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DEPENDENT AUTOMORPHISMS IN PRIME RINGS

MATEJ BREŠAR, W. S. MARTINDALE, 3RD, AND C. ROBERT MIERS

ABSTRACT. For each n ½ 4 we construct a class of examples of a minimal C-
dependent set of n automorphisms of a prime ring R, where C is the extended centroid
of R. For n ≥ 4 and n ≥ 5 it is shown that the preceding examples are completely
general, whereas for n ≥ 6 an example is given which fails to enjoy any of the nice
properties of the above example.

1. Introduction. Let R be a prime ring with extended centroid C, central closure
A ≥ RC, and symmetric ring of quotients Q. We note that the ring End(Q) of endomor-
phisms of (Q, +) is a right C-space. Let G ≥ Aut(R), the group of automorphisms of R,
and let Gi be the normal subgroup of X-inner automorphisms of R. We recall that g 2 G
is said to be X-inner if there exists an invertible element s in Q such that xg ≥ sxs�1

for all x 2 R. Such an element s is called a normalizing element for R and the set of all
such s will be denoted by N. We let G0 be a set of representatives of G modulo Gi. It is
well-known (see, e.g., [B, Prop. 2.5.3]) that any g 2 G can be extended uniquely to an
automorphism of Q and so we have G � Aut(Q) � End(Q).

A set S ≥ fg1, g2, . . . , gng of n distinct elements of G is a dependent set if there exist
ï1,ï2, . . . ,ïn 2 C, not all zero, such that

nX
i≥1

giïi ≥ 0.

If each ïi is nonzero then we shall say that S is a nontrivial dependent set. If no proper
subset of S is a dependent set we shall say that S is a minimal dependent set. Clearly
any minimal dependent set is nontrivial. It is also natural at this point to define S ≥
fg1, g2, . . . , gng to be equivalent to T ≥ fh1, h2, . . . , hng if there exists g 2 G such that
hi ≥ ggi, i ≥ 1, 2, . . . , n. Clearly the properties of dependence, nontrivial dependence,
and minimal dependence are each invariant under this relation, with the coefficients ïi

remaining unchanged.
Before outlining our paper, we shall mention a few words of motivation. Certainly

one should begin by citing the well-known theorem of Artin that any set of distinct auto-
morphisms of a field C is independent over C (see [B, Theorem 7.6.6], for a more general
result). Thus in our situation, if R is commutative, there are no dependent sets of automor-
phisms. Next, at least two special cases of linearly dependent automorphisms of prime
rings have already been treated in the literature. The first one is the case of algebraic
automorphisms (see, e.g., [B, pp. 371–374]). The second one is the case when g, h 2 G
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satisfy g + g�1 ≥ h + h�1. The problem of characterizing automorphisms g, h satisfying
this identity has been considered extensively in von Neumann and CŁ algebras (see, e.g.,
[A] and references given there), and has recently been solved for prime rings [C].

In Section 2 we use the Kharchenko theory of generalized identities with automor-
phisms to reduce the study of dependent sets of automorphisms to the situation where
the automorphisms are X-inner. We point out (Theorem 2.4) that dependent sets of 2
or 3 automorphisms cannot exist, and from this we conclude (Corollary 2.5) that for
4 � n � 7 any nontrivial dependent set g1, g2, . . . , gn is equivalent to 1, h2, . . . , hn, hi

X-inner.
In Section 3 we construct, for each n ½ 2, a class of examples of minimal dependent

sets of n + 2 automorphisms, namely, if s 2 N is algebraic over C of degree n then the set

1, inn(s), inn(s� ã1), . . . , inn(s � ãn)

is a minimal dependent set for appropriate ã1,ã2, . . . ,ãn 2 C. Theorem 3.2 gives a
precise statement of this result.

In Section 4 we are able to characterize minimal dependent sets of automorphisms
when n ≥ 4 or n ≥ 5 (Theorem 4.1 and Theorem 4.2), namely, any such minimal
dependent set must be of the form given by Theorem 3.2.

In Section 5 we present an example of a minimal dependent set S of 6 inner automor-
phisms which fails to have the nice properties of the examples given by Theorem 3.2,
e.g., S is not a commuting set and not all of its elements are algebraic. This indicates that
the problem of characterizing minimal sets of n automorphisms may be a challenging
one for n ½ 6.

