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Abstract

Completely simple semigroups form a variety, (2S, of algebras with the operations of multiplication
and inversion. It is known that the mapping 'V-* (Tn§,TTV§), where § is the variety of all groups,
is an isomorphism of the lattice £(SS) of all subvarieties of SS onto a subdirect product of the lattice
of subvarieties of § and the interval [§, SS]. We consider embeddings of £(GS) into certain direct
products on the above pattern with rectangular bands, rectangular groups and central completely
simple semigroups in place of groups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 05, 20 M 07.

1. Introduction

Completely simple semigroups may be considered as algebras with the operation
of multiplication and the unary operation of inversion. As such they form a
variety (2S determined by a small set of simple axioms. The construction of the
free objects in CS by Clifford [2] and Rasin [10] makes it possible to study the
lattice £(CS) of varieties of completely simple semigroups in some detail, see
Rasin [10] and the authors [7], [8], [9]. This lattice turns out to be very complex,
but some progress has been made and certain ideals have been completely
determined. Another approach consists of considering certain endomorphisms of
the lattice. Thus in [7], it was proved that the mapping °V"^(Tn§ ,TVg) ,
where § is the variety of all groups, is a monomorphism of £(6§) onto a precisely
characterized subdirect product of £(§) and the interval [§, QS]. A related
mapping is studied in [8].
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288 Mario Petrich and Norman R. Reilly [2 ]

The first objective of this article is to consider two more embeddings of £(GS)
into certain subdirect products on the same pattern as explained above, with 91®
and "31(3, rectangular bands and rectangular groups, respectively, instead of §. In
[9], we have studied the variety Q consisting of all central completely simple
semigroups (those for which the product of pairs of idempotents lies in the centre
of the containing maximal subgroup). The second objective of this paper is to
show that £(CS) is isomorphic to a subdirect product of £(6) and [6, GS] by
means of a mapping analogous to the one mentioned above with groups. We have
characterized in [9] the lattice £(<2) of subvarieties of 6 in terms of the lattice
£(§). The variety (5 is thus the highest element of the lattice £(£S) for which the
lattice of subvarieties is completely determined modulo group varieties. Hence at
least the component £(6) of the subdirect decomposition of £(6S) mentioned
above may be considered as of known structure. The congruences induced by
these mappings are also explored and certain interesting consequences are de-
duced.

2. Preliminaries

In general, we use the notation and terminology of Howie [4] or Petrich [6]. In
particular, we adopt the notation in [6] for Rees matrix semigroups, and use the
description of congruences on a Rees matrix semigroup presented in [4]. In order
to minimize the typographical complexity we modify the standard notation for a
sandwich matrix and denote the (j, k)th entry by [j, k].

We will consistently use the following notation:
§ = the variety of all groups,
($,§ = the variety of all abelian groups,
9" = the variety of trivial groups,
•31® = the variety of all rectangular bands,
•51S = the variety of all rectangular groups (orthodox completely simple),
£ = the variety of all left zero semigroups,
61 = the variety of all right zero semigroups,
SS = the variety of all completely simple semigroups,
[&, %] — the interval of a lattice with minimum & and maximum $ ,
£ (T) = the variety of all subvarieties of a variety T of completely simple

semigroups,
End S = the semigroup of all endomorphisms of a semigroup 5,
5^ = the semigroup of all transformations on a set X.

Let N be a fully invariant subgroup of a free group on a countably infinite
number of generators and denote by %• the group variety corresponding to it.

N(G) = the least fully invariant subgroup H of the group G for which G/H E
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[3] Completely simple semigroups 289

LEMMA 2.1 [10]. Let S = 9H(7, G, A; P), where P is normalized. Let 9 E 5 / ,
w E End G, \p e ?fA fee swc/i that

( 1 ) [ A , / ] w = [ l ^ , l < p ] [ A ^ , l < p ] - 1 [ X i | / ) I ( p ] [ l ^ , / < p r I
 ( A E A . I E / ) .

r/ien 6 — 6(<p, u, ip) defined by

(l, g, X)0 = {iq>, [H, i<p]-\go)[W, \<p][W, lq>Y\ M)

is an endomorphism of S. Conversely, every endomorphism of S can be so written
uniquely.

A construction of the Rees matrix representation of a free completely simple
semigroup follows.

