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MANFRED EINSIEDLER, GRAHAM EVEREST anp THOMAS WARD

Abstract

Morgan Ward pursued the study of elliptic divisibility sequences,
originally initiated by Lucas, and Chudnovsky and Chudnovsky sub-
sequently suggested looking at elliptic divisibility sequences for
prime appearance. The problem of prime appearance in these se-
guences is examined here, from both a theoretical and a practical
viewpoint. We show calculations, together with a heuristic argument,
to suggest that these sequences contain only finitely many primes.

1. Introduction

For 0 < n € N, letu, denote theith term in an integral divisibility sequence,,). This
means that eadh, is an integer, and that

m | n implies thatu,, | u,. Q)

The oldest non-trivial example of a divisibility sequence is probably the Fibonacci sequenc
Other examples are the Mersenne sequeMge= 2" — 1, and the generalized Mersenne
sequences studied by Pierce and Lehmer (8e&1], 13]). All of these sequences satisfy
a linear recurrence relation. Bézivin, Pethd and van der Poorten have characterized
such sequences in [1]. An important class of divisibility sequences satisfies a non-line
recurrence relation: these are #iBptic divisibility sequences, SO named by Morgan Ward,
and first studied by Lucas.

Definition 1. An integral divisibility sequencéu, ) is anelliptic divisibility sequence if,
forallm > n > 1, it satisfies the recurrence relation

2 2
Um4+nUm—n = Um+1Um—1U,;, — Up+1Un—1U,,. (2)

The same recurrence relation is satisfied by the elliptic division polynomials associats
to an elliptic curve. Morgan Ward wrote several papers detailing the arithmetic theory ¢
elliptic divisibility sequences, starting witl2Q]. Recently, Shipseylp] has used elliptic
divisibility sequences to study the discrete logarithm problem for elliptic curves over finit
fields. She has found an elegant algorithm for computing high-order values, using a kind
repeated doubling.

The question of prime appearance in divisibility sequences has received much attent
when the sequence satisfies a linear recurrence relation. It seems plausible that such
guences will contain infinitely many primes after taking account of any generic divisibility.
For example, reciprocal Lehmer—Pierce sequences are all squares, and have all terms d
ible by the first. The result of [1] allows one to characterize precisely when there will b
generic divisibility.
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Primes in elliptic divisibility sequences

One other kind of generic divisibility can occur, as evidenced by the sequéned 4
for n > 1, the terms will have non-trivial factord' 2- 1 and 2 — 1. Essentially the same
kind of argument explains Ribenboim’s example in [14, p. 64]. He points out that the Luce
sequence (1, 3, 8,21,55, ... (the even terms of the Fibonacci sequence) has only one
prime term. This kind of generic divisibility occurs in elliptic divisibility sequences also,
as detailed in Proposition.

So far, there is a shortage of proofs for prime appearance in linear recurrence sequen
but there are some heuristic arguments and some compelling datal&der[heuristic
arguments concerning the Mersenne sequence,dgridr[recent work on other classical
sequences. The heuristics agree with the data, although there is not a lot of data for
Mersenne sequence, only 38 Mersenne primes being known. In [8] we provide a lari
amount of data for related sequences, first defined by Pierce and Lehmer, which genera
the Mersenne sequence.

Although Morgan Ward wrote many papers about elliptic divisibility sequences, includ
ing one on repetition of prime factord 9], he did not touch on the question of prime
appearance. Ir8] and [4], the Chudnovskys consider this question, and they make the su
gestion that elliptic divisibility sequences should contain very large primes. In this pape
we are going to argue, from heuristics and from calculations, that an elliptic divisibility
sequence should contain only finitely many primes. In their paper, the Chudnovskys al
note that some of the sequences that they consider are highly divisible by small primes. \
showed in B] how this is a manifestation of singular reduction on the underlying elliptic
curve. The sequence which arises as the division sequence associated to a rational poir
an elliptic curve (see equation (6)) is trying to tell us all the local heights for that point
and the high divisibility is accounted for by singular reduction at the dividing primes. Aftet
appropriately dividing out by these primes, we obtain a new sequence, which can be tes
for primality.

2. Elliptic divisibility sequences

The recurrence relatior2) is less straightforward than a linear recurrence. In order to
calculate terms, notice firstly that the single relation (2) gives rise to two relations

3 3
Un+1 = Un2Uy, — Up—1Uy, g (3)
and ) )
Ul = Un42Unlly 1 — Uply—2Uy 7. (4)

The relation (3) comes about by settimg= n + 1, whilst relation 4) comes about by
settingm = n + 2 and then replacing by n — 1. The relations3) and &) can then be
subsumed into the single relation

Unt |n/|(n+1)/2)) = “L<n+4>/2J“Ln/ZJ“fm—l)/ZJ - “L<n+1>/2J“L<n—3>/2J“f<n+2>/2J’

where ‘| -|” denotes, as usual, the integer part. Following Morgan Ward, say that a solutic
u = (un)nxo0 Of condition Q) is proper if ug = 0, u1 = 1, andusuz # 0. Such a proper
solution will be an elliptic divisibility sequence if and onlyiig, u3 andu4 are integers with
u2 | ug, and relations3) and @) are satisfied for akk. Hence the terms;, for 0 < i < 4,
uniguely determine an elliptic divisibility sequence.

