BULL. AUSTRAL. MATH. SOC. Vol. 62 (2000) [141-148]

SOME ENGEL CONDITIONS ON INFINITE SUBSETS OF CERTAIN GROUPS

Alireza Abdollahi

Let k be a positive integer. We denote by $\mathcal{E}_k(\infty)$ the class of all groups in which every infinite subset contains two distinct elements x, y such that $[x_{,k} y] = 1$. We say that a group G is an \mathcal{E}_k^* -group provided that whenever X, Y are infinite subsets of G, there exists $x \in X, y \in Y$ such that $[x_{,k} y] = 1$. Here we prove that:

- (1) If G is a finitely generated soluble group, then $G \in \mathcal{E}_3(\infty)$ if and only if G is finite by a nilpotent group in which every two generator subgroup is nilpotent of class at most 3.
- (2) If G is a finitely generated metabelian group, then $G \in \mathcal{E}_k(\infty)$ if and only if $G/Z_k(G)$ is finite, where $Z_k(G)$ is the (k + 1)-th term of the upper central series of G.
- (3) If G is a finitely generated soluble $\mathcal{E}_k(\infty)$ -group, then there exists a positive integer t depending only on k such that $G/Z_t(G)$ is finite.
- (4) If G is an infinite \mathcal{E}_k^* -group in which every non-trivial finitely generated subgroup has a non-trivial finite quotient, then G is k-Engel. In particular, G is locally nilpotent.

1. INTRODUCTION AND RESULTS

Paul Erdös posed the following question [16]: Let G be an infinite group. If there is no infinite subset of G whose elements do not mutually commute, is there then a finite bound on the cardinality of each such set of elements?

The affirmative answer to this question was obtained by B.H. Neumann who proved in [16] that a group is centre-by-finite if and only if every infinite subset of the group contains two different commuting elements.

Further questions of a similar nature, with slightly different aspects, have been studied by many people (see [1, 2, 3, 4, 5, 6, 7, 13, 14]).

For a group G we denote by $Z_n(G)$ and $\gamma_n(G)$, respectively, the (n + 1)-th term of the upper central series and the *n*-th term of the lower central series of G. For $x, y, x_1, \ldots, x_n \in G$ we write

$$[x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2, \quad [x_1, \ldots, x_n] = [[x_1, \ldots, x_{n-1}], x_n],$$

Received 25th October, 1999

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

[2]

$$[x_{,0} y] = x.$$
 $[x_{,n} y] = [[x_{,n-1} y], y].$

Recall that a group G is said to be n-Engel if [x, y] = 1 for all x, y in G. For k a positive integer, let \mathcal{N}_k be the class of nilpotent groups of class at most k; let \mathcal{F} be the class of finite groups and \mathcal{N} be the class of all nilpotent groups. We denote by (\mathcal{N}, ∞) $((\mathcal{N}_k, \infty))$ the class of all groups in which every infinite subset contains two distinct elements x, y such that $\langle x, y \rangle$ is nilpotent (nilpotent of class at most k, respectively). We also denote by $\mathcal{E}_k(\infty)$ $(\mathcal{E}(\infty))$ the class of all groups in which every infinite subset contains two distinct elements x, y such that [x, k y] = 1 ([x, y] = 1 for some positive integer n depending on x, y, respectively) and denote by $\mathcal{N}_k^{(2)}$ the class of all groups in which every 2-generator subgroup is nilpotent of class at most k.