LEMMA 2.2 ([2], [10]). Let X= (x, | / G /} be a nonempty set, fix 1 e / and let
I' = I\{\}.Let

z={qi\i<=i}u{[j,k]\j,ker},

Fz be the free group on Z, and let P = ([j, k]) with [1, k] = [j, 1] = 1, the identity
of Fz. Then

F=<m,(I,Fz,I;P)

is a free completely simple semigroup over X, with embedding xt -»(/, qt, i),

NOTATION 2.3. We fix a countably infinite set X, and in addition to the above
notation, introduce

Fq=(q,\iei), Fp=([j,k]\j,ker),

the free subgroups of Fz generated by the sets {qt \ i G /} and {[j, k] \j, k e / ' } ,
respectively. We will consistently use the notation F = <DH(7, Fz, I; P) intro-
duced above.

We will need only fully invariant idempotent separating congruences, for they
are precisely the ones which correspond to the varieties in the interval [61®, GS].
In this context, the following special case of ([4], Lemma 4.19) is of particular
interest.

LEMMA 2.4. Let S = <D1L(/, G, A; P). If N is a normal subgroup of G, then pN

defined on S by

(i, g, \)pN(j, h, n) «* / =j, gh'x EN,\ = n,

is an idempotent separating congruence on S, and every such congruence is obtained
in this way. Writing P/N for the A X I matrix with the (j, k)th entry equal to the
(j, k)th entry of P modulo N, S/p is isomorphic to <31L(/, G/N, A; P/N).
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NOTATION 2.5. We will consistently use the notation pN introduced above. For
a variety T of completely simple semigroups, we denote by p (T) the fully
invariant congruence on F corresponding to CV. Also let

S(FZ) = {w E End Fz\ there exist <p, i// £ 3 , such that (1) holds},
&{Fp) = { « £ End Fp | there exist <p, \p £ % such that (1) holds}.

Hence &(FZ) consists precisely of endomorphisms of Fz that arise in associa-
tion with endomorphisms of F. The latter are uniquely determined by the
functions {qt\i El}-* Fz, <p, <// £ 5"7 independently. Furthermore, S(/^) consists
precisely of endomorphisms of Fp that extend to elements of &(FZ).

LEMMA 2.6 [10]. Let N be a normal subgroup of Fz. Then pN is fully invariant if
and only if Nu C N for all w £ S(FZ).

DEFINITION 2.7. A normal subgroup of Fz (respectively, Fp) is ^-invariant if it
is invariant under all w £ £(FZ) (respectively, &(Fp)). The set of all S-invariant
subgroups of Fz (respectively, Fp) will be denoted by 91 (respectively, 9t ). For
any N £ 91, let

Nq = N<lFq, Np = N(lFp.

It is clear that % (respectively, % ) is a sublattice of the lattice of all normal
subgroups of Fz (respectively, Fp), and that each element of %p is the intersection
with Fp of an element of % (for example, its normal closure in Fz). It is also clear
that 91 (respectively, %p) contains every fully invariant subgroup of Fz (respec-
tively, Fp).

PROPOSITION 2.8 [10]. (i) The interval [91®, 6§] is anti-isomorphic to the lattice
91. Consequently [$l%, CS] and £(C§) are modular lattices.

(ii) Moreover, 'YE [(3l%, 6S] if and only //p(cV) is idempotent separating and
so of the form pN, N £ %. The mapping p ( T ) -* N, where p (T) = p^,, is an
isomorphism of the lattice of fully invariant idempotent separating congrunences on F
onto 91.

LEMMA 2.9 [7]. / / N £ 91, then Nq is a fully invariant subgroup of Fq and
Nq(Fz) C N. If YE £(6S) is such that p (T) = pN, then T n § = (Fq/Nq), the
variety generated by Fq/Nq.

NOTATION 2.10. Let nq and <np be the projections of Fz onto Fq and Fp,
respectively.
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LEMMA 2.11 [9]. (i) irq, np E &(FZ).

(ii) IfN E %, then NTtq = Nq, Nirp = Np.
(in) Ttp induces a homomorphism of the lattice % onto the lattice 91 . .

THEOREM 2.12 [7]. The mapping

is a homomorphism of £(CS) onto £(§). The congruence a induced by x m<*y be
characterized on [&<$, Q%] as follows: for %, T e [^®, 6§] with p(%) = pM,
P(^ ) = PN

•SLaT** Mq = Nq.