2. Reduction to X-inner automorphisms. In approaching the study of dependent
set of automorphisms of a prime ring R, we will need to make use of Kharchenko’s theory
of generalized identities with automorphisms. A complete account of this theory is given,
e.g., in [B, Chapter 7], but we will only need the following special case. Let X be a single
indeterminate, let the Cartesian product of fXg and G be written suggestively as XG, and
let ChXGi be the free C-algebra on the set XG. One can then form the coproduct

QChXGi ≥ Q q
C

ChXGi;

this is the so-called “home” for generalized identities with automorphisms. We recall that
û 2 QChXGi is called a T-identity on R if û is mapped to 0 under all substitutions of the
form

X ! x, Xg ! xg, x 2 R, g 2 G.

We are in fact only interested in a piece of QChXGi, namely, the (Q, Q)-bimodule QXG0Q
of so-called linear reduced elements. In this situation we have available a powerful the-
orem of Kharchenko [B, Theorem 7.5.6] a special case of which we state as

REMARK 2.1. If û 2 Q XG0Q is a T-identity on R, then û ≥ 0.
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We are now in a position to begin our analysis of dependent sets of automorphisms of
R. We first make note of the well-known coset decomposition of G relative to Gi. This
results from the following equivalence relation: for g, g0 2 G, g � g0(mod Gi) if g0 ≥ gh
for some h 2 Gi. Now let g1, g2, . . . , gn be any set of elements of G. We sort these into
r nonoverlapping subsets, each subset lying in a distinct coset. We will refer to r as the
coset number of g1, g2, . . . , gn. Thus, with suitable reordering, these elements may be
listed as follows:

(2. 1) g1h11, . . . , g1h1k1 ; g2h21, . . . , g2h2k2 ; . . . ; grhr1, . . . , grhrkr

where hij ≥ inn(sij) 2 Gi, g1, g2, . . . , gr distinct representatives of G modulo Gi.
We assume now that we have given a dependent set of n distinct automorphisms of R

written in the form (2.1). This means that

k1X
j≥1
ï1js1jx

g1 s�1
1j +

k2X
j≥1
ï2js2jx

g2s�1
2j + Ð Ð Ð +

krX
j≥1
ïrjsrjx

gr s�1
rj ≥ 0

for all x 2 R, where the ïij’s are appropriate elements of C. In QXG0 Q we now set

û ≥
k1X

j≥1
ï1js1jX

g1 s�1
1j + Ð Ð Ð +

krX
j≥1
ïrjsrjX

grs�1
rj .

By Remark 2.1 we conclude that û is the zero element of QXG0 Q which means that

kiX
j≥1
ïijsijXgi s�1

ij ≥ 0, i ≥ 1, 2, . . . , r

or, equivalently,
kiX

j≥1
ïijsij


C
s�1

ij ≥ 0, i ≥ 1, 2, . . . , r.

For r ≥ 1 we restate the preceding observations.

REMARK 2.2. If g1, g2, . . . , gn is a dependent set whose coset number is 1 then g1, g2,
. . . , gn is equivalent to h1, h2, . . . , hn where hi ≥ inn(si) are X-inner and h1 ≥ 1. Further-
more the dependency is given by

ï1s1 
 s�1
1 + ï2s2 
 s�1

2 + Ð Ð Ð + ïnsn 
 s�1
n ≥ 0.

Since the coset number of any minimal dependent set is clearly 1 we have

REMARK 2.3. Any minimal dependent set is equivalent to f1, h2, . . . , hng, hi ≥
inn(si) X-inner.

In view of [D, Corollary 5C] it follows from Remark 2.3 that distinct automorphisms
of the free noncommutative algebra over a field are independent.

We proceed now to examine some low order cases.
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THEOREM 2.4. No set of 2 or 3 distinct automorphisms of R can be dependent.