This last remark forms the basis for one of the approaches taken by the Chudnovsk
specify the first five terms, and then consider the resulting sequence. There are problemsy
this approach. Firstly, there are elliptic divisibility sequences that satisfy a linear recurren
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relation. Examples of these include the integgrs= n and the sequence 0, —1,0, 1. .. of
Legendre symbols, = (n/3). Our interest lies with sequences that do not satisfy a linear
recurrence. Secondly, it is difficult to guess at the growth rate for an elliptic divisibility
sequence when you see only the first five terms, and rapidly growing sequences beco
problematical when it comes to checking terms for primality. Finally, there is a subtle
problem, which the Chudnovskys observed: in certain instances, all of the terms can
divisible by very high powers of small primes. Theordrhelow gives an explanation for
this in terms of the arithmetic of the underlying elliptic curves.

The other approach taken by the Chudnovskys is better suited to our purpose. All t
examples of elliptic divisibility sequences that are non-linear arise from elliptic division
polynomials, analogues of the classical cyclotomic polynomials from arithmetic. We sha
now give a short account of this material. All of the theory of elliptic curves needed her
can be found in Silverman’s volumes [16] and [17].

Consider an elliptic curve defined over the rational numbers, determined by a generaliz
Weierstrass equation

y2 + aixy + azy = x> + azx® + asx + ag, (5)

with coefficientsay, ..., agin Z.

Definition 2. With the notation of equation (5), let

by = a% + 4ay,
by = 2a4 + ayas,
be = a5 + 4as,

bg = afas + dazag — arazaq + a2a§ — af.

Define a sequence of polynomialsiifix, y] as follows:
Yo =0,
V1 =1,
V2 =2y + a1x + as,
Y3 = 3t + b2x3 + 3b4x2 + 3bex + bg,
Yy = Iﬂ2(2x6 + b2x5 + 5b4x4 + 10b6x3 + 10b8x2 + (bobg — babg)x + babg — bg)

Now define inductively, forn > 2,
Yoni1 = Ynt2¥p — Yn-1V 1
Yon 2 = wn(\[fn—o—ﬂ[/nzfl - w11—2w3+1)'

It is straightforward to check that eagh, € Z[x, y]. Write vy, (Q) for ¥, evaluated at
the pointQ = (x, y). The basic properties of elliptic division polynomials can be found in
[16], [17] and [20].

and

Proposition 3. The sequencg/,,) satisfies the recurrend®). Also,

Y2(0) =n®x" 1y e Zx]

is a primitive integral polynomial i alone, whose roots are thecoordinates of the finite
torsion points on the curve whose order divides
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The proposition guarantees that the evaluated sequ@nc®)) satisfies condition2)
forany integral poinQ. Itis readily checked that i, ) is any rational sequence that satisfies
equation (2) and is a non-zero rational, ther), = c"zflu,, also satisfies conditior2].
Given any rational poinQ, the shape of the equatioB)(guarantees that the denominator
of the x-coordinate is a square, sayQ) = a/b?. Thus, from the poinQ and the curve,
we can produce the terms of an elliptic divisibility sequeb’?:zélzp,,(Q) by clearing the
denominator. Define the sequends,) = (E,(Q)) by

E,=b0""1,(0) €L (6)

In [3], the Chudnovskys suggested looking at elliptic divisibility sequences for prime
appearance. In one approach, they specified the first five terms, and then examined the
100 terms of the resulting sequence. These did indeed exhibit some primes, and some
them are quite large. The largest prime that they found has 469 decimal digits: it appears
the third sequence from the end in Talle

Our heuristics predict that any given sequence should contain only finitely many prime
We ran the Chudnovskys’ sequences to the first 500 terms, and in every case found no r
primes. In their other approach, they specified an elliptic curve and a non-torsion integr
point Q, and examined the terms of the resulting division sequence for primality. Below
we shall explain how good choices for the curve and the point may be made. We did tt
for many curves and points, and again our calculations suggest that a given sequence
contain only a finite number of primes. In Sectidrof the paper, we present a heuristic
argument to explain why we should expect only finitely many primes. The key to ou
approach is contained in Theorehbelow, which was proved in [7] (see also [9]).