In particular, (%, 8) £ a if and only ifMq= {1}.
Moreover, the mapping

is an isomorphism o/£(S§) into £(@) X [§,

NOTATION 2.13 [7]. For any °Ve £(<ES), let

T = (5 £ CS | all subgroups of S are in T } .

It is easily verified that Tis a variety.

PROPOSITION 2.14 [7]. For any °VE £(65), with p(T) = pN, N E %, we have

A certain variety considered in [9] will figure prominently here as well.

DEFINITION 2.15. A completely simple semigroup 5 is central if the product of
any two idempotents of S lies in the centre of the containing maximal subgroup.
The class of all central completely simple semigroups will be denoted by C.

NOTATION 2.16. For any subgroups H and K of a group G, we denote by
[H, K] the subgroup of G generated by the elements of the form h~lk'lhk where
h £ H, k E K. In particular, we write G' = [G, G] for the commutator subgroup
of G. For any a, b E G, ab = b'xab. Furthermore, for any subgroup H of Fz, we
will write H' for the normal closure of H in Fz.

PROPOSITION 2.17 ([8] or Example 4.13 in [5]). The class 6 is the variety of
completely simple semigroups for which p(C) = pK, where K = [Fz, Fp].
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The following observations from lattice theory regarding neutral elements will
be useful. The results cited here can be found in Birkhoff [1].

NOTATION 2.18. For any element a in a lattice L, let

(a] = {xeL\x^a}, [a) = {x G L\x > a}.

DEFINITION 2.19. An element a in a lattice L is said to be neutral if, for all
elements x, y in L, the sublattice generated by o, x and y is distributive.

LEMMA 2.20 [1]. The neutral elements in a lattice form a distributive sublattice.

LEMMA 2.21 [1]. If a is a neutral element in a lattice L, then
(i) the mappings x -» x V a and x -> x A a (.x E L) are both endomorphisms

ofL,
(ii) the mapping x -* {x A a, x V a) is a monomorphism of L into (a] X [a).

LEMMA 2.22 [1]. Let L be a modular lattice. Then a e L is neutral if either of the
mappings

x-> x A a, x-> JC V a (x E L),

is an endomorphism.

3. An embedding related to rectangular bands

Although the principal concern of this paper is the variety C, for the sake of
completeness, we consider briefly in this and the following section two simpler
cases.

The principal result considered here is the embedding of the variety CS of
completely simple semigroups by means of the mapping S ^ ( § n § S , §
onto a subdirect product of £(91$) and [^fS, CS] to be specified exactly.

LEMMA 3.1 [9]. The mapping X l : T-> T n <ft$ ( T 6 £(CS)) is a homomor-
phism o/£(CS) onto

COROLLARY 3.2. The mapping Xv ^ ^ V &® ( T e £(CS)) is a homomor-
phism o/£(CS) onto [<&% CS].

PROOF. By Proposition 2.8, £((3S) is a modular lattice so that it follows from
Lemmas 3.1, 2.22 and 2.21 that X2is a homomorphism of £(CS) onto [91®, CS].
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THEOREM 3.3. The mapping X- ^ ("Vri SIS, T V 61®) ( T e £(65)) « an
isomorphism o/£((3S) o«/o ?/ie subdirect product

PROOF. That x is a monomorphism is a special case of Proposition 3.4 of Hall
and Jones [3]. Alternatively, it is a consequence of Lemmas 2.21 and 3.1. It
remains to characterize the image.

If T £ £(6S) is such that % = T n 61® # 61®, then <¥ = TV 61® e
£(619). Conversely, let (%, <¥) £ £(61®) X [61®, (3§]. If % # 61® and <¥ =
61® V <¥' for some <W e £(§), then let T = % V <¥', so that Tx = ( % W).
We also have Tx = (61®, T ) for any °V£ [61®, 6§]. This shows that x maps
£(C§) onto the set in the statement of the theorem, which is evidently a subdirect
product of £(61®) and [61®, SS].

It is somewhat instructive to know what the congruences are which are induced
by the homomorphisms Xi and Xi-

PROPOSITION 3.4. The classes of the congruence induced by X\ in Lemma 3.1 are

£(§), [£,£Vg], [a.ftvg], [61®,6S].

The classes of the congruence induced by Xi if Corollary 3.2 are

PROOF. The assertion concerning Xi is checked readily. We now prove the
contention concerning x2-

Let T ^ 619 and % V 61® = TV 61®. Then % g 61S and thus 61® c % n T
whence % = T.

