QUASI-SIMILARITY ORBIT OF A SUBCLASS OF COMPACT OPERATORS ON A HILBERT SPACE

N.N. CHOURASIA

In this note we study certain properties of quasi-similarity orbit of a subclass of compact operators defined on a separable Hilbert space. This class and its quasi-similarity orbit were introduced and studied by Fialkow in *Pacific J. Math.* **70** (1977), 151-161.

Preliminaries and notations

We start with some notations and definitions. B(H) will denote the Banach algebra of all bounded linear operators on a Hilbert space H which is taken to be separable. For $T \in B(H)$, $\sigma(T)$ is its spectrum, $\sigma_p(T)$ its point spectrum, r(T) its spectral radius, N(T) its null space, R(T) its range and T^* is its adjoint. For a complex number λ , λ^* is its complex conjugate. The closed linear span of a family $\{M_d\}_{d=1}^{\infty}$ of

subspaces of H will be denoted by $\bigvee_{i=1}^{\infty} N_i$.

A sequence $\{M_i\}_{i=1}^{\infty}$ of subspaces of H is said to be a basic sequence if M_i and $\bigvee_{k \neq i} M_k$ are complementary for each i.

A subspace M of H is called hyperinvariant under T if it is invariant under any operator which commutes with T.

Received 7 December 1979. The author wishes to thank Professor P.B. Ramanujan for his kind help. This work was financially supported by the University Grants Commission, India.

An invariant subspace M for T is called a spectral maximal subspace for T if the following condition is satisfied:

If N is another subspace invariant under T such that $\sigma(T/N) \subseteq \sigma(T/M)$, then $N \subseteq M$. Note that a spectral maximal subspace for T is hyperinvariant for T ([2], Proposition 3.2, p. 18).

For the properties of spectral and scalar type operators we refer to [4]. We note here that $T \in B(H)$ is spectral if and only if T = S + Q where S is a scalar type operator and Q is a quasi-nilpotent operator which commutes with S ([4], Theorem 5, p. 1939). Also, any scalar type operator on a Hilbert space is of the form BNB^{-1} where N is a normal operator ([4], Theorem 4, p. 1947). Thus, any spectral operator on a Hilbert space is similar to an operator of the form normal plus a commuting quasi-nilpotent.

For the ideas of single valued extension property of operators, decomposable operators, quasi-nilpotent equivalence of operators and other related topics we refer to [2]. We note that compact and spectral operators are decomposable operators ([2], p. 33).

For an operator $T \in B(H)$ with single valued extension property, consider the subset $\zeta_T(x)$ of elements λ_0 of complex plane such that there exists an analytic function $\lambda \neq x(\lambda)$ defined on a neighbourhood of λ_0 with values in H, which satisfies $(\lambda I - T)x(\lambda) = x$ for all λ in the neighbourhood.

Take $\sigma_T^{}(x)$ to be the complement of $\zeta_T^{}(x)$ in the complex plane and define

$$X_{T}(\delta) = \{x \in H \mid \sigma_{T}(x) \subseteq \delta\}$$

for any δ in complex plane.

For the properties of $X_{\sigma}(\delta)$ and $\sigma_{\sigma}(x)$ we again refer to [2].

If λ is an isolated point of $\sigma(T)$, then there is a projection (not necessarily self adjoint) associated with $\{\lambda\}$ ([2], p. 26). We denote this projection by $P_T(\{\lambda\})$. If H_1 and H_2 are two Hilbert spaces, then $A : H_1 \Rightarrow H_2$ is called quasi-invertible if it is one to one and has

dense range.

An operator $T_1 \in B(H_1)$ is called quasi-similar to $T_2 \in B(H_2)$ if there exist two quasi-invertible operators $A : H_1 \to H_2$, $B : H_2 \to H_1$ such that $T_2A = AT_1$ and $T_1B = BT_2$.