To every primep, associate thep-adic valuation in the usual way, and associate the
Archimedean valuation to the ‘prime’ infinity. Recall that any rational point has a canonice
global height(Q). This global height is non-negative, and vanishes if and ony i§ a
torsion point. It has the functoriality property thiatk Q) = k2i(Q) for every rational point
0 and everyk € Z. Moreover, the global height is a sum of canonical local heights, one
for each prime: .

h(Q) =Y 1p(0). )
IS
The canonical local heights can be given by explicit formulae. For finite primes, these invol\
only the discriminantA of the curve (see equatioB)(below), the coordinates @, and
Y2(Q) or Yr3(Q); see Exercises 6.7 and 6.8 ih7]. Usually, local canonical heights are
defined up to a constant, and then normalized to make them isomorphism-invariant. In tl
paper, we shall always use non-normalized local heights.
Write

A = —b3bg — 8b3 — 2712 + 9bobabe (8)

for the discriminant of the curves]. Primesp that divide A are precisely the primes for
which the elliptic curve reduces to a singular curve moblormalized local heights contain
afactor(1/12) log|A|, to make them isomorphism-invariant; it is important to stress that
the local heights represented in Theoréare not normalized to make them isomorphism-
invariant. Of course, the sum of the local heights is always the global height, whether t
local heights are normalized or not.

The theorem that follows was proved ifj]it relates the non-normalized heights directly
to elliptic divisibility sequences. A more general version, together with numerical example:
appears in [9].
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Theorem 4. Assume that equatiofd) is in global minimal form. LetQ denote a non-
torsion rational point on the curve. Then fpr= oo or a finite prime of singular reduction,
there are positive constantsand B, with B < 2, for which

O ((logn)4/n?) if p = o0,

1/n? log [y, (O)], = 4p(Q) + { 0 (1/n") if p < oo. ®)

The constand depends upon the curve and the paihbnly, whilst B depends upon
the curve, the poin® and the primep. The method of proof uses elliptic transcendence
theory. It is a surprising feature of the underlying bounds in elliptic transcendence theo
that the bound for the finite primes is inferior to that for the infinite prime.

For a prime of singular reduction (or fgf = o00), the canonical local height of a
rational point can be negative. It follows from equati® that if p is a prime of singular
reduction for the curve, and the canonical local heighPadt that prime is negative, then
E, = E,(Q) must ultimately be divisible by very high powers pf Thus, Theoren
explains the examples of sequenc¢&y), which the Chudnovskys discovered, where all
the termsE,, are divisible by certain primes. Of course, sequences with this property wil
yield very few prime values. Rather than ignore such sequences, however, one can div
out the singular primes from each termf by writing

Fn:|En|l_[|En|p- (10)
rla

We feel that the sequencé),) still deserves to be called ‘an elliptic divisibility sequence’
even though it might not satisfy conditio)( Note that one could also consider removing
the prime divisors belonging to an arbitrary finite set of primes that contains the divisors ¢
A. Based on our results here, we believe that the resulting sequence would still be prir
only finitely often.

The next result also comes from [7].

Theorem 5. If Q is a rational point withx(Q) = a/b?, and F, is defined as in equation
(10), then

Fy = H(Q)"+00™°), (11)
wherelog H(Q) = h(Q), and0 < C < 2is a constant.

The asymptotic formulal(l) is important because we can use it to restrict our searct
for primes. A prime of the forn¥,, = F,(Q) is ananomalous prime if the indexn is not a
prime.

Proposition 6. There can be only finitely many anomalous primes in the sequéhge

Proof. Since(F,) is a divisibility sequence withF,, > 1 for all largern, the only way

in which large anomalous primes can appear is if they are of the fgym= F, with

1 < m, n. If there are infinitely many anomalous primes, then this relation will hold with
mn — 00. Then equation (11) implies that

n? = (mn)2 + 0((mn)2),
which is clearly impossible. O

Another important application of equationl( is as follows. For a non-torsion rational
point Q, compareF, (Q) with F,(kQ) when 1< k € N. We know that:(k Q) = k2h(Q).
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It follows from equation (11) that the terms of the sequetiggk Q)) are all larger than
those in the sequendd;, (Q)) from some point onwards. Propositidgrbelow shows that
for primen > k, F,(Q) | F,(kQ). Since only finitely many terms af,, (Q) are equal
to 1, this means that, from some point, every tefjik Q) has a non-trivial factor, and
therefore that only finitely many terms &f,(kQ) are primes. This is an elliptic analogue
of the generic divisibility dicussed in Sectidn

Proposition 7. Suppose thaP is a non-torsion rational point, and that< k € Nis fixed.
Then, for all primes: > k,

Fn(Q) | Fu(kQ).