Next let T c 6lg. If % V 61® = TV 61®, then by the above, % c 6l§ so that
% n § = T n §, whence % £ [ T n §, TV 61®]. Conversely, assume that % £
[ T n g, TV 61®]. Then T n § C % C TV 61® c 619. Intersecting with §, we
deduce that % n § = T n §, and thus

% v 61® = (% n 8) v a® = (Tn §) v 61® = Tv 61®,
as required.

4. An embedding related to rectangular groups

The result here is analogous to that in the preceding section; this time the role
of rectangular bands is played by rectangular groups. For the next result recall
Notation 2.13 for %.

https://doi.org/10.1017/S1446788700022278 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022278


294 Mario Petrich and Norman R. Reilly [ 81

THEOREM 4.1. The mapping T: T-> ( T n 919, TV 919) ( T e £(6S)) u an
isomorphism o/£(GS) onto f/ie subdirectproduct

£(9l9)x [9l9,e

PROOF. By Theorems 2.12 and 3.3, the varieties § and 9193 are neutral elements
in the lattice 6(65) so that, by Lemma 2.20, 919 = 9 V 91® is also a neutral
element in £(GS). It follows that T is a monomorphism of £(CS) onto a
subdirect product of £(919) and [919, GS]. It only remains to characterize the
image.

Let T e £(GS). Then letting % = T n 919 and <¥ = TV 618, we get

c ( T n 9 ) V919 = ( T n 919) V9l§

= %V919;

if also % 2 &®, then Tis contained in 9lg and thus <¥ = TV a g = 9l§. If we
denote by *$ the last set in the statement of the theorem, we have proved that T
maps £(6S) into 9. Conversely, let (%, %) G 9. If % 2 J , ® , then let T = %
so that TT = (%, 919). Assume that % D 9193 and let T = % n f̂f. Then

Tn 919 = € n<¥ n 919 = € n9l9 = %,
Tv919 = (^n6^) V9l9 = (^iv9l9) n f = « ,

where the last but one equality follows from the fact that 919 is neutral in £(C§).
Consequently, TT = (%, SHS) as required.

Recall the following notation from [7]; for %, T E £(CS),

<fy8T« % V 9 = TV 9.

From Theorem 4.1, it follows that the mappings

T , : T ^ T n 9 l 9 , T 2 : T - T V 9 1 9 ( T e £(6S)),

are retractions of £(CS).
The classes of the congrunces induced by T, and T2 can be described as follows.

PROPOSITION 4.2. The classes of the congruence induced by T, are

{T} //-9l$£T; [&9}V%,%] / 0 / -%G£(9) .

The classes of the congruence induced by T2 are

£(919); p-class n (£(CS)\£(919)).
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PROOF. Let % J 6 £(65). First note that T n SIS = (Tn SI®) V (Tn S)
which implies

<=»(%n SI®) v (%n S) = (Tn SI®) v (Tn S)
= TnSl®, %nS = TnS.

The assertion concerning T, follows from this and the definition of %.
If % V SIS = TV SIS and T c SIS, then % V SIS = TV SIS = SIS and thus

% C SIS; conversely, if %, T c SIS, then trivially % V SIS = TV SIS.
Now assume that % V SIS = TV SIS and T g SIS. Then SIS C T V SIS and

thus SI® C % n T, so that

%vg = (%VSI®) VS = %VSIS = TVSIS = TVS
and thus %j8T. Conversely, if %j8Tand %, T £ SIS, then SI® C % n Tand
thus % V SIS = % V S = TV S = TV SIS, as required.

5. Certain subgroups of a free group

The results proved in this section will be used in the next section where we
consider an embedding of £(GS) into £(6) X [6, <2§] of the general form
discussed in the preceding two sections. They concern subgroups of a free group
closed under, what we call, almost complete deletion, and seem to be of intrinsic
interest.

NOTATION 5.1. Let G be a free group on a nonempty set X. We will denote by §
the set of all normal subgroups H of G which are closed under almost complete
deletion, that is,

( z ; M ( X ] , x2,.. .,xn) t n => u{i, i , . . . , i , x, i , . . . , i) t n,

where x is any element of X in the ith position for any / = 1,2,... ,n.

Condition (2) is equivalent to requiring that H be closed under all endomor-
phisms 6 of G defined on the generators X as follows: let x, z e X; then for
yex

yd={x i{y = z>
{ 1 otherwise.

