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ABSTRACT

The paper introduces an alternative approach to the traditional experience
rating theory in automobile insurance. The approach is based on a simple
theory of how high deductibles financed by loans maintain the risk differentia-
tion in an automobile insurance arrangement. Thus the approach differs totally
from the usual bonus-malus classes as well as from the credibility based
experience rating ideas. The paper is of a theoretical nature and leads up to a
mathematical description of how the approach may be optimalized within the
framework of a risk model.
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1. BACKGROUND

From a practical point of view it is well-known that the existing automobile
bonus-malus systems possess several considerable disadvantages which are
difficult, or even impossible, to handle within the traditional theory of
experience rating. The aim of this paper is to introduce an alternative
bonus-malus approach which, at least theoretically, eliminates the most
important ones of these disadvantages.

2. CRITICISM OF EXISTING BONUS SYSTEMS

To motivate the new bonus-malus (B-M) approach it is appropriate to stress
the usual criticism of the existing B-M systems. In particular, the existing
systems are, among other things, based on two general characteristics:

(i) The claim amounts are omitted as a posterior tariff criterion,
(ii) At any time the policyholders may leave an insurance company without

any further financial commitments to the company.

These characteristics lead to three of the most considerable disadvantages:

(2.1) Regarding an occurred claim, the future loss of bonus will in many cases
exceed the claim amount.

1 An earlier version of this work has been presented at the ASTIN Colloquium, Stockholm 1991.
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62 JON HOLTAN

(2.2) The systems create the possibility of malus evasion, that is, the possibility
of the policyholders leaving the insurance company to avoid premium
increase because of occurred claims.

(2.3) The systems stimulate a slide towards higher average discount rates in the
insurance arrangements.

Because only the number of claims (and of course the discount rate) in an
insurance period determines the premium in the following period, it follows
that (2.1) is an immediate consequence of (i). In many cases (2.1) gives the
policyholder a feeling of unfairness, especially if the loss of bonus is much
higher than the occurred claim amount. A consequence of this is the well-
known bonus hunger behaviour of the policyholders.

Disadvantage (2.2) is of course a consequence of (ii). Malus evaders let the
remaining policyholders pay the bill for their (the evaders') claim costs. This
has, at least in Norway, been a serious problem in the insurance industry,
mainly because of an unsatisfactory exchange of bonus information between
the insurance companies.

Because all insurance arrangements attached to existing B-M systems are
exposed to bonus hunger as well as malus evasion, it follows that (2.3) is a
secondary consequence of (2.1) and (2.2). A higher average rate of discount is
contrary to risk differentiation, which is the objective of all B-M systems. In an
extreme situation the result might be that the great majority of the policyhold-
ers are at, or close to, the maximum rate of discount.

A number of authors have focused on the disadvantages mentioned above, in
particular the problem of bonus hunger - see e.g. NORBERG (1975), LEMAIRE

(1985) (Chapter 18) and SUNDT (1989). The aim of these authors has not been
to solve or eliminate the disadvantages, but rather to take them into the
modelling account in connection with the mathematical optimalization of the
B-M systems. However, to eliminate the disadvantages one probably has to
leave the traditional framework of experience rating, and construct a bonus
principle which is basically different. This is precisely the intention of this
paper, and in Section 3 we will first introduce the alternative B-M idea, and
thereafter place the idea into a mathematical description and notation. The
alternative approach may be called a new premium system, and in Section 4 it
is shown how the system may be optimalized within the framework of a risk
model. In Section 5 some practical deficiencies of the system are discussed, and
in Section 6 some concluding remarks are given.

3. AN ALTERNATIVE APPROACH TO EXISTING BONUS SYSTEMS

3.1. Preliminary aspects and assumptions

The fundamental principle of the existing B-M systems simply expresses that
the higher the claim frequency of a policyholder, the higher the insurance costs
that on average are charged to the policyholder. However, this principle is also
valid in an insurance arrangement consisting of a high maximum deductible
which is common to all policyholders. This follows from the simply fact that
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good drivers will pay fewer deductibles than bad drivers. Thus we may imagine
a premium system where the costs of the incurred deductibles are defined as the
malus (the loss of bonus) after a claim occurred. Within this framework it
seems natural to assume an individual risk premium above the maximum
deductible which is reflected by a priori tariff criteria, but not by a posteriori
knowledge about the policyholders. This system defines a malus system rather
than a bonus system. However, we may interpret the claim free driving bonus
as avoidance of deductibles.