If K is the ideal of compact operators on H then B(H)/K is called the Calkin algebra and for $T \in B(H)$, \hat{T} denotes the canonical image of T in B(H)/K. Define

$$\begin{split} \sigma_3(T) &= \sigma(\hat{T}) \ , \\ \sigma_4(T) &= \bigcap\{\sigma(T\!+\!K) \ \big| \ K \text{ is compact and commutes with } T\} \end{split}$$

and

 $\sigma_{\tau}(T) = \sigma_{\mu}(T) \cup \{\lambda \mid \lambda \text{ is a limit point of } \sigma(T)\}$.

Note that $\sigma_3(T) \subseteq \sigma_4(T) \subseteq \sigma_2(T)$ and $\sigma_3(T) = \sigma_4(T) = \sigma_2(T) = \{0\}$ for a compact operator.

We reproduce below the definition of the subclass of compact operators defined by Fialkow.

Let K be a compact operator in B(H) and λ be a nonzero scalar in $\sigma(K)$. Define

$$R(K, \lambda) = \{x \in H \mid (K-\lambda)^n x = 0 \text{ for some } n \ge 1\}$$

Let C be the set of all compact operators K in B(H) which satisfy the following properties:

(i)
$$\bigvee_{i=1}^{\infty} R_i^k = H$$
 (where $\{\lambda_i\}_{i=1}^{\infty}$ is the sequence of distinct

nonzero members of $\sigma(K)$ and $R_i^K = R(K, \lambda_i)$;

(ii)
$$\bigcap_{i=1}^{\infty} \left\{ \bigvee_{k\geq i} R_k^K \right\} = \{0\} .$$

A compact normal injective operator is in C and is C closed under similarity [5].

The class of operators quasi-similar to operators in $\mathcal C$ is called

quasi-similarity orbit of $\,\mathcal{C}$. We shall denote it by $\,\mathcal{C}_{as}^{}$

In [5] the following characterization of class C_{as} appears.

THEOREM A ([5], Theorem 5.1). An operator $T \in B(H)$ is quasisimilar to an operator in C if and only if T satisfies the following properties:

(i) there exists a basic sequence $\{M_i\}_{i=1}^{\infty}$ of finite dimensional hyperinvariant subspaces of T;

(ii)
$$\sigma(T/M_i) = \{\lambda_i\}$$
, $\lambda_i \neq 0$ and $\lambda_i \neq 0$;

$$(iii) \begin{array}{c} \overset{\infty}{\underset{i=1}{\cap}} \left(\bigvee_{k \geq i} M_k \right) = \{ 0 \} \ .$$

We first give an alternative proof of the necessary part of Theorem A. Then we prove that the family $\{M_i\}$ obtained in the above theorem is in fact unique. Also we give a simple characterization of spectral operators in C_{qs} . We also study as consequences some other properties of operators in the orbit.

Main results

We first observe that for a compact operator K, $R_i^K = N\left[\left(K-\lambda_i\right)^n\right]$ for some n. Also $R_i^K = R\left(P_K\{\lambda_i\}\right)$ ([3], p. 579) which implies that $R_i^K = X_K(\{\lambda_i\})$ ([2], Proposition 3.10, p. 26 and Theorem 1.5, p. 31).

We start with a lemma which will be useful in our work.

LEMMA 1. If T has single valued extension property and $TA = AT_1$ with A injective, then T_1 has single valued extension property and $AX_{T_1}(\delta) \subseteq X_T(\delta)$ for any subset δ of the complex plane.

The proof of Lemma 1 is routine.

THEOREM 1. If $T \in C_{qs}$, then there exists a family $\{M_i\}_i^{\infty}$ of finite dimensional spectral maximal subspaces of T which form a basic

sequence such that

$$\sigma(T/M_i) = \{\lambda_i\}, \lambda_i \neq 0, \lambda_i \neq 0$$

and

$$\bigcap_{i=1}^{\infty} \begin{pmatrix} v & M_k \end{pmatrix} = \{0\} .$$

Proof. Suppose T is quasi-similar to $K \in C$ so that

TA = AK

and

BT = KB

for some quasi-invertible operators A and B.