PROOF. We first assume that g1, g2 are dependent, i.e., g2 ≥ g1ï, ï 2 C. Pick any
a, b 2 R such that ab (and hence ag1 bg1 ) is nonzero. From

ïag1 bg1 ≥ ï(ab)g1 ≥ (ab)g2 ≥ ag2bg2 ≥ ï2ag1bg1

we conclude that ï2 ≥ ï, whence the contradiction ï ≥ 1.
Next we assume that g1, g2, g3 are dependent. Clearly the coset number is 1 and by

Remark 2.2 we have the following tensor product relation

1
 1 + ï2s2 
 s�1
2 + ï3s3 
 s�1

3 ≥ 0

where s2, s3 2 N, 1, s2, s3 are pairwise C-independent, and ï2, ï3 are nonzero elements
of C. It follows that s3 ≥ ã + ås2, ã, å nonzero elements of C, and so (2.2) may be
rewritten as

1
 (1 + ï3ãs�1
3 ) + s2 
 (ï2s�1

2 + ï3ås�1
3 ) ≥ 0.

This implies that 1 + ï3ãs�1
3 ≥ 0, whence the contradiction s�1

3 2 C.

COROLLARY 2.5. Any nontrivial dependent set g1, g2, . . . , gn, where 4 � n � 7, is
equivalent to 1, h2, . . . , hn, hi X-inner.

PROOF. If the coset number r Ù 1 then there is a dependent set of at most 3 elements.
But this is ruled out by Theorem 2.4. The conclusion then follows from Remark 2.2.

3. A class of minimal dependent sets. Our aim in this section is to produce for
each n ½ 2 a class of examples of a minimal dependent set of n + 2 automorphisms. In
order to make this construction we will need the following “inverse” formula.

LEMMA 3.1. Let s be an invertible element of Q which is algebraic of degree n over
C (thus s satisfies a polynomial f (X) ≥ 1 �

Pn
i≥1 åiXi, åi 2 C, ån Â≥ 0). Let ã 2 C be

such that f (ã) Â≥ 0. Then s� ã is invertible with

(s� ã)�1 ≥
1

f (ã)

nX
i≥1
åi(si�1 + ãsi�2 + Ð Ð Ð + ãi�1).

PROOF. For i ≥ 1, 2, . . . , n we may write

si ≥ (s� ã)(si�1 + ãsi�2 + Ð Ð Ð + ãi�1) + ãi.

Then we have

1 ≥
nX

i≥1
åis

i ≥ (s� ã)
nX

i≥1
åi(si�1 + ãsi�2 + Ð Ð Ð + ãi�1) +

nX
i≥1
åiãi

from which the formula for (s � ã)�1 easily follows.
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THEOREM 3.2. Let R be a prime ring and let s 2 N such that s is algebraic over C
of degree n (thus s satisfies f (X) ≥ 1 �

Pn
i≥1 åiXi, åi 2 C, ån Â≥ 0). Let ã1,ã2, . . . ,ãn

be distinct nonzero elements of C such that for each i ≥ 1, 2, . . . , n s � ãi 2 N, and
let gi ≥ inn(s � ãi). Then 1, g0 ≥ inn(s), g1, g2, . . . , gn is a minimal dependent set of
automorphisms of R.

PROOF. We must show that there is a dependency

(3. 1) 1ñ + g0ï0 + g1ï1 + Ð Ð Ð + gnïn ≥ 0, ñ,ïi 2 C

with the required properties but no dependency of any proper subset of 1, g0, g1, . . . , gn.
Using the formula for (s � ãj)�1 given by Lemma 3.1 we see that the tensor product
formulation of (3.1) is

(3. 2)

0 ≥ ñ1 
 1 + ï0s

nX

i≥1
åis

i�1 +
nX

j≥1
ïj(s� ãj)



1

f (ãj)

nX
i≥1
åi(si�1 + ãjs

i�2 + Ð Ð Ð + ãi�1
j )

The right hand side of (3.2) can be expanded and rewritten as a C-linear combination of
the 2n terms

(3. 3) 1
 1, 1
 s, . . . , 1
 sn�1, s
 1, s
 s, . . . , s
 sn�1.