Two questions are now appropriate:

(3.1) In what way do we determine the size of the maximum deductible?

To attain a suitable cost differentiation in the risk heterogeneous arrange-
ment, the maximum deductible has to be relatively high, maybe as high as
2000-3000 US dollars (USD). This leads to question number 2:

(3.2) How do we act when knowing that the average policyholder hardly
manages (at least in Norway) to cash pay deductibles of more than about
1000 USD?

Let us first look at the latter problem. The new system solves problem (3.2)
by giving the policyholders a possibility of financing the incurred deductibles
by loans from the insurer. Moreover, this leads to the advantage of smoothing
the " loss of bonus " (the deductible) over a period of time, precisely the way
that the total loss of bonus is smoothed in the traditional systems.

Before commenting on problem (3.1), we shall illustrate the abovesketched
premium system with a simple example: Let us assume that a policyholder has
two occurred claims of respectively 5000 USD and 500 USD in periods
number 3 and 9 during an insurance period of 15 years. We also assume for
simplicity that the deductible loans are ordinary term loans, and that the
period of repayments is 5 years. Assume the maximum deductible to be, for
instance, 2000 USD, and the premium for large claims above this maximum
deductible to be 300 USD during the whole insurance period. Finally, the
borrowing rate is assumed to be 10% in arrears. These assumptions lead to a
sequence of payments for the policyholder shown in Figure 1. We note that the
effect of the alternative system is not essentially different from the effect of a
traditional B-M system; the insurance costs increase in the period(s) following
an occurred claim. We also note that the loss of bonus is differentiated
regarding the size of the claim amounts. Or to be more precise; the loss of
bonus will never (except for the interest on the loan) exceed the claim amount,
and hence the bonus hunger effect is eliminated. In theory the new system will
not be exposed to malus evasion either, because the loan is repayed even if the
insurance is terminated - see Section 5 for a further discussion on this. Hence,
at least theoretically the new system eliminates the disadvantages (2.1), (2.2)
and (2.3) in Section 2.

Return to problem (3.1). The solution of this problem ought to be linked to
a mathematical optimalization of the system. In addition to problem (3.1), we
have to decide a) the amortization form of the deductible loans, b) the length
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of the repayment period, and c) the rate of interest. The conditions a), b) and
c) are in practice given by the money market. Thus it may seem meaningless to
find mathematical "optimal" lending conditions. However, these conditions
will never be absolute, therefore it may be after all interesting to find optimal
values at least for some of the conditions.

FIGURE 1. The payments for the policyholder over a period of 15 years.

Now, stress item a), the amortization form of the loans. In principle we
ought to choose an amortization form which imitates the traditional influence
of the premiums in the time periods following a claim. More precisely, an
amortization form where the repayments are high during the first periods
following a claim and then gradually fall. Moreover, this satisfies the desire of
the policyholders to repay most of the claim costs shortly after the claim has
occurred. Within annuity loans the repayments are exactly the same in the
repayment period, while the repayments are not decreasing enough within
ordinary term loans. Hence, these alternatives of the amortization form are
ignored. However, there exists an alternative fulfilling all the mentioned
properties, that is, the exponential amortization form. This form is also
relatively handy in the mathematical computations.

Before touching the mathematical description of the alternative system, one
last assumption concerning the financing of the deductibles has to be made. In
a practical application of the new system it is of course the policyholders who
decide how much to pay cash, and how much to borrow. Hence, a deductible is
partially financed by a cash payment greater than or equal to zero, and
partially by a sum borrowed from the insurer. However, to simplify the
mathematical analysis we assume the entire deductible of an occurred claim to
be financed by a loan. This is an advantage because the costs are then
smoothed over a period of time. In addition, a full-financing by loans is
computationally easier to analyse.
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3.2. Mathematical description
Assume the following mathematical description of the alternative system: Let
Yj\ i= 1,2, .. . be the values at time zero of the claim amounts of a
policyholder that occurred at the time points Tt; i= 1, 2, . . . , respectively. Let
Z, be the value at time zero of the amount payed by the policyholder of claim
number ;', and assume Z, on the ordinary excess-of-loss form

(1) Zt = mm (Yt,b),
where b is interpreted as the value at time zero of the common maximum
deductible of all policyholders at time 7|.