Lennox and Wiegold [13] proved that a finitely generated soluble group G is in (\mathcal{N}, ∞) if and only if G is $\mathcal{F}\mathcal{N}$. In [3] and [4] Delizia proved that a finitely generated soluble group or finitely generated residually finite group G is in (\mathcal{N}_2, ∞) if and only if $G/Z_2(G)$ is finite. Longobardi and Maj [14] proved that a finitely generated soluble group G belongs to $\mathcal{E}(\infty)$ if and only if G is $\mathcal{F}\mathcal{N}$. Also it is proved in [14] that a finitely generated soluble group G belongs to $\mathcal{E}(\infty)$ if and only if G consisting of all right 2-Engel elements of G. Abdollahi [1] improved the later result by proving that a finitely generated soluble group G belongs to $\mathcal{E}_2(\infty)$ if and only if $G/Z_2(G)$ is finite. In fact this result shows that on the class of finitely generated soluble groups, we have $\mathcal{E}_2(\infty) = (\mathcal{N}_2, \infty)$. Here we prove that on the class of finitely generated soluble groups, we also have $\mathcal{E}_3(\infty) = (\mathcal{N}_3, \infty)$, by proving

THEOREM 1. Let G be a finitely generated soluble group. Then $G \in \mathcal{E}_3(\infty)$ if and only if G is $\mathcal{FN}_3^{(2)}$.

Abdollahi and Taeri [2] studied the class (\mathcal{N}_k, ∞) and proved that a finitely generated soluble group G is in (\mathcal{N}_k, ∞) if and only if G is $\mathcal{FN}_k^{(2)}$. Also, they proved that a finitely generated metabelian group G is in (\mathcal{N}_k, ∞) if and only if $G/Z_k(G)$ is finite. Here we extend the later result to the class of $\mathcal{E}_k(\infty)$ (Theorem 2, below). In [2] it is remarked that if $G/Z_k(G)$ is finite then G is $\mathcal{FN}_k^{(2)}$ but the converse is false for $k \ge 3$, even if G is finitely generated and soluble of derived length three. The examples cited, which are due to Newman [17], are torsion-free nilpotent.

THEOREM 2. Let G be a finitely generated metabelian group. Then $G \in \mathcal{E}_k(\infty)$ if and only if $G/Z_k(G)$ is finite.

By [2, Lemma 2], if G is a torsion-free nilpotent (\mathcal{N}_k, ∞) -group then G belongs to $\mathcal{N}_k^{(2)}$, and so G is k-Engel. By a result of Zel'manov [20], G is nilpotent of class at most f(k), where f(k) is a function of k and independent of the number of generators of G. We prove a similar result about the torsion-free nilpotent groups in the class $\mathcal{E}_k(\infty)$ (Lemma 4, below), from which we obtain

Engel conditions

THEOREM 3. Let G be a finitely generated soluble group which belongs to $\mathcal{E}_k(\infty)$. Then there exists a positive integer t depending only on k such that $G/Z_t(G)$ is finite.

Let us recall that a group G is said to be locally graded whenever every finitely generated non-trivial subgroup of G has a non-trivial finite quotient. Delizia, Rhemtulla and Smith [5] recently showed that if G is a finitely generated locally graded group and $G \in (\mathcal{N}_k, \infty)$ then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite. We have been unable to prove a result similar to that of [5] about finitely generated locally graded $\mathcal{E}_k(\infty)$ -groups, but we obtain a result as follows.

Let k be a positive integer. We say that a group G is an \mathcal{E}_k^* -group provided that whenever X, Y are infinite subsets of G, there exists $x \in X$, $y \in Y$ such that $[x_{,k} y] = 1$. In [18], Puglisi and Spiezia proved that every infinite locally finite or locally soluble \mathcal{E}_k^* -group is a k-Engel group. We improve this result as follows.

THEOREM 4. Let G be an infinite locally graded \mathcal{E}_k^* -group. Then G is k-Engel. In particular, G is locally nilpotent.

2. Proofs

We need the following easy lemma in the proofs of both Theorems 1 and 2.

LEMMA 1. Let G be a group. Suppose that $y, x_1, \ldots, x_k \in Z_k(G)$ and $a, b, c, d \in Z_4(G)$. Then for all $i \in \{1, 2, \ldots, k\}$ and for all integers n.