Observe that S is a sublattice of the lattice of normal subgroups of G containing
all fully invariant subgroups of G.

PROPOSITION 5.2. The mapping $: H -> HG' (H e S) is a retraction <?/§ onto
the sublattice & of fully invariant subgroups containing G'.
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PROOF. Let H E S. It is clear that HO - HG' E S and in order to show that
HO E &, we wish to establish that HO is a fully invariant subgroup of G. We do
this in the following lemma.

LEMMA 5.3. For ffe§, HG' is a fully invariant subgroup of G.

PROOF. Let a E HG'. Then a can be written in the form

(3) a = *[•• • •*£%

where x, E X, g E G', r, T̂  0 and x, ¥" Xj if / ^ j . Let r be the smallest positive
exponent r, appearing in an expression of the form (3) for some a E HG'.
Without loss of generality r = r,. By (2) we then have

(4) a(x,\,...,l) = xrEHG',

for all x E. X. Hence, by the minimality of r, for any element of the form (3) in
HG', there must exist st such that rt - rst and a can be written in the form

(5) a = x?> •••x^g.

Conversely, any element of the form (5) must lie in HG' by (4). Thus HG' consists
precisely of those elements of G that can be written in the form (5) and is
therefore fully invariant.

We now go back to the proof of Proposition 5.2.
Clearly 0 is a join preserving mapping. For H, K E § we wish to establish that

HG' D KG' = (fffl K)G'.

Let g be an element in the left-hand side of this equation. Then g can be written
in the form

g = g(xu...,x,) = x? •••xr
k"c,

where c E G'. Now if c = c{xx,... ,x,), then since c is a product of conjugates of
commutators and any commutator in a single variable is the identity, we have,
with Xj replacing xt,

c{\,...,\,Xj,\,...,\)=\

for all /. Hence

for all i, j . Let r = g.c.d.(r,), then we must have xr
t G HG' D KG', for all i. Thus,

for some h E H,k E K,a,b E G',

xi = ha = kb.
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Let h = h(xu. . . ,xm), a = a(xu. . . ,xm), where / < m. Then
a ( l , . . . , l , Xj, 1,...,1) = 1, since a G G', and so

for all i. Therefore, x\l • • • xr
k
k G H. Similarly, x\l • • • xr

k
k G H n K and g G

(H n K)G'. Thus HG' n KG' C(HD K)G\ while the reverse containment is
trivial. Hence 0 preserves meets and is a lattice homomorphism. Since 0 clearly
maps elements of & identically, the proof is complete.

Proposition 5.2 suffices for our main purposes in the next section. In addition it
has the following interesting consequence.

COROLLARY 5.4. The derived subgroup G' is a neutral element in the modular
lattice S.

PROOF. Since S is a sublattice of the lattice of normal subgroups of G, it follows
that § is modular. From Proposition 5.2 and Lemma 2.22, it follows that C is a
neutral element in §.

6. An embedding related to 6

The principal result here is analogous to the principal results in Sections 3 and
4, and it now concerns a subdirect product related to the variety Q of all central
completely regular semigroups. We shall see, however, that the proof for this case
is considerably more complex than those in Sections 3 and 4.

LEMMA 6.1. For N G %, Np is closed under almost complete deletion when
considered as a subgroup of the free group Fp on the set of free generators

PROOF. Lety0, j \ , k0, &, G / ' . It suffices to establish that there exists « G &(Fp)
such that for j , k G / ' ,

11 otherwise.

Let <p, \l> G 9, be defined by

1 otherwise, I 1 otherwise.
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Now define w to be the endomoprhism of Fp given by the action on the free
generators {[j, k] \j, k E / ' } , defined by equation (1) in Lemma 2.1.

By its very definition u E&(Fp) and clearly w satisfies (6) above.

LEMMA 6.2. Let n EN e 91 . Then there exist a E Nq, g E N n [Fq, Fp] and
b £ Np such that
(7) n = agb.
Consequently,

(8) N = #,(# n [F,, F j > , = Nq(N n [Fz, F,]>,.

PROOF. We have n = axbxa2b2 • • • akbk, for some a, G F ? , b{ £ F ,̂. Hence

(9) n — axbx(a2b\xa^b\)b\xa2bxb2a3 • • •

= ax[a2\bx]
bx a2bxb2a3---

where g is a p roduc t of conjugates of elements of the form [alx,bx],[a^,bxb2] •••.
These commuta to r s all lie in [Fq, Fp]. Hence g lies in [Fq, Fp]. N o w

(10) axa2- • • ak — nn E Nq

and

(11) bxb2---bk = MTpENp.

