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PRIMES IN ELLIPTIC DIVISIBILITY SEQUENCES

MANFRED EINSIEDLER, GRAHAM EVEREST and THOMAS WARD

Abstract

Morgan Ward pursued the study of elliptic divisibility sequences,
originally initiated by Lucas, and Chudnovsky and Chudnovsky sub-
sequently suggested looking at elliptic divisibility sequences for
prime appearance. The problem of prime appearance in these se-
quences is examined here, from both a theoretical and a practical
viewpoint. We show calculations, together with a heuristic argument,
to suggest that these sequences contain only finitely many primes.

1. Introduction

For 0 6 n ∈ N, let un denote thenth term in an integral divisibility sequence(un). This
means that eachun is an integer, and that

m | n implies thatum | un. (1)

The oldest non-trivial example of a divisibility sequence is probably the Fibonacci sequence.
Other examples are the Mersenne sequence,Mn = 2n − 1, and the generalized Mersenne
sequences studied by Pierce and Lehmer (see [8, 11, 13]). All of these sequences satisfy
a linear recurrence relation. Bézivin, Pethö and van der Poorten have characterized all
such sequences in [1]. An important class of divisibility sequences satisfies a non-linear
recurrence relation: these are theelliptic divisibility sequences, so named by Morgan Ward,
and first studied by Lucas.

Definition 1. An integral divisibility sequence(un) is anelliptic divisibility sequence if,
for all m > n > 1, it satisfies the recurrence relation

um+num−n = um+1um−1u
2
n − un+1un−1u

2
m. (2)

The same recurrence relation is satisfied by the elliptic division polynomials associated
to an elliptic curve. Morgan Ward wrote several papers detailing the arithmetic theory of
elliptic divisibility sequences, starting with [20]. Recently, Shipsey [15] has used elliptic
divisibility sequences to study the discrete logarithm problem for elliptic curves over finite
fields. She has found an elegant algorithm for computing high-order values, using a kind of
repeated doubling.

The question of prime appearance in divisibility sequences has received much attention
when the sequence satisfies a linear recurrence relation. It seems plausible that such se-
quences will contain infinitely many primes after taking account of any generic divisibility.
For example, reciprocal Lehmer–Pierce sequences are all squares, and have all terms divis-
ible by the first. The result of [1] allows one to characterize precisely when there will be
generic divisibility.
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Primes in elliptic divisibility sequences

One other kind of generic divisibility can occur, as evidenced by the sequence 4n − 1:
for n > 1, the terms will have non-trivial factors 2n + 1 and 2n − 1. Essentially the same
kind of argument explains Ribenboim’s example in [14, p. 64]. He points out that the Lucas
sequence 0, 1,3,8,21,55, . . . (the even terms of the Fibonacci sequence) has only one
prime term. This kind of generic divisibility occurs in elliptic divisibility sequences also,
as detailed in Proposition7.

So far, there is a shortage of proofs for prime appearance in linear recurrence sequences,
but there are some heuristic arguments and some compelling data. See [18] for heuristic
arguments concerning the Mersenne sequence, and [5] for recent work on other classical
sequences. The heuristics agree with the data, although there is not a lot of data for the
Mersenne sequence, only 38 Mersenne primes being known. In [8] we provide a large
amount of data for related sequences, first defined by Pierce and Lehmer, which generalize
the Mersenne sequence.

Although Morgan Ward wrote many papers about elliptic divisibility sequences, includ-
ing one on repetition of prime factors [19], he did not touch on the question of prime
appearance. In [3] and [4], the Chudnovskys consider this question, and they make the sug-
gestion that elliptic divisibility sequences should contain very large primes. In this paper,
we are going to argue, from heuristics and from calculations, that an elliptic divisibility
sequence should contain only finitely many primes. In their paper, the Chudnovskys also
note that some of the sequences that they consider are highly divisible by small primes. We
showed in [6] how this is a manifestation of singular reduction on the underlying elliptic
curve. The sequence which arises as the division sequence associated to a rational point on
an elliptic curve (see equation (6)) is trying to tell us all the local heights for that point,
and the high divisibility is accounted for by singular reduction at the dividing primes. After
appropriately dividing out by these primes, we obtain a new sequence, which can be tested
for primality.