Let n be the inflation discount intensity related to the values at time zero of
the claim amounts. Hence it follows that the future nominal value of Z, at time
Tj is Z, exp (nTj). Note besides that the deductible (b at time zero) is thought of
as following the inflation intensity n.

Let Z, exp (nT,) be fully financed by a loan from the insurer. The loan is
charged a rate of interest 8 and continuously amortized by a stream of payment
{rj(s); s > 0}, where s = 0 refers to the time 7} of the claim occurrence.

The payment stream of loan number i has to satisfy (see e.g. GERBER (1990),
Chapter 1)

(2) Z,exp(7r7;) = I v'r,(s)ds,"I
Jowhere vs = exp (~Ss) = the interest discount factor at time s.

Let N(t) be the number of claims occurred in the time interval (0, t].
Then

N(t)

(3) r ( f )=

is the amortization rate of the policyholder at time t.
Assume an exponential form of amortization, that is,

(4) ri(s) = B,exp(-ps).
Bj is here called "the initial amortization level", and may be interpreted as
interest + repayments in the first repayment year. When the rate of interest 5 is
known, p expresses the amortization profile of the sums borrowed, that is, the
obliquity of the repayments, or to which extent the repayments should be high
in the beginning and then gradually decreasing.

From (2) and (4) we obtain

Z, exp (nT,) = I exp ( — Ss) 5, exp (—ps) ds

J
(nT,) = I

J

3+p '
or

(5) *, = Z, exp (w7
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Formula (5) gives the relationship between p and " the initial amortization
level" Bj when the rate of interest S and the sum borrowed Z, exp (ft7}) are
known. In particular, we see that p = 0 (constant amortization) implies
Bj = SZj exp (nT,), which means solely repaying interest to infinity. Henceforth,
we will assume p > 0.

From (4) and (5) we have

(6) rt(s) = Zt(d + p) exp (nT) exp (-ps).

Therefore, from (3) we finally obtain the expression

N(t)

(7)
t=\

To obtain an impression of the effect of p, it may be suitable to take a closer
look at the function (6). Under assumptions of d = 10% and Z, exp (nTt) = 1,
Figure 2 shows the stream of payments r,-(s) for some specified values of p.
Note that the higher p is, the higher the payments are during the first
repayment period(s). In the case of p = 0, we see that only 10% interest of
Zj exp (nT,) = 1 is continuously payed.

FIGURE 2. The stream of payments {r,(s); s>0] when p = {0, 0.1, 0.2, 0.3, 0.4}.

4. A MATHEMATICAL OPTIMALIZATION DESIGN

4.1. Model assumptions

To carry through an optimalization of the new system, a claim risk model has
to be built. In this paper we assume the widely accepted negative binomial
model, see e.g. LEMAIRE (1991):

The claim number process {N(t); t > 0} of a policyholder is a homoge-
neous Poisson process given the claim intensity 0. Let 0 follow a gamma
distribution Gamma (a, /?). Assume also the values at time zero F,, Y2, •••
of the claim amounts to be independent and identically distributed (i.i.d.),
and independent of \N(t); t > 0} and of 0.
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Under these assumptions we also easily establish the values at time zero of
the sums borrowed, {Z, = min (Y,•, b); i = 1, 2, . . .} , to be i.i.d. and independent
of {N(t); t>0} and of 0.

4.2. Choice of loss function

Within the risk model in subsection 4.1 and the mathematical description in
subsection 3.2, we want to minimize an expected loss function to find some
optimal parameter values of the system.

The theoretical individual risk intensity of the policyholder at time / is easily
evaluated as Q(t) = exp (ni)0EY. Now, the point is to estimate Q(t) using a
loss function which includes the amortization rate r(t). In a real application of
the system we have already indicated the suitability of a constant individual
premium for all risks above the maximum deductible. For simplicity, we
henceforth disregard this individual differentiation, and instead we assume a
constant collective premium. Hence, let/? (7) be this premium of large claims at
time t:

(8) p(t) = exp {nt)p = exp (nt) E0E{Y-Z),

where Y and Z are the values at time t = 0 of the random claim amount and
the random sum borrowed, respectively. Now, write

0EY= 0EZ+0E(Y-Z).

