A NON-GYCLIC ONE-RELATOR GROUP ALL OF WHOSE FINITE QUOTIENTS ARE GYCLIC

GILBERT BAUMSLAG

(Received 17 June 1969)

To Bernhard Hermann Neumann on his 60 th birthday

Communicated by G. B. Preston

Let G be a group on two generators a and b subject to the single defining relation $a=\left[a, a^{b}\right]$:

$$
G=\left(a, b ; a=\left[a, a^{b}\right]\right) .
$$

As usual $[x, y]=x^{-1} y^{-1} x y$ and $x^{y}=y^{-1} x y$ if x and y are elements of a group. The object of this note is to show that every finite quotient of G is cyclic. This implies that every normal subgroup of G contains the derived group G^{\prime}. But by Magnus' theory of groups with a single defining relation $G^{\prime} \neq 1([1], \S 4.4)$. So G is not residually finite. This underlines the fact that groups with a single defining relation need not be residually finite (cf. [2]).

In order to prove that G has the described properties let us put

$$
a_{i}=b^{-i} a b^{i} .
$$

Then the normal closure N of a in G is generated by the elements $\cdots, a_{-1}, a_{0}, a_{1}, \cdots$ subject to the defining relations

Thus

$$
a_{i}=\left[a_{i}, a_{i+1}\right] \quad(i=0, \pm 1, \cdots)
$$

$$
a_{i}^{2}=a_{i+1}^{-1} a_{i} a_{i+1} \quad(i=0, \pm 1, \cdots)
$$

Now suppose that K is a normal subgroup of G of finite index. Put

$$
x=a K, y=a^{b} K .
$$

We shall show that $x=1$ which implies $N\left(=G^{\prime}\right) \leqq K$ as desired. For suppose $x \neq 1$. Then x and y are of order $n>1$, say. Since $x^{y}=x^{2}$ we find

$$
x=x^{1}=x^{y^{n}}=x^{2^{n}} .
$$

This implies $x^{2^{n}-1}=1$ and n divides $2^{n}-1$. But it is easy to see that the smallest prime divisor of n is less than the smallest prime divisor of $2^{n}-1$ (G. Higman [3]). This completes the proof.

References

[1] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory (Interscience Publishers, 1966).
[2] G. Baumslag and D. Solitar, 'Some two-generator one-relator nonhopfian groups', Bull. Amer. Math. Soc. 68 (1962), 199-201.
[3] G. Higman, 'A finitely generated infinite simple group', J. London Math. Soc. 26 (1951), 61-64.

Institute for Advanced Study and

Rice University

