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The three-dimensional vortex clusters, and the structures based on the quadrant
classification of the intense tangential Reynolds stress (Qs), are studied in direct
numerical simulations of statistically stationary homogeneous shear turbulence (HST)
at Taylor microscale Reynolds number Reλ ≈ 50–250, with emphasis on comparisons
with turbulent channels (CHs). The Qs and vortex clusters in HST are found to
be versions of the corresponding detached (in the sense of del Álamo et al. (J.
Fluid Mech., vol. 561 (2006), pp. 329–358)) structures in CHs, although statistically
symmetrised with respect to the substitution of sweeps by ejections and vice versa.
In turn, these are more symmetric versions of the corresponding attached Qs and
clusters. In both flows, only co-gradient sweeps and ejections larger than the local
Corrsin scale are found to couple with the shear. They are oriented anisotropically,
and are responsible for carrying most of the total Reynolds stress. Most large eddies
in CHs are attached to the wall, but it is shown that this is probably a geometric
consequence of their size, rather than the reason for their dynamical significance.
Most small Q structures associated with different quadrants are far from each other
in comparison to their size, but those that are close to each other tend to form
quasi-streamwise trains of groups of a sweep and an ejection paired side by side
in the spanwise direction, with a vortex cluster in between, generalising to three
dimensions the corresponding arrangement of attached eddies in CHs. These pairs are
organised around an inclined large-scale conditional vortex ‘roller’, and it is shown
that the composite structure tends to be located at the interface between high- and
low-velocity streaks, as well as in strong ‘co-gradient’ shear layers that separate
streaks of either sign in which velocity is more uniform. It is further found that the
conditional rollers are terminated by ‘hooks’ reminiscent of hairpins, both upright
and inverted. The inverted hook weakens as the structures approach the wall, while
the upright one changes little. At the same time, the inclination of the roller with
respect to the mean velocity decreases from 45◦ in HST to quasi-streamwise for
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wall-attached eddies. Many of these observations are generalised to intense Reynolds
stresses formed with different pairs of velocity components, and it is shown that most
properties of the small structures can be traced to their definitions, rather than to their
dynamics. It is concluded that the larger Reynolds-stress structures are associated with
shear turbulence, rather than with the presence of a wall, while the smaller ones are
generic to turbulence in general, whether sheared or not.

Key words: homogeneous turbulence, turbulent boundary layers, turbulent flows

1. Introduction
The concept of coherent structures in wall-bounded flows probably originated with

Theodorsen (1952). It was soon associated with the phenomenon of bursting, which
was first observed in turbulent boundary layers by Kline et al. (1967) as an oscillation
and breakdown of what were later recognised to be streaks of low streamwise velocity.
Both have received continuing attention since then because they are locally strong
events that promise, up to a point, an independent evolution from the rest of the flow.
They make chaotic turbulence appear ‘simpler’. It was not initially clear whether the
intermittency observed in experiments was due to measurement artefacts or to true
temporally recurrent motions. The temporal analysis of direct numerical simulations
(DNS) of boundary layers by Robinson (1991), and later of minimal flows in the
buffer (Jiménez & Moin 1991) and logarithmic layers (Flores & Jiménez 2010)
of channels, showed that the experimentally observed bursts are passing intense
structures, but that these structures grow and wane over longer periods of the order
of their turnover time (Jiménez et al. 2005). More recently, visual inspection has
begun to be substituted by automatic machine processing, allowing the spatial and
temporal characterisation of bursting structures in full-scale channels at reasonably
high Reynolds numbers (Lozano-Durán & Jiménez 2014). The structural point of
view has become an indispensable and complementary method to statistics, and the
two are often blended together (Jiménez 2013b).

Streaks are created by the interaction of the wall-normal velocity with the shear
(Bakewell & Lumley 1967; Kim & Lim 2000; Jiménez 2013a), and they are known
to form even in the absence of walls (Uzkan & Reynolds 1967; Lee, Kim & Moin
1990). Bursting appears to require more restrictive conditions. The simplest shear
flow is unbounded homogeneous shear turbulence (HST), which, unfortunately, does
not have an asymptotic statistically stationary state. Ideal HST in unbounded domains
grows indefinitely, both in intensity and in length scale (Champagne, Harris & Corrsin
1970; Harris, Graham & Corrsin 1977; Lee et al. 1990; Kida & Tanaka 1994), and
simulations are typically discontinued as the growing length scale approaches the size
of the computational box (Rogers & Moin 1987). However, Pumir (1996) extended
the simulation to longer times and reached a statistically stationary state (SSHST) in
which the largest-scale motion is constrained by the computational box and undergoes
a succession of growth and decay phases of the kinetic energy and the enstrophy,
reminiscent of the bursts in wall-bounded flows. This suggests that bursting is also a
common feature of shear-induced turbulence, but that it requires the restriction of the
structures before growth can be reinitiated. In SSHST, this restriction is due to the
numerical box. In wall-bounded turbulence, it is presumably due to the wall or, when
simulated in a small box, to the constrained spanwise direction (Flores & Jiménez
2010). It should be noted that this implies that any simulation of SSHST is minimal,
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especially in the spanwise direction (Sekimoto, Dong & Jiménez (2016), SDJ16 from
now on), and that its largest scales are not necessarily representative of those of
unbounded HST.

Nevertheless, previous investigators have found that the growth rates of the kinetic
energy during bursts in SSHST and in the logarithmic layer of minimal channels are
very similar, and that their growth phase is qualitatively the same as in the initial
shearing of isotropic turbulence (Pumir 1996; Gualtieri et al. 2002). Indeed, SDJ16
showed that the evolution of the flow during all the phases of the SSHST bursts
is similar to that in wall turbulence, undergoing lift-up, instability, breakdown and
regeneration. Statistics, such as the two-point correlation of the vertical velocity, also
agree well between both flows (SDJ16).

The purpose of this paper is to study the coherent flow structures in SSHST,
compare them with those in turbulent channels, and study their behaviour in a
simpler setting than wall turbulence. In particular, by comparing the structures in
the two flows, we seek to distinguish which features are dominated by the wall and
which ones are general properties of shear-driven turbulence. For the sake of brevity,
we will refer from now on to statistically stationary homogeneous shear turbulence
simply as HST.

One of the best-studied characterisations of bursting is based on the quadrant
analysis introduced by Wallace, Eckelman & Brodkey (1972) and Willmarth &
Lu (1972). If u and v are the streamwise and wall-normal velocity fluctuations,
Reynolds-stress (uv) events can be classified into Q1s (u> 0, v > 0), Q2s (ejections,
u< 0, v > 0), Q3s (u< 0, v < 0) and Q4s (sweeps, u> 0, v < 0). The co-gradient Q2s
and Q4s, with uv < 0, will be collectively denoted as Q−s, while the counter-gradient
Q1s and Q3s are Q+s. Coherent Qs are defined as specially intense (uv) events,
classified in terms of their quadrant. Early investigators found that approximately
70 % of the total Reynolds stress in a turbulent boundary layer is contained in those
Q−s that are strong enough to be easily distinguishable from the rest of the flow (Kim,
Kline & Reynolds 1971; Lu & Willmarth 1973), and Qs soon came to be considered
as one of the best burst indicators in terms of one-point measurements (Bogard &
Tiederman 1986). More recently, Qs have been extended to three-dimensional objects
by Lozano-Durán, Flores & Jiménez (2012, LFJ12 hereafter), who later studied their
temporal evolution (Lozano-Durán & Jiménez 2014). It is interesting that, although
the thresholds used in these papers to define strong structures were determined in
a very different way from experiments, they turned out to be very similar to those
in previous papers, giving some support to the idea that ‘strong’ Qs have objective
significance. LFJ12 found that Qs can be divided into readily distinguishable families
of wall-attached and detached structures according to whether their minimum distance
from the wall is below or above y+≈ 20. Using the term in that sense, attached Q−s
are the dominant structures from the point of view of momentum transfer. Bursting
Qs have recently been associated with the linearised transient Orr (1907) amplification
mechanism by Jiménez (2013a, 2015).

Also associated with bursting in wall-bounded flows are hairpin vortices (Theodorsen
1952; Perry & Chong 1982), although mostly observed at relatively low Reynolds
numbers, near the wall or in transition (Head & Bandyopadhyay 1981; Acarlar &
Smith 1987; Zhou et al. 1999; Adrian 2007). The interest in hairpins is largely due
to their simple shape, which makes them easy to visualise as triggers of bursts. The
two legs of a hairpin are quasi-streamwise vortices that move low-velocity fluid away
from the wall to create streaks that eventually become unstable and break down. In
this sense, hairpins are models for the Q2s described in the previous paragraph. A
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different kind of vortical structure was studied by del Álamo et al. (2006, AJZM06
from now on), who examined three-dimensional connected vortex clusters defined
by the discriminant of the velocity-gradient tensor in the logarithmic layer of
channels at relatively high Reynolds number. They found a self-similar hierarchy
of structures fitting the attached-eddy model of Townsend (1961). As in the case of
Qs, vortex clusters separate into wall-attached and detached families, but, although the
averaged flow field of an attached vortex cluster contains a long conical low-speed
streamwise-velocity ‘wake’ reminiscent of streaks, headed by a shorter pair of
ejections, the instantaneous shapes are irregular and very different from hairpins. The
question of whether hairpin vortices persist in high-Reynolds-number wall-bounded
turbulence, and of whether they should be understood as instantaneous structures (Wu
& Moin 2009; Schlatter et al. 2014) or as conditional statistical constructs (AJZM06;
Tanahashi et al. 2004; Flores & Jiménez 2006; Jiménez 2013b), remains controversial,
and is the subject of much current debate.

Streaks, Qs and vortical structures are not unrelated to each other. On average,
Q2s and Q4s in channels form spanwise pairs located at the interface between
high- and low-velocity streaks. The flow field conditioned to these pairs includes
a central longitudinal large-scale roller (LFJ12; Jiménez 2013b), reminiscent of the
average arrangement of streaks and quasi-streamwise vortices in the buffer layer
(Robinson 1991; Jiménez & Pinelli 1999; Schoppa & Hussain 2002). Vortex clusters
are also located on average between the two Qs, closer to the Q2. Whether the
quasi-streamwise roller is an averaged reflection of these vortex clusters is unclear,
and will be one of the questions considered in this paper. Similarly, it is also unknown
whether hairpins are connected with the structure just described.

Another question to be addressed is the relation between wall-attached and detached
structures. Most of the properties mentioned above apply mostly to attached Qs and
clusters. Hairpins have also been considered mostly in relation to the wall, although
Rogers & Moin (1987) found that hairpin vortices, or at least hairpin vortex lines,
exist in HST, and Vanderwel & Tavoularis (2011) found both ‘upright’ and ‘inverted’
hairpins in experimental HST, distinct enough to be made visible as concentrations of
hydrogen bubbles. In wall-bounded flows, detached Qs tend to be small and isotropic,
and do not carry net Reynolds stress. LFJ12 showed that structures with similar
properties are found in free-shear flows, including flows with no mean shear. Even if
it appears natural to compare eddies in HST with detached ones in wall turbulence,
the difference between attached and detached structures has to be clarified and will
be examined in this paper.

In fact, the distinction between the two families is not absolute. There are large
detached structures in wall-bounded turbulence, although very large ones tend to hit
the wall and become attached. Structures that are detached at a given threshold may
be attached at lower ones, and, when Lozano-Durán & Jiménez (2014) examined the
temporal evolution of Qs and vortex clusters in channels, they found that a given
structure may start life as detached only to later attach to the wall, and vice versa.

The similarities and differences between the statistics of HST and wall turbulence
have been examined by Pumir (1996), Gualtieri et al. (2002) and SDJ16, but, as far
we are aware, the relationship between their three-dimensional structure has not been
studied in any detail.

The rest of the paper begins by introducing the database in § 2. The identification
method used to extract coherent structures is detailed in § 3, followed in § 4 by
the description of their geometric and flow characteristics, including comparisons
with channels. Their spatial organisation is studied in § 5, followed in § 6 by the
conditionally averaged flow fields in their neighbourhood. The paper closes with
discussion and conclusions.
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2. Numerical experiments

Throughout this paper, x and z are respectively the streamwise and spanwise
directions, and y is the (vertical) coordinate in the direction of the mean shear. The
corresponding velocities are û, ŵ and v̂. Upper-case symbols are used for mean
values averaged over time and over all the homogeneous directions of the flow, as in
Φ = 〈φ̂〉. Fluctuations with respect to those averages are in lower case, φ = φ̂ − Φ,
and root-mean-squared (r.m.s.) intensities are denoted by primes, as in φ′2 = 〈φ2〉.
Occasionally, the coordinates and velocities are represented by subscripts in the range
x . . . z, in which case repeated indices imply summation. This is always the case for
the vorticities ωi. The time-dependent average over the homogeneous directions of
a fluctuating quantity φ is denoted by φ(t). If S = dU/ dy is the mean shear, the
friction velocity is defined as u2

τ = |νS− 〈uv〉| in HST and as u2
τ = ν|Sw| in channels,

where Sw is the shear at the wall and ν is the kinematic viscosity. Quantities in the
wall units defined by uτ and ν are denoted by the superscript ‘+’. The dimensions
of the simulation boxes are Lx, Ly and Lz. Lengths in channels are normalised with
the half-height h = Ly/2, and the buffer, logarithmic and outer layers are defined as
y+ < 100, 100ν/uτ < y< 0.2h and y> 0.2h respectively.