Then one can interpret p(t) as an estimator of exp (nt) 0E(Y—Z). If we
now just let r(t) be an estimator of exp {nt)0EZ and use the traditional
expected quadratic loss function

E[p(t) + r(t)-Q(t)f,

we will in the first place obtain a loss expression dependent on the time t, which
is not a desirable situation. In the second place r(t) would not alone be a
sufficiently good estimator of exp (nt)0EZ. Owing to the fact that the loss of
bonus (the sums borrowed) is payed in arrears, the amortization rate r(t) is too
small during the first periods according to the true intensity exp (nt)0EZ.

However, to solve these problems we may construct a loss function which
integrates the total cash flow of the policyholder over a period of time. The
actual loss function ought to reflect the total financing of a) the large claim
risks and of b) all deductibles occurred in the actual optimalization period.

The following expected quadratic loss function takes care of the mentioned
objections in a reasonable way:

(9) \ v'(p(t) + r(t))dt + vMS(M) - v'Q(t)dt

L Jo Jo
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where
M = a restricted time horizon.

v' = exp ( — (n + co)t) = total discount factor at time t, with the inflation
discount intensity n and a mathematical weight discount intensity co.
exp (-cot) is hereby interpreted as a weight function; we see e.g. that
co ~ 0 implies a uniform weight function over the time period
(0, M\.

pit) = exp(nt)E0E(Y~Z)
= the large claim premium at time t.

r(t) = I,"JO Ztf + p) exp {nTt-pit- T$)
= the amortization rate of the policyholder at time /.

g(O = exp (nt) GEY
= the theoretical risk intensity at time /.

S(M) = S£V> \M exp (~n(t-M)) /-,(/- 7]) dt
= the value at time M of all future repayments caused by claims

occurred in (0, M].

Summary:

Loss function (9) may be interpreted as the expected quadratic deviation
between a mathematical value at time zero of the actual cash flow of the
policyholder and the corresponding mathematical value at time zero of the
theoretical risk intensity of the policyholder over the time period (0, M]. Note
that all raised loans during (0, M] have to be repayed, and hence one has to
include vM S(M) in the loss function.

4.3. Computation of the expected loss function

To minimize (9) analytically or numerically with respect to e.g. the system
parameters S, p and b, the function has to be of algebraic nature. To obtain an
algebraic form of (9) some statistical computations have to be made.

Let

(10) Z ( O = 2 , Z, exp ((* + />) 7]).

Then by (7)

(11) r ( t ) -

and by simple algebra we obtain

(12) vMS(M) = \1—H
\n + p

exp (-(?r + co + p)M) Z(M).
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Introduce the annuity

ajj\= I exp ( — cot) dt = co~x (1 -exp ( — (oM)),
Jo

and the expression

*F = v'r{t)dt = {5 + p) exp {-{n + co + p)t) Z{t) dt.
Jo Jo

Then function (9) may be written as

(13) ElF2 + 2E['FvMS(M)] + E[vMS{M)]2 +

+ 2ajr]E[{y>+vMS(M))(p-0EY)] +

+ a2
m [P

2-2p (E6) (EY) + E©2 (EY)2].

By (13) we have to find the 1.- and 2.-order moments of the Z(/)-process,
that is EZ(t) and E[Z{s) Z(t)]. However, the stochastic process Z{t) does not
have independent waiting times between steps, and hence the calculations
become somewhat complex. We may however show that Z(t) has the same
distribution as

(14) Z* = £ Z,-exp ((*+/>)£/<),

/=i

where

given 0 = 6, N* - Poisson {dt),
[/,, . . . , UN* are i.i.d. ~ Uniform [0, t],

Zx, . . . , ZN. are i.i.d.,

and where Af*, the C/,'s and the Z,'s are stochastically independent. This result
was in general discovered by JUNG (1963); see also BUHLMANN (1970),
pp. 57-60. By standard statistical calculations we then obtain

EZ
(15) EZ{t) = E0 [exp ((«+/>)/)-1],

( + )
and for 0 < s < t

EZ
(16) E[Z{s)Z{t)] = E0

2{n+p)

(EZ)2

2 ^ i [ e x p ((n+/>)s)-l] [exp ((*+/>) 0 - 1 ] .