Since 1, s, . . . , sn�1 are C-independent the terms in (3.3) are C-independent, and so the
coefficients of these terms must each be 0. We write these resulting 2n homogeneous
equations in n + 2 unknowns ñ,ï0,ï1, . . . ,ïn in the form of a 2n ð (n + 2) matrix (the
rows being in the same order as the terms in (3.3)):
(3. 4)2
66666666666666664

1 0 �ã1
f (ã1) (å1 + å2ã1 + Ð Ð Ð + ånãn�1

1 ) Ð Ð Ð �ãn
f (ãn) (å1 + å2ãn + Ð Ð Ð + ånãn�1

n )

0 0 �ã1
f (ã1) (å2 + å3ã1 + Ð Ð Ð + ånãn�2

1 ) Ð Ð Ð �ãn
f (ãn) (å2 + å3ãn + Ð Ð Ð + ånãn�2

n )
...

...
...

...
0 0 �ã1

f (ã1)ån Ð Ð Ð �ãn
f (ãn)ån

0 å1
1

f (ã1) (å1 + å2ã1 + Ð Ð Ð + ånãn�1
1 ) Ð Ð Ð 1

f (ãn) (å1 + å2ãn + Ð Ð Ð + ånãn�1
n )

...
...

...
...

0 ån
1

f (ã1)ån Ð Ð Ð 1
f (ãn)ån

3
77777777777777775

We shall show that (3.4) has rank � n + 1, and thus there is a nontrivial solution, i.e.,
1, g0, g1, . . . , gn is a dependent set.

By applying a series of elementary row operations in a methodical way to (3.4) one
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arrives at the matrix

(3. 5)

2
6666666666666666666664

1 0
�ãn

1ån

f (ã1) Ð Ð Ð �ãn
nån

f (ãn)
0 0 0 Ð Ð Ð 0
...

...
...

...
...

...
...

...
0 0 0 Ð Ð Ð 0
0 0 1

f (ã1)ã
n�1
1 ån Ð Ð Ð 1

f (ãn)ã
n�1
n ån

...
...

... Ð Ð Ð
...

0 0 1
f (ã1)ã1ån Ð Ð Ð 1

f (ãn)ãnån

0 ån
1

f (ã1)ån Ð Ð Ð 1
f (ãn)ån

3
7777777777777777777775

.

Clearly the above matrix has rank � n + 1.
Our next task is to show that any n + 1 of the automorphisms 1, g0, g1, . . . , gn form

an independent set. This is equivalent to showing that if any single column of the above
matrix (3.5) is deleted the resulting 2nð (n + 1) matrix has rank n + 1. No matter which
column is omitted we claim that the (n + 1)ð (n + 1) submatrix consisting of row 1 plus
rows n+1 through 2n has determinant Â≥ 0. Indeed, if either column 1 or 2 is omitted then
there is an obvious nðn Vandermonde determinant. If some other column is omitted then
the (n�1)ð (n�1) submatrix consisting of rows n +1 through 2n�1 is a Vandermonde
matrix.

We remark that in Theorem 3.2 the condition s � ã 2 N (provided f (ã) Â≥ 0) is
always satisfied if R ≥ Q. However, if R Â≥ Q it does not always hold, as shown by
the following concrete example (due to Bergman, see [D, Section 4]). Let R ≥ Fhx, yi
subject to x2 ≥ 1 ≥ y2. Then the “exchange” automorphism õ: x $ y is X-inner, given
by õ ≥ inn(s), s ≥ x + y, but for any ã Â≥ 0, s� ã Û2 N.

4. Results for n ≥ 4 and n ≥ 5. In this section we first show that any nontrivial
dependent set of 4 automorphisms of a prime ring R is not only a minimal dependent
set but must in fact be equivalent to the example given by Theorem 3.2. Without loss of
generality, therefore, we are considering the equation

(4. 1) 1
 1 + ï2s2 
 s�1
2 + ï3s3 
 s�1

3 + ï4s4 
 s�1
4 ≥ 0

where 1, s2, s3, s4 are pairwise independent elements of N and ï2, ï3, ï4 are nonzero
elements of C. Suppose 1, s2, s3 are C-independent. Thus we may write s4 ≥ ã+ås2+çs3,
ã,å, ç 2 C, and rewrite (4.1) as

(4. 2) 1
 (1 + ãï4s�1
4 ) + s2 
 (ï2s�1

2 + åï4s�1
4 ) + s3 
 (ï3s�1

3 + çï4s�1
4 ) ≥ 0.