Observe that $\sigma_p(T) = \sigma_p(K)$ and $\sigma_p(K)$ is countable, so that T has single valued extension property ([2], p. 22). Take $\lambda_i \neq 0$ in $\sigma(K)$. Then, by Lemma 1,

(1)
$$\begin{cases} AX_{K}(\{\lambda_{i}\}) \subseteq X_{T}(\{\lambda_{i}\}) \\ \text{and} \\ BX_{T}(\{\lambda_{i}\}) \subseteq X_{K}(\{\lambda_{i}\}) \end{cases}$$

Since $X_K(\{\lambda_i\}) = R(P_K(\{\lambda_i\}))$, which is finite dimensional and A and B are injective, we note that $X_T(\{\lambda_i\})$ is also finite dimensional and we actually have equality in the above two inclusions. Thus we have the family

$$\{X_{T}(\{\lambda_{i}\}) \mid 0 \neq \lambda_{i} \in \sigma_{p}(T)\}$$

of finite dimensional subspaces.

By applying Proposition 3.8 on p. 23 of [2], it can be seen that this is a family of spectral maximal subspaces of T (hence hyperinvariant subspaces of T). Further, this proposition states that

$$\sigma(T/X_T(\{\lambda_i\})) \subseteq \sigma(T) \cap \{\lambda_i\} = \{\lambda_i\}$$

As $X_{K}(\{\lambda_{i}\}) \neq \{0\}$ (being the range of a nonzero projection),

 $X_T(\{\lambda_i\}) \neq \{0\}$ by (1). Hence

$$\sigma(T/X_T(\{\lambda_i\})) = \{\lambda_i\} .$$

To complete the proof, it remains to be shown that the family

$$\{X_{T}(\{\lambda_{i}\}) \mid 0 \neq \lambda_{i} \in \sigma_{p}(T)\}$$

is basic and

$$\bigcap_{\substack{i=1\\ k \ge i}}^{\infty} \left(\bigvee_{T} X_{T}(\{\lambda_{k}\}) \right) = \{0\} .$$

Using the facts $X_T^{\{\lambda_i\}} = AX_K^{\{\lambda_i\}}$, $\bigvee_{i=1}^{\infty} R_i^K = H$ and A has dense range,

it can be easily checked that

$$\begin{split} & X_T(\{\lambda_i\}) + \bigvee_{k \neq i} X_T(\{\lambda_k\}) = H \\ & \text{(note that this also gives us } \bigvee_{i=1}^{\infty} X_T(\{\lambda_i\}) = H \text{). If} \\ & x \in X_T(\{\lambda_i\}) \cap (\bigvee_{k \neq i} X_T(\{\lambda_k\})) \text{ ,} \end{split}$$

then

$$Bx \in BX_{T}(\{\lambda_{i}\}) = X_{k}(\{\lambda_{i}\})$$

and

$$Bx \in B(\bigvee_{k \neq i} X_T(\{\lambda_k\})) \subseteq \bigvee_{k \neq i} BX_T(\{\lambda_k\})$$
$$= \bigvee_{k \neq i} X_K(\{\lambda_k\})$$

Define

$$\delta = \{0\} \cup \{\bigcup_{k \neq i} \{\lambda_k\}\}.$$

It is easily seen that δ is closed and $X_K\!(\{\lambda_k\}) \subseteq X_K\!(\delta)$ if $k \neq i$. Thus

$$\bigvee_{k \neq i} X_{K}(\{\lambda_{k}\}) \subseteq X_{K}(\delta)$$

so that

90

$$\sigma_{K}(Bx) \subset \delta \cap (\{\lambda_{i}\}) = \emptyset$$

which implies that x = 0, *B* being injective. Thus the family $\{X_T(\{\lambda_i\}) \mid 0 \neq \lambda_i \in \sigma_p(T)\}$ is a basic family. Finally suppose

$$x \in \bigcap_{i=1}^{\infty} \left(\bigvee_{k \ge i} X_T(\{\lambda_k\}) \right) .$$