2{n+p)

(EZ)2

+ E02^ i -
{n + p)2

To obtain an algebraic form of the expected loss function (13), one has to
complete seven isolated computations. Below, these computations are noted as
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y/l, ...,i//7 (remember the integral definition of lF):

(17) ¥l = E*F2

(18) y/2 = E[*FvMS(M)]

(19) ¥i
 M 2

(20) ¥A

(21) y/5 = E[0vMS(M)]

(22) y6 = EV

(23) Wl = E[vMS(M)].

In this paper we restrict ourselves to indicate that (17)-(23) are easily
calculated by use of standard statistical methods. The clue is here to use the
expressions (15) and (16). Thus, for instance, we have

= E*F2 = (S + p)2E\u:
= (3+pY ds

J o

Finally, we establish the expected loss function

-|2

(24) E\ | v'(p(t) + r(t))dt + vMS(M) - I v'Q(t)dtv'(p(t) + r(t))dt + vMS(M)- v'
Jo Jo

+ a2M][p2-2pE9EY+E02(EY)2].

4.4. Comments on the loss function

Under the model assumptions of subsection 4.1 we have

E0 = a/0, E02 = a (a + l)/y92.

If the claim amount distribution is assumed known, the function (24)
depends on eight unknown parameters. Two of them, a and /?, can e.g. be
estimated by the maximum likelihood estimators described by LEMAIRE (1985),
Chapter 12. Further, it seems natural to keep the inflation intensity n, the
mathematical weight intensity co and the time horizon M constant (they might
also be considered as random variables). Thus the actual optimalization
(varying) parameters are the remaining system parameters d, p and b.

In this connection, analytical optimal parameter solutions are in general
difficult to find. However, numerical solutions are easily computed by a
computer system, for example the mathematical software system Mathematica.
Note that the maximum deductible b enters into the function (24) via the
moments EZ and EZ2. Thus, an approximating optimalization of b demands a
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statistical analysis of the claim amounts in a representative claim portfolio.
Also the premium of large claims, p(t), has to be estimated in association with
a real claim portfolio.

Note finally that the alternative premium system may be mathematically
compared with traditional B-M systems via the expected loss function (9). Or
to be more precise; within each of the traditional B-M systems one may
construct an estimator to the estimand J ^ v'Q(t) dt. By using these estimators
in loss function (9), we are able to compare the expected losses of the
traditional B-M systems with the expected loss of the alternative system, and
hence find the best mathematically fitted system.

4.5. The loss function for the special case M = oo

To give some more information on the structure of the loss function, one may
exhibit the function for the special case when the time horizon M tends to
infinity. Assume in this case that co > 0, which is in accordance with economic
theory. When M = oo, we see from (12), (16) and (19) that y/3 tends to zero. By
(18), (21) and (23) then also i//2, y/<, and if/7 tend to zero. In formula (24) thus
only \jix, y/4 and y/6 remain different from zero. Straightforward calculation
gives

¥A =

¥(, =

¥\ ~

\ S + p

71 + CO + p

S+p

71 + CO + p

1

2co

E021

S+p

71 + CO + p [
zz,

E0EZ.

Inserting p = E0(EY—EZ) the loss
following form

with

(25)

(26)

(27)

(28)

X

Ax{b) -

A2(b) -

A3(b) -

2Al(b)-2xA2

X

'- -

•

1

Ico

1

CO

1

CO

E0EZ

, 2 ,
E0EZ2 + E02(E

CO

function may then

(b) + A3(b),

S+p

n + co + p

2 + 1~E02{EZ)2\
CO J

EZ [(E0)2 EZ + Var 0EY]

[(E0)2(EZ)2 + Var0(EY)

'Z)21
^ ) •>

be put into the
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The influence of the system parameters S and p is contained in x, and thus is
separated from that of the system parameter b.

For fixed b the loss function attains its minimum for

(29)

and the minimum is

(30)

Denoting the claim

(31)

(32)

X-

min (b)

amount

EZ

EZ

x{b) = A2

> = A3(b)-

ib)IA{{b),

A2(b
2)/A{(b)

c.d.f. by F, we have

= J [1
Jo

Jo

-F(y)]dy

-F{Jy)]dy.

Thus EZ and EZ2 are continuous functions of b. If F is continuous, they are
also differentiate. The same is then also true for min (b). Thus, for special
choices of F it should not be difficult to minimize min (b) with respect to b, and
thereby obtain a global minimum.