Therefore, from (9) we deduce that g £ N and so g £ N n [F , , ^ f . This estab-
lishes (7) and so also, by (10) and (11), that N C Nq(N n [F?, F ^ ] ) ^ . Since the
reverse containment clearly holds, the first equality in (8) is also verified. The
second equality follows easily.

PROPOSITION 6.3. The mapping

is a retraction of <% onto the interval [[Fz, Fp], Fz).

PROOF. It is clear that v maps % onto the stated interval and maps elements of
the interval identically. It is also clear that v respects the join operation. It
remains to show that v respects the meet operation. So for M, N £ 91, we wish to
establish the equality

(12) (M n N)[FZ, Fp]'= M[FZ, Fp]"n N[FZ, FpJ.
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Since the left side of (12) is clearly contained in the right, we consider any element
u in the right side. Then there exist m E M,n E N and r, s E [Fz, Fp] such that

(13) u — mr — ns.

By Lemma 6.2, there exist a E Mq, c E Nq, b E Mp, d E Np, g E M n [Fq, Fp]
and h E N D [Fq, Fp] such that

m = agb, n = did.

Applying itq to (13), we obtain

a = {mr)-nq = (ns)nq = c E MqH Nq C M n N,

so that gbr = hds. Applying wp, we obtain b(rirp) = d(sirp) where rmp, sirp E Fp,
b E Mp, d E Np. By Lemma 6.1 and Proposition 5.2, we have

MPF; n A ^ ; = (M^ n NP)F;,

and, since ^(rT^) = d(sirp) E A^ i J D NpFp, there exist t; E Mp n A ,̂, w E F;
with b{nrp) = d(sirp) = vw. Hence

u = agfcr = abgbr

= ab{nTp){nTp)'
Xgbr = avw(nrp)'

X gbr

E (M D JV)(M, n ^) i J^[F , , Fj"[Fz, Fj*

so that the required containment in (12) holds, completing the proof of the
proposition.

COROLLARY 6.4. [Fz , Fp] is a neutral element in %.

PROOF. Since % is modular, the result follows from Proposition 6.3 and Lemma
2.22.

COROLLARY 6.5. The mapping TJ,: T-» °Vn Q ( T e £((?§)), is a retraction of
£(SS) onw £(6 ) .

PROOF. In view of Corollary 6.4, in order to verify that TJ, is a homomorphism,
it suffices to consider the case %, ° V E £ (6S) , % D a ® , T ^ <%<% for join. Let
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°V' = <&<$> V °V; we note that T c S a n d M c T c 6. Now using Corollary
6.4, we obtain

as required.

COROLLARY 6.6. 77ie ma/7/wjg TJ: T-> ( T n 6, TV C) ( T e 6(65)), » aw
isomorphism o/£((3S) onto a subdirect product o/£((3) a«d [6, GS], f/ia? «, (2 is a
neutral element in £(CS).

PROOF. This follows directly from Corollary 6.5, Proposition 2.8, Lemma 2.21
and Lemma 2.22.

7. The image of £(CS) under TJ

In order to precisely locate the image of £(<3S) under TJ in the direct product
£(S) X [C, CS], see Corollary 6.6, we need some preparation. This discussion
also provides further insight into the various subgroups of the free group Fz as
well as of the associated varieties.

DEFINITION 7.1. Let N E %p. The depth of N, denoted by d(N), is the smallest
positive integer d such that [j, k]d E N, for ally, k G /', if such an integer exists,
otherwise d(N) = oo. If T G £(<2S) is such that p(T) = pN, then the depth of °V
or of N is the depth of Np and we write d(T) = d(N) = d{Np). If T E £(6S)
and "31$ g T, then the rfeptfi of T is 1.

LEMMA 7.2. LetNE%. If[j', k']d G JV/or rome/', k' G /', //ie« [;, k)d G TV,
/or fl//y, k G / ' .

PROOF. Lety, k E /'. Define <p, \p on / by

1 otherwise, I 1 otherwise,

and let w E S(/J,) be defined by equation (1) in Lemma 2.1. Then [/, k']u =
[j, k] so that [/, k']d E N imphes that [j, k]d E N, as required.
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As an immediate consequence, we have

COROLLARY 7.3. Let N E 91 and letj, k £ / ' . Ifdis the smallest positive integer
such that [j,k]d EN, then d=d(N).