The code for the HST simulations is described in detail in SDJ16. It integrates the
time evolution of the vertical vorticity ωy and of the Laplacian of v. The numerical
domain is periodic in x and z, with boundary conditions in y that enforce periodicity
between uniformly shifting points at the upper and lower boundaries. The spatial
discretisation is dealiased Fourier spectral in the two periodic directions, and compact
finite differences with spectral-like resolution in y (Lele 1992). The shifting boundary
condition in y avoids the periodic remeshing required by tilting-grid codes (Rogallo
1981) and most of their associated enstrophy loss (SDJ16).

The simulations are characterised by three dimensionless parameters: the streamwise
and vertical aspect ratios of the simulation domain, Axz = Lx/Lz and Ayz = Ly/Lz,
and the Reynolds number Rez = SL2

z/ν. We also use the Corrsin (1958) shear
parameter S∗ = Sq2/ε and the Reynolds number Reλ = q2(5/3νε)1/2 based on the
Taylor microscale λ= q(5ν/ε)1/2, where q2 = 〈uiui〉 and ε= ν〈ωiωi〉.

We mentioned in the introduction that the largest scales in the SSHST simulations
are always constrained by their numerical box, and SDJ16 concluded that they are
only useful as approximate models for other shear flows when 2< Axz < 5 and Ayz >

Axz/2. These results are used to design the three simulations analysed in this paper,
whose numerical parameters are summarised in table 1. They are labelled as L38,
M32 and H32 by their ‘low’, ‘medium’ and ‘high’ Reynolds number (Reλ ≈ 50, 100
and 250), followed by their two aspect ratios. Basic flow statistics are compiled in
table 2. We compare them with two channels in ‘large’ domains (Lx = 8πh, Lz =
3πh), and Reτ = uτh/ν = 934 (denoted by C950, del Álamo et al. 2004) and Reτ =
2003 (C2000, Hoyas & Jiménez 2006). Although not discussed in detail in this paper,
other HST simulations from SDJ16 are occasionally used to clarify the effect of the
computational box on the statistics. They are labelled in the obvious way as L32, M34,
etc.

In the logarithmic layer of channels, Reλ ≈ 7y+1/2 (Jiménez 2013b), so that the
Reynolds number of L38 is similar to that in the buffer layer, y+≈ 50, while those of
M32 and H32 are equivalent to y+≈ 200 and y+≈ 1300 respectively. This comparison
allows us to estimate the effective range of scales in our simulations, and how close
they are to fully developed turbulence. Although the integral scale Lε = q3/3

√
3ε is

usually taken to represent the largest flow scales, it was argued by Corrsin (1958)
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FIGURE 1. (Colour online) (a) Premultiplied one-dimensional spectra of the vorticity
magnitude, normalised with the total enstrophy, as a function of the streamwise wavelength
λx = 2π/kx, in Kolmogorov scaling. The vertical line is λx/η = 40. (b) One-dimensional
co-spectra of u and v normalised with uτ and with the Corrsin length. The vertical line
is λx/Lc = 15. The solid lines are HST and the dashed ones are channels at y/h≈ 0.15,
with symbols as in table 1.

Case u′/SLz v′/SLz w′/SLz uτ/SLz η/Lz λ/Lz Lε/Lz Lc/Lz ω′/S S∗

L38 0.214 0.160 0.164 0.118 0.0097 0.133 0.420 0.118 5.34 7.02
M32 0.186 0.134 0.138 0.097 0.0027 0.055 0.388 0.098 10.9 7.53
H32 0.214 0.161 0.161 0.113 0.0009 0.028 0.455 0.110 24.8 7.57

TABLE 2. Flow parameters for the three DNS of HST. Here, λ, Lε and S∗ are respectively
the Taylor and integral length scales, and the Corrsin (1958) shear parameter defined in
the text.

that a more relevant measure in shear flows is Lc= (ε/S3)1/2, below which eddies are
isotropically oriented and decouple from the effect of the mean shear. In this sense,
Lc is a measure of the small-scale limit of the energy-injection range, in the same way
that the Kolmogorov scale η= (ν3/ε)1/4 characterises the beginning of the dissipative
range. It follows from their definition that Lc = Lε(3/S∗)3/2. Since S∗ ≈ 7–9 both in
HST (SDJ16) and in the logarithmic layer of wall-bounded flows (Jiménez 2013b), it
follows that Lc≈ 0.25Lε. In our HSTs, Lc≈ 0.1Lz and Lc/η≈ 0.033Re3/2

λ (see table 2).
In the logarithmic layer of channels, Lc ≈ 0.3y and Lc/η≈ 0.4y+3/4.

Both Lc and η are characteristics scales, rather than absolute limits. Figure 1(a)
shows enstrophy spectra in Kolmogorov scaling for the three HST cases and for the
two channels, and figure 1(b) shows co-spectra of the tangential Reynolds stress scaled
with the Corrsin length. Both collapse well, although the constricting effect of the
numerical box on the Reynolds stress of the HST cases is obvious. It follows from
these spectra that a reasonable lower limit of the inertial range is approximately `ε ≈
40η. The largest active flow scale, in the sense of carrying Reynolds stress and net
kinetic-energy production, is L0 ≈ 15Lc, so that the effective ‘inertial’ range of scales
is approximately L0/`ε = 0.4Lc/η. Using the values in table 1, L0/`ε ≈ 5, 14 and 50
for L38, M32 and H32 respectively, suggesting that the Reynolds number of L38 is
probably too low to be considered as fully turbulent, and to be compared with the
other two simulations.
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Due to the strong intermittency of HST (Pumir 1996), the instantaneous η(t)
undergoes strong fluctuations. This is shown in table 1 by the standard deviation of
the numerical resolution, which has to be set fine enough to capture well the smallest
scales over the whole history. Our grids are adjusted to uniformly satisfy ∆/η(t). 1.5,
which is the usual requirement for the study of vortex filaments in isotropic turbulence
(Jiménez et al. 1993). The result is that the simulation is over-resolved over much of
its history, but it is also probably true that the resolution is marginal from the point
of view of vorticity dynamics at isolated points during the most intense bursts. This is
likely to be a local problem in most high-Reynolds-number simulations of turbulence,
but it is made more obvious in minimal boxes because large-scale intermittency
affects the whole flow at the same time.

3. Structure identification
The three-dimensional structure identification method used in this paper was first

introduced for strong vorticity and strain rate in isotropic turbulence by Moisy &
Jiménez (2004), and extended by AJZM06 and LFJ12 to vortex clusters and Qs in
channels. Defining the point-wise Reynolds stress as τ =−uv, the Qs are defined as
connected regions in which all of the points satisfy the intensity criterion

|τ(x)|>Hu′v′. (3.1)

Vortex clusters are similarly defined as connected regions where the second invariant
Π of the velocity-gradient tensor (Chong, Perry & Cantwell 1990) exceeds a fraction
α of its r.m.s. value,

Π(x) > αΠ ′. (3.2)

It should be noted that Π ′, u′ and v′ are functions of y in channels, but not in HST.
It should be noted also that Π is often denoted by Q in publications, but we avoid
that notation here to prevent confusion with the Q structures. The reason for choosing
Π to define vortex clusters instead of the discriminant D (AJZM06; LFJ12) is the
different numerical resolution requirements of the two quantities. The discriminant
is a sixth power of the velocity derivatives, while Π is only quadratic, and it was
shown by Lozano-Durán, Holzner & Jiménez (2015) that high-order quantities can
quickly become numerically meaningless when the resolution is marginal. Chakraborty,
Balachandar & Adrian (2005) showed that there are few statistically significant
differences between the various vortex identification methods.

The thresholds H and α are determined by a percolation analysis similar to that
in Moisy & Jiménez (2004), AJZM06 and LFJ12. Briefly, the ratio Vlar/Vtot between
the volume of the largest connected structure and the total volume contained in all
of the structures is computed as a function of the threshold. For a sufficiently low
threshold, the volume fraction of the largest structure increases sharply, and would
reach unity for structures of a single kind if the threshold were chosen low enough.
The nominal threshold for identifying structures is chosen near the middle of the
percolation transition.

The resulting percolation diagrams are shown in figures 2(a) and 2(b), where
Vlar/Vtot is given as a function of the threshold, with each curve normalised by its
maximum. The definition of individual structures becomes more computationally
expensive for the lower thresholds because structures are larger, and it sometimes
becomes impractical to perform the percolation analysis over the whole computational
box. For example, the analysis of the vortex clusters of H32 for α < 0.25 could only
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FIGURE 2. (Colour online) Percolation diagram of the volume fraction of the largest
structure Vlar/Vtot as a fraction of the total volume of all identified structures. All curves
are normalised with their maximum. (a) Qs. (b) Vortex clusters. The vertical dashed lines
indicate the nominal thresholds, H= (−uv)thr/u′v′= 1.75 for Qs and α=Πthr/Π

′= 1.5 for
vortex clusters. Symbols are as in table 1. (c) Time history of the kinetic energy q2(t)/〈q2〉
of M32, divided into ——, energetic part (q2(t)> 〈q2〉); – – –, quiescent part (q2(t)< 〈q2〉).
(d) Percolation diagram for vortex clusters in B, energetic (h); D, quiescent (l) parts in
(c). In each case, the threshold is defined with respect to the corresponding r.m.s., Π ′h or
Π ′l . The line without symbols is the global average of M32, from (b).

be done in our servers for a quarter of the computational box (AJZM06), but we
tested that this restriction did not make any difference for the higher thresholds within
the percolation transition. At very high thresholds, there is (generically) a single point
in the thresholded set, forming a single structure. The consequent growth of Vlar/Vtot

towards unity is clearly seen in figure 2.
There is a subtle difference between the processing of Qs here and in previous

papers. In LFJ12, all the points satisfying (3.1) were first isolated and separated
into individual structures, and each structure Ω was then classified into a quadrant
according to the mean values of its two velocity components, defined, for example,
as

um =

∫
Ω

u dV∫
Ω

dV
. (3.3)
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For perfectly resolved simulations, finding points of different quadrants within a
single contiguous structure would imply a discontinuity in the flow (since the
sign of some velocity component would have to change discontinuously, LFJ12),
and it was explicitly tested in LFJ12 that the number of structures with ‘mixed’
points was negligible. However, when the resolution is limited, it is possible for
different quadrants to coexist within a structure defined in this way. Even in LFJ12,
approximately 5 % of the total volume of the largest Qs belongs to quadrants that
are different from the average quadrant of their structure.

To avoid ambiguities, the present paper classifies points individually into quadrants
before clustering them into contiguous structures. This could not be done in channels,
where the points within a given Q change quadrant when they cross the central
plane, but it has the added advantage of requiring less computational resources, since
the structures of each quadrant involve fewer points than the total. For example, the
classification of Qs in H32 could not be performed in our home servers when treating
all the Qs together during strong bursts.

The differences from the older method were tested in HST by comparing the results
of the two schemes. The difference in the number of Qs identified by the two methods
was approximately 4 % in L38 and less than 1 % in M32, but the volume of the
largest structure found when identifying all the quadrants together could be two times
larger than when treating them separately. The effect in channels was tested in C950.
The difference in the number of structures was relatively small, consistent with the
percentage of misclassified points mentioned above, but the volume of the largest Qs
found using the old method in some flow fields was found to be up to 50 % larger
than when using the new one. In both HST and channels, statistical properties such as
the fraction of Reynolds stress carried by the Qs and its distribution among Q classes
differ little between the two methods.

An unwelcome consequence of computing the four Q classes independently is
that their percolation behaviours are not exactly the same. To avoid using multiple
thresholds and to facilitate the comparison with channels, figure 2 is computed using
the sum of the volumes of the four Q classes, even if each of them is computed
independently. Moreover, it is clear from figure 2(a) that the threshold found in
LFJ12 for channels (H = 1.75) is within the percolation transition in HST, at least
for the two highest Reynolds numbers. This is the value used here as the nominal
threshold. The analyses presented below were repeated for the range H = 1.25–2.25
with similar results, and we will only refer from now on to structures identified using
the nominal threshold, unless stated otherwise.

Most of these problems do not apply to vortex clusters, which have no classes.
Figure 2(b) suggests a percolation transition in the range α= 0.2–3. We chose α= 1.5
as our nominal threshold, and tested the range α = 0.75–2.5. Although the variable
used here to define vortex clusters is different from that used in AJZM06 and LFJ12
for channels, the results are compared below without recomputing the channels with
Π . Besides the already mentioned evidence in Chakraborty et al. (2005), we have
tested that clusters based on the discriminant and on Π are visually and statistically
indistinguishable in our channels.