Then

$$Bx \in \bigcap_{i=1}^{\infty} \left(\bigvee_{k \ge i} BX_{T}(\{\lambda_{k}\}) \right)$$
$$= \bigcap_{i=1}^{\infty} \left(\bigvee_{k \ge i} X_{K}(\{\lambda_{k}\}) \right) .$$

But $X_{K}(\{\lambda_{k}\}) = R_{k}^{K}$ and

$$\bigcap_{i=1}^{\infty} \begin{pmatrix} v & R_k^K \\ k \ge i \end{pmatrix} = \{0\} .$$

Hence x = 0. This completes the proof.

COROLLARY 1. If T is a compact operator in C_{qs} then T is in C .

Proof. Suppose T is quasi-similar to K in C. As in the proof of the theorem above,

$$\bigvee_{i=1}^{\infty} X_{T}(\{\lambda_{i}\}) = H$$

and

$$\bigcap_{i=1}^{\infty} \left(\bigvee_{k \ge i} X_T(\{\lambda_k\}) \right) = 0$$

,

where $\{\lambda_i\}_{i=1}^{\infty}$ is the set of nonzero points of $\sigma_p(T)$. This set is the same as the set of nonzero points of $\sigma(T)$, T being compact. Also $X_T(\{\lambda_k\}) = R_k^T$, T being compact. This implies T is in C. COROLLARY 2. Suppose T is in C_{qs} , T_1 has single valued extension property and $X_T(\{\lambda\}) = X_{T_1}(\{\lambda\})$ for all scalars λ . Then T_1 is in C_{as} .

Proof. As T is in C_{qs} , the family $\{X_T(\{\lambda_i\}) \mid 0 \neq \lambda_i \in \sigma_p(T)\}$ satisfies the conditions of Theorem 5.3 of [5] (by Theorem 1). Now consider the family $\{X_{T_1}(\{\lambda_i\}) \mid 0 \neq \lambda_i \in \sigma_p(T)\}$. This is a family of finite dimensional subspaces. As T_1 has single valued extension property, (by [2], Proposition 3.8, p. 23) all these subspaces are spectral maximal, hence hyperinvariant, for T and

$$\sigma(T_1/X_{T_1}(\{\lambda_i\})) = \{\lambda_i\}$$

(as in Theorem 1). As $X_{T_1}(\{\lambda_i\}) = X_T(\{\lambda_i\})$ for all λ_i , all the other requirements of Theorem A are satisfied. Thus T_1 is in C_{as} .

COROLLARY 3. Suppose T is in C_{qs} and T is quasi-nilpotent equivalent to T . Then T is also in C_{qs} .

Proof. We have only to observe that T_1 has single valued extension property as T has and

$$X_{T}(\{\lambda\}) = X_{T_{1}}(\{\lambda\})$$

for all scalars λ ([2], Theorem 2.3, p. 14 and Theorem 2.4, p. 16).

Let us note that if T is in C_{qS} , then there exists a basic sequence $\{M_i\}_{i=1}^{\infty}$ of hyperinvariant finite dimensional subspaces such that $\sigma(T/M_i) = \{\lambda_i\}$. Hence $T/M_i = \lambda_i I + N_i$ where N_i is a nilpotent operator. Hence T/M_i is spectral. By applying Theorem 5.7 of [5], we get that T is quasi-similar to a spectral operator. Without any loss of generality we can take this spectral operator to be of the form normal plus a commuting quasi-nilpotent. This motivates the study of spectral operators in C_{as} . First we start with a general result.

THEOREM 2. Suppose T is a spectral operator quasi-similar to a

compact operator K. Then the scalar part S of T is compact.