An immediate contradiction results since at least one of ã, å, ç must be nonzero. There-
fore, without loss of generality, we may assume that

(4. 3) s3 ≥ ã + ås2, s4 ≥ ç + és2
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where each of ã, å, ç, é is a nonzero element of C. We note that s2, s3, s4 commute with
each other. Using (4.3) we now rewrite (4.1) as

(4. 4) 1
 (1 + ãï3s�1
3 + çï4s�1

4 ) + s2 
 (ï2s�1
2 + åï3s�1

3 + éï4s�1
4 ) ≥ 0.

From (4.4) we see that

(4. 5) 1 + ãï3s�1
3 + çï4s�1

4 ≥ 0

whereupon multiplication of (4.5) by s3s4 yields

(4. 6) s3s4 + ãï3s4 + çï4s3 ≥ 0.

Substituting (4.3) in (4.6) we have

(ã + ås2)(ç + és2) + ãï3(ç + és2) + çï4(ã + ås2) ≥ 0

and rearranging terms we have

åçs2
2 + (ãé + åç + ãï3é + çï4å)s2 + (ãç + ãï3ç + ãï4ç) ≥ 0.

Thus s2 is algebraic of degree 2 over C. The conditions of Theorem 3.2 having now been
met, we have now proved

THEOREM 4.1. Any nontrivial dependent set of 4 automorphisms of a prime ring
R is a minimal dependent set and is equivalent to one of the form 1, g1, g3, g4, where
g1 ≥ inn(s), g3 ≥ inn(s � ã), g4 ≥ inn(s � å) are elements of Gi, ã,å distinct nonzero
elements of C, s algebraic of degree 2 over C.

A similar though somewhat more complicated result holds for n ≥ 5.

THEOREM 4.2. Any nontrivial dependent set S of 5 automorphisms of a prime ring
R is equivalent to 1, inn(s), inn(s3), inn(s4), inn(s5) where

(a) if S is not minimal then s3 ≥ s�ã, s4 ≥ s�å, s5 ≥ s�ç,ã, å, ç distinct nonzero
elements of C, s, s� ã, s� å, s� ç 2 N, s algebraic of degree 2 over C.

(b) if S is minimal, then either s3 ≥ s � ã, s4 ≥ s � å, s5 ≥ s � ç, s algebraic of
degree 3 over C or s�1

3 ≥ s�1 � ã, s�1
4 ≥ s�1 � å, s�1

5 ≥ s�1 � ç, s�1 algebraic
of degree 3 over C.

PROOF. As usual, without loss of generality, we may begin by considering the equa-
tion

(4. 7) 1
 1 + ï2s2 
 s�1
2 + ï3s3 
 s�1

3 + ï4s4 
 s�1
4 + ï5s5 
 s�1

5 ≥ 0

where 1, s2, s3, s4, s5 are pairwise independent elements of N and ï2, ï3, ï4, ï5 are
nonzero elements of C.

We first make the assumption that any 3-element subset f1, si, sjg of f1, s2, s3, s4, s5g
is a dependent set. In particular we may write

(4. 8) s3 ≥ ã1 + ã2s2, s4 ≥ å1 + å2s2, s5 ≥ ç1 + ç2s2
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where each of ãi, åi, çi, i ≥ 1, 2 is a nonzero element of C. We remark that the si’s
commute with each other. Substitution of (4.8) in (4.7) now yields

1
 (1 +ã1ï3s�1
3 +å1ï4s�1

4 +ç1ï5s�1
5 ) + s2
 (ï2s�1

2 +ã2ï3s�1
3 +å2ï4s�1

4 +ç2ï5s�1
5 ) ≥ 0

whence in particular

(4. 9) 1 + ã1ï3s�1
3 + å1ï4s�1

4 + ç1ï5s�1
5 ≥ 0.

Multiplication of (4.9) by s3s4s5 results in

(4. 10) s3s4s5 + ã1ï3s4s5 + å1ï4s3s5 + ç1ï5s3s4 ≥ 0.

Substituting (4.8) in (4.10) and expanding in powers of s2, we readily see that s2 is alge-
braic over C of degree � 3.

