auxiliary results.

Lemma A.4.2. Let G be a group and let M C G be a submonoid that is also a generating set of G (as
a group). Let A be in CAlgy. Then the following hold:

(@) If D: A[M] — A is a pseudocharacter of degree n and if m € M is an element such that
Ap n(m) € A%, then the class of m is a unit of A{M|/CH(D) and its inverse is the class of

n—1
qp.m = Apa(m)~"- Z(—l)n_l_iAD,i(m) m"
i=0

(b) Let D,D’: A[G] — A be pseudocharacters of degree n. Then we have:
(1) The canonical map A[M] — A[G]/CH(D) is surjective.
(2) If B C A is a subring such that D(B[M]) c B and Ap ,(M) c B, then D(B[G]) C B.
A3) IfD|A[MJ = D,,A[M]’ then D = D’.

Proof. For (a), simply note that the Cayley—Hamilton identity yp(m,?)|;=, = 0 holds in the ring
A[M]/CH(D). Because 1 —m - qp m = (=1)"Ap_n(m)~" - xp(m,t)|;=m, Part (a) follows.

To see (b)(1), it suffices to show that the class of any g € G in A[G]/CH(D) lies in the image of
A[M]. Because M generates G, we can write g = m{' -m3”-...-m;" for suitable my, ..., m, € M and
€l,...,& € {x1}. Note that Ap ,(m;) € A* as observed before Definition 4.1.5. So in the formula
for g we can by (a), whenever &; = —1, replace the occurring ml.‘1 by ¢p,m;, € A[M], and this shows
g € A[M] + CH(D).

We turn to (b)(2). As we assume Ap , (M) C B*, the argument in the previous paragraph now shows
that B[G] c B[M]+CH(D). By the further hypothesis D(B[M]) c B we deduce that all characteristic
polynomial coefficients of any ¢ € G lie in B, and Part (b)(2) now follows from Proposition 4.1.10
quoted from [Chel4].

Finally, we prove (b)(3). Let us go back to the argument for (b)(1). It replaces an element x of A[G]
by using the Cayley—Hamilton identity by an element x’ in A[M] in such a way that in the replacement,
which used gp,,, from (a), only values involving D|a[ps] Were used. It follows that the construction of
x’ from x is the same whether we use D or D’ since we assume D|[ar] = D’|a[ar]. Therefore, we have
D(x) =D(x") =D’(x") = D(x) for all x € A[G], and we are done. O

Let us now turn to the construction of px= and its properties. To extend px to FG(X), we wish to
invert £, € Matgxg(Fx(n)), and so we need det(&y) to be a unit; observe that det(£,) is a coefficient
of the characteristic polynomial of px (x) and hence lies in Ex (n). We define the subrings Fx=(n) =
Fx(n)[det(&éx)7! : x € X] and Ex=(n) = Ex(n)[det(£,)~! : x € X] of the fraction field of the integral
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domain Fy (n) by adjoining the inverses of det(¢&,) for all x € X to Fx(n) and to Ex (n), respectively.
It is now clear that the representation px has a canonical extension to a representation

Px=: Z{Xi}_)Matnxn(FXi(n))» x— &y
Proposition A.4.3. The pseudocharacter
Dx: = Dpxi . Z{Xi} i in(n)

associated to px+ takes values in Ex=(n) C Fx=(n), and Ex=(n) is the minimal such ring.

Proof. Let M = FM(X) c G = FG(X), B = Ex:(n) C A = Fx:(n) and D = Dx= so thatD|B[M] =
Dx ®gy (n) Ex=(n). Since Dy is defined over Ex (n) we have D(B[M]) C B, and by definition of
Ex=(n) we have Ap, ,(X) c B* and hence by multiplicativity of D also Ap, ,(M) c B*. The first
assertion on D x+ now follows by applying Lemma A.4.2(b)(2).

The minimality of Ex=(n) is straightforward: By Theorem A.4.1, the target ring has to contain
Ex (n), but it also has to contain the elements Dx=(x~!) = det(&,)~! for all x € X. O

From now on, we regard Dx= as a pseudocharacter
Dx=: Z{Xi} — Ex= (}’l)
Let D%, : Z{X*} — R%‘F}V(i} ,, be the universal n-dimensional pseudocharacter from Proposition 4.2.1.
By the universal property of R%‘?)‘gi} ,» there is a unique homomorphism

ax=. R%I?;éi}’n — Ext (}’l),

such that Dy+ = ax=oDY. . The following variant of Theorem A.4.1 is the main result in this subsection.
Theorem A.4.4. The map ax+ is an isomorphism, and in particular:
(a) RuMY ,, Is a domain and a free Z-module.

Z{X*},
(b) The pseudocharacter DY, is associated to the genuine representation px= of FG(X).

Proof. We directly prove that the pair (Ex=(n),Dx=) has the universal property of the pair
(R%‘?)‘;i},n,Dg‘(i). So let D*: A[FG(X)] — A be a pseudocharacter of degree n. Its restriction
D := D*|s[pm(x)] is an A-valued pseudocharacter on FM(X). Hence, by the universal property of
Ex (n) from Theorem A.4.1 there is a unique homomorphism a: Ex(n) — A such that D = @ o Dy.

Now, Ap= ,(g) € A for all g € FG(X) as noted above Definition 4.1.5. So for x € X the image
of det(£x) = Apy.n(x) under @ is the unit Ap= ,(x) € A*. Therefore, @ has a unique extension
a*: Ex=(n) — A.Let D’ be the A-valued degree n pseudocharacter a* o Dx= on FG(X).

By construction, D’ and D* agree when restricted to A[FM(X)]. From Lemma A.4.2(b)(3) we
conclude that D’ = D*, that is, that D* = a* o Dx=, and this shows the existence of an a* as required
for the universal property of (Ex=(n), Dx=). The uniqueness of a* is clear, because its restriction to
Ex (n), that is, the map «, is unique, and the extension from « to a* is also unique. O
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