- (1) $[x_1 \ldots, x_{i-1}, x_i y, x_{i+1}, \ldots, x_k] = [x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_k] \times [x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_k],$
- (2) $[x_1,\ldots,x_{i-1},x_i^n,x_{i+1},\ldots,x_k] = [x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_k]^n$

(3)
$$[a, b, c, d] = [b, a, c, d]^{-1}$$

Also

(i) If G is metabelian then for all $x_1, \ldots, x_k \in G$

$$[x_1, x_2, \ldots, x_k] = [x_2, x_1, x_3, \ldots, x_k]^{-1}.$$

(ii) For all permutation σ on the set $\{1, \ldots, k\}$, for all $a \in \gamma_2(G)$ and x_1, \ldots, x_k in G, $[a, x_1, x_2, \ldots, x_k] = [a, x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}]$.

PROOF: One can check the proofs of parts (1)-(3) of the lemma by some formulas of the commutator calculus. For the proofs of parts (i) and (ii) we note that $\gamma_2(G)$ is Abelian and [a, b, c] = [a, c, b] for all $a \in \gamma_2(G)$ and $b, c \in G$. Thus we use the later equality to permute the symbols in positions 3 to k of the commutator in the left hand side of (ii).

We use the following lemma for the proof of Theorem 1. In the proof of this lemma, we use a result of Gupta and Newman (see [10, Theorem 3.5]) which asserts that every *n*-generator 2-torsion-free third Engel group is nilpotent of class at most 2n - 1.

LEMMA 2. Every torsion-free nilpotent $\mathcal{E}_3(\infty)$ -group belongs to $\mathcal{N}_3^{(2)}$.

PROOF: Let H be a two-generator torsion-free nilpotent $\mathcal{E}_3(\infty)$ -group. By induction on the nilpotency class of H, we may assume $H = Z_4(H)$. We prove that H is 3-Engel and so by [10, Theorem 3.5], H is nilpotent of class at most 3. Let a, b be non-trivial elements of H; we show that [b, a, a, a] = 1. Consider the infinite subset $\{ab, a^2b, a^3b, \ldots\}$. Since $G \in \mathcal{E}_3(\infty)$, there exist distinct positive integers i, j such that $[a^ib, a^jb, a^jb, a^jb] = 1$. Therefore by Lemma 1 (parts (1)-(3))

$$\begin{split} 1 &= [a^{i}b, a^{j}b, a^{j}b, a^{j}b] = [a^{i}, b, a^{j}, a^{j}b][a^{i}, b, b, a^{j}b][b, a^{j}, a^{j}, a^{j}b][b, a^{j}, b, a^{j}b] \\ &= [a, b, a, a]^{ij^{2}}[a, b, a, b]^{ij}[a, b, b, a]^{ij}[a, b, b, b]^{i} \\ &\times [b, a, a, a]^{j^{3}}[b, a, a, b]^{j^{2}}[b, a, b, b]^{j}[b, a, b, a]^{j^{2}} \\ &= [b, a, a, a]^{-ij^{2}}[b, a, a, b]^{-ij}[a, b, b, a]^{ij}[a, b, b, b]^{i} \\ &\times [b, a, a, a]^{j^{3}}[b, a, a, b]^{j^{2}}[a, b, b, b]^{-j}[a, b, b, a]^{-j^{2}} \\ &= [b, a, a, a^{j^{3}-ij^{2}}b^{j^{2}-ij}][a, b, b, a^{ij-j^{2}}b^{i-j}] \\ &= ([b, a, a, a^{j^{2}}b^{j}][a, b, b, a^{j}b]^{-1})^{j^{-i}}. \end{split}$$

Since H is torsion-free, $[b, a, a, a^{j^2}b^j][a, b, b, a^jb]^{-1} = 1$, and so $[a, b, b, a]^j[b, a, a, a]^{j^2}[b, a, a, b]^j = [a, b, b, b]^{-1}$. By arguing as above on the infinite set $\{a^{j+1}b, a^{j+2}b, \ldots\}$ we get

$$[a, b, b, a]^{t}[b, a, a, a]^{t^{2}}[b, a, a, b]^{t} = [a, b, b, b]^{-1},$$

for some positive integer t > j. Therefore, by the last two equalities, we have $[b, a, a, a]^{t+j} = [a, b, b, a]^{-1}[b, a, a, b]^{-1}$.