NOTATION 7.4. For any positive integer d, let Kd be the smallest element of %p

containing {[/', k]d\j,k El'} and let Kx - {1}. Also let %d denote the variety
with p(%d) = pK'd (d = 1,2,..., oo).

REMARK 7.5. It is evident, for N E%, that Kd C Np if and only if d(N) divides
d, with the obvious convention that every integer divides oo.

NOTATION 7.6. For any positive integer r, let Ar (respectively, Br) denote the
fully invariant subgroup of Fp corresponding to the variety of abelian groups
(respectively, all groups) satisfying xr — 1. Also let Ax = F'p.

LEMMA 7.7. For any positive integer d, or d = oo, %d is the largest variety with
depth d.

PROOF. By the definition of %d and Remark 7.5, it is clear that %d contains any
variety of depth d. So it remains to show that %d itself has depth d.

By Remark 7.5, d{%d) divides d. By the remark following Definition 2.7,
Bd E %p and clearly Kd C Bd. Thus d(Bd) divides d. However, if j , k E /', then
clearly [j, k]r £ Bd for any positive integer r < d. Hence d(Bd) = d. Since
Kd C Bd, d(Kd) > d(Bd) = d and so d(%d) = d(Kd) = d.

LEMMA 7.8. IfNE% is such that d(N) - d, then NpF^ = Ad.

PROOF. By Proposition 5.2, NpFp is a fully invariant subgroup of Fp. Since it
contains F'p, it must be of the form Ar, for some r.

If d = oo, then NpF^ D i J = AM. For d< oo, NpF^ contains F'p and the
elements [j, k]d forj, k E /'. But Ad is the smallest fully invariant subgroup of F
containing F'p and the elements [j,k]d for./, k E /'. Hence AdCNpFp, in both
cases, and r must divide d.

Suppose that Ad =£ NpFp. Then r < d. Also, fory, k E /', [j, k]r EAr = NpF^.
Let [j, k]r = nc, where n E Â , and c E F'p. Then

n = [j,k]'c-K
Let 6 be the endomorphism of Fp defined on the generators by

[/' k']e=i[j'k] i f [ / ' * ' ] = [>'*]>
1 J I 1 otherwise.
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Since N is closed under almost complete deletion, see (2), n$ E N where
nd = [j, k]r(c6)~l. Here cd is a word in Fp6. Now Fp0 is the derived subgroup of
the subgroup of Fp generated by [j, k] and so is necessarily abelian. Hence
cd = 1. Thus

But this contradicts the fact that N has depth d. Therefore, Ad = NpF'p.

PROPOSITION 7.9. For T G £ ( 6 S ) , the varieties T and T n G have the same
depth.

P R O O F . If <&% % T , then T c <&§ C 6 so that T = T n G and the result holds.
So suppose that & $ c T, that p(T) = pN and p (Tn Q) = pM. Let rf(T) = d.
Then Af = N[FZ, Fp] and so, applying irp, we have Afp = NpFp. By Lemma 7.8,
JWp = Ad from which it follows that d(M) = d = i/(iV)sothatrf(T) = </(Tn S).

NOTATION 7.10. For any T e £(CS), let

es
cu-cA _ I ^ V «

£ V g

and

f TcA n T n %dlCV, if a ® c T,

[Tc/I n T otherwise.

It follows immediately from the definitions of T c \ T and Lemma 7.7, that
TcT*.

LEMMA 7.11. For any T e £(SS), T* = (Tn 6)*.

PROOF. If a ® g T, then °Vc Sand the result follows trivially. So let "31 <S C %
p^) = Pfft where N £ 91, and rf = rf(T). First °Vc/l = (3§ = ( T n (2)c\ Then

(Tn 6) n (? = Tn <e n @) = Tn §
so that TiTS = T"Finally, by Proposition 7.9, c?(Tn 6) = </(T). Hence

= TcA n T n gcja) = (Tn C)cA n (Tn6) n %d^ne) = (Tn

PROPOSITION 7.12. Let (%, ^ ) e £(C) X [6, SS] be such that f c
e? T = %* n W. 77ien

= % and
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PROOF. We have
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= (%*Vf i )n ( fVf i ) by Corollary 6.6,

by hypothesis,

establishing the second claim.
Ud = d(slL), then

(14)

By the definitions of the varieties %c/l and %, % C %c/l n %; by Lemma 7.7,
6Hc%d and by assumption, % C 6. Thus

(15) tcTne.