2. Elliptic divisibility sequences

The recurrence relation (2) is less straightforward than a linear recurrence. In order to
calculate terms, notice firstly that the single relation (2) gives rise to two relations

u2n+1 = un+2u
3
n − un−1u

3
n+1 (3)

and
u2nu2 = un+2unu

2
n−1 − unun−2u

2
n+1. (4)

The relation (3) comes about by settingm = n + 1, whilst relation (4) comes about by
settingm = n + 2 and then replacingn by n − 1. The relations (3) and (4) can then be
subsumed into the single relation

unubn/b(n+1)/2cc = ub(n+4)/2cubn/2cu2
b(n−1)/2c − ub(n+1)/2cub(n−3)/2cu

2
b(n+2)/2c,

where ‘b·c’ denotes, as usual, the integer part. Following Morgan Ward, say that a solution
u = (un)n>0 of condition (2) is proper if u0 = 0, u1 = 1, andu2u3 6= 0. Such a proper
solution will be an elliptic divisibility sequence if and only ifu2, u3 andu4 are integers with
u2 | u4, and relations (3) and (4) are satisfied for alln. Hence the termsui , for 0 6 i 6 4,
uniquely determine an elliptic divisibility sequence.

This last remark forms the basis for one of the approaches taken by the Chudnovskys:
specify the first five terms, and then consider the resulting sequence. There are problems with
this approach. Firstly, there are elliptic divisibility sequences that satisfy a linear recurrence

2https://doi.org/10.1112/S1461157000000772 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000772


Primes in elliptic divisibility sequences

relation. Examples of these include the integersun = nand the sequence 0, 1,−1,0, 1 . . .of
Legendre symbolsun = (n/3). Our interest lies with sequences that do not satisfy a linear
recurrence. Secondly, it is difficult to guess at the growth rate for an elliptic divisibility
sequence when you see only the first five terms, and rapidly growing sequences become
problematical when it comes to checking terms for primality. Finally, there is a subtle
problem, which the Chudnovskys observed: in certain instances, all of the terms can be
divisible by very high powers of small primes. Theorem4 below gives an explanation for
this in terms of the arithmetic of the underlying elliptic curves.

The other approach taken by the Chudnovskys is better suited to our purpose. All the
examples of elliptic divisibility sequences that are non-linear arise from elliptic division
polynomials, analogues of the classical cyclotomic polynomials from arithmetic. We shall
now give a short account of this material. All of the theory of elliptic curves needed here
can be found in Silverman’s volumes [16] and [17].

Consider an elliptic curve defined over the rational numbers, determined by a generalized
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (5)

with coefficientsa1, . . . , a6 in Z.

Definition 2. With the notation of equation (5), let

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

Define a sequence of polynomials inZ[x, y] as follows:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y + a1x + a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

ψ4 = ψ2
(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x + b4b8 − b2

6

)
.

Now define inductively, forn > 2,

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1

and
ψ2nψ2 = ψn

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
.

It is straightforward to check that eachψn ∈ Z[x, y]. Writeψn(Q) for ψn evaluated at
the pointQ = (x, y). The basic properties of elliptic division polynomials can be found in
[16], [17] and [20].

Proposition 3. The sequence(ψn) satisfies the recurrence(2). Also,

ψ2
n(Q) = n2xn

2−1 + . . . ∈ Z[x]
is a primitive integral polynomial inx alone, whose roots are thex-coordinates of the finite
torsion points on the curve whose order dividesn.
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The proposition guarantees that the evaluated sequence(ψn(Q)) satisfies condition (2)
for any integral pointQ. It is readily checked that if(un) is any rational sequence that satisfies
equation (2) andc is a non-zero rational, thenvn = cn