A more serious problem has to do with the intermittency associated with the small
computational boxes of HST. The reference u′, v′ and Π ′ in (3.1)–(3.2) are averaged
over the whole flow history. In the larger boxes of the computational channels, the
intermittency is spatial, and temporal and spatial averages are roughly equivalent. The
intermittency in the minimal computational boxes of HST is temporal, and it is unclear
whether a single threshold is adequate to isolate structures at different moments.
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Table 1 gives the ratios of the standard deviations of [u2(t)]1/2, [v2(t)]1/2 and
[Π 2(t)]1/2 with respect to their long-time means. They are substantial and appear to
increase with increasing Reλ, although part of that increase is probably statistical.
The case with the lowest Reynolds number (L38) also has a larger box that is not
minimal in the vertical direction, chosen precisely to improve its statistics. The
standard deviations for a smaller box at the same Reynolds number (Ayz = 2, case
L32 in SDJ16) are very similar to those of M32, and those in the large channels,
which contain many structures, are less than one per cent of the means. Figure 2(c)
displays an example of the temporal history of the kinetic energy in M32, classified
into ‘energetic’ and ‘quiescent’ parts depending on whether the instantaneous q2(t)
is respectively higher or lower than the overall average 〈q2〉. In order to verify
whether the percolation results in figure 2(b) depend on the state of the flow, we
plot in figure 2(d) the percolation diagrams for vortex clusters in the quiescent and
energetic flow periods. When a uniform threshold is used at all times, there are fewer
structures in quiescent periods than in energetic ones, but figure 2(d) shows that, when
the percolation is plotted with respect to a rescaled threshold, Πthr = αΠ ′j , where Π ′j
is j = h or j = l according to whether the statistics are compiled over the energetic
or quiescent periods, the percolation diagrams collapse well, even if Π ′h/Π

′
l = 1.7.

This strongly suggests that the physics of the structures differs little between the two
periods, and that most of the differences in their identification could be accounted
for by a temporally variable threshold. However, doing so would complicate the
comparison with the spatially intermittent channels, and we use a constant threshold
for all times.

Table 3 contains information about the coherent structures identified, after structures
with volume smaller than (5η)3 are discarded to avoid resolution issues. These small
fragments typically represent a third of the total number of structures, but they only
account for a negligible fraction of the total volume of the Qs, and for 1 %–2 % of
the total volume of the vortex clusters.

The Qs and vortex clusters account respectively for roughly 10 % and 3.5 % of the
volume of the computational box at the reference threshold. Although the number of
Qs is split roughly equally between the four quadrants at H = 1.75, their volume is
mainly contributed by the Q−s, distributed equally in Q2s and Q4s, as expected from
symmetry.

We mentioned in the introduction that structures in channels can be classified as
attached or detached according to whether their root reaches the neighbourhood of
the wall or not, and that most of the volume and the Reynolds stresses of Qs are
contained in the attached family (AJZM06; LFJ12). There are no walls in HST, but a
related classification can be established between large and small structures. We have
already seen that structures smaller than the Corrsin (1958) scale decouple from the
shear. For example, vorticity becomes more isotropic as it moves away from the wall
to scales smaller than Lc (Jiménez 2013b). A rough classification of the structures in
HST can thus be based on whether some characteristic size is larger or smaller than
Lc. Large and small structures can be expected a priori to be roughly equivalent to
the attached and detached ones in channels. Whether this is actually the case will be
examined below.

The probability density function (p.d.f.) of the volume of the Qs is roughly
proportional to V−5/3 at these Reynolds numbers. As a consequence, most Qs are
small, but most of their volume is contained in large structures. For example, Qs
with V > L3

c contribute roughly 20 % of the number of structures in L38, and an
almost negligible fraction in H32, but they account for 96.5 % and 87.6 % of the total
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FIGURE 3. (Colour online) (a,b) Instantaneous structures extracted from the HST case
M32 for (a) Q2 and (b) a vortex cluster, coloured by the vertical coordinate. (c,d) As in
(a,b) for attached structures in the channel C2000, coloured by the distance from the wall.
In all cases, structures are defined by the nominal threshold explained in the respective
papers.

volume respectively. In channels, approximately 70 % of the total Q volume is in tall
attached Qs at all Reynolds numbers (LFJ12).

The p.d.f. of the volume of the vortex clusters is steeper, V−4, so that small eddies
dominate both in number and in volume. Large (V > L3

c) vortex clusters account for
8.6 % of the total number of vortex clusters in L38, and for a negligible fraction in
the two higher-Reynolds-number cases. Their contribution to the total volume also
becomes less important as the Reynolds number increases (61.7 %, 3.0 % and 0.5 %
for the three HST cases). Attached vortex clusters only occupy 10 %–15 % of the total
cluster volume in channels, although their association with attached Q2s (AJZM06;
LFJ12) has made them the subject of intensive study as markers of the momentum
and energy cascades across different scales.

It will be found convenient in the rest to the paper to characterise the size of
eddies by the ‘box diagonal’, d, of a circumscribing parallelepiped aligned to the three
coordinate directions (see figure 3). The relation between d and the volume of the
structure will be discussed in § 4.3. It depends on the type of structure and weakly
on the Reynolds number, but V = L3

c corresponds to d/Lc ≈ 4 for Qs, and d/Lc ≈ 7
for vortex clusters in M32.

Examples of an instantaneous Q2 and of a vortex cluster from the HST case
M32 are shown in figure 3(a,b). They can be compared with the equivalent figures of
structures in channels in figure 3(c,d), as well as with AJZM06 and LFJ12, or with the
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larger online collection of channel structures in http://turbulent beautycontest.appspot.
com/. Although visual impressions should not substitute statistical analysis, the
comparison reinforces the idea that the structures in HST are very similar to those in
channels, especially to those detached from the wall.

4. Properties of the structures in HST and in channels
One of the motivations of this paper is to explore how coherent structures in HST

are related to those in channels. Both flows draw their energy from the mean shear,
but the channel is inhomogeneous in y and has walls, while HST is homogeneous and
has no walls. It is then reasonable to infer that properties shared by the structures
in both flows are primarily due to the local shear, while those that are different are
related either to inhomogeneity or to the presence of the wall. In this section, we study
the geometrical and flow properties of the structures defined above, and enquire about
their similarities and differences with the rest of the flow, and with the channel.

Before doing so, it is important to understand some differences between the
two flows, even when considering channels far from walls. The first one concerns
symmetry. If we denote a transformation by its effect on the flow variables, both
channels and HST are statistically symmetric with respect to reflections across vertical
(x, y) planes, written as

S1 : (x, y, z, u, v,w, ωx, ωy, ωz)→ (x, y,−z, u, v,−w,−ωx,−ωy, ωz). (4.1)

This symmetry was used in LFJ12 to simplify some statistics, and will be used here
for the same purpose. A symmetry of HST that is not shared by the channel is
reflection across horizontal (x, z) planes, which changes the sign of u and v,

S2 : (x, y, z, u, v,w, ωx, ωy, ωz)→ (−x,−y, z,−u,−v,w,−ωx,−ωy, ωz). (4.2)

The product of these two symmetries is an inversion with respect to the origin, also
exclusive to HST,

S3 : (x, y, z, u, v,w, ωx, ωy, ωz)→ (−x,−y,−z,−u,−v,−w, ωx, ωy, ωz). (4.3)

These symmetries can be used to constrain which relations among structures are
statistically possible. For example, it was found in AJZM06 and LFJ12 that vortex
clusters in channels tend to be associated with Q2s rather than with Q4s, but S3 leaves
invariant the definition of vortex clusters, and transforms Q2s into Q4s. This implies
that any preference of vortex clusters for Q2s or Q4s is statistically impossible in
HST, and has to be a consequence of the differential advection of vorticity towards
and away from the wall (Lozano-Durán & Jiménez 2014). It was also found in
LFJ12 that the volume occupied by Q2s in channels is larger than that of the Q4s,
especially for the largest structures, but the previous argument shows that the two
should be similar in HST (as well as those of Q1s and Q3s). This is confirmed by
the simulations, and statistics for HST will mostly be given in terms of Q+s and Q−s
from now on.

Another important difference between channels and our HST simulations is that the
largest scales in the latter are limited in the spanwise direction by the computational
box (SDJ16), while the flow in large channels is only constrained vertically by the
wall. The consequence is that only relatively small scales (empirically smaller than
d≈ Lz/2≈ 5Lc) should be expected to behave similarly in the two cases.
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Case Q Q+ Q− Q+C Q−C Clus.

L38 61.2 −5.8 67.1 −5.8 67.0 26.0
M32 57.7 −7.3 65.1 −7.1 64.8 27.2
H32 51.4 −7.6 59.0 −6.7 57.9 33.8
C950 63.7 −4.5 68.2 −4.8 58.1 16.8

TABLE 4. Fraction of the Reynolds stress and enstrophy contained in structures with the
nominal threshold. The column Q is the percentage of the total Reynolds stress in Qs. The
columns Q± refer to the stress in each Q class, while the subscript ‘C’ refers to Qs whose
box diagonal is d> Lc, where Lc is the Corrsin scale. The final column is the percentage
of total enstrophy within vortex clusters. Data for the channel C950 in the range y+> 100
and y/h< 0.4 are included for comparison (LFJ12). The ‘C’ subscript refers in this case
to attached Qs.

4.1. Reynolds stress
The fraction of the total Reynolds stress carried by Qs in HST is listed in the
first column of table 4. The next two columns give the distribution into Q classes,
which roughly agrees with Pumir (1996). At least within our range of Reynolds
numbers, there is a weak trend towards a smaller overall fraction of Reynolds stress
being carried by intense Qs as the Reynolds number increases, due both to stronger
counter-gradient Q+s and to weaker co-gradient Q−s. Since the fluctuation intensities
reflect the sum of Q+s and Q−s, while the Reynolds stress reflects their difference,
a consequence is that the correlation coefficient cuv = −〈uv〉/u′v′ between u and v

decreases from roughly 0.41 in L38 to 0.37 in H32. A similar trend of cuv is found
in wall-bounded flows as the Reynolds number increases. In that case, it is usually
attributed to the increased importance of the inactive motions due to the blocking
effect of the wall (Townsend 1961), but the present results suggest that there is at
least some contribution from an increased cancellation among stress-carrying eddies
of different kinds. Table 4 includes data from the ‘logarithmic’ range of wall distances
in channel C950. They are comparable to those in HST, including the amount of
momentum backscatter (Q+).

An important property of channels is that only large attached Q−s carry net
Reynolds stress, and that there are basically no large attached Q+s (LFJ12). For
smaller detached structures, the counter-gradient contribution of the Q+s cancels the
co-gradient contribution of the Q−s. The simplest interpretation is that a net Reynolds
stress can only be produced by eddies larger than the Corrsin (1958) scale, in which
statistical isotropy is broken by coupling with the shear, and that those eddies are
mostly co-gradient. Observations in channels cannot easily distinguish whether the
asymmetry between Q+ and Q− is due to the size of the eddies or to the presence
of the wall.

This is tested for HST in the right-hand part of table 4, which lists the fraction
of the total stress carried by ‘active’ QC with d > Lc. Comparing with the left-most
columns of the table, it is clear that large structures are also responsible for most
of the momentum transfer in the absence of walls. In fact, it can be shown that
there are very few Q+s larger than d ≈ 5Lc (see also figure 5b below). Although
not strictly equivalent, Pumir (1996) mentions that 60 %–70 % of the Reynolds stress
in a cubic HST box is carried by the first spanwise mode, whose wavelength is
approximately 10Lc.
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FIGURE 4. (Colour online) (a) Shifted Lumley invariants of the Reynolds-stress anisotropy
tensor: @, M32; E, H32; A, channel C2000 above the buffer layer, with the symbol
marking the lower limit, y+ = 100. Lines with closed symbols are unconditional
statistics. Those with open symbols are conditioned to Q−s. For the two HST cases, the
identification threshold increases in the direction of the arrow from H = 0.25 to 4. The
channel is only drawn for H= 1.75. The inset is a zoom of the region around the nominal
threshold H=1.75, marked by symbols. The thin dashed line at the top of the figure is the
realisability limit for the invariants. The thicker dashed line that follows the thresholded
HST cases is the result for a thresholded velocity field with joint-Gaussian statistics and a
correlation coefficient cuv =−0.4. (b) The thin solid elliptical contours are the joint p.d.f.,
pG(u/u′, v/v′), of two Gaussian variables with cuv =−0.4. They contain 10 %, 50 % and
90 % of the points. The thicker solid ones are −pGuv/u′v′, with contours [0.2, 0.5, 0.8] of
its maximum. The dashed ones are the same quantity for M32, and the chain-dotted ones
are for C2000 at roughly the same Reynolds number (y/h = 0.15). The two hyperbolas
are H =−1.75.