Proof. As both T and K are decomposable, $\sigma(T) = \sigma(K)$ ([2], Theorem 4.4, p. 55). Hence $\sigma_{l}(T) = \sigma_{l}(K)$ ([1], Corollary 2). But $\sigma_{l}(K) = \{0\}$, K being compact, which implies that $\sigma_{3}(T) = \{0\}$. Let T = S + Q be canonical decomposition of T. Then taking the canonical image in the Calkin algebra, $\hat{T} = \hat{S} + \hat{Q}$. As \hat{S} commutes with \hat{Q} , $\sigma(\hat{T}) = \sigma(\hat{S})$. But $\sigma(\hat{T}) = \sigma_{3}(T) = \{0\}$. Hence $\sigma(\hat{S}) = \{0\}$. Let

 $S = BNB^{-1}$ where N is normal. Then \hat{N} is a normal element of Calkin algebra with {0} as spectrum. Since $r(\hat{N}) = |\hat{N}|$ ([6], Theorem 11.28 (b)), $\hat{N} = 0$. Thus N is compact, which implies that S is also compact.

We note that if S is the scalar part of a spectral operator T, then S and T are quasi-nilpotent equivalent to each other ([2], Corollary 2.4, p. 43). Hence we obtain the following

THEOREM 3. A spectral operator T is in C $_{qs}$ if and only if its scalar part S is in C .

Proof. Sufficiency is obvious by Corollary 3. To prove necessity, note that S is in C_{qs} but S is compact by Theorem 2. Hence by using Corollary 1, we get that S is in C.

THEOREM 4. Every operator in C_{as} is injective.

Proof. Suppose $T \in C_{qs}$. Let T_1 be the spectral operator which is quasi-similar to T. We take $T_1 = N_1 + Q$ where N_1 is normal. By Theorem 3, N_1 is in C. Now $N(N_1) \perp N(N_1 - \lambda_i)$ for all nonzero λ_i in $\sigma(N_1)$. But as N_1 is normal operator

$$N(N_1 - \lambda_i) = R_i^N$$

Hence $N(N_1) \perp \bigvee_{i=1}^{\infty} R_i^N$. As $N_1 \in C$, $\bigvee_{i=1}^{\infty} R_i^N = H$. Thus it follows that $N(N_1) = \{0\}$. Hence N_1 is injective. Now T_1 is also injective (by [4], Corollary 4, p. 1956). Hence quasi-similarity between T and T_1

implies that T is also one to one.

Now we are in a position to give another simple characterization of spectral operators in $\ C_{_{\it OS}}$, the proof of which we omit.

COROLLARY 4. If T is a spectral operator, then T is in C_{qs} if and only if its scalar part S is compact, injective with countably infinite spectrum.

Next we prove the uniqueness of the family $\{M_i\}_{i=1}^{\infty}$ of hyper-invariant subspaces, obtained in Theorem A.

THEOREM 5. Suppose $T \in C_{qs}$. Then there exists one and only one family $\{M_i\}_{i=1}^{\infty}$ of finite dimensional hyperinvariant subspaces for T which form a basic sequence, such that

$$\sigma(T/M_i) = \{\lambda_i\}, \quad \lambda_i \neq 0, \quad \lambda_i \neq 0$$

and

$$\bigcap_{i=1}^{\infty} \begin{pmatrix} \vee & M_k \end{pmatrix} = \{0\} .$$

Proof. Suppose $T \in \mathcal{C}_{qs}$. By Theorem 1, one such family, with the properties stated in the theorem is

$$\left\{X_{T}^{(\{\theta\})} \mid 0 \neq \theta \in \sigma_{p}^{(T)}\right\} .$$

Let $\{M\}_{i=1}^{\infty}$ be any other family with these properties. Then we will show that this family coincides with the family

$$\{X_T(\{\theta\}) \mid 0 \neq \theta \in \sigma_p(T)\}$$
.

If $x \in M_i$, then

$$\sigma_{T}(x) \subseteq \sigma_{T/M_{i}}(x) \subseteq \sigma(T/M_{i}) = \{\lambda_{i}\}$$

Thus $M_i \subseteq X_T(\{\lambda_i\})$. Suppose K is an operator in C which is quasi-similar to T and let KA = AT for some quasi-invertible operator A. Then, by Lemma 1,

94

$$AX_{T}(\{\lambda_{i}\}) \subseteq X_{K}\{\lambda_{i}\}$$

so that

$$AM_i \subseteq X_K(\{\lambda_i\})$$
.