2−1un also satisfies condition (2).
Given any rational pointQ, the shape of the equation (5) guarantees that the denominator
of thex-coordinate is a square, sayx(Q) = a/b2. Thus, from the pointQ and the curve,
we can produce the terms of an elliptic divisibility sequencebn

2−1ψn(Q) by clearing the
denominator. Define the sequence(En) = (En(Q)) by

En = bn
2−1ψn(Q) ∈ Z. (6)

In [3], the Chudnovskys suggested looking at elliptic divisibility sequences for prime
appearance. In one approach, they specified the first five terms, and then examined the first
100 terms of the resulting sequence. These did indeed exhibit some primes, and some of
them are quite large. The largest prime that they found has 469 decimal digits: it appears in
the third sequence from the end in Table1.

Our heuristics predict that any given sequence should contain only finitely many primes.
We ran the Chudnovskys’ sequences to the first 500 terms, and in every case found no new
primes. In their other approach, they specified an elliptic curve and a non-torsion integral
pointQ, and examined the terms of the resulting division sequence for primality. Below,
we shall explain how good choices for the curve and the point may be made. We did this
for many curves and points, and again our calculations suggest that a given sequence will
contain only a finite number of primes. In Section3 of the paper, we present a heuristic
argument to explain why we should expect only finitely many primes. The key to our
approach is contained in Theorem4 below, which was proved in [7] (see also [9]).

To every primep, associate thep-adic valuation in the usual way, and associate the
Archimedean valuation to the ‘prime’ infinity. Recall that any rational point has a canonical
global heightĥ(Q). This global height is non-negative, and vanishes if and only ifQ is a
torsion point. It has the functoriality property thatĥ(kQ) = k2ĥ(Q) for every rational point
Q and everyk ∈ Z. Moreover, the global height is a sum of canonical local heights, one
for each prime:

ĥ(Q) =
∑
p6∞

λp(Q). (7)

The canonical local heights can be given by explicit formulæ. For finite primes, these involve
only the discriminant1 of the curve (see equation (8) below), the coordinates ofQ, and
ψ2(Q) or ψ3(Q); see Exercises 6.7 and 6.8 in [17]. Usually, local canonical heights are
defined up to a constant, and then normalized to make them isomorphism-invariant. In this
paper, we shall always use non-normalized local heights.

Write

1 = −b2
2b8 − 8b3

4 − 27b26 + 9b2b4b6 (8)

for the discriminant of the curve (5). Primesp that divide1 are precisely the primes for
which the elliptic curve reduces to a singular curve modp. Normalized local heights contain
a factor(1/12) log |1|p to make them isomorphism-invariant; it is important to stress that
the local heights represented in Theorem4 are not normalized to make them isomorphism-
invariant. Of course, the sum of the local heights is always the global height, whether the
local heights are normalized or not.

The theorem that follows was proved in [7]; it relates the non-normalized heights directly
to elliptic divisibility sequences. A more general version, together with numerical examples,
appears in [9].
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Theorem 4. Assume that equation(5) is in global minimal form. LetQ denote a non-
torsion rational point on the curve. Then forp = ∞ or a finite prime of singular reduction,
there are positive constantsA andB, withB < 2, for which

1/n2 log |ψn(Q)|p = λp(Q)+
{
O

(
(logn)A/n2

)
if p = ∞,

O
(
1/nB

)
if p < ∞.

(9)

The constantA depends upon the curve and the pointQ only, whilstB depends upon
the curve, the pointQ and the primep. The method of proof uses elliptic transcendence
theory. It is a surprising feature of the underlying bounds in elliptic transcendence theory
that the bound for the finite primes is inferior to that for the infinite prime.

For a prime of singular reduction (or forp = ∞), the canonical local height of a
rational point can be negative. It follows from equation (9) that ifp is a prime of singular
reduction for the curve, and the canonical local height ofQ at that prime is negative, then
En = En(Q) must ultimately be divisible by very high powers ofp. Thus, Theorem4
explains the examples of sequences(En), which the Chudnovskys discovered, where all
the termsEn are divisible by certain primes. Of course, sequences with this property will
yield very few prime values. Rather than ignore such sequences, however, one can divide
out the singular primes from each term ofEn by writing

Fn = |En|
∏
p|1

|En|p. (10)

We feel that the sequence(Fn) still deserves to be called ‘an elliptic divisibility sequence’
even though it might not satisfy condition (2). Note that one could also consider removing
the prime divisors belonging to an arbitrary finite set of primes that contains the divisors of
1. Based on our results here, we believe that the resulting sequence would still be prime
only finitely often.