The last column of table 4 shows that the fraction of enstrophy carried by vortex
clusters increases slowly with the Reynolds number.

4.2. Flow anisotropy
Another question is whether the flow within Qs is different from the flow as a
whole. Figure 4(a) displays the Lumley invariants, which are defined from the
anisotropy tensor of the Reynolds stresses, bij = 〈uiuj〉/〈uiui〉 − δij/3, as ζ 2 = bijbji/6
and ξ 3 = bijbjkbki/6 (Pope 2000). The dashed curve at the top of the figure is the
two-component realisability limit, and the right-hand vertical axis is the axisymmetric
one. The point where the two lines meet in the upper-right part of the plot corresponds
to one-component flows. Isotropic flow is at ξ = ζ = 0, below the lower-right corner
of the plot. The two solid symbols in the lower part of the plot correspond to
unconditioned statistics of the HST cases M32 and H32, with the Reynolds number
increasing towards the right. The line marked with the solid triangle is C2000 for
y+ > 100, moving towards isotropy as y increases towards the right. The kink in the
line is y/h ≈ 0.2, and the two points for HST are near the top of the logarithmic
layer of the channel, y/h≈ 0.3–0.4.

The shorter lines in the upper-right part of the plot are conditioned to points within
Q−s. The two roughly diagonal solid curves are the HST cases, with thresholds that
increase from H= 0.25 to H= 4 in the direction of the arrow. The kinked line marked
with a triangle is the channel (H= 1.75), with the kink at y/h≈ 0.2 and y increasing
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FIGURE 5. (Colour online) (a) Anisotropy of the Reynolds-stress tensor within Qs, as a
function of their box diagonal:6, L38;@, M32;E, H32; H= 1.75. Open symbols are for
Quv and closed ones are for Quw. (b) Probability density function of the box diagonal of
Qs defined from different variable pairs. Case M32 and H= 1.75: ——, Quv; – – –, Quw ;
– · – · –, Qvw; –A–, Quv of C2000 centred at y/h∈ (0.1, 0.2), where Reλ≈ 100. In the case
of Quv , open symbols are Q+ and closed ones are Q−.

away from the triangle (y+ = 100). The inset is an enlargement of this part of the
plot. The symbols of the HST cases in the inset are for the nominal threshold H =
1.75, and show that the conditional statistics in HST also approximate those in the
logarithmic layer of channels. It is clear from the figure that Q−s are more dominated
by a single velocity component than the flow in general, and that this dominance is
higher for the stronger events. Both within and outside the structures, the dominant
velocity component is u. A similar figure can be drawn for C950.

However, we should be careful to distinguish between actual properties of the flow
and artefacts created by the definition of the Qs. It was shown by Antonia & Atkinson
(1973) and Lu & Willmarth (1973) that the joint p.d.f. of u and v in a boundary
layer is essentially that of two Gaussian variables with the correct cross-correlation
coefficient, cuv ≈ −0.4. The thick dashed line in figure 4(a), largely hidden by the
thresholded results, is the locus of the two Lumley invariants of such a joint-Gaussian
distribution, thresholded in the same way as the Q−s. It agrees very well with the
simulation results.

Figure 4(b) plots the joint p.d.f., p(u, v), of two Gaussian variables, together with
the H = −1.75 threshold for Q−s. It also includes the product p(u, v)uv, whose
integral is the Reynolds stress, plotted both for the joint-Gaussian distribution and for
M32. They agree very well, suggesting that most statistical moments computed for
these two velocity components using a joint-Gaussian distribution should agree well
with the simulation results. The chain-dotted lines in the figure are for C2000. They
also agree reasonably well with the HST and with the Gaussian model, although the
asymmetry between Q2s and Q4s suggests that the latter are weaker because they
come from the outer part of the channel, where the shear and the velocity fluctuations
are weaker.

Large and small structures are different from the point of view of the flow
anisotropy. The open symbols in figure 5(a) show the mean second Lumley invariant
of the flow within Qs, as a function of their size. This quantity is proportional to
the Euclidean norm of bij and is a measure of the anisotropy of the Reynolds-stress
tensor. It ranges from ζ = 0 for full isotropy to ζ = 1/3 for one-component flows.
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It is clear that the flow is roughly isotropic within structures with d . Lc, which are
decoupled from the shear, and only becomes anisotropic within large Qs.

At this point, it may be useful to reflect on the meaning of defining Qs that are
much smaller than Lc. There is no problem in understanding small vortices, because
enstrophy is a scalar quantity, independent of the orientation of the frame of reference.
However, Qs are defined in terms of the product of two velocity components, u and
v, which can only be defined with reference to a given frame orientation. In a shear
flow, the frame of reference is linked to the shear: the streamwise velocity u is the
component along the direction of the mean flow, and v is the component in the
direction of the shear. Small structures that do not couple with the shear cannot
have any statistically preferred direction, and there is no reason for either u or v
to be especial. From the point of view of these structures, the mean flow appears
as isotropic, and all of the velocity components are equivalent. It was indeed found
in LFJ12 that the statistics of small Qs are indistinguishable among many different
turbulent flows, including some without local shear, implying that many apparently
meaningful statistics of small Qs are artefacts of their definition, and cannot be
specific to a particular kind of eddy. For example, the closed symbols in figure 5(a)
correspond to Quw structures, which are defined from points in the flow for which
|uw| > Hu′v′ (note that the threshold has been kept as in Quv, for consistency). For
small sizes, the anisotropy within these new structures is essentially the same as
within the Quv. The two types of Qs only differ when they are large, in which case
the Quv couple with the shear, but the Quw (or Qvw, not shown) do not. It should
be noted that the thresholding operation induces some anisotropy even on perfectly
isotropic Reynolds-stress tensors, because it tends to select velocity pairs along the
diagonal of the quadrant plot (see figure 4b). It can be shown by direct calculation
that a threshold H = 1.75 results in ζ ≈ 0.1 for an isotropic joint-Gaussian velocity
distribution with cuv= 0, and in ζ ≈ 0.25 for one with cuv= 0.4. This is approximately
the range of ζ in figure 5(a). Figures 4(a) and 5(a) are consistent with a model of
the flow with joint-Gaussian velocity components, in which most of the velocity
cross-correlation is contained in large Q−s.

Figure 5(b) further supports the distinction between small and large Qs. It shows
the probability distribution of the size of the Qs defined for the three possible
combinations of velocity components. They agree almost exactly below d≈ 5Lc, and
only diverge for structures above that limit. The figure also plots the size distribution
for detached Qs in C2000 centred on the band of wall distances that matches the
Reynolds number of M32, with similar results. The p.d.f.s of Quv in HST and
channels have been separated into Q+ and Q−. Only the latter reach large sizes,
presumably because they can grow by drawing energy from the shear. We have
already mentioned that there are essentially no large Q+s.

The conclusion from these observations is that Qs much smaller than Lc may
perhaps be useful for the study of the ‘universal’ inertial range, but they should
probably be defined in terms of rotationally invariant properties of the Reynolds-stress
tensor. It makes little sense to classify them into quadrants.

Vortex clusters are almost isotropic in terms of the vorticity anisotropy tensor, and
essentially identical in this respect to the flow in general. As in channels, vortex
clusters in HST tend to be associated with Q−s. In contrast to channels, they are
equally distributed between Q2s and Q4s in HST, as required by symmetry. The
number fraction of co-gradient vortex clusters, (uv)m < 0, is approximately 60 %,
almost independent of the Reynolds number and the threshold. However, the fraction
of the total cluster volume contained in co-gradient vortex clusters decreases with
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FIGURE 6. (Colour online) Average aspect ratios of the circumscribing boxes for (a)
Q− and (b) vortex clusters, as functions of the box diagonal of the structure, scaled with
the Corrsin length, for HST and channel C2000, with symbols as in table 1. The channel
only includes structures whose minimum distance from the wall is y+ > 100, and their
diagonal is scaled with Lc at the centre of gravity of the structures; ——, axy; – – –, azy.
(c,d) Average inner and outer dimensions of the structures, as functions of their volume,
for HST with symbols as in table 1. Kolmogorov scaling; ——, r3; – – –, r1. (c) Q−. The
two dashed straight lines have slope 1.15 and 0.57 respectively. (d) Vortex clusters. The
dashed straight line has slope 1.35.

increasing threshold, from nearly 100 % for α ≈ 0.1 to approximately 70 % at the
nominal α = 1.5. The fastest decay occurs around the percolation crisis, and is more
marked for the higher Reynolds numbers.

4.3. Geometry
The shape and orientation of the structures can be characterised by the aspect
ratios aij = ∆i/∆j, where the three ∆i are the dimensions of the circumscribing
parallelepiped. It was found in LFJ12 that the aspect ratios of large wall-attached
Q−s are axy ≈ 3 and azy ≈ 1, while the smaller detached Qs are roughly isotropic.
Figure 6(a) shows the aspect ratios of the Q−s in HST as a function of their box
diagonal, scaled with the Corrsin (1958) length. The longitudinal aspect ratio axy

increases weakly up to d ≈ 10Lc ≈ Lz, which is the scale at which structures begin
to feel the effect of the computational box. The spanwise aspect ratio azy decreases
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slowly with the size of the structures. The figure also includes data for detached
structures in the channel C2000, scaled in the same way. They agree well with
HST. In both cases, small structures are roughly isotropic while larger ones tend to
become longer (increasing axy) and narrower (decreasing azy), but there is a range
of dimensions of approximately an order of magnitude, 1 . d/Lc . 10, in which
the aspect ratios remain approximately constant and the Qs can be considered to be
geometrically self-similar.

Figure 6(b) shows the same data for vortex clusters. They behave similarly. The
vortex clusters in channels tend to be slightly more elongated than the Qs, but it
should be remembered that the quantities used to define vortex clusters in HST and
channels are not the same.

A more intrinsic indicator of the shape of the structures is provided by the inner
and outer dimensions, r1 and r3, which are respectively the diameter of their largest
inscribed and their smallest circumscribed sphere (here implemented as grid-aligned
cubes). Roughly speaking, r3 is the diameter of the structure, which typically coincides
in our case with ∆x, and r1 is the thickness of the constituent substructures. These
dimensions were used by Catrakis & Dimotakis (1996), Moisy & Jiménez (2004) and
LFJ12 to characterise structures in various turbulent flows. A third dimension can be
defined from the volume of the structure as r2 = V/r1r3, and can be used to classify
simple shapes (Moisy & Jiménez 2004), but its meaning in very irregular shapes is
unclear. The two intrinsic dimensions of Q−s and vortex clusters in HST are given
in figure 6(c,d) as functions of the structure volume. They follow fairly good power
laws, especially for the higher Reynolds numbers. It should be noted that r3 ∼ Vγ /3

can be rewritten as V ∼ r3/γ
3 , which can be interpreted as a statistical estimate, Df =

3/γ , of the fractal dimension of the set of structures within a given family (LFJ12).
Figures 6(c) and 6(d) imply Df = 2.6 for Q− and Df = 2.2 for vortex clusters. These
are slightly higher than the estimates in LFJ12 for channels (2.3 and 2.0 respectively),
but the difference is consistent with the fairly broad distributions that are obtained
when estimating the fractal dimensions of individual structures by various methods.

A consequence of figure 6(c,d) is that the bounding box of all of the structures
is fairly empty, and becomes emptier for the larger volumes. Thus, if we define a
‘fill fraction’ as V/r3

3, it varies from approximately 0.1 for the smallest Qs and vortex
clusters to 3× 10−3 and 3× 10−4 respectively for the largest ones.

The inner dimension of vortex clusters in figure 6(d) is r1 ≈ 6η, independently
of the cluster volume, which approximately agrees with the diameter of individual
filamentary vortices in turbulence (Jiménez & Wray 1998; Tanahashi, Iwase &
Miyauchi 2001; del Álamo et al. 2006; Pirozzoli, Bernardini & Grasso 2008; Stanislas,
Perret & Foucaut 2008). It is also consistent with the description of vortex clusters
as ‘sponges of strings’ (LFJ12).

The inner dimension of the Qs in figure 6(c), r1 ∼ (ηr3)
1/2, is more interesting

because it depends on the volume, and is therefore a property of the structures rather
than of the flow. These structures are described in LFJ12 as ‘sponges of flakes’,
mainly from visual observation and from their relatively high fractal dimension.
It follows from the definition of r2 and from the power laws in figure 6(c) that
r2∼ r3 in Qs, which also suggests flakes (see figure 3a). A rough model that at least
reproduces the functional dependence of r1 can be constructed if we interpret these
flakes as viscosity-dominated layers of thickness r1. We know from the definition
of Qs that the velocity difference across them is of the order of u′, so that we
can approximate the resulting structure-dependent mean strain as s ≈ u′/r3 in a
coarse-grained sense. Some algebra shows that the corresponding viscous equilibrium
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thickness is r1 = (ν/s)1/2 ≈ (ν/u′η)1/2(ηr3)
1/2. The prefactor in this estimate is

proportional to Re−1/4
λ , and varies between 0.28 and 0.4 in our DNS. The lower

dashed line in figure 6(c) is drawn with a prefactor 0.35 and, given the qualitative
nature of the above argument, agrees reasonably well with the measured r1.