By considering the infinite set $\{a^{t+1}b, a^{t+2}b, \ldots\}$ and arguing as before, we obtain an integer s > t such that $[b, a, a, a]^{s+j} = [a, b, b, a]^{-1}[b, a, a, b]^{-1}$.

Hence $[b, a, a, a]^{s+j} = [b, a, a, a]^{t+j}$ and so [b, a, a, a] = 1, this completes the proof.

PROOF OF THEOREM 1: By the result of [2], it suffices to prove that every finitely generated soluble $\mathcal{E}_3(\infty)$ -group G is $\mathcal{FN}_3^{(2)}$. By [14, Theorem 1], there exists a finite normal subgroup H of G such that G/H is nilpotent. Let T/H be the torsion subgroup of G/H. Then T is finite and G/T is a finitely generated torsion-free nilpotent group. Thus by Lemma 2, $G/T \in \mathcal{N}_3^{(2)}$ and the proof is complete.

COROLLARY 1. Let G be an n-generator soluble $\mathcal{E}_3(\infty)$ -group. Then $G/Z_{2n-1}(G)$ is finite. In particular, every two-generator soluble group G belongs to $\mathcal{E}_3(\infty)$ if and only if $G/Z_3(G)$ is finite.

PROOF: By Theorem 1, G has a finite normal subgroup T such that G/T is a torsion-free *n*-generator $\mathcal{N}_3^{(2)}$ -group. Thus by [10, Theorem 3.5], G/T is nilpotent of class at most 2n - 1. Therefore $\gamma_{2n}(G)$ is finite, and hence $G/Z_{2n-1}(G)$ is finite [11].

We need the following key lemma in the proof of Theorem 2. In the proof of this lemma, we use a result of Gruenberg (see [8, Theorem 1.10] or Gupta and Newman [9]),

Engel conditions

which implies that every torsion-free metabelian k-Engel group is nilpotent of class at most k.

LEMMA 3. Every torsion-free nilpotent metabelian group in $\mathcal{E}_k(\infty)$ is nilpotent of class at most k.

PROOF: Let G be a torsion-free nilpotent metabelian $\mathcal{E}_{k}(\infty)$ -group. By induction on the nilpotency class of G, we may assume $G = Z_{k+1}(G)$. We prove that G is a k-Engel group and then by a result of Gruenberg (see [8, Theorem 1.10] or Gupta and Newman [9]), G is nilpotent of class at most k. Let x and y be arbitrary non-trivial elements of G. Consider the infinite subset $\{x^n y \mid n \in \mathbb{N}\}$. Since $G \in \mathcal{E}_k(\infty)$ then there exist two distinct positive integers i, j such that $[x^i y_{,k} x^j y] = 1$. Then by Lemma 1 (parts (1), (2) and (i)) 1 = $[[x^i, y]_{k-1} x^j y] [[y, x^j]_{k-1} x^j y] = [[x, y]_{k-1} x^j y]^{i-j}$, and so $\left[[x,y]_{k-1}x^{j}y\right] = 1$. Therefore, by Lemma 1 (parts (1), (2), (i) and (ii)), we get

(I)
$$\prod_{r=0}^{k-1} \left[\left[[x, y]_{,r} x \right]_{,k-r-1} y \right]^{((k-1)!/r!(k-r-1)!)j^r} = 1.$$

Put $t_1 := j$, $K(k-1,r) = \left[[[x,y]_{,r}x]_{,k-r-1}y \right]$ and consider the infinite subset $\{x^n y \mid x^n y \mid x^n y \mid x^n y \in \mathbb{R}^n \}$ $n > t_1$. Then by arguing as above, there exists a positive integer $t_2 > t_1$ such that