Furthermore, % f l § C (Tfl g) n g C % ng = % n g so that

(16) ng.

Now suppose that "31$ g %, say % C £ V g but % % g. By (14), we must have
c C V g b u t T n C g g . Hence % and Tfl 6 are varieties of left groups

not contained in g but containing the same groups. Consequently, % = Tfl 6. A
similar argument will establish equality if % C 31V g.

So suppose that 31® C %. Let p(%) = pM and p ( T n 6) = pN, where M, TV
E 91. In view of (15), it remains to show that M C N. From (14) and Proposi-
tions 2.14 and 2.17,

(17) N={\}Nq(Fz)Kd[Fz,Fp]\

By (16) and Theorem 2.12,

(18) M9 = Nq.

Since % 6 6(6), it follows from Proposition 2.17, that

(19) [Fz, Fp] c M

so that F'p C Mp. Hence, by Proposition 5.2, Mp is fully invariant and conse-
quently Mp = Ar, for some r. But then r = d(M) = d(%) = d. Thus Mp — Ad.
We have from (17) that Â , D KdFp, where KdF'p is a fully invariant subgroup of
Fp by Proposition 5.2. Consequently, KdFp D Ad so that
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Hence,

M = Mq{M n [Fz, Fp]')Mp by Lemma 6.2,

= Nq[Fz,Fp\Mp by (18) and (19),

CN by (17).

Therefore, M = N and % = T n G, as required.

We now combine the last corollary of the preceding section with the principal
results of this section in the main result of the last three sections as follows.

THEOREM 7.13. The mapping

is an isomorphism o/£(CS) onto the subdirectproduct

<? = {(%,<¥) e£(e) x[e,es]|<¥ c%* v e}.
Moreover, for any "V& £ ( 6 S ) O / K / ( % , %) in this subdirect product,

PROOF. The homomorphism property follows directly from Corollary 6.6, as
does the fact that TJ is one-to-one.

For any T e £(C§), °Vc T* while also T* = (°Vn (3)* by Lemma 7.11. Thus

Tv 6 c T* v e = (Tn 6)* v e
so that TTJ E ^. Conversely, for any (%, <¥) E leP, let T = ^L* D ^ . By Prop-
osition 7.12, TTJ = (<&, GM") so that TJ maps £(SS) onto I3).

The direct part of the final claim follows from Proposition 7.12 and the fact
that TJ is one-to-one while the converse part follows from Proposition 7.12.

In the final result we characterize the congruence induced by TJ,.

PROPOSITION 7.14. For % J e £(6§),

e / A and

PROOF. Let % n e = T n ( 2 . It is easily seen from this that %c* = <Ych.
Further

%ng = %n (en@) = (%ne) n 9 = (Trie) ng
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Finally, by Proposition 7.9,

Conversely, suppose that %cA = <Ych, % n § = I'D % and </(%) = </(T) =
say. In addition, let us assume for the moment that 61® C % D T. Let p(%)
Pw. PCV) = P/v where M,NE%. Then p(% n 6) = PW[FZJ^f and p (Tn g)

Since % n g = T n %, we have from Theorem 2.12 that

(21)

By Lemma 7.8,

(22)

Hence

M[FZ, Fp]= Mq{M n [Fz, F^pM^Fz, Fp] by Lemma 6.2,

= Nq.

MPF; = Ad = NPF;.

= Mq[Fz, FpjMp

= Nq[Fz,Fp]'Mp by (21),

= N«[Fz> FP]FPMP
 s i n c e ^ £ [Fz, Fj",

= JV,[Fz>Fj"F;iV|, by (22),

= iV[Fz, Fp] by Lemma 6.2.

Therefore p{% D 8) = p (Tn 6) so that % n e = T n S .
Suppose now that it is not the case that c l f l T . Since %c/l = T c \ it

follows that both 61® g % and 61® g T and that % is a variety of groups
(respectively, left groups or right groups) if and only if T is a variety of groups
(respectively, left groups or right groups). Combining this with the observation
that ^ i n § = cV"ngwesee that, in these cases, we must have % = Tand so

= C V * .

COROLLARY 7.15. For % T e

PROOF. This follows immediatly from the definition of ^i* and T*, Proposition
7.14 and the observation that
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