It is clear that this argument can only be approximate, particularly regarding the
estimation of the driving strain. It follows from well-known integral constraints
that the predominant strain in turbulence is of the order of ω′ ∼ u′/λ, and that the
associated viscous length is the Kolmogorov scale η (Pope 2000). However, Hunt,
Eames & Westerweel (2006) argued that strong shear layers exclude the small-scale
strain, leaving only the strain associated with the depth of the layer. In our case, the
thresholding operation used to define the structures guarantees that they represent
relatively strong velocity gradients, but we will see in § 5 that Qs only have velocity
differences of order u′ across their largest dimension, if at all, justifying our strain
estimate in the previous paragraph. Smaller corrugations, such as those of size O(r1),
correspond to weaker local velocity fluctuations that happen to cross the sharp
threshold used in the identification. In the limit of very large structures, with r3∼ Lε,
the previous estimate becomes r1 ∼ λ, and the argument reduces to the one in Hunt
et al. (2006), but the present results require extension of the analysis to the full range
of scales.

4.4. Attached versus detached eddies in channels
Up to now, we have compared the structures in HST with the detached eddies in
channels. Most large eddies in channels are attached, because the wall limits how
high they can grow but not their wall-parallel dimensions (Townsend 1961). Attached
and detached eddies behave differently, particularly in their geometry. It was shown
in LFJ12 that attached Q−s in channels have axy ≈ 3, while we have seen that those
in HST have axy ≈ 1.2. The higher elongations of the largest channel eddies in
figures 6(a) and 6(b) correspond to attached structures.

The origin of this higher elongation is explored in figure 7(a), which contains the
p.d.f. of axy in C2000 as a function of the minimum distance of the structures from the
wall. This is the distance originally used in AJZM06 to differentiate between attached
and detached objects. The figure shows that only strictly attached structures (y+min .
20) are elongated. Those farther from the wall have elongations very similar to those
in HST. Interestingly, figure 7(b) shows that azy is similar for attached and detached
Qs, in agreement with the observation by Lozano-Durán & Jiménez (2014) that large
attached Qs grow predominantly by merging with other eddies in front and behind,
but not sideways.

The relatively good scaling of figures 6(a) and 6(b) with Lc suggests that the
elongation of the structures is a consequence of their interaction with the mean
shear. It was shown by Corrsin (1958) that the relevant parameter is S∗ = Sq2/ε,
which measures the ratio between the eddy turnover and the shear deformation time.
When S∗� 1, the structures are controlled by the shear, but for lower S∗, nonlinear
effects isotropise them. Jiménez (2013b) showed that S∗ is everywhere moderate in
channels except for y+ . 25, where it grows to S∗ ≈ 40. The origin of the large
elongation of attached Qs in channels could thus be the high S∗ in the viscous layer.
In fact, it was shown by Lozano-Durán & Jiménez (2014) that large attached Qs
have two components with different properties: a coherent one above y+≈ 100 which
approximately advects with the local mean velocity and a more elongated ‘root’ near
the wall whose small-scale features move at a different velocity from the structure
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FIGURE 7. (Colour online) (a) Probability density function of the aspect ratio axy of Q−s
in C2000 as a function of their minimum distance from the wall. Each vertical section
is the individual p.d.f. at one wall distance. Contours contain 50 % and 95 % of the data;
–A–, Average aspect ratio. The vertical dashed line is y+min= 20. Symbols are the mean and
standard deviation of axy in HST, as in table 1. They are plotted at arbitrary y locations.
(b) As in (a), for azy. (c) Sketch of the root and body of a large attached Q2. Flow is
from left to right, and the Q2 is qualitatively coloured with the distance from the wall. (d)
Average axz of Q−s with y+min<100 in C2000, as a function of their vertical dimension. See
the sketch in (c) for definitions; ——, ∆x/∆z; – – –, ∆x,100/∆z; - - - -, (∆x−∆x,100)

+= 100;
– · – · –, ∆x,100/∆z for Q−s constructed from points above y+ = 100. The short horizontal
dashed line is axz = 1.27, as in the detached and HST structures.

itself, and which is constantly being shredded by the shear and recreated by viscosity
(see the sketch in figure 7c). However, it is difficult to distinguish between the
averaged properties of the flow within attached and detached eddies, both of which
can be described by the joint-Gaussian model discussed in figure 4. Even if the buffer
layer behaves differently from the rest of the flow, it constitutes too small a part of
the large attached eddies to influence their statistics.

Whether the near-wall region, as opposed to the viscous sublayer, is responsible for
the higher elongation of the attached Q−s is tested in figure 7(d), which compares
axz for the attached eddies as functions of the overall eddy height, computed in three
different ways. The solid line represents all of the large attached Q−s, defined for this
particular figure as those with y+min < 100. The triangles are the dimensions of the part
of those same attached eddies that extends above y+ = 100. They therefore subtract
the effect of the near-wall region (figure 7c), and show that relatively small attached
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eddies owe the higher elongation to the root. Their upper coherent component has an
aspect ratio similar to those of detached eddies, but this effect decreases for larger
structures and is negligible for the largest ones. The dashed line in figure 7(d) is a
model in which the extra elongation is approximated by a fixed extra length ∆+x =100,
and fits the data reasonably well. This is the order of magnitude of the size of the
minimal buffer-layer flow unit (Jiménez & Moin 1991), suggesting that the near-wall
root is formed by multiple such units underneath the coherent outer component, some
of which accidentally stick in front of or behind it. Visual inspection of individual
structures confirms that this is a reasonable description (see, for example, figures 8 and
12 in LFJ12). Since these minimal structures have a fixed size in viscous units, their
effect on the large eddies that reach into the logarithmic and outer layers is negligible.

Because of the way in which attached Qs have been defined in the previous
paragraph, the points forming the truncated and attached Qs above y+ = 100 are
the same, although clustered in different ways. The chain-dotted line in figure 7(d)
also refers to the dimensions of eddies measured above y+ = 100, but for Qs that
have been computed using only points above that level. There is no way to know
whether some of these truncated Qs are connected below y+= 100, and the difference
between the chain-dotted line and the triangles measures the importance of those
‘hidden’ near-wall connections. It is clear that the truncated Qs cannot be longer than
the full ones, but it is interesting that the shortening increases with the size of the
eddy. While the difference in length is ∆+x ≈ 0 for the smallest eddies, it grows to
∆+x ≈ 1500 for the tallest ones at the right end of the figure, which is approximately
20 % of their total length.

The implied model is that large Qs in the channel grow until they hit the wall. Once
they do, the outer part of the eddy keeps growing in length and width but not in
height, as its bottom is continually truncated by the high shear at the wall and by
viscosity. At the same time, the elongation of the attached eddies increases because
they tend to get ‘spuriously’ connected near the wall. That the largest attached eddies
owe part of their size to spurious connections near the wall was already noted by
LFJ12.

In the rest of the paper, we will mostly restrict ourselves to comparisons of HST
with detached eddies in channels, particularly with those with y+min > 100.

5. Spatial organisation
The relative position of tall attached structures was studied for channels by LFJ12,

who concluded that they group into spanwise pairs of a Q2 and a Q4, and that
the pairs are arranged in streamwise trains, roughly associated with the large-scale
streamwise-velocity streaks. Vortex clusters tend to be located in the gap between the
two components of the pair, predominately associated with the Q2. In the following,
we repeat their analysis for HST, in part to compare the two flows, but also because
HST allows us to extend the study to the third dimension without interference
from the wall. In particular, we have seen that the symmetry of HST precludes the
preferential association of the vortex clusters with only one flavour of Q−, and we
expect to find more symmetric composite structures in HST than in channels. We
define three-dimensional joint p.d.f.s, pij(δx, δy, δz), of the relative distances between
structures of type j with respect to i, where i= 2 refers to Q2s, i= 4 refers to Q4s
and i=C to vortex clusters. The vector of relative distances is defined as

δ(ij) = 2
r(ij)

d( j) + d(i)
= 2

x( j)
c − x(i)c

d( j) + d(i)
, (5.1)
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where x(i)c and d(i) are respectively the centre of gravity and the diagonal length of
the circumscribing box. We only consider two structures as related if their sizes are
similar enough to satisfy

1/2 6 d( j)/d(i) 6 2. (5.2)

In channels, LFJ12 use a condition on the height of the centre of gravity of attached
structures instead of (5.2), and only study relative positions in the (x, z) plane. It
can be shown that their criterion implies |δy|. 0.2. We have recomputed their results
using (5.2) and three-dimensional positions, but, for the sake of comparison and to
improve statistics, all of the two-dimensional sections of our three-dimensional p.d.f.s
are presented averaged over slabs of thickness δ = ±0.2 normal to the plane of the
plot.

For the purpose of this section, we disregard structures that are ‘infinite’ in the
sense that their size in any direction equals that of the simulation box, because
their centre of gravity is not well defined. They are much more common in HST
simulations than in channels because of the minimal simulation box. For the same
reason, the distance between structures is limited to [−Lx/2 : Lx/2] × [−Ly/2 :
Ly/2] × [−Lz/2 : Lz/2], which is implemented by copying, translating and shifting
structures whenever they cross the boundaries of the fundamental simulation box. To
test the soundness of this procedure, we repeated the analysis of case L38, whose
vertical dimension is not minimal, considering only structures with yc ∈ [Ly/3 : 2Ly/3]
relative to those with yc ∈ [0 : Ly], without using the shifted periodicity in y. The
results did not change.

Finally, to simplify the presentation, we will not generally use case L38 from now
on. We have seen on several occasions that its Reynolds number is comparable to the
buffer layer in channels, rather than to the logarithmic or outer layers, complicating
comparisons between the two flows. However, to confirm that its differences from the
other HST cases are a Reynolds number effect, rather than due to its different vertical
aspect ratio, most of the analysis was repeated for some simulations not otherwise
used in this paper. Two low-Reynolds-number cases (Reλ = 50) in flatter boxes, L32
(Ayz = 2) and L34 (Ayz = 4), behaved as L38. A higher-Reynolds-number case in a
taller box (Ayz = 4, Reλ = 100) behaved as M32 or H32.

5.1. Relative positions of structures of the same kind

Figure 8(a) displays the mean value of the absolute distance, r(ii) = |r(ii)| (no
summation), from a Q to its closest Q of the same kind, as a function of the
box diagonal of the reference structure. Below d≈ 50η, the mean distance is constant,
r(44) ≈ 50η, which is roughly the wavelength of the maximum of the dissipation
spectrum in most turbulent flows (Jiménez 2013b). This is also the size of the
structures in the dissipative end of the turbulence spectrum that were shown by
Yoshida, Yamaguchi & Kaneda (2005) to be enslaved to the larger inertial ones. They
are essentially Kolmogorov viscous eddies, and the figure shows that they are densely
packed on average, separated by other eddies of similar size. Above d ≈ 50η, the
distance to the closest comparable structure is r(44)≈d up to the largest available scale,
d ≈ Lε. These are the self-similar inertial eddies, and they are also densely packed.
It follows from their definition that the velocity fluctuations in Qs are O(u′) with
respect to the mean, but the velocity difference between neighbouring structures need
not be of the same order. The close packing of Qs of the same kind suggests that
they are pieces of larger structures. The Reynolds stress of the composite structure is
O(u′2), as required by the identification procedure, but the isosurface bounding it can
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FIGURE 8. (Colour online) (a) Average distance between closest pairs of Qs of the same
kind, r(44), defined as in (5.1), as a function of the diagonal size of the reference structure.
The dashed line is r(44)≈ d. (b,c) Three-dimensional p.d.f. of the relative distance between
eddies of the same kind in M32 with d < 4Lc. (b) Streamwise (δz = 0) cross-section of
the p.d.f., p44(δx, δy), integrated over δ=±0.2 normal to the plane of the plot. (c) Three-
dimensional p44, as in (b). The black arrow at the centre of the box is the nominal velocity
for a Q4. Those at the two maxima of the p.d.f. are also Q4s, and reinforce the central
one, suggesting a mechanism by which the p.d.f. is concentrated at those locations. (d)
The p.d.f. p11(δx, δy) for d< 4Lc. The contours and isosurfaces in (b–d) contain the highest
15 % of the data. In all cases, open symbols are for Quv:@, M32;E, H32;A, Qs in C2000
with y+min > 100. The closed squares are Quw in M32, in which case the vertical axis is δz.
(e) Mean streamwise velocity {u}, conditioned to the presence of a pair of neighbouring
Q4s in the coordinates (5.3). Case M32. The coloured background is {u}+ ∈ (0, 1.5), from
light to dark. The white contours are 0.8 the maximum of the p.d.f. of the position of
the points in the two members of the pair.
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become broken into smaller pieces when the Reynolds stress fluctuates slightly above
or below the chosen threshold.