If S is a minimal dependent set we claim that s2 must be algebraic of degree 3 over
C. Indeed, suppose s2 is algebraic of degree 2. Without changing the original depen-
dency (4.7) we may replace s3 by s2 � ã and s4 by s2 � å for appropriate ã,å 2 C. But
now we know by Theorem 3.2 that 1, inn(s2), inn(s2�ã), inn(s2�å) is a dependent set,
in contradiction to the minimality of S. Therefore we must assume that s2 is algebraic of
degree 3. Again, replacing s3, s4, s5 by s2 �ã, s2 �å, s2 � ç for appropriate ã, å, ç, we
have thus established (b) in the present situation. Still in the present situation, if S is not
a minimal dependent set we claim that s2 must be algebraic of degree 2. Indeed, suppose
s2 is algebraic of degree 3. Replacing s3, s4, s5 by s2 �ã, s2 �å, s3 � ç, we obtain from
Theorem 3.2 the contradiction thatn

1, inn(s2), inn(s2 � ã), inn(s2 � å), inn(s2 � ç)
o

is a minimal dependent set. Thus in the present situation we have established (a).
We now examine the remaining case in which some subset f1, si, sjg, say f1, s2, s3g,

is C-independent. If 1, s2, s3, s4 are independent as well then from (4.7) we have s5 ≥
ã1 + ã2s2 + ã3s3 + ã4s4 and we may rewrite (4.7) as

(4. 11)
1
 (1 + ã1ï5s�1

5 ) + s2 
 (ï2s�1
2 + ã2ï5s�1

5 )

+ s3 
 (ï3s�1
3 + ã3ï5s�1

5 ) + s4 
 (ï4s�1
4 + ã4ï5s�1

5 ) ≥ 0

an obvious contradiction since, e.g., 1, s�1
5 are C-independent. Therefore we may write

s4 ≥ ã1 + ã2s2 + ã3s3, s5 ≥ å1 + å2s2 + å3s3

and replace (4.7) by

(4. 12)
1
 (1 + ã1ï4s�1

4 + å1ï5s�1
5 ) + s2 
 (ï2s�1

2 + ã2ï4s�1
4 + å2ï5s�1

5 )

+ s3 
 (ï3s�1
3 + ã3ï4s�1

4 + å3ï5s�1
5 ) ≥ 0.

From (4.12) we conclude that

(4. 13) f1, s�1
4 , s�1

5 g, fs�1
2 , s�1

4 , s�1
5 g, fs�1

3 , s�1
4 , s�1

5 g
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are each dependent sets. Using strongly the fact that any dependency among 3 ele-
ments of f1, s�1

2 , s�1
3 , s�1

4 , s�1
5 g requires each coefficient to be nonzero, we remark that

it follows from the dependencies in (4.13) that any 3-element subset f1, s�1
i , s�1

j g of
f1, s�1

2 , s�1
3 , s�1

4 , s�1
5 g is a dependent set. This brings us to the situation analogous to our

first assumption, with the s�1
i ’s now playing the role of the si’s. Thus we may write

s�1
3 ≥ ã1 + ã2s�1

2 , s�1
4 ≥ å1 + å2s�1

2 , s�1
5 ≥ ç1 + ç2s�1

2 .

If S is a minimal dependent set then s�1
2 is algebraic of degree 3 and, replacing s�1

3 , s�1
4 ,

s�1
5 by s�1

2 �ã, s�1
3 �å, s�1

4 �ç, we have established (b). If S is not a minimal dependent
set then s�1

2 is algebraic of degree 2. It follows that s�1
2 (and hence s�1

3 , s�1
4 , s�1

5 ) lies
in the C-span of f1, s2g, and we may then further conclude that s3, s4, s5 also lie in the
C-span of f1, s2g. Without loss of generality we may then write

s3 ≥ s2 � ã, s4 ≥ s2 � å, s5 ≥ s2 � ç

and so (a) has been established.