The next result also comes from [7].

Theorem 5. If Q is a rational point withx(Q) = a/b2, andFn is defined as in equation
(10), then

Fn = Ĥ (Q)n
2+O(

n2−C)
, (11)

wherelogĤ (Q) = ĥ(Q), and0< C < 2 is a constant.

The asymptotic formula (11) is important because we can use it to restrict our search
for primes. A prime of the formFn = Fn(Q) is ananomalous prime if the indexn is not a
prime.

Proposition 6. There can be only finitely many anomalous primes in the sequence(Fn).

Proof. Since(Fn) is a divisibility sequence withFn > 1 for all largen, the only way
in which large anomalous primes can appear is if they are of the formFmn = Fn with
1 < m, n. If there are infinitely many anomalous primes, then this relation will hold with
mn → ∞. Then equation (11) implies that

n2 = (mn)2 + o
(
(mn)2

)
,

which is clearly impossible.

Another important application of equation (11) is as follows. For a non-torsion rational
pointQ, compareFn(Q) with Fn(kQ) when 1< k ∈ N. We know thatĥ(kQ) = k2ĥ(Q).
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It follows from equation (11) that the terms of the sequence(Fn(kQ)) are all larger than
those in the sequence(Fn(Q)) from some point onwards. Proposition7 below shows that
for prime n > k, Fn(Q) | Fn(kQ). Since only finitely many terms ofFn(Q) are equal
to 1, this means that, from some point, every termFn(kQ) has a non-trivial factor, and
therefore that only finitely many terms ofFn(kQ) are primes. This is an elliptic analogue
of the generic divisibility dicussed in Section1.

Proposition 7. Suppose thatQ is a non-torsion rational point, and that1 6 k ∈ N is fixed.
Then, for all primesn > k,

Fn(Q) | Fn(kQ).
Proof. Let Kn denote the algebraic number field obtained by adjoining toQ all the x-
coordinates of then-torsion points. Suppose thatp is a prime of non-singular reduction,
and thatp | Fn(Q). Let P denote a prime ideal abovep in Kn. From Proposition3, we
know that

E2
n = n2

∏
T :nT=O

∣∣b2T − a
∣∣. (12)

Suppose that we have a relationP i | b2T − a, for somen-torsion pointT and somei > 1.
Clearly, (p, b) = 1, and it follows thatx(Q) ≡ x(T ) modP i . If p is a prime of non-
singular reduction, we can findkQmodP i . Also, (n, k) = 1, sokT must be a finite point,
and we havex(kQ) ≡ x(kT )modP i . ThusP i certainly appears in some factor ofFn(kQ)
becausekT is also ann-torsion point. The mapT 7→ kT permutes then-torsion points
when(n, k) = 1. Thus, every factor ofFn(Q) that is divisible byP i yields a distinct factor
of Fn(kQ) that is divisible byP i . Since this is true for allP | p in Kn, we deduce that
every power ofp in Fn(Q) appears also inFn(kQ).

In summary, in order to find primes, we start with non-torsion rational points which
are of small height and, preferably, which are not multiples of other rational points. One
expects small-height points to be integral, so we confined our search to those. In practice, a
point that is found to be of small height is unlikely to be a multiple of any other point. For
definiteness, we began with the pointQ = (0, 0) on the curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x. (13)

By applying isomorphisms of the formy 7→ y +mx, a1 may be taken to be 0 or 1 without
loss of generality. All curves with the other coefficients in the range−100 to 100 were
searched to find the canonical global height ofQ on each curve. Of course, these curves are
not necessarily in global minimal form, so they were changed to that form (which leaves
the global height invariant). The resulting sequences(Fn)were tested for prime appearance
for a selection of curves. The results are summarized in Table2. The calculations were
performed using GP-Pari, see [12]. Note that ‘a prime’ in this context means ‘a probable
prime’, in the sense that it is a pseudo-prime to ten randomly chosen bases. There now
follows a heuristic argument that suggests that only finitely many terms of(Fn) should be
primes.

