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A Generalised Kummer-Type
Transformation for the ,F,(x)
Hypergeometric Function

A. R. Miller and R. B. Paris

Abstract. In a recent paper, Miller derived a Kummer-type transformation for the generalised hyper-
geometric function ,Fp(x) when pairs of parameters differ by unity, by means of a reduction formula
for a certain Kampé de Fériet function. An alternative and simpler derivation of this transformation is
obtained here by application of the well-known Kummer transformation for the confluent hypergeo-
metric function corresponding to p = 1.

1 Introduction

The generalised hypergeometric function ,F,(x) is defined for complex values of x
by the series

a,ay, ...,

a
(L) PFP(bhbz,...,bi

= (@)@ - (ap) X
x) =2 b Gy B P

where for nonnegative integer k the Pochhammer symbol or ascending factorial (a)
is defined by (a)o = 1 and for k > 1 by (a)y = a(a+ 1) --- (a + k — 1). However, for
all integers k we write simply

(@) = T'(a+k)
T T
We shall adopt the usual convention of writing the sequence (ay,...,a,) simply as

(a,) and the product of p Pochhammer symbols as

((ap)k = (aD)k- - - (ap)ks

with an empty product (p = 0) reducing to unity. The function ,F,(x), with an equal
number of numeratorial and denominatorial parameters, is the higher order exten-
sion of the familiar confluent hypergeometric function | F, (x). This latter function
satisfies the well-known Kummer transformation given by
b—a
x| =€ F —x).
> 141 ( b
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In [7], a Kummer-type transformation for the ,F,(x) function with three inde-
pendent parameters was given by

, c+1 b—a-—1, +1
(13) 2F2 (ll CC X) ex2F2< Z’ 55 ‘X),

b,
where the parameter £ depends on a nonlinear combination of the parameters a, b,
and c in the form

(1.4) e Ata=b oy a120).

a—=c¢

If we let ¢ — o0, or put b = ¢ + 1, then (L3) reduces to Kummer’s transformation
([L2). A more restrictive form of (L3) when ¢ = %a, corresponding to only two inde-
pendent parameters with £ = 1+a—b, had been obtained earlier in [2/4]. Alternative
proofs of (L3]) have been given in [5] using a reduction formula for the Kampé de
Fériet double hypergeometric function and in [1,9] using different methods. In the
case of four independent parameters a, b, ¢, and d, the corresponding transformation

no longer involves a single , F, function but an infinite sum [7]] given by
a, ¢ _ — (d— o), n b—a, ¢
ze(b, d x) —320 @), (=x) 2F2( b, d+n

valid for complex x provided b, d # 0, —1,—2,....
Recently, Miller [6] obtained an extension of the transformation (L3) to the
higher-order confluent hypergeometric function . Fp4;(x) with p > 1 in the form

; 1 b—a—p, 1
(1.5) pﬂppﬂ(z (cz()c:)) x>e"p+1Fp+1< 0= ? (6}(75)) x)’

where the &1, ..., §, are nonvanishing zeros of a certain associated parametric poly-
nomial of degree p defined in Section 2. The transformation (L.5]) was obtained from
a summation formula for a ,,,F,.; hypergeometric function of unit argument com-
bined with a reduction identity for a certain Kampé de Fériet double hypergeometric
function. The purpose of this note is to provide a more direct proof of (L3 and to
show how it follows as a consequence of Kummer’s transformation (L.2).

2 Proof of the Transformation (1.5)

The notation { } } will be employed to denote the Stirling number of the second kind.
These numbers represent the number of ways to partition # objects into k nonempty
sets and arise for nonnegative integers # in the generating relation [3]]

(2.1) x”:Z{Z}x(x—l)..-(x—k—f—lL {Z}:(Son,

k=0
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where o, is the Kronecker symbol and, when k = 0, the product
x(x—1)---(x—k+1)

is to be interpreted as 1. We also introduce the coefficients Ay appearing in the de-
scending factorial expansion of the product (¢; + #) - - - (¢, + n) as follows. Let

p
(cr+n)---(cp+n)= Zsp,jn],
=0

where sy = 1 and the s; (1 < i < p) are sums of all possible products of i distinct
elements from the set {c|, ..., c,}. Then from (2.I]), we have