Proof. Let K,, denote the algebraic number field obtained by adjoinin@tall the x-
coordinates of tha-torsion points. Suppose thatis a prime of non-singular reduction,
and thatp | F,,(Q). Let P denote a prime ideal aboyein K,. From PropositiorB, we
know that
E32n2 1_[ |b2T—a|. (12)
T:nT=0

Suppose that we have a relatiBh | b2T — a, for somen-torsion pointl’ and some > 1.
Clearly, (p, b) = 1, and it follows thatc(Q) = x(T') mod P’. If p is a prime of non-
singular reduction, we can firkdQ mod P’. Also, (1, k) = 1, sokT must be a finite point,
and we have (kQ) = x(kT) mod P!. ThusP! certainly appears in some factor 6f(k Q)
becaus&T is also am-torsion point. The mag’ — kT permutes the-torsion points
when(n, k) = 1. Thus, every factor of,, (Q) that is divisible byP’ yields a distinct factor
of F,(kQ) that is divisible byP’. Since this is true for alP | p in K,, we deduce that
every power ofp in F,,(Q) appears also i, (kQ). O

In summary, in order to find primes, we start with non-torsion rational points whict
are of small height and, preferably, which are not multiples of other rational points. On
expects small-height points to be integral, so we confined our search to those. In practice
point that is found to be of small height is unlikely to be a multiple of any other point. Fot
definiteness, we began with the poit= (0, 0) on the curve

y2 4+ aixy + azy = x3 4+ apx? + agx. (13)

By applying isomorphisms of the form+— y + mx, a; may be taken to be 0 or 1 without
loss of generality. All curves with the other coefficients in the rard®0 to 100 were
searched to find the canonical global heightiodn each curve. Of course, these curves are
not necessarily in global minimal form, so they were changed to that form (which leave
the global height invariant). The resulting sequendgs were tested for prime appearance
for a selection of curves. The results are summarized in TAblghe calculations were
performed using GP-Pari, se€?]. Note that ‘a prime’ in this context means ‘a probable
prime’, in the sense that it is a pseudo-prime to ten randomly chosen bases. There n
follows a heuristic argument that suggests that only finitely many termg,ofshould be
primes.

3. Heuristics on prime appearance

The essence of what follows may be summarized in the following way. Sindg,leg
quadratic inz, the prime number theorem predicts that only a finite number oftheill
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be prime (if they behave randomly). This contrasts with, say, the terms of the Mersen
sequence, whose logarithms grow linearly:in

Wagstaff gave a heuristic argument for the appearance of primes in the Mersenne
quence [18]. Roughly speaking, the prime number theorem implies that the probability th
alarge integeN is prime is ¥ log N. The Euler—Fermat theorem implies that ifs prime,
then any prime divisog of 2" — 1 is forced to be greater tham 2Thus, the probability
that 2 — 1 is prime needs to be adjusted by Euler factors for primes less than 2n. We me
expect

-1

Y 1/10g@ -1 [ (1— %) (14)
primen<x g<2n
Mersenne primes™2— 1 with n < x. Using Merten’s theorem, the expression i) is
asymptoticallyp logx, wherep = ¢¥/log 2, andy denotes Euler’'s constant. This rough
argument does actually fit the data, although it should be added that only 38 Mersen
primes are known. On the other hand, this kind of argument can be extended to provi
a reasonably satisfactory explanation (see [8]) of prime appearance in the Lehmer—Pie
sequences which generalize the Mersenne sequence. The Lehmer—Pierce sequences pr
much more data against which to compare the heuristic argument.

Clearly, the growth rate of the underlying sequence plays a key role in the argumer
Hardy and Wright [10, footnote to p. 15] argued somewhat earlier that this kind of reasonir
gives a heuristic explanation for the conjectured finiteness of the number of primes in tl
Fermat sequence defined by = 22 + 1. Once again, the large growth rate of this
sequence means a paucity of data against which to test such hypotheses. This is behinc
Chudnovskys’ suggestion that small-height rational points on elliptic curves would provid
more data against which to test hypotheses of prime appearance.

Using Hasse’s theorem, we can give a kind of elliptic analogue of the approach
Wagstaff. Ifg is a non-singular prime which divid€s,, then it follows thaiz O must reduce
to the point at infinity on the reduced curve mgdif n is prime, it follows that the order
of the group ofF,-points on this curve must be bounded below:byBy Hasse'’s theorem,
the order of this group ig 4+ O(,/g) uniformly. Inverting this inequality gives an upper
bound forg of the formn + O (/n) uniformly. Thus, in the elliptic analogue of estimate
(14), we adjust by the Euler factors for non-singular prispémunded by: + O ({/n). We
should also include the Euler factors for the singular primes, but for a different reason. Tl
construction ofF,, guarantees that each term is free of singular primes, so the probabilit
that F,, is prime must be adjusted by these Euler factors, just as it is for each of the nol
singular primes. This gives the following estimate for the