(II)
$$\prod_{r=0}^{k-1} K(k-1,r)^{((k-1)!/r!(k-r-1)!)t_2^r} = 1.$$

Suppose that

$$M(r, a_1, \ldots, a_s) = \frac{(k-1)!}{r!(k-r-1)!} \sum_{i_1=s-2}^r \sum_{i_2=s-3}^{i_1-1} \cdots \sum_{i_{s-1}=0}^{i_{s-2}-1} a_1^{r-i_1-1} a_2^{i_1-i_2-1} a_3^{i_2-i_3-1} \cdots a_{s-1}^{i_{s-2}-i_{s-1}-1} a_s^{i_{s-1}},$$

and $N(r, a_1, \ldots, a_s) = (a_s - a_{s-1})M(r, a_1, \ldots, a_s)$, for all integers $s > 1, s-2 \leq r \leq k-1$ and a_1, \ldots, a_s . We note that

$$N(r, a_1, \ldots, a_{s+1}) = M(r, a_1, \ldots, a_{s-1}, a_{s+1}) - M(r, a_1, \ldots, a_s),$$

for all integers s > 1, $s - 2 \le r \le k - 1$ and a_1, \ldots, a_{s+1} . By (I) and (II), we have $\prod_{r=1}^{k-1} K(k-1,r)^{N(r,t_1,t_2)} = 1$, and since G is torsion-free, $\prod_{r=1}^{k-1} K(k-1,r)^{M(r,t_1,t_2)} = 1.$ We note that from arguing as before, there exists an integer $t_3 > t_2$ such that $\prod_{r=1}^{k-1} K(k-1,r)^{M(r,t_1,t_3)} = 1$. Now suppose, inductively, that there exists a sequence $t_1 < t_2 < t_3 < \cdots < t_{s-1} < t_s$ of positive integers such that

(*)
$$\prod_{r=s}^{k-1} K(k-1,r)^{M(r,t_1,\ldots,t_s)} = 1.$$

Also, there exists an integer $t_{s+1} > t_s$ such that

(**)
$$\prod_{r=s}^{k-1} K(k-1,r)^{M(r,t_1,\ldots,t_{s-1},t_{s+1})} = 1.$$

By (*) and (**), we have $\prod_{r=s}^{k-1} K(k-1,r)^{N(r,t_1,\ldots,t_s,t_{s+1})} = 1$. Since $N(r,t_1,\ldots,t_{s+1})$ has a factor of the form $t_{s+1} - t_s$ and G is torsion-free, $\prod_{r=s+1}^{k-1} K(k-1,r)^{M(r,t_1,\ldots,t_s,t_{s+1})} = 1$. Therefore, we have a sequence $t_1 < t_2 < \cdots < t_{k+1}$ of positive integers such that

$$\prod_{r=k-1}^{k-1} K(k-1,r)^{N(r,t_1,\dots,t_{k+1})} = K(k-1,k-1)^{N(k-1,t_1,\dots,t_{k+1})} = 1$$

But $N(k-1, t_1, \dots, t_{k+1}) = t_{k+1} - t_k > 0$ and $K(k-1, k-1) = [[x, y]_{k-1}x] = [y_{k}x]^{-1}$. Hence $[y_{k}x]^{-(t_{k+1}-t_k)} = 1$ and so $[y_{k}x] = 1$. This completes the proof.

PROOF OF THEOREM 2: If $G/Z_k(G)$ is finite then G is in (\mathcal{N}_k, ∞) and so G belongs to $\mathcal{E}_k(\infty)$. Conversely, by [14, Theorem 1], there exists a finite normal subgroup H of G such that G/H is nilpotent. Let T/H be the torsion subgroup of G/H; then T is finite and G/T is a torsion-free nilpotent metabelian group. Thus by Lemma 3, $\gamma_{k+1}(G) \leq T$ and so $\gamma_k(G)$ is finite. Hence $G/Z_k(G)$ is also finite [11].

To prove Theorem 3, we need the following key lemma, whose proof is similar to [15, Proposition 5].

LEMMA 4. Every torsion-free nilpotent $\mathcal{E}_k(\infty)$ -group has nilpotent class bounded by a function of k.