P j .
(2.2) (cr+n)---(cp+n) :Zspjz{;(}n(n— 1) (n—k+1)
j=0 k=0
p
= An(n—1)--(n—k+1)
k=0

upon reversal of the order of summation, where

P . p
(2.3) Akzzsp_j{lfc}, A=l Ap=1.
j=k =

Defining

+1
F= P*leJrl (Z: (Cl(ycp) ) x) 5

we now express F as a series in powers of x by (I.1)). Since (¢ + 1),/(¢c), = (c+n)/c
we can write, using (Z.2)) and (2.3),

[e%S) n
a),x" ¢ +n cpt+n
sz:()n 1 L r

‘ (b),n! ¢ o
_ L@ A 1 k+1
B Z wn(n— 1)+ (n—k+1)
n=0

(@) x"
AOZAknE:(b) (n— Ry’

upon reversal of the order of summation and where we have replaced the lower limit
of summation in the inner series by n = k. With the change of summation index
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m = n — k and use of the identity (a),,+x = (a + k)., (@), we then find
4 oo
1 e (@ (a+k), x"
2.4 F=— X Ap—— —
24 Ao 2 XAy 2 R, il
k a+k
Z A"(b) 1F1<b+k‘x>'

This has expressed our 1 F,;1(x) function as a finite sum of | F; (x) functions.
Application of Kummer’s theorem (L2]) to (Z.4)) then yields

k (@)x —a
(25) AO Z Ak (b) 1F1 < b+ k —x)

R ) P @)y (—x)"
_AT);(_I)Ak(b) Z(b+k) nl

Noting the identities

1 (=D —n) _ (b)n
=m0 O Ree= g

and
M)A+ n),_¢

(Ap

we now make the change of index n +— n — k in (Z.5)). Then

( )n k= ) )\Eb_a_pv

e o~ (—n)(—x)"
(2.6) F= A0, ;Akw)k ; ) O

e (M) p(— x)n
:AO(A)pZ b), 1 ZAk(a)k( mk\ + 1)y,

upon reversal of the order of summation and where we have replaced the lower sum-
mation limit n = k by n = 0 on account of the factor (—n);, which vanishes for
n < k.

The finite sum appearing in can be expressed by means of (Z.3) as

p p P .
kZ;Ak(a)k(—n)k(A k=D S {,ﬁ} (@k(=m)eA + 1)y

k=0 j=k

p j .
= Zspfj Z {]](} (@r(=mk(A +n)p—r = Qp(—n),

=0 k=0
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where Q,(t) is the associated parametric polynomial defined in [6, Corollary 1] and
we have carried out a reversal of the order of summation. The function Q,(—n) is a
polynomial in # of degree p. Some straightforward algebra shows that

Qp(—n) = apn? + ayn? N+t + a,

where, in particular, the coefficients

p
an=AN)p, o= (~DfAa) = (c —a)-(c) — a)
k=0

by 2.2)). If we let the nonvanishing zeros (which requires the condition (\), # 0) of
Qp(t) be &1, ..., &, then a, = &y -+ &p. Assuming ¢; # a (1 < j < p) so that
o # 0, we can then write, following [6, Lemma 4],
Qp(—n) =ap(n+&)---(n+§,)
n+& n+é§,

aﬂ ...

& &
-« (1 +§1)n (1 +§p)n

" (gl)n (gp)n ’

Hence, (2.6)) can be expressed in the form

(& D)y ()
F=e) o6,

This then finally yields the desired transformation, which we record in the following
theorem.