As $M_i \neq \{0\}$ and A is one to one, $X_K(\{\lambda_i\}) \neq \{0\}$. Hence $\lambda_i \in \sigma(K)$. Being nonzero, λ_i is in $\sigma_p(K) = \sigma_p(T)$. Thus we have $M_i \subseteq X_T(\{\lambda_i\})$ for some $0 \neq \lambda_i \in \sigma_p(T)$. Also since $X_K(\{\lambda_i\})$ is finite dimensional, so is $X_T(\{\lambda_i\})$. As T is in C_{qs} , it is quasi-similar to a spectral operator $T_1 = N_1 + Q_1$ where N_1 is normal, compact and injective. Suppose $T_1^B = BT$ and $CT_1 = TC$, for some quasi-invertible operators Band C. Then, as before,

$$BX_{T}(\{\lambda_{i}\}) = X_{T_{1}}(\{\lambda_{i}\})$$

$$CX_{T_{1}}(\{\lambda_{i}\}) = X_{T}(\{\lambda_{i}\}) .$$

If M_i is properly contained in $X_T(\{\lambda_i\})$, then BM_i is properly contained in $BX_T(\{\lambda_i\}) = X_{T_1}(\{\lambda_i\})$. As N_1 is quasi-nilpotent equivalent to T_1 , $X_{T_1}(\{\lambda_i\}) = X_{N_1}(\{\lambda_i\})$ ([2], Theorem 2.1, p. 40). But as N_1 is normal

$$X_{N_{1}}(\{\lambda_{i}\}) = N(N_{1}-\lambda_{i})$$

Thus $BM_i \subseteq N(N_1 - \lambda_i)$ (containment is proper). Therefore there exists a nonzero $x \in N(N_1 - \lambda_i)$ such that $x \perp BM_i$. Similarly $BM_j \subseteq N(N_1 - \lambda_j)$ (j = 1, 2, 3, ...). As $x \in N(N_1 - \lambda_i)$ and $N(N_1 - \lambda_i) \perp N(N_1 - \lambda_j)$ for $j \neq i$ $(N_1$ being normal), $x \perp BM_j$ (j = 1, 2, ...). Thus

$$x \perp \bigvee_{j=1}^{\infty} BM_{j}$$
.

 ${M_j}_{j=1}^{\infty}$ being a basic sequence,

$$\bigvee_{j=1}^{\infty} M_j = H$$

This gives us that x = 0. This contradiction proves that $M_i = X_T(\{\lambda_i\})$, $0 \neq \lambda_i \in \sigma_p(T)$. Thus

$$\{M_i\}_{i=1}^{\infty} \subseteq \{X_T^{(\{\theta\})} \mid 0 \neq \theta \in \sigma_p^{(T)}\}.$$

To complete the proof, we must show that the above two families are in fact the same. Again we show this by contradiction.

Suppose that $X_T(\{\theta\})$, for some $0 \neq \theta \in \sigma_p(T)$, is not a member of the family $\{M_i\}_{i=1}^{\infty}$. Since $X_T(\{\theta\}) \neq \{0\}$, we can choose a nonzero x in $X_T(\{\theta\})$. As $\{X_T(\{\theta\}) \mid 0 \neq \theta \in \sigma_p(T)\}$ forms a basic sequence,

$$x \notin \mathbb{V}\{X_T(\{\theta_i\}) \mid 0 \neq \theta_i \in \sigma_p(T) \text{ and } \theta_i \neq \theta\}.$$

But the family $\{M_i\}_{i=1}^{\infty}$ is contained in the family

$$\{X_T(\{\theta_i\}) \mid 0 \neq \theta_i \in \sigma_p(T) \text{ and } \theta_i \neq \theta\}$$

and $\bigvee_{i=1}^{\infty} M_i = H$, $\{M_i\}_{i=1}^{\infty}$ being a basic sequence. Thus we arrive at the contradiction that $x \notin H$. This completes the proof.