5. An example for n ≥ 6. We know by Remark 2.3 that any minimal dependent
set of automorphisms of a prime ring R is equivalent to a set of X-inner automorphisms.
Can one say more in general? One might conjecture that for every n ½ 4 the above
minimal dependent set of n X-inner automorphisms is in fact one of the examples given
by Theorem 3.2. Theorem 4.1 and Theorem 4.2 show that this conjecture is true in case
n ≥ 4 or n ≥ 5. A less demanding conjecture would be that the X-inner automorphisms
at least share some properties in common with the examples given by Theorem 3.1. For
instance, one could ask if each automorphism was algebraic and/or commuted with each
other. However, we now proceed to give an example of a minimal dependent set of 6
inner automorphisms not all of which are algebraic and which do not commute among
themselves.

Let R be any closed prime ring with 1 over C containing elements p, q such that
(a) p2 ≥ q2 ≥ �1
(b) 1, p, pq are C-independent
(c) 1, p, qp are C-independent
(d) [ pq, p] Â≥ 0
(e) pq is transcendental.

For example let R ≥ H1 q
R
H2, the coproduct of H1 andH2 over the reals R, where H1 ≥ H2

is the quaternions. It is well-known (see, e.g., [D, Theorem 5]) that R is a closed prime
ring over the reals R. We choose p 2 H1 with p2 ≥ �1, and q 2 H2, with q2 ≥ �1. Then
(b)–(e) follow easily from the fundamental properties of a coproduct. One next verifies
that the 6 elements

(5. 1) 1, pq, p + pq, p� 1, 2p� 1, 2p + pq

have, respectively, the inverses

1, qp, � 1
2 ( p� qp), � 1

2 ( p + 1), � 1
5 (2p + 1), � 1

5 (2p� qp).
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We now consider the 6 inner automorphisms of R determined by the elements in (5.1).
To show these are dependent we proceed to solve the following tensor product equation:

(5. 2)

ï1(1
 1) + ï2pq
 qp + ï3( p + pq) 

h
� 1

2 ( p � qp)
i

+ ï4( p � 1) 

h
� 1

2 ( p + 1)
i

+ ï5(2p � 1)

h
� 1

5 (2p + 1)
i

+ ï6(2p + pq)

h
� 1

5 (2p� qp)
i
≥ 0.

We rewrite (5.2) as

(5. 3)

1

"
ï1 +

ï4

2
( p + 1) +

ï5

5
(2p + 1)

#

+ p

"
�
ï3

2
( p � qp)�

ï4

2
( p + 1) �

2ï5

5
(2p + 1) �

2ï6

5
(2p� qp)

#

+ pq

"
ï2qp�

ï3

2
( p � qp)�

ï6

5
(2p� qp)

#
≥ 0.

By further expansion we may finally write (5.3) as a C-linear combination of the terms

1
 1, 1
 p, p
 1, p
 p, p
 qp, pq
 p, pq
 qp.

The coefficients of these seven terms must each equal 0, and so the solution of (5.2) is
equivalent to solving a homogeneous system of seven equations in six unknowns. We
note, however, that the coefficient of 1 
 p is ï4

2 + 2ï5
5 and the coefficient of p 
 1 is

�ï4
2 � 2ï5

5 . We also note that the coefficient of pq
 p is �ï3
2 � 2ï6

5 while the coefficient
of p 
 qp is ï3

2 + 2ï6
5 . Therefore the equations corresponding to p 
 1 and pq 
 p are

redundant, and so the solution of (5.2) in fact reduces to solving five equations in six
unknowns, which we write down as the following 5ð 6 matrix whose rows correspond
respectively to the terms 1
 1, 1
 p, p
 p, p
 qp, pq
 qp:

2
66666664

1 0 0 1
2

1
5 0

0 0 0 1
2

2
5 0

0 0 � 1
2 � 1

2 � 4
5 � 4

5
0 0 1

2 0 0 2
5

0 1 1
2 0 0 1

5

3
77777775

.

First, it is clear that there is a nontrivial solution (five equations in six unknowns) and so
the six automorphisms are dependent. Secondly, one may easily check that removal of
any one column (i.e., setting any particular ïj ≥ 0) gives a 5 ð 5 matrix of rank 5, and
hence no proper subset of the original six automorphisms is a dependent set.
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462 M. BREŠAR, W. S. MARTINDALE AND C. ROBERT MIERS
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