Astrometry of red supergiant VY Canis Majoris with VERA

Y. K. Choi ${ }^{1,2}$, T. Hirota ${ }^{2}$, M. Honma ${ }^{2}$, and H. Kobayashi ${ }^{2}$
${ }^{1}$ Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{2}$ Mizusawa VERA Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan email: yoonkyung.choi@nao.ac.jp

Abstract

We present observational results on the red supergiant VY Canis Majoris with VERA. We have observed $22 \mathrm{GHz} \mathrm{H}_{2} \mathrm{O}$ masers and 43 GHz SiO masers (v=1 and $2 \mathrm{~J}=1-0$) around VY CMa for 13 months. We succesfully detected a parallax of 0.87 ± 0.08 mas, corresponding to the distance of $1.15{ }_{-0.09}^{+0.10} \mathrm{kpc}$ using $\mathrm{H}_{2} \mathrm{O}$ masers. As the result of phase-referencing analyses, we have measured absolute positions for both $\mathrm{H}_{2} \mathrm{O}$ masers and SiO masers. The $\mathrm{H}_{2} \mathrm{O}$ maser features show rapid expansion off the central star.

Keywords. astrometry, masers, stars: distances, supergiants, stars: individual (VY CMa)

1. Introduction

VY CMa is one of the most luminous red supergiants in our galaxy. Its luminosity is $4.3 \times 10^{5} \mathrm{~L}_{\odot}$ (Humphreys, Helton \& Jones 2007) and distance is estimated to be 1.5 kpc (Lada \& Reid 1978). VY CMa is ejecting large amount of gas and dust at a high mass loss rate of $4 \times 10^{-4} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ (Danchi et al. 1994). $\mathrm{H}_{2} \mathrm{O}$ and SiO masers are commonly found in circumstellar envelopes (CSE) of supergiants. They are important tools to study structures and kinematics of the CSE, the mass-loss process and evolution of massive stars.

2. Parallax measurements of VY CMa

We have observed $\mathrm{H}_{2} \mathrm{O}$ masers around the red supergiant VY CMa at 10 epochs with VERA for 13 months. The source J0725-2640, whose angular distanc from VY CMa is 1.059 deg , was observed as a positional reference source. Using a bright $\mathrm{H}_{2} \mathrm{O}$ maser spot at the LSR velocity of $0.55 \mathrm{~km} \mathrm{~s}^{-1}$, we succesfully detected a trigonometric parallax of 0.87 ± 0.08 mas, corresponding to the distance of $1.15{ }_{-0.09}^{+0.10} \mathrm{kpc}$. Figure 1 shows the results of our positional measurements for this $\mathrm{H}_{2} \mathrm{O}$ maser spot. The astrometric accuracy in right ascension is better than that in declination. A possible reason for this disparity could be uncertainty in the atmospheric zenith delay.

3. $\mathrm{H}_{2} \mathrm{O}$ masers and SiO masers around VY CMa

SiO masers are detected in a spherical shell at $2-4 \mathrm{R}_{*}$ from the central star (Diamond et al. 1994) but the $\mathrm{H}_{2} \mathrm{O}$ masers are distributed over a wider region than SiO masers. The resulting phase-referencing analysis indicates that the absolute positions for both $\mathrm{H}_{2} \mathrm{O}$ masers and SiO masers are measured with an accuracy better than 1 mas. Figure 2

Figure 1. Results of position measurements for $\mathrm{H}_{2} \mathrm{O}$ maser spot at the LSR velocity of 0.55 km s^{-1} in VY CMa. Left panel: The motion of the maser spot in RA as a function of time over 13 months. Right panel: The same as left panel but for Dec. Solid lines represent the best fit model for annual parallax and proper motion of a maser spot. Dotted lines represent proper motion
 of a maser spot with error bars indicating the standard deviation from least-squares analysis (0.10 mas in RA and 0.42 mas in Dec).
shows the distribution of $\mathrm{H}_{2} \mathrm{O}$ and SiO maser features. From the position of SiO maser ring, we can estimate the position of stellar component. The $\mathrm{H}_{2} \mathrm{O}$ maser features move away from the central star with the velocity of $5-30 \mathrm{~km} \mathrm{~s}^{-1}$. The diameter of SiO maser feature is about 40 mas , corresponding to 46 AU at the distance of 1.15 kpc . If the SiO masers are formed at 2 stellar radii, then the radius of VY CMa should be about $1200 \mathrm{R}_{\odot}$.

Figure 2. Direct Comparison of absolute positions between $\mathrm{H}_{2} \mathrm{O}$ masers and SiO masers are possible with phase-referencing analyses. Closed circle, cross and open diamond represent $\mathrm{H}_{2} \mathrm{O}$ masers, $\mathrm{v}=1$ and $\mathrm{v}=2 \mathrm{~J}=1-0 \mathrm{SiO}$ masers, respectively. Arrows represent the proper motion of $\mathrm{H}_{2} \mathrm{O}$ masers from which the mean motion has been subtracted.

References

Danchi, W. C., Bester, M. Degiacomi, C. G., Greenhill, L. J., \& Townes, C. H. 1994, AJ, 107, 1469.

Diamond, P. J., Kemball, A. J., Junor, W., et al. 1994, ApJ, 430, L61.
Humphreys, R. M., Helton, L. A. \& Jones, T. J. 2007, AJ, 133, 2716.
Lada, C. J. \& Reid, M. J. 1978, ApJ, 219, 95.