3. Heuristics on prime appearance

The essence of what follows may be summarized in the following way. Since logFn is
quadratic inn, the prime number theorem predicts that only a finite number of theFn will
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be prime (if they behave randomly). This contrasts with, say, the terms of the Mersenne
sequence, whose logarithms grow linearly inn.

Wagstaff gave a heuristic argument for the appearance of primes in the Mersenne se-
quence [18]. Roughly speaking, the prime number theorem implies that the probability that
a large integerN is prime is 1/ logN . The Euler–Fermat theorem implies that ifn is prime,
then any prime divisorq of 2n − 1 is forced to be greater than 2n. Thus, the probability
that 2n − 1 is prime needs to be adjusted by Euler factors for primes less than 2n. We may
expect ∑

prime n<x

1/ log(2n − 1)
∏
q<2n

(
1 − 1

q

)−1
(14)

Mersenne primes 2n − 1 with n < x. Using Merten’s theorem, the expression in (14) is
asymptoticallyρ logx, whereρ = eγ / log 2, andγ denotes Euler’s constant. This rough
argument does actually fit the data, although it should be added that only 38 Mersenne
primes are known. On the other hand, this kind of argument can be extended to provide
a reasonably satisfactory explanation (see [8]) of prime appearance in the Lehmer–Pierce
sequences which generalize the Mersenne sequence. The Lehmer–Pierce sequences provide
much more data against which to compare the heuristic argument.

Clearly, the growth rate of the underlying sequence plays a key role in the argument.
Hardy and Wright [10, footnote to p. 15] argued somewhat earlier that this kind of reasoning
gives a heuristic explanation for the conjectured finiteness of the number of primes in the
Fermat sequence defined byan = 22n + 1. Once again, the large growth rate of this
sequence means a paucity of data against which to test such hypotheses. This is behind the
Chudnovskys’ suggestion that small-height rational points on elliptic curves would provide
more data against which to test hypotheses of prime appearance.

Using Hasse’s theorem, we can give a kind of elliptic analogue of the approach of
Wagstaff. Ifq is a non-singular prime which dividesFn, then it follows thatnQmust reduce
to the point at infinity on the reduced curve modq. If n is prime, it follows that the order
of the group ofFq -points on this curve must be bounded below byn. By Hasse’s theorem,
the order of this group isq + O(

√
q) uniformly. Inverting this inequality gives an upper

bound forq of the formn + O(
√
n) uniformly. Thus, in the elliptic analogue of estimate

(14), we adjust by the Euler factors for non-singular primesq bounded byn+O(√n). We
should also include the Euler factors for the singular primes, but for a different reason. The
construction ofFn guarantees that each term is free of singular primes, so the probability
thatFn is prime must be adjusted by these Euler factors, just as it is for each of the non-
singular primes. This gives the following estimate for the number of prime values ofFn
with primen < x: ∑

prime n<x

1/ logFn
∏

q<n+O(√n)

(
1 − 1

q

)−1
. (15)

Merten’s theorem and the quadratic growth rate of logFn shows that the expression in (15)
converges. This suggests that, for any largex, the number of prime indicesn < x for which
Fn is prime is constant. In other words, there should be a finite number of non-anomalous
primes. In Proposition6 we showed there can be only a finite number of anomalous primes
also. This argument may be slightly refined, using the known uniform constant in Hasse’s
theorem (see [2, Theorem 8.3]). This changes estimate (15) to the following: the expected
number of non-anomalous primes in the sequence(Fn) is bounded above by

∑
prime n<∞

1/ logFn
∏

q<n+1+2
√
n

(
1 − 1

q

)−1 ∼ 1.9/ĥ(Q).