Figure 8(b) displays two-dimensional p.d.f.s of the relative position of neighbouring
‘small’ Q4s (d < 4Lc). In channels, attached Qs are arranged streamwise in the
(x, z) plane (LFJ12). This is still true in HST, but, in addition, the p.d.f. is inclined
downwards in the streamwise direction. It should be noted that the p.d.f.s included for
detached Qs in the channel agree well with HST, and are also inclined downwards.
Because of the symmetry of HST, the same inclination is found for Q2s in HST.
The downward tilt of the Q2s is slightly less marked in the channels (not shown);
apparently, even these relatively small detached Qs are influenced by the wall or by
the inhomogeneity of the mean shear. Also not shown is the p.d.f. of the relative
position of neighbouring large Q4s (d > 4Lc). It is still true that these eddies are
aligned streamwise, but the downwards inclination is less marked than for the small
structures, presumably reflecting the anisotropy of the large-scale velocities. As
we saw in the discussion of figures 4(a) and 5(a), u is the predominant velocity
component, and the flow anisotropy is mainly associated with the largest structures.

A three-dimensional view of p44(δ) is shown in figure 8(c), and confirms that the
p.d.f. is concentrated at two diagonal locations in front of and behind the reference Q4.
It is tempting to associate its downwards tilt with a systematic vertical meandering of
the streaks, but the explanation is probably simpler. We have seen that small eddies
are basically decoupled from the shear and the mean velocity. However, Q4s are
defined by u> 0 and v < 0, so that the flow velocity within them is tilted downwards,
and we have seen in figure 8(a) that their separation suggests that they are pieces
of larger structures whose connectivity is broken by weaker velocity fluctuations.
It is then natural to expect from continuity that the closest Q of the same kind is
located in the direction of the predominant velocity fluctuations which, in the case
of Q4s, is the downwards diagonal. This is sketched by the nominal velocity arrows
in figure 8(c), and confirmed by figure 8(d), which contains the relative position of
Q1s. They are predominantly arranged along the upwards diagonal, corresponding
to the mean velocity in a Q1. This is even more clearly shown by the lines with
closed squares in figure 8(b,d), which correspond to small Quw eddies in M32. Their
separations agree well with those of the Quv, and their positions are aligned along
their corresponding diagonals, although in the (x, z) plane, rather than in (x, y).

The interpretation that neighbouring Qs of the same kind are fragments of larger
structures is confirmed by the conditional velocity field in figure 8(e), which shows
the streamwise velocity conditioned to the presence of a pair of Q4s, in terms of the
similarity coordinate,

δ = (x− xcog)/d12, (5.3)

where xcog is the position of the common centre of gravity of the Qs involved in the
pair and d12 = (d1 + d2)/2 is the mean of their diagonals dj. The two neighbours are
seen to be enclosed within the same velocity structure.

5.2. Relative positions of structures of different kind
Figure 9(a) displays the mean distance between Qs of different kind (from a reference
Q2 to its closest Q4). It contains the same viscous range as in the previous case,
d . 50η, but the distance between these Kolmogorov structures scales with the Taylor
microscale r(24)≈ 3λ. In addition, the inertial range is not self-similar any more, with
r(24) ∼ d(0.5–0.7). Both issues are presumably related and, although they might admit
dynamical explanations such as those given in § 4.3 for the intrinsic dimensions of
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FIGURE 9. (Colour online) Relative position of the closest Q4 to a given Q2: @, M32;
E, H32; A, C2000 with y+min > 100. The solid squares are Quw in M32. (a) Average
closest distance 〈r(24)〉, as a function of the diagonal of the reference Q2. The dashed
line has slope 2/3. (b) Probability density function of r(24) for different size bands
centred at d(2)/η = 50, 100, 200, 400, with the wider tails corresponding to the smaller
structures. Case M32. Each p.d.f. is normalised with its mean value. The dashed line is
the nearest-neighbour distribution for a Poisson point set in three-dimensional space. (c)
Probability of ‘isolated’ Q2s, defined as those with no neighbour closer than r(24) = 2d(2),
as a function of the diagonal of the reference Q2. (d) Anisotropy of the position of the
closest Q4 with respect to a given Q2, as a function of d(2).

the Qs, the reason is again probably simpler and geometrical. It follows from the
distribution of the volume of the Qs given in § 3, p(V) ∼ V−5/3, that the probability
distribution of d ∼ V1/3 is p(d) = p(V) ( dV/ dd) ∼ d−β , with β = 3. In practice,
the exponent ranges from β = 2.8 for L38 to β = 3.3 for H32 and β = 4 for
C2000. When looking for nearest neighbours satisfying condition (5.2), the number
of available candidates per unit volume is then proportional to

n∼
∫ 2d

d/2
κ−β dκ ∼ d1−β, (5.4)

where d without a sub- or super-index should be understood as applying to the
reference structure in a pair. Because of the restriction (5.2), such d is also
proportional to the average diameter of the two structures being considered.
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Assuming a statistically uniform spatial distribution of the candidate structures,
the average distance from a randomly chosen point to the closest structure is
〈r(ij)〉 ∼ n−1/3 ∼ d(β−1)/3. The dashed line in figure 9(a) is drawn with slope
2/3 (β = 3). It represents the data well, although the slope increase from M32
to C2000 (corresponding to an increase in β) is clear. In particular, it should be
noted that β = 4 results in 〈r〉 ∼ d, which agrees with the steeper slope of C2000 in
figure 9(a), and with the results in LFJ12. This dependence also explains the scaling
of the minimum distance with λ. Invoking the independence of the large scales of
turbulence with respect to the Reynolds number, which requires that structures with
d = O(Lc) should be separated by distances r = O(Lc), the previous relation should
be written as

〈r(ij)〉 ∼ L(4−β)/3c d(β−1)/3. (5.5)

Substituting d ∼ O(η) in this equation, we obtain r ∼ O(λ)Re(3−β)/2λ , which is very
close to λ when β ≈ 3.

The rest of figure 9 tests this model. Figure 9(b) displays the p.d.f.s of the distance
among Q4s and Q2s for different bands of sizes of the reference structure in the
‘inertial’ range, 50η < d(2) < 4Lc, each of them normalised by their mean separation.
They are compared with the distribution of closest distances for a Poisson point set in
which the average number of points within a sphere of radius r is N(r)= (r/R)3. This
distribution can be computed as the derivative with respect to r of the probability of
finding no points closer than r (Feller 1971),

pnn(r)= ( dN/ dr) exp(−N)= 3r2/R3 exp(−r3/R3). (5.6)

The parameter R is related both to the average point density per unit volume,
n = 3/4πR3, and to the average distance to the nearest neighbour, 〈r〉 ≈ 0.89R. The
different p.d.f.s agree reasonably well among themselves and with the Poisson model.

It was found by LFJ12 that tall attached Q2s in channels tend to be associated
with similar Q4s within a distance of O(d), and that such pairs behave like coherent
flow units that organise the flow between the pair into a quasi-streamwise ‘roller’.
Structures that are much farther apart should be considered as isolated, and are
unlikely to influence each other. A consequence of the two previous figures is that
the average separation between small Qs of different kind tends to be much larger
than their size, so that most of them cannot be considered to form part of a pair.
Figure 9(c) shows the probability that a Q2 is isolated in the sense that its closest Q4
is at r(24)>αdd(2), with αd = 2. It shows that Qs smaller than d/λ≈ 5 are most likely
isolated, but that larger ones are not. The same holds for detached Qs in channels.
Several scalings of d were tested for figure 9(c), and the one with λ works best for
this particular choice of αd. This is not very surprising, because we have seen that
the smallest distance between different kinds of Qs is also O(λ), but it is inconsistent
with (5.5), which implies that r ∼ d when r ∼ Lc. Changing the multiple αd used to
define isolated structures moves the curves in figure 9(c) to the right or left, and also
changes their scaling slightly. The choice above, αd = 2, was selected for consistency
with the scaling in figure 9(d), which is independent of αd, but we will see later that
αd = 1 leads to sharper conditional flow fields for pairs of structures.

In fact, most of the rest of this section could be written substituting λ1/3 for L1/3
c

in (5.5). The available range of Reynolds numbers is not sufficient to distinguish the
Re1/3
λ factor between the two scalings, which only changes by 1.3 among the cases

in figure 9. It can be shown that the r ∼ d2/3 law ceases to hold for d(2) & 5Lc,
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above which limit the mean distance is r/Lc = 5–10 for all Reynolds numbers. This
limit corresponds to 10λ in M32 and 20λ in H32, which are not far from where the
structures become paired in figure 9(c). In fact, it can be argued that only H32 has
a convincing 2/3 range in figure 9(a). From now on, in the absence of data over a
wider range of Reynolds number, we plot each figure in the scaling that works best
for it, without paying too much attention to mutual consistency.

Finally, figure 9(d) tests the preferential orientation of the location of Q4s with
respect to the reference Q2. The Poisson model suggests that mutually isolated
structures should be isotropically distributed with respect to each other, while
only those that form pairs would be organised in particular ways (LFJ12). A
position-anisotropy tensor can be defined as ρij = 〈rirj〉/〈rkrk〉 − δij/3, where r is
the relative position vector between two structures. The anisotropy of the relative
positions can be measured by the second invariant ζ 2

rr = ρijρji/6 of ρij, defined in the
same way as the Lumley invariant of the Reynolds-stress tensor. Although ζrr is only
an incomplete measure of isotropy, figure 9(d) shows that small Qs are essentially
isotropically distributed with respect to each other, as required by the Poisson model,
but that the isotropy breaks down for sizes of the same order as those at which
the structures begin to pair. The behaviour of channels is different in this respect,
presumably because of the interference from the wall, and the preferential orientation
begins for much smaller eddies that do not necessarily form pairs.

It should be noted that these arguments do not apply to Qs of the same kind,
where we have seen that neighbouring structures may be separated by relatively weak
fluctuations that happen to cross the detection threshold. Candidate neighbours cannot
then be assumed to be uniformly distributed. On the contrary, Qs of different kind are
necessarily separated by velocity differences O(u′), and, if we restrict the magnitude of
the velocity gradients to their average value, O(ω′), such velocity jumps are unlikely
to occur across distances much smaller than λ∼ u′/ω′.

Figure 10 displays sections of the three-dimensional p.d.f.s of the relative positions
of Q4s with respect to a Q2. As in figure 8, statistics can only be compiled by scaling
distances properly and, following (5.5), the similarity scaling (5.1) is substituted by

µ(ij) = x( j) − x(i)

d(i)2/3L1/3
c
. (5.7)

It should be noted that the same scale is used for all of the flows, even if figure 9(a)
shows that their actual average distance is not exactly the same, especially for the
channel. Figure 10(a), which displays the section of the p.d.f.s in the (z, x) plane,
shows that the three flows collapse well. The result is similar to that found by LFJ12
for attached Qs in channels. There is essentially no probability of finding a Q4 in front
of or behind the Q2, and the closest Q4s are found in the spanwise direction. The
symmetry of this p.d.f. is statistical. It was shown in LFJ12 that, when the direction
of the closest partner is defined as positive, the groups are found to be pairs, not
trios; i.e. the second-closest partner is either much farther away, missing or in the
same direction as the closest one. The same was found to be true here.

However, the Qs in figure 10(a) are relatively small (d<2Lc), and arguments similar
to the ones used in the previous section for r(44) suggest that some of the properties
of the p.d.f. might be kinematic. Since the perturbation velocity in a Q2 is directed
along the downwards streamwise diagonal, u∼[−1,1,0], it tends to exclude from that
direction structures with an opposing velocity (u∼ [1,−1, 0] for a Q4). In fact, the
p.d.f. of r(24) should be complementary to that for r(44): empty along the downwards
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FIGURE 10. (Colour online) Cross-sections of the three-dimensional joint p.d.f. of the
position of the closest Q4 relative to a given Q2:@, M32;E, H32;A, C2000 with y+min >
100. The similarity variable is defined in (5.7). The p.d.f.s are integrated over µ=±0.2
normal to the plane of the plot, and symmetrised around µz = 0. (a) In the (z, x) plane,
for small Q4s (50η < d(2) < 2Lc). (b) In the diagonal plane orthogonal to r = [1,−1, 0],
for small Q4s. The probability contours in (a,b) contain the highest 30 % of the data. (c)
Three-dimensional p24 in M32 for d < 4Lc, as in (b). The black arrow at the centre of
the box is the nominal velocity for a Q2. That at the right-hand end of the p.d.f. is a
Q4, and opposes the central one, suggesting a mechanism by which the p.d.f. is excluded
from the diagonal and concentrated at the equatorial plane. (d) As in (b) for H32: ——,
50η < d(2) < Lc/2; - - - -, d(2) > Lc. Contours contain 20 % and 40 % of the data.

sloping diagonal and concentrated on the equatorial plane normal to that direction.
This turns out to be true. Figure 10(b) shows a section along this inclined equatorial
plane and reveals that the two high-probability regions in figure 10(a) are sections
of an inclined arch or semicircle, whose dimensions also collapse well among the
different flows. The three-dimensional view in figure 10(c) shows that the fact that
this equatorial section is not a full torus is not due to the misalignment of its plane.
This figure also sketches the argument above about how conflicting axial velocities
restrict where the p.d.f. can be expected to be located in the space of relative positions.
Figure 10(d) shows the relative p.d.f.s of small and large Qs, and proves that the
arch-like character is predominantly a property of large structures; small ones are
distributed more isotropically in the equatorial plane. It should be emphasised again
that the symmetry of the distributions in figure 10 is statistical, due to the symmetry
S1 in § 4. In fact, this symmetry is explicitly enforced on the plot to improve statistics.
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It should also be made clear that these distributions do not represent the shape of any
structure, even on the average. They describe probabilities of the relative positions of
the centres of gravity of different structures of different kind.