We close this paper by making one more observation on the operators of class $\ensuremath{\mathcal{C}}_{_{\ensuremath{\mathcal{OS}}}}$.

THEOREM 6. If K is in C, then K^* is also in C.

Proof. Suppose $KB = BT_1$ and $AK = T_1A$ for some quasi-invertible operators A and B where T_1 is a spectral operator whose scalar part N_1 is normal compact and injective (such T_1 exists as $K \in C$). If $0 \neq \lambda_i \in \sigma_p(K^*)$ then $R_i^{K^*} = X_{K^*}(\{\lambda_i\})$ and $K^*A^* = A^*T_1^*$, $B^*K^* = T_1^*B^*$ imply that $R_i^{K^*} = A^*X_{T_1^*}(\{\lambda_i\})$ (note that A, B are also quasiinvertible). Now

$$\begin{split} x_{T_{1}^{\star}}(\{\lambda_{i}\}) &= x_{N_{1}^{\star}}(\{\lambda_{i}\}) \\ &= N(N_{1}^{\star} - \lambda_{i}) \\ &= N(N_{1} - \lambda_{i}^{\star}) \\ &= X_{N_{1}}(\{\lambda_{i}^{\star}\}) \\ &= x_{T_{1}}(\{\lambda_{i}^{\star}\}) \end{split}$$

Thus $R_i^{K^*} = A^* X_{T_1}(\{\lambda_i^*\})$.

As $\{X_{T_{1}}(\{\lambda_{i}^{*}\}) \mid 0 \neq \lambda_{i} \in \sigma_{p}(K^{*})\}$ forms a basic sequence, we can show

that

$$\bigvee_{i=1}^{\infty} R_i^{K^*} = H .$$

If
$$x \in \bigvee_{k=i}^{\infty} R_i^{K^*}$$
 $(i = 1, 2, 3, ...)$, then

$$B^*x \in \bigvee_{k=i}^{\infty} B^*R_k^{K^*} = \bigvee_{k=i}^{\infty} B^*A^*X_{T_1^*}(\{\lambda_k\})$$

$$\subseteq \bigvee_{k=i}^{\infty} X_{T_1^*}(\{\lambda_k\}) \quad (i = 1, 2, ...)$$

as B^*A^* commutes with T_1^* and $X_{T_1^*}(\{\lambda_k\})$ is hyperinvariant subspace for T_1^*

 T_{1}^{*} .

Now

$$X_{T_{1}^{\star}}(\{\lambda_{k}\}) = X_{T_{1}}(\{\lambda_{k}^{\star}\})$$

So

$$B^*x \in \bigcap_{i=1}^{\infty} \left(\bigvee_{k=i}^{\infty} X_{T_1}(\{\lambda_k^*\}) \right) .$$

This last intersection is $\{0\}$ as in Theorem 1. Hence x = 0. Therefore $K^* \in C$.

COROLLARY 5. It $T \in C_{as}$, then T^* also belongs to C_{as} .

Proof. Since T is quasi-similar to $K \in C$, T^* is quasi-similar to K^* but by Theorem 6, $K^* \in C$. This completes the proof.

References

- [1] Nilima N. Chourasia and Kirti K. Oberai, "On Weyl's theorem", submitted.
- [2] Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators (Gordon and Breach, New York, London, Paris, 1968).
- [3] Nelson Dunford and Jacob T. Schwartz, *Linear operators*. Part I: *General theory* (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
- [4] Nelson Dunford and Jacob T. Schwartz, Linear operators. PartIII: Spectral operators (Pure and Applied Mathematics, 7. Wiley-Interscience [John Wiley & Sons], New York, London, Sydney, 1971).
- [5] Laurence Fialkow, "A note on quasisimilarity II", Pacific J. Math. 70 (1977), 151-162.
- [6] Walter Rudin, Functional analysis (Tata McGraw-Hill, New Delhi, 1974).

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat, India.