7https://doi.org/10.1112/S1461157000000772 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000772


Primes in elliptic divisibility sequences

Note that an exact calculation was made, to avoid using Merten’s theorem in this context,
since the error term in estimating the product would swamp the other terms. There does not
seem to be a reasonable heuristic for a lower bound, since the early terms (small values of
the primen) dominate the sum, so asymptotic estimates are inappropriate.

The elliptic analogue of the Lehmer problem suggests that the canonical height of a
non-torsion rational point should be uniformly bounded below. Combining this with our
heuristics suggests that the number of primes appearing should be uniformly bounded above.
A more refined conjecture of Lang suggests that the height is bounded below byc log |1|.
This suggests that the number of primes should decrease as the discriminant increases. The
experimental evidence suggests that the constantc must be very small; known points of
small height are used in [16] to give an upper bound of around 10−4 for c. Thus we cannot
use this conjecture to give a reasonable upper bound for the number of primes appearing in
an elliptic divisibility sequence in terms of the discriminant.

4. Computational evidence

The heuristics in Section3 suggest two things. Firstly, a sequence(Fn(Q)) of the form
(10) is expected to be eventually composite. Secondly, the number of non-anomalous primes
in the sequence is expected to be less than 1.9/ĥ(Q). For a selection of points on curves
found with canonical heights in the range 0.01 to 0.1, the sequence(Fn) was tested for
primality for n 6 600. The selection was made by simply choosing some curves from a
short list, so as to provide a reasonable cover of the range of heights.

There are major impediments to such experiments. On the practical side, there are very
few points with small height, and the quadratic growth of logFn means that primality testing
had to be carried out on many thousands of numbers with logarithms in the range 3,000 to
30,000. On the theoretical side, the fact that the curve and the point both vary means that
even the most optimistic heuristic argument leaves one expecting the experimental data to
lie on many different lines. Also, it is in the nature of these sequences not to have small
prime factors; therefore, proving that late terms of the sequence are composite is a slower
process than would be the case for a ‘typical’ number of comparable size.

An additional test was made of the basic heuristic (that the number of primes is finite)
by testing each of the elliptic divisibility sequences considered in [3] out to index 500. In
each case, no additional primes were found beyond those found by the Chudnovskys in
their search to index 100. These results are presented in Table1, where the first five terms
of the sequence satisfying condition (2) are given, followed by the observed growth rate,
and finally the prime values ofn for which the sequence was found to be prime. Note
that in every example, the sequence comes from an integral point on an elliptic curve that
reduces to a non-singular point for every primep. Thus the growth rate that is shown is an
approximation to the global canonical height of that point, which is entirely concentrated
at the infinite prime.

The other results are presented in two forms. Table2 records the curve (in the form used
by GP-Pari), the pointQ, the canonical height̂h(Q), the numberN(Q) of non-anomalous
primes found forn 6 600, the logarithmic error sizee(Q) = log10 ε600(Q) from equation
(16), and the setS of singular primes for the curve. The only exception is the first entry
in Table2, where the prime search was carried out forn 6 1500; this is indicated with an
asterisk on the value ofN(Q). For this curve, a prime was found atn = 739. The format
for elliptic curves used by GP-Pari means that the vector[a1, a2, a3, a4, a6] corresponds to
the curve in (global minimal) Weierstrass form (5).
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Table 1: Elliptic divisibility sequences from the paper [3] of Chudnovsky and Chudnovsky.