PROOF: Suppose that G is a torsion-free nilpotent $\mathcal{E}_k(\infty)$ -group. Let G be nilpotent of class c. Then $\gamma_{[c/2]}(G)$ is Abelian, where [c/2] equals (c+2)/2 if c is even and (c+1)/2if c is odd. Let A denote the isolator of $\gamma_{[c/2]}(G)$ in G. Then A is also Abelian since G is torsion-free. For any $1 \neq x \in A$ and $y \in G$, consider the infinite subset $\{xy, x^2y, x^3y, \ldots\}$. Since $G \in \mathcal{E}_k(\infty)$, there exists two distinct positive integers i, j such that $[x^iy_k x^jy] = 1$. Since A is a normal Abelian subgroup of G, we have

$$1 = [x^{i}y_{,k} x^{j}y] = [x^{i}_{,k} y] [[y, x^{j}]_{,k-1} y] = [x_{,k} y]^{i} [x_{,k} y]^{-j} = [x_{,k} y]^{i-j}.$$

Therefore $[x_{,k} y] = 1$, since G is torsion-free and $i - j \neq 0$. Hence, we have $[A_{,k} y] = 1$. Since G is torsion-free, it follows from a result of Zel'manov (see [20] p. 166) that A lies in $Z_{f(k)}(G)$, where f(k) is a function of k and independent of the number of generators of G. Thus the nilpotency class of G is at most [c/2] + f(k) and hence $c \leq 2(f(k) + 1)$.

PROOF OF THEOREM 3: By [14, Theorem 1], there exists a finite normal subgroup H of G such that G/H is a torsion-free nilpotent group. Thus by Lemma 4, there exists a positive integer t depending only on k such that $\gamma_{t+1}(G) \leq H$ and so $\gamma_{t+1}(G)$ is finite. Hence $G/Z_t(G)$ is also finite [11].

[6]

Following [12], we say that a group G is restrained if $\langle x \rangle^{\langle y \rangle} = \langle x^{y^i} | i \in \mathbb{Z} \rangle$ is finitely generated for all x, y in G.

REMARK 1. Note that an \mathcal{E}_k^* -group G with infinite centre Z is k-Engel. For, consider the infinite subsets xZ, yZ for any $x, y \in G$. There exist $z, t \in Z$ such that $[xz_{,k} yt] = 1$ and so $[x_{,k} y] = 1$.

LEMMA 5. Every \mathcal{E}_k^* -group is restrained.

PROOF: Let G be an \mathcal{E}_k^* -group and x, y in G. We must show that $H = \langle x \rangle^{\langle y \rangle}$ is finitely generated. Assume that y is of infinite order. Consider the two subsets $X = \{x^{y^n} \mid n \in \mathbb{N}\}$ and $Y = \{y^m \mid m \in \mathbb{N}\}$. If X is finite then the centre of $K := \langle x, y \rangle$ is infinite and so by Remark 1, K is k-Engel. Therefore, by [12, Lemma 1(i)], H is finitely generated. Thus, we may assume that X is infinite. Since $G \in \mathcal{E}_k^*$, there exist $n, m \in \mathbb{N}$ such that $[x^{y^n}, xy^m] = 1$ and so $[x, xy^m] = 1$. Thus, arguing as in [12, Lemma 1(i)], $\langle x \rangle^{\langle y^m \rangle}$ is finitely generated. Therefore $H = \langle x^{y^i} : |i| \leq km \rangle$. This completes the proof.

REMARK 2. We note that by [18, Remark 1.2], every infinite residually finite \mathcal{E}_{k}^{*} -group is k-Engel.

We are now ready to prove Theorem 4.