The arched p.d.f. in figure 10(c) is different from that between pairs of attached Qs
in channels, and also different from the conditional distribution of close pairs of Qs
of different kind shown later in § 6. In these two cases, the interaction between the
structures in the pair is strong, and the predominant probability distribution is formed
by a Q2 and a Q4 located spanwise from one another. The p.d.f.s in figure 10 are
dominated by small structures that are typically far from each other, and represent
the effect of the larger flow features containing them. The shape of the p.d.f. depends
on the structures involved. It follows from symmetry that the arches in figure 10
become ‘Us’ for the position of Q2s relative to a Q4 in HST. The same is true for
the detached Qs in channels. The interpretation of these shapes is interesting. The
Q4s in figure 10 are structures of high streamwise velocity. The figure shows that
they tend to be located above or to the side of the low-streamwise-velocity Q2s, but
not below. The complementary shape of the p.d.f. of r(42) carries the same message:
high velocity is above low velocity in the presence of a Q−. This is the direction
of the ambient shear, and, since the Qs are defined from perturbation velocities, the
implication is that they tend to be located in regions in which the shear is higher
than the mean. This is reasonable, since they have to draw their energy from the
local velocity difference, and has been mentioned often in the context of vortical
structures (see, for example, Adrian 2007). These high-shear regions can be interpreted
as the sharp interfaces between relatively uniform streamwise-velocity streaks, which
are known to be layers of high activity both in the buffer region (Kim, Moin & Moser
1987; Jiménez & Pinelli 1999; Schoppa & Hussain 2002) and in the logarithmic layer
(Meinhart & Adrian 1995; Flores & Jiménez 2006). In the buffer layer, the high
shear close to the wall substitutes the horizontal segment of the arch in figure 10,
and the attached Qs are only concentrated in the lateral boundaries between low- and
high-velocity streaks (although see the enveloping high-velocity streak in figure 12d of
LFJ12, and the conditional flow fields in the next section). What figure 10 implies is
that, away from the wall or in HST, the Qs concentrate either on the side or on the top
boundary of the low-velocity streaks. A little thought shows that it also implies that
only the top part of the low-velocity streaks and the bottom part of the high-velocity
ones are sharp. Both of them are co-shear layers. The bottom part of the low-velocity
streaks and the top part of the high-velocity ones, which would require layers of
counter-shear vorticity, are either not sharp or contain no Qs. A similar arrangement
of zones of relatively uniform velocity bounded by sharp interfaces has been discussed
often in the literature (e.g. Meinhart & Adrian 1995).

6. Conditional flow fields

We present in this section conditional flow fields in the neighbourhood of paired
structures of different kind, defined as being separated by r 6 αdd, with αd = 1. A
similar analysis was repeated for αd= 2, with little change, but the first choice results
in somewhat sharper conditional fields, and was finally adopted. It should be noted
that the results in the previous section do not preclude the existence of close pairs of
arbitrarily small structures. In the case of structures of the same kind, the scaling 〈r〉∼
d guarantees that the fraction of paired structures is independent of their size, so that
the statistics of the pairs are dominated by the more abundant small Qs (see figure 8e).
In the case of structures of different kind, the results in the previous section show that
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FIGURE 11. (Colour online) (a) Probability density function of the diagonal size of Q4s
for which the nearest Q2 is at r < d. The slope of the dashed line is −3. (b) Mean
dimensionless distance, 〈δ〉d, defined as in (5.3) for pairs in which the diameter of the
reference object is d. In both figures,@, M32;E, H32. Solid symbols are for pairs with
r< 2d and open ones are for r< d. Only the latter case is plotted in (a) because the two
cases are almost indistinguishable.

the fraction of isolated eddies increases with decreasing size, but, even so, it turns out
that most of the paired structures are also small. We assume that the distribution of the
distance between nearest neighbours follows the Poisson model (5.6). The probability
of finding pairs among the population of Qs of size d would be

p2(d)=
∫ αdd

0
pnn(r) dr= 1− exp(−α3

dd3/R3). (6.1)

Recalling that the mean distance between neighbours is 〈r〉 ∼ R, and using the
approximation in (5.5), 〈r〉 ∼ d(β−1)/3, the argument of the exponential in (6.1) is
proportional to (d/Lc)

m, with m= 4− β. The probability of finding close pairs among
Qs of a given size then behaves as p2∼ (d/Lc)

m in the limit of small d. Recalling that
the probability of finding Qs of size d decays like d−β , the expected number of pairs
of size d behaves like n(d)∼ d−q, with q= 2β − 4. For any β > 2, this distribution is
dominated by small structures, even if it remains true that most small structures are
not involved in pairs. This is seen in the p.d.f.s of the number of near neighbours in
figure 11(a), which is roughly consistent with β = 3 (q= 2) for d & 50η.

Figure 11(b) shows the mean dimensionless distance 〈δ〉d between members of pairs
in which the diameter of the reference object is d. Corresponding to the definition of
pairs as r<αdd, their mean spacing 〈r〉 scales well with the eddy size d, at least for
small Qs, and 〈δ〉d stays constant. The constricting effect of the box only becomes
important when the eddies and their distances begin to be of the order of the integral
length. The mean relative distance then decreases.

In the remainder of this section, we discuss conditional flow fields compiled from
structures in the ‘inertial’ range above d > 50η (d/Lc > 1.4 for the HST case M32
used in most of the figures). It follows from the previous discussion that the correct
scaling of the similarity variable is linear, as in (5.3) and LFJ12. We take advantage
of the spanwise symmetry S1 to reorient flow fields so that the Q2 is on the left when
facing along the flow. It then follows from the symmetry S3 of the HST that most
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FIGURE 12. (Colour online) Sections of the flow field conditioned to the presence of a
Q2–Q4 pair. The condition includes all Qs with diagonals d(2) > 50η whose centres of
gravity are within r(24) 6 d(2). Homogeneous case M32. Coordinates as in (5.3), with the
flow into the page. Pairs are oriented so that the Q2 is to the left when facing along the
flow. The solid white contours are 0.7 of the maximum of the p.d.f. of the position of the
points belonging to the Q−s. The dashed ones are vortex clusters. The black line in each
panel is the isosurface of the total streamwise velocity, {û}, passing through the common
centre of gravity of the Q pair. (a) Cross-section (δx = 0) of the conditional perturbation
velocity. Colours are {u}+ ∈ [−1.35, 1.35], from blue to red (left to right). The longest
arrows of the cross-flow conditional velocity field are 0.95uτ . (b) Cross-section (δx = 0)
of the conditional shear layer containing the pair in M32. The range is {∂yû}/S∈ [0.3, 2.5].
(c,d) As in (a,b) for detached Q−s in the channel C950 with d(2) > 50η, y+cog > 100 and
ycog/h< 0.4. The ranges are {u}+ ∈ [−1.3, 1.5] and {∂yû}/S ∈ [0.05, 3.1].

conditional fields are either symmetric or antisymmetric with respect to δ= 0. This is
used to smooth statistics whenever appropriate.

The similarity transformation (5.3) allows us to relate structures of different sizes,
but its interpretation requires some care. Conditional averaging is defined at constant δ,

{u}(δ)= 〈u(xcog + d12δ)〉, (6.2)

where xcog and d12 are defined in (5.3), but, since we saw above that the number
of pairs decreases approximately as d−2, the conditional fields are dominated by the
smallest Qs in the sample.
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A second caveat refers to the relation between conditional velocities and their
gradients. Because different structures have different length scales, the relation
{∂yu} = ∂δ{u} is not even dimensionally correct. In fact, while conditional velocities
have an absolute magnitude that can be expressed in wall units, their gradients in the
conditional plane do not have a clear meaning, since they are averages of derivatives
taken with respect to a wide range of scales. In this section, velocities and their
gradients are averaged independently, and each of them has well-defined dimensions
and units. However, some conditional quantities are not easy to relate back to the
original fields. For example, the perturbation velocities in figure 12(a) are defined
with respect to the local U = Sy even if y has a different meaning for structures of
different sizes. These conditional velocities only give a general sense of the geometry
and intensity of individual eddies. On the other hand, the solid black curves in
figure 12 represent the isocontour {û} = Sycog of the total velocity. They give an idea
of the streamwise-velocity streak containing the structures, but they do not coincide
with {u} = 0.

Figure 12(a) displays the conditional velocity field in the cross-stream plane, δx= 0.
It should be compared with figure 12(d) in LFJ12, which is compiled for pairs of
large attached eddies. There is a sweep sitting in a high-speed streak, paired with an
ejection in a low-speed one. The vortex cluster sits between the two Qs. The main
difference from LFJ12 is that the present pair is symmetric with respect to the origin,
as required by the flow symmetries. Figure 12(b) shows that the Q pair sits in an
inclined layer of high shear, {∂yû}, which is up to 2.5 times stronger than the mean
velocity gradient, as already deduced on different grounds at the end of § 5.2. The
streaks themselves define relatively uniform regions in which the conditional shear
is approximately one third of the ambient. The high-shear layer marks the boundary
between the streaks.

More comparable to the present case than the attached fields in LFJ12 are the
conditional fields in figure 12(c,d), which are computed for the channel C950 using
pairs of detached Q2–Q4 whose centre of gravity is in y+cog > 100 and ycog/h < 0.4.
Being far from the wall, these pairs are much more symmetric than the attached ones,
but there is some residual asymmetry, visible in the difference between the two streaks,
in the shape of the vortex cluster and in the non-uniform intensity of the shear layer.

Figure 13(a) shows the ‘roller’ between the two Qs, which is defined in this
transverse plane by the conditional streamwise vorticity {ωx}. This coherent vortex
is fairly strong, even when compared with the background incoherent vorticity, but
it should be noted that, although it is roughly at the same location as the vortex
cluster, it does not coincide with it. The vortex cluster contains strong vorticity
magnitudes, {|ω|}, without implying any particular orientation. The conditional roller
represents coherent vorticity, |{ω}|, which can loosely be interpreted as the curl
of the conditional velocity field of the ejection–sweep pair. The vortex cluster is
characterised by the disorganised approximately isotropic vortices in figure 3(b), each
of which has radius O(η) (Jiménez et al. 1993; del Álamo et al. 2006). It was shown
in Jiménez (2013b) that the anisotropy of the orientation tensor of the vorticity of the
fully resolved flow is proportional to S/ω′ ∼ Re−1

λ (SDJ16). The roller only survives
conditional averaging because of this residual anisotropy. Rollers are large-scale
structures whose radius is of the order of the separation of the pair of Qs, and each
of them typically contains many individual small-scale vortices. If we assume that
{|ω|} ≈ ω′, and that the surviving conditional vorticity fraction is of the order of
the anisotropy, |{ω}|/{|ω|} ≈ S/ω′, it follows that we can at most expect conditional
vorticities |{ω}|/S=O(1), independently of the Reynolds number. In the present HST
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FIGURE 13. (Colour online) Flow fields conditioned to the presence of a Q2–Q4 pair,
as in figure 12, for the HST flow M32. (a) Cross-section (δx = 0) of the conditional
longitudinal ‘roller’ between the pair. The background is {ωx}/ω′ ∈ [−0.1, 0.3]. (b)
Streamwise section (δz= 0) of the conditional roller. The colours represent the magnitude
of the conditional vorticity, |{ω}|/ω′ ∈ [0, 0.5], and the arrows represent the conditional
vorticity vector in the plane of the figure. The dashed diagonal is inclined at 45◦. The
single purple contour is the isoline of the conditional {ωx}, at 0.5 of its maximum. (c)
Three-dimensional p.d.f. of the position of the points belonging to the Q2 (green, left),
Q4 (blue, right) and vortex cluster (grey, centre). Isosurfaces are 0.7 of the maximum of
each p.d.f. (d) Three-dimensional p.d.f. of the points of the vortex cluster in (c) compared
with the {∂yû}/S= 2.25 isosurface of the conditional shear layer in figure 12(b). The flow
in (c,d) is from the lower-left to the upper-right corner.

cases, Reλ= 100–250, S/ω′= 0.1–0.04 (see table 2) and |{ω}|/S≈ 5 for Q pairs with
d > Lc. It should be noted that, because of the limited resolution of most imaging
experiments, the ‘vortices’ observed in them probably represent these coarse-grained
eddies, rather than individual structures of the true vorticity.