Theorem 1 For nonnegative integer p and \=b —a — p,
a, (c,+1)

(2.7)  pnFpn (b’ e x) = & puiFpn (b - Z,f ps (5&2)1) _x> 7

provided (A), # 0andcj # a (1 < j < p), where&,, ..., §, are nonvanishing zeros of
the associated parametric polynomial Q,(t) of degree p given by

p j .
(2.8) QW= s> {,1} (@)X = ),
=0 k=0

and thes,_; (0 < j < p) are determined by the generating relation

P
(ct+n)---(cp+n)= Zsp,jn].
=0

Note that when all of the ¢c; = ¢, thens,_; = ( I;) cP—i,
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Discussion

In the case of the hypergeometric function on the left-hand side of [2.7)), with cor-
responding numeratorial and denominatorial parameters differing by unity, the ex-
ponential factor that appears in the transformation is ¢*. That this is the correct
exponential factor to extract, even in the most general case of

ay,az,...,4dp
F x
P p<b1,b2,...,bp )

can be seen from the asymptotic growth of the latter for large x. From [8} §2.3], we
have exponential growth as |x| — oo in the right half-plane given by

611,612,...7611,
oFp ( b, bs,.... by
where the parameter ¥ = Zle(ar — b,), and algebraic growth (with possible terms

in log x depending on the values of the a,) in the left half-plane | arg(—x)| < 3.
When p = 1and ¢; = ¢, the polynomial Q;(¢) in (Z.8]) is

»
T(a,) |
x) ~ H FEZJ x’e" (larg x| < im),

r=1

Qt)=(@—ot+cb—a—-1)

and the zero §; = £ is given by (L4). The transformation (2.7) in this case then
correctly reduces to that in (L3)).
In the case p = 2, we have [6]

(3.1) Q1) = at? — ((a+ BN+ Bt + crA(\ + 1),
where A = b —a —2and
a=(q—a)g—a), [=cc—ala+]l).

For real parameters a, b, ¢;, and c,, we note that the zeros &;, & can be real or a
complex conjugate pair. For example, if a = %, b=1,¢ = %, and ¢, = Z then

Q(t) = =37 +6t + 2),

so that &, = —1 & 1i\/11. We then find the Kummer-type transformation
25 -2, 3V, —3iV11

3F3 x| =€ 3F; y N —x|.

1, L, —1+ LI, -1 - Livid

Finally, we comment on the situation when the difference A ;i between corre-
sponding pairs of numeratorial and denominatorial parameters c; exceeds unity. For
example, if p = 1 and A; = 2, then

a, c+2 . a, c+1, c+2
2F2< c x)3F3<b, ¢, c+1 ’x)

b,
:e"3F3<b_a_2’ G+1, &+1 ‘_x)

)

)

TSN

ENIE I )

b7 517 52

https://doi.org/10.4153/CMB-2011-095-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-095-6

A Generalised Kummer-Type Transformation 577

where 1, &, are the zeros of the quadratic Q,(¢) in (B.I) with ¢; = cand ¢; = ¢+ 1.
If Ay = m, where m is a positive integer, then we have

a, c+m a, c+1l,c+2,...,c+m
(3.2) 2B xX) = mr1Fmn X
b, c b,

e+l ..,c+tm—1
- b—a—-1, (&, +1)
- exm+lFm+l < b, (é—m) — X,
where &1, .. ., &, are the zeros of the polynomial Q,(¢) withe, =c+r—1(1 <r <

m). Similarly, if the difference associated with the parameters c; is A; = m;, where
the m; are positive integers, then we find in the case p = 2, for example, that

a, d1+m1, d2+1’}’12
(33) 3F3 ( b, d], dz X)
F a, d1+1,...,d1+m1, d2+1,...,d2+m2
w Sy Ay — 1, dy, .. datmy—1 |
b—a—p, (+1) >
=, F, < ’ b —x),
p+H1Lp+1 b7 (é—ﬂ)
where y = my+my and &, . . ., €, are the zeros of the polynomial Q,(¢) in (2.8) with

g=d+tr—1 (1<r<m), cmor=d+tr—1 (1<r<m).

Extension to higher order ,F,(x) is straightforward.

The results in and (3.3)) express a ,F,(x) function, when corresponding pa-
rameters differ by more than unity, in terms of higher-order hypergeometric func-
tions with argument —x. In the case of ,F,(x), however, an alternative representation
for the left-hand side of (3.2) can be given in terms of a finite number of ,F,(—x)
functions as [[7]

m k
a, c+m _ m\ x b—a, c+m
w (e (V) Gt S
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