PROOF OF THEOREM 4: Let G be an infinite locally graded \mathcal{E}_k^* -group and suppose that $x, y \in G$. We must prove that [x, ky] = 1. Assume that there exists an infinite finitely generated subgroup H of G which contains x, y. Let R be the finite residual of H. Then H/R is a finitely generated residually finite group in \mathcal{E}_k^* and so, by Remark 2, H/R is k-Engel. Thus by a theorem of Wilson (see [19, Theorem 2]) H/R is nilpotent. By Lemma 5, H is restrained, therefore by repeated application of [12, Lemma 3], R is finitely generated. If R is finite then H is residually finite and so is k-Engel. Suppose, for a contradiction, that R is infinite. Since G is locally graded, R has a normal proper subgroup of finite index in R, so the finite residual subgroup T of R is proper in R. Therefore R/T is residually finite k-Engel group and so H/T is nilpotent-by-finite. Thus H/T is residually finite and $R \subseteq T$, a contradiction.

We may assume that every finitely generated subgroup of G containing x, y is finite. Thus there exists an infinite locally finite subgroup L which contains x, y and so by [18, Theorem B], L is k-Engel. Therefore in any case, $[x_{,k} y] = 1$ and this completes the first part of Theorem 4. By a result of Kim and Rhemtulla (see [12, Corollary 6]) which asserts that every locally graded bounded Engel group is locally nilpotent, G is locally nilpotent.

References

[1] A. Abdollahi, 'Finitely generated soluble groups with an Engel condition on infinite subsets', Rend. Sem. Mat. Univ. Padova 103 (2000) (to appear).

- [2] A. Abdollahi and B. Taeri, 'A condition on finitely generated soluble groups', Comm. Algebra 27 (1999), 5633-5638.
- [3] C. Delizia, 'Finitely generated soluble groups with a condition on infinite subsets', *Istit. Lombardo Accad. Sci. Lett. Rend. A* 128 (1994), 201-208.
- [4] C. Delizia, 'On certain residually finite groups', Comm. Algebra 24 (1996), 3531-3535.
- [5] C. Delizia, A. Rhemtulla and H. Smith, 'Locally graded groups with a nilpotency condition on infinite subsets', (to appear).
- [6] G. Endimioni, 'Groups covered by finitely many nilpotent subgroups', Bull. Austral. Math. Soc. 50 (1994), 459-464.
- [7] J.R.J. Groves, 'A conjecture of Lennox and Wiegold concerning supersoluble groups', J. Austral. Math. Soc. Ser. A 35 (1983), 218-228.
- [8] K.W. Gruenberg, 'The upper central series in soluble groups', Illinois J. Math. 5 (1961), 436-466.
- [9] N.D. Gupta and M.F. Newman, 'On metabelian groups', J. Austral. Math. Soc. 6 (1966), 362-368.
- [10] N.D. Gupta and M.F. Newman, 'Third Engel groups', Bull. Austral. Math. Soc. 40 (1989), 215-230.
- [11] P. Hall, 'Finite-by-nilpotent groups', Proc. Cambridge Philos. Soc. 52 (1956), 611-616.
- [12] Y.K. Kim and A. Rhemtulla, 'Weak maximality condition and polycyclic groups', Proc. Amer. Math. Soc. 123 (1995), 711-714.
- [13] J.C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 31 (1981), 459-463.
- [14] P. Longobardi and M. Maj, 'Finitely generated soluble groups with an Engel condition on infinite subsets', Rend. Sem. Mat. Univ. Padova 89 (1993), 97-102.
- [15] P. Longobardi, M. Maj and A. Rhemtulla, 'Groups with no free subsemigroups', Trans. Amer. Math. Soc. 347 (1995), 1419-1427.
- [16] B.H. Neumann, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
- [17] M.F. Newman, 'Some varieties of groups', J. Austral. Math. Soc. 16 (1973), 481-494.
- [18] O. Puglisi and L.S. Spiezia, 'A combinatorial property of certain infinite groups', Comm. Algebra 22 (1994), 1457-1465.
- [19] J.S. Wilson, 'Two-generator conditions in residually finite groups', Bull. London Math. Soc. 23 (1991), 239-248.
- [20] E.I. Zel'manov, 'On some problems of group theory and Lie algebras', Math. USSR-Sb.
 66 (1990), 159-168.

Department of Mathematics University of Isfahan Isfahan 81744 Iran e-mail: abdolahi@math.ui.ac.ir