Initial terms Growth rate Prime incidence up ton = 500

0, 1,1,1,−2 0.0560 5,7,11,13,23,61,71

0, 1,1,1,6 0.1107 5,7,13,23,43,47

0, 1,2, 1,4 0.1262 5,7,71

0, 1,1,2, 7 0.1311 11,17,73

0, 1,1,1,−9 0.1383 7,47,79

0, 1,1,1,10 0.1432 7,13,41,61

0, 1,1,4, 1 0.1730 71,79

0, 1,1,4, 3 0.1737 5,7,13,53,71

0, 1,1,5,2 0.2010 7,43

Write
εn(Q) =

∣∣∣∣ 1

n2
logFn(Q)− ĥ(Q)

∣∣∣∣ . (16)

One might have thought that the constants in equation (9) could be so large as to make
(1/n2) logFn(Q) an unreliable estimate for̂h(Q), except for very largen. Howeverεn(Q)
seems to be approximately 1/n2 even for quite modestn (compare Table2, which shows
e(Q) = log10 ε600(Q)). This suggests that the bounds used from transcendence theory are
rather pessimistic, especially for finite primes.

Figure1 plots the number of non-anomalous primes found against the reciprocal height,
with the upper heuristic line indicated. Data points from Table2 are recorded as solid dots,
while the nine data points in Table1 are recorded as hollow circles.
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Figure 1: Number of primes found, against reciprocal height.
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Primes in elliptic divisibility sequences

Table 2: Number of primes found

Curve Q ĥ(Q) N(Q) e(Q) S

[0, 1,1,−100, 406] [5,7] 0.010724 8∗ −4.7 {3,5}
[0, 0, 1,−75,256] [−5,22] 0.012794 9 −4.8 {3,5}
[0, 1,0,−190, 1025] [−10, 45] 0.014331 9 −4.8 {2, 3,5}
[0, 1,1,−42, 110] [0, 10] 0.014560 7 −5.2 {3,7}
[0, 0, 1,−3,4] [4, 7] 0.014772 10 −4.8 {3,5}
[0, 0, 0,−12, 20] [−2, 6] 0.015621 8 −5.4 {2, 3}
[0, 1,0,−57,171] [3,6] 0.016061 10 −5.1 {2, 3}
[1,1,1,−12, 45] [1,5] 0.016445 9 −5.2 {2, 3}
[0, 1,1,−12, 2] [−3,4] 0.017243 7 −6.0 {3}
[0,−1,1,−2, 2] [2, 1] 0.018787 12 −5.1 {3}
[1,−1,1,−9,9] [−1,4] 0.019495 12 −5.2 {2}
[0, 0, 0,−4, 4] [2, 2] 0.020132 7 −5.5 {2}
[1,−1,0,−1,1] [0, 1] 0.021210 7 −4.9 {2}
[0, 1,0,−2, 9] [−2, 3] 0.023322 5 −4.9 {2, 3}
[0, 1,0,−12, 549] [−6,21] 0.024213 6 −5.1 {2, 3,7}
[0, 0, 0,−1,1] [1,1] 0.024904 8 −5.2 {2}
[1,0, 1,−7,14] [1,2] 0.025175 5 −4.6 {2, 3}
[1,0, 0,−19,33] [2, 1] 0.026523 7 −6.7 {2}
[0,−1,0,−1230, 17025] [20, 5] 0.026870 3 −5.2 {2, 5}
[0, 1,0,−106,281] [2, 9] 0.026923 7 −5.2 {2, 3}
[0, 1,1,10, 44] [1,7] 0.026989 7 −4.8 {3,5}
[0, 0, 0,−67,226] [−3,20] 0.027047 9 −3.7 {2, 5}
[0, 1,0,−81,243] [3,6] 0.027179 5 −4.8 {2, 3}
[0, 1,0,−22, 41] [2, 3] 0.027455 2 −4.8 {2, 3}
[0, 0, 0,−187,991] [7,5] 0.027921 5 −4.7 {2, 5}
[0,−1,0,−77,289] [−3,22] 0.029177 8 −4.9 {2, 11}
[1,0, 1,−9,28] [−1,6] 0.029624 5 −4.7 {2, 3}
[0,−1,0,−6,9] [0, 3] 0.029660 8 −4.9 {2, 3}
[0, 0, 0,−3,34] [5,12] 0.029759 6 −5.2 {2, 3}
[0, 1,1,0, 0] [0, 0] 0.031408 6 −5.3 ∅