For the moment we content ourselves with the following remarks:
By (25) optimal values of 3 and p for fixed b are related by

d(b) = [x(b)~ I] p(b) + (n + co) x(b).

Thus the interest intensity 3(b) is greater than, equal to or less than the
market interest intensity n + co according as x(b) is greater than, equal to or
less than one.

As b tends to infinity, EZ and EZ2 tend to EY and EY2 respectively. From
(26)-(28) we see that

A2(co) = A3(cc) = A^ao) - E&EY2 = I— E02(EY)2.
2co \ co

Thus by (29), x(oo)< 1.
For b tending to zero, Ar(b) will be of the order of magnitude b2. A2(b) will

be of the order of magnitude b, because of the second term within the
paranthesis. Thus by (29), x(0 + ) = oo. This means that there is (at least) one b
with x(b) = 1. From (26)-(32) it can be shown that for such a b we will have
x'(b) < 0 and min' (b) > 0, if F(y) > 0 for y > 0. This proves that there is
exactly one value of b with x (b) = 1 and that x (b) > 1 to the left of this point
and x (b) < 1 to the right of it. Furthermore, min (b) has, at least locally, a
minimum to the left of the point. This indicates that the optimal <5-value is
greater than n + co, or, in other words, the interest intensity for the loan should
be greater than the market interest intensity.
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5. PRACTICAL SYSTEM DEFICIENCIES

In general it is often difficult, or even impossible, to eliminate deficiencies of an
existing financial market system without generating other system deficiencies.
The automobile insurance B-M principle seems typically to be characterized by
this two-sided effect, and hence it is not difficult to point out some general
practical deficiencies of the alternative B-M approach. An obvious one is that a
high common deductible necessarily involves a lower total premium income
compared with traditional bonus systems, and thereby generates a lower
insurance profit to the insurer. Another deficiency is the credit risk of the
policyholders, or, more precisely, it is not certain that the policyholders are
able to repay their deductible loans. Hence, the insurer has to, in one way or
another, make conditions linked to the individual solvence security in order to
meet possible losses. One way of doing this is e.g. that the insurer demands the
policyholders to save an amount of money in each insurance period to build up
an individual risk reserve to cover (parts of) future incurred deductibles. A
"claim risk account" with the insurer should, in regard to reduce the credit
risk and to maximize the rate of interest on deposits, be closed for withdrawals
during the insurance periods, except for financing incurred deductibles. Thus,
the premium and claim costs of the policyholders will also have a more
uniform dispersion during the insurance periods.

6. CONCLUDING REMARKS

In theory the alternative B-M approach eliminates the most important
disadvantages of the existing B-M systems. A policyholder will for instance
within the existing systems, unlike the alternative approach, often make a
profit by asking a bank for a credit to cover an occurred claim cost, instead of
reporting the claim to the insurer. This seems obvious, but can also under some
specified conditions be explicitly shown by comparing the effective rate of
interest on a banking credit with the " effective rate of interest" on the loss
of insurance bonus. By constructing a B-M approach which eliminates
bonus hunger, one also avoids mathematical risk modelling which includes
assumptions about bonus hunger, as e.g. NORBERG (1975), LEMAIRE (1985)
(Chapter 18) and SUNDT (1989) have built into their models.

On the other hand the alternative B-M approach contains, as pointed out in
Section 5, some practical deficiencies like credit risk and lower premium
income. The point is however that these deficiencies are just relevant for the
(existing) insurers, and not for the policyholders. In other words; the alternative
approach is less favourable to the existing insurers than to their customers.
Thus, it seems conceivable that the traditional insurance industry at once will
be rather sceptical about introducing the alternative B-M approach to the
insurance market. It seems, however, more probable that the possible initiators
in this connection will be the (future) financial institutions—or cooperations
between institutions—which consist of a superior banking service and a minor
(automobile) insurance service. In the first place these institutions are generally
interested in introducing customer-friendly products to increase their market
share and market profit in the insurance market. In the second place, and
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under these circumstances, they probably interpret the problem of lower
premium income as of secondary importance, while they obviously have the
best qualifications to handle the problem of credit risk. Finally, and in the third
place, these institutions already have the general administrative device which
the alternative B-M approach demands, or stated in its extreme form, an
optimal combination of actuarial and banking knowledge and culture.
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