Neither the vortex cluster nor the roller coincides with the conditional shear layer,
which is predominantly {ωz}. Figure 13(b) shows that the roller is inclined at roughly
45◦ to the streamwise direction, and that the conditional vorticity vector in this plane
is inclined at roughly the same angle. The coloured background in figure 13(b)
corresponds to the magnitude of this inclined conditional vorticity, but the single
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FIGURE 14. (Colour online) (a–c) Effect of the inhomogeneity of the mean flow on the
δx = 0 two-dimensional sections of the streamwise-velocity field conditioned to Q2–Q4
pairs. The flow and graphics are as in figure 12. The horizontal dashed lines pass through
the average ycog. (a) Homogeneous flow M32, as in figure 12(a). Velocity range {u}+ ∈
[−0.9,1.3]. (b) Detached Qs in the channel C950, as in figure 12(c). Velocity range {u}+ ∈
[−1.3, 1.5]. The similarity variables in (a,b) are as in (5.3). (c) Attached Qs in C950 for
which y+max > 100 and ymax/h< 0.4. Velocity range {u}+ ∈ [−0.9, 1.3]. The coordinates in
this figure are normalised with the mean distance from the wall, δ′= x/(1.25ycog), instead
of with d12, so that the wall is at δ′y = 0. The prefactor of ycog is empirically chosen to
give the same dimensionless distance between Qs as in (a,b). (d–f ) Flows as in (a–c).
The central opaque S-shaped object is the isosurface of the magnitude of the conditional
perturbation vorticity, |{ω}| = 0.25|{ω}|max. The two translucent objects are isosurfaces of
the conditional perturbation streamwise velocity, {u}+ =±0.6, as marked in (d).

coloured contour of {ωx} included in the figure shows that the conditional streamwise
vorticity (and in fact all of the individual vorticity components) shares the geometry
of the full conditional vorticity vector, at least in this central plane. It can also be
shown that the inclination of the conditional roller with respect to the streamwise
direction changes with the flow inhomogeneity (see also figure 14 below). For the
detached pairs used in figure 12(c,d), the inclination of the roller is only 20◦ to the
horizontal, and for attached Q pairs the roller is almost aligned streamwise, as in
the attached conditional structures in figure 12 of LFJ12. In all of these cases, the
inclination of the conditional vorticity vector is roughly 45◦, independently of the
shape and inclination of the region in which the vorticity is strong.

A three-dimensional representation of the relative positions and dimensions of the
components of the pair is shown in figure 13(c). Its main difference from the attached
eddies in LFJ12 is that the HST structures are roughly isotropic, instead of elongated,
as already mentioned for detached Qs in LFJ12, and discussed in some detail in § 4.4.
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The relation between the vortex cluster and the host high-shear layer is shown in
figure 13(d), which shows that the latter is inclined spanwise, marking the boundary
between the high- and the low-speed streaks.

6.1. The effect of inhomogeneity in channels
Finally, figure 14 compares the structure of the conditional flow fields for the three
kinds of Q pairs discussed in this paper. Figure 14(a–c) compares the field of the
streamwise velocity in the cross-flow sections. It reveals the increasing effect of
inhomogeneity as we move from HST in figure 14(a), to detached channel Q pairs
in figure 14(b) and to attached Q pairs in figure 14(c). Figure 14(a,b) is the same as
figure 12(a,c), but the three figures have now been scaled to have a similar distance
between the average positions of the members of the pairs, and aligned to the same
location of their centre of gravity. The main difference between detached channel
pairs and HST is that the sweep gets larger than the ejection, presumably because
it is coming from layers in which the integral length (proportional to y) is larger.
This difference gets most marked for the attached pairs in figure 14(c), where the
high-speed streak of the sweep is considerably larger than the low-speed one (see
also LFJ12). Comparing this figure with figure 14(a), it can almost be interpreted
that the ejection is truncated by the presence of the impermeable wall. Although
not shown in the figure, the high-shear layer of the attached pair is only clearly
present above the low-velocity ejection streak. The layer underneath the high-velocity
sweep has been absorbed by the high-shear viscous region at the wall. Otherwise, the
differences between the three types of structures are relatively minor. In particular,
the intensity of the conditional streaks is almost the same in the three cases.

Figure 14(d–f ) shows three-dimensional views of the inclined roller mentioned
in figure 13(a,b), now shown in relation to the high- and low-velocity streaks.
Figure 14(d) reveals that the roller in HST is part of a conditional double ‘hairpin’,
containing both an upright and an inverted hook, although it is important to remember
that this is a conditional flow structure unlikely to represent any individual flow
realisation, and that the roller is formed by the superposition of many small-scale
vortices, each of which is almost isotropically oriented. Figure 14(d) shows that this
double hairpin straddles both the high- and low-speed streaks in the background of
figure 14(a,b), and it is interesting that both streaks extend ‘downstream’ from their
respective hairpin end. The high-speed streak starts roughly at the inverted hairpin
hook and extends to the right of the figure, while the low-speed streak extends in
the opposite direction, starting from the upright hook. It is clear from the figure
that the two ‘hooks’ are the high-shear layers whose cross-section was described in
figure 12(b) and in § 5.2 as being located respectively above and below the low- and
high-velocity streaks. A trivial observation is that the hairpins shown here are not
connected to the wall in the wall-less HST flow.

The symmetry of figure 14(d) is a direct consequence of the statistical symmetries
of HST. Figure 14(e) presents the same view of the conditional detached Q pairs in
the logarithmic layer of the channel. Although less symmetric than in figure 14(d),
the two figures are similar enough to strongly suggest that the same mechanisms are
at play in both cases. When the plot is drawn for the attached Qs of the channel,
the conditional figure is dominated by a strong vorticity layer attached to the wall,
defined in this case as δ′y= 0. Once this layer is removed by truncating the domain (to
δ′y > 0.15 in figure 14f ), the roller reappears, although with a much shallower inclina-
tion with respect to the mean stream than in the case of Q pairs located farther from
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the wall. It can best be described as one of the quasi-streamwise vortices of the
classical descriptions of the buffer layer (Robinson 1991), although all of the Q pairs
in this figure are large (y+max> 100). The present definition of the roller in terms of the
magnitude of the conditional vorticity incorporates the wall-parallel shear layer that
can be seen in figure 14( f ), forming an arch above the low-velocity streak. This layer
corresponds to the upright hairpin hook in figure 14(d,e). The asymmetry between the
streaks, already clear in figure 14(e), is exaggerated here, with a very large high-speed
streak accompanying a much smaller low-speed one, hidden in the plot by the upright
hook of the conditional roller. This agrees with the picture of the same case in figure
12(c) of LFJ12. It should be noted that, even in the attached case, there is a residual
inverted hook that appears as a small isolated structure to the right of figure 14( f ),
but which is connected to the rest of the roller by the high-vorticity wall layer that
has been removed for clarity.

7. Conclusions
We have studied the three-dimensional intense Reynolds-stress structures (Qs) and

vortex clusters of statistically stationary HST at Reλ = 50–250, and compared them
with those of turbulent channels in the same range of Reynolds numbers. The main
conclusion is that the Qs and vortex clusters in HST are essentially symmetrised
versions of the corresponding detached structures in channels, while the absence
of walls and spatial homogeneity of HST allow us to separate which properties of
the wall-bounded structures are associated with the wall, and which ones should be
generic to other shear flows.

We show in § 4.1 that, both in channels and in HST, most of the tangential
Reynolds stress is carried by sweeps and ejections (Q−s) larger than the Corrsin
scale Lc, which are therefore able to couple with the shear. In channels, such
large structures are typically attached to the wall, but the results in HST strongly
suggest that wall attachment is a geometric consequence of their size, and not the
reason for their dynamical relevance. Vortex clusters tend to be smaller, and to be
associated with Q−s. In channels, they are preferentially associated with Q2s, but
the statistical symmetries of HST require that they should be equally distributed
between Q2s and Q4s. The preferential association in channels must therefore be due
to the inhomogeneity of the mean profile. Presumably, since ejections come from
points closer to the wall where the shear is stronger, they carry with them the higher
enstrophy of those layers. Table 4 shows that the fraction of Reynolds stresses carried
by the different quadrants in HST is approximately the same as in the logarithmic
layer of channels, including the fraction of Q+ ‘momentum backscatter’.

Both channels and HST burst intermittently (see § 3). The effect is made more
obvious in the latter by the unavoidably ‘minimal’ character of statistically stationary
HST, but we have shown that the structure of turbulence during HST bursts can largely
be modelled by a variable threshold in the definition of the structures.

The geometry of the Q−s is self-similar for diameters d & 50η, with essentially
isotropic aspect ratios similar to those of detached Qs in channels (see § 4.3). This
remains approximately true for larger detached structures (d & Lc) in channels and in
HST, and we have shown in § 4.4 that the more elongated aspect ratios of attached
channel Qs are a property of strictly attached structures (y+min< 20), most probably due
to ‘spurious’ connections between the viscous near-wall roots of otherwise unrelated
eddies. Conversely, we have shown that the relative arrangement of Q−s of the
same type suggests that many of them are ‘spurious’ fragments of larger structures,
separated from one another by the thresholding operation.
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Section 5 shows that many of the differences between the flow within and outside
Qs can be traced to the way in which they are defined. For example, the increased
anisotropy of the Reynolds-stress tensor within Qs can be reproduced by thresholding
a joint-Gaussian distribution of u and v with the right correlation coefficient (figure 4).
We have also noted that structures that are too small to couple with the shear (d�Lc)

have no preferred orientation, and cannot be usefully classified into quadrants. Small
Qs of the same kind (e.g. Q4 with Q4) are preferentially aligned along the direction
of their velocity fluctuations, while Qs of opposite kind (e.g. Q2 with Q4) tend to
exclude each other from the direction of their axis, and arrange equatorially with
respect to each other. This generalises the arrangement of attached pairs in channels,
where Q2s and Q4s are organised into streamwise trains of side-by-side pairs.

Larger Qs lose this isotropy and organise themselves in true spanwise pairs, but
only in the case of (uv) structures. It is possible to define quadrant structures from
other combinations of velocity components, such as Quw. They differ little from Quv
for small sizes, but they never interact with the shear and do not change character for
sizes above Lc. The difference is most obvious for counter-gradient Q+s (Q1 and Q3),
which couple with the shear for large sizes, but lose energy in the interaction instead
of gaining it. As a consequence, there are essentially no large Q+s in channels or in
HST.

We have shown in § 5.2 that the deviations from isotropy of the relative position of
Qs of different kind imply that they are preferentially located in strong shear layers
separating regions of relatively uniform velocity within the high- and low-velocity
streaks, in agreement with previous observations of uniform momentum regions
(regions) in wall-bounded flows. The conditional flow fields around close pairs of Qs
of opposite sign, discussed in § 6, clearly show this layer, as well as a fairly strong
roller that organises the pair, inclined along the most extensive direction of the shear
of the mean velocity (Rogers & Moin 1987). We have shown that the conditional
shear layer is different from the coherent conditional ‘roller’, as well as from the
conditional vortex cluster also associated with the Q pair.

As mentioned above, the primary goal of this study was to distinguish between
those properties of the structures of wall turbulence that are due to the presence of the
wall from those simply due to the shear. A particularly interesting set of conditional
flow fields is displayed in figure 14, which shows how the flow around a Q2–Q4
pair progressively changes from the homogeneous HST to the very inhomogeneous
velocity profile near the wall in channels. The diagonal rollers of HST morph into
quasi-streamwise ones near the wall. It is interesting that all of these rollers contain
hairpin ‘hooks’, although we emphasise that the rollers are large-scale conditional
structures, not features of the resolved vorticity. The HST hairpins include both upright
and inverted hooks, as observed in simulations and experiments of homogeneous shear
(Rogers & Moin 1987; Vanderwel & Tavoularis 2011). The inverted hook weakens as
it is progressively absorbed into the inhomogeneous stronger vorticity near the wall,
but there is no indication that the upright one has a different origin in wall-less HST
from that in the near-wall channel.

The conclusion is that most properties of the strong tangential-stress structures, and
of the vorticity clusters, should apply to general shear flows, or at least to those in
which no other turbulence production mechanism is dominant. Obvious exceptions that
come to mind are free-shear flows subject to Kelvin–Helmholtz-type instabilities of the
mean velocity profile (Brown & Roshko 1974). Moreover, the observed decoupling
between small Qs and the ambient shear suggests that similar structures should be
generic to turbulence in general, whether sheared or not.
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