[0, 0, 1,−3,0] [−1,1] 0.031606 9 −5.7 {3}
[0, 1,0,−96,333] [6,3] 0.031788 6 −4.8 {2, 3}
[0, 1,1,−346,−2288] [−10, 16] 0.034164 5 −4.7 {3,11}
[0, 1,0,−61,191] [5,6] 0.035013 8 −4.8 {2, 3}
Continued on the next page
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Primes in elliptic divisibility sequences

Table 2: Number of primes found,continued

Curve Q ĥ(Q) N(Q) e(Q) S

[1,−1,1,1,39] [−1,6] 0.035622 8 −4.9 {2, 3}
[1,−1,1,−11,27] [−1,6] 0.036961 5 −5.2 {2, 3}
[0, 0, 0,−21,61] [5,9] 0.038373 4 −4.7 {2, 3}
[0, 1,0,−457,3656] [11,9] 0.038635 1 −5.0 {2, 3}
[0, 0, 0,−145,1825] [5,35] 0.038793 7 −4.6 {2, 5,7}
[1,0, 0,−2, 1] [1,0] 0.039593 4 −6.3 ∅

[0, 1,0,−186,1089] [−6,45] 0.040564 7 −4.7 {2, 3,5}
[0, 0, 1,−117,982] [−8,37] 0.040938 6 −5.5 {3,5}
[1,1,1,−16,−15] [−3,5] 0.041328 8 −5.0 {2}
[1,1,1,−5,0] [−2, 3] 0.041731 5 −4.8 {5}
[1,−1,1,−27,−21] [−3,6] 0.041854 4 −4.5 {2, 5}
[0,−1,0,−36,232] [−6,14] 0.042577 7 −4.8 {2, 7}
[0, 1,1,−51,380] [−6,22] 0.045642 6 −4.9 {3,5}
[0, 0, 1,−97,−180] [−7,12] 0.047199 5 −6.7 {5}
[0, 1,1,−112,−380] [−7,10] 0.048152 9 −4.9 {3,7}
[1,0, 0,−17,9] [−2, 7] 0.049920 4 −4.7 {2, 3}
[1,1,0,−12, 4] [−2, 6] 0.050171 5 −4.6 {2, 5}
[0,−1,0,−112, 416] [−4, 28] 0.050523 5 −5.0 {2, 7}
[0, 1,0,−60, 144] [−6,18] 0.051907 6 −4.9 {2, 3}
[0, 1,0,−8,13] [−2, 5] 0.053310 5 −4.6 {2, 5}
[0,−1,0,−60, 792] [−6,30] 0.055897 1 −4.5 {2, 3,5}
[0,−1,0,−220, 1432] [−6,50] 0.056934 4 −4.7 {2, 5}
[0, 1,1,−442,−3338] [−13,19] 0.058442 3 −4.9 {3,13}
[0, 1,1,−50,−94] [−5,7] 0.058542 2 −4.4 {3,5}
[0, 1,1,−8,−6] [−2, 2] 0.059722 5 −4.9 {5}
[0, 0, 1,−147,306] [−7,31] 0.059992 5 −4.6 {3,7}
[1,0, 0,−40,−64] [−4, 8] 0.064265 5 −5.2 {2, 3}
[0, 1,0,−1342,−18271] [−22, 33] 0.068435 4 −4.7 {2, 3,11}
[0, 1,0,−133,1863] [−7,50] 0.069217 4 −4.7 {2, 5}
[0, 1,1,−286,−1180] [−11,27] 0.070143 3 −4.4 {5,11}
[0, 0, 1,−40, 48] [−6,8] 0.071586 3 −5.1 {17}
[0, 1,1,−382,−2958] [−12, 6] 0.071857 6 −4.9 {13}
[0, 1,1,−1,−1] [−1,0] 0.082352 5 −5.3 ∅

[1,0, 0,−43,−103] [−4, 5] 0.085944 3 −4.7 {2, 3}
[0, 1,1,−2728,−53576] [−31,46] 0.096258 1 −4.9 {3,31}
[0, 1,0,−413,−3009] [−11,18] 0.099665 3 −5.1 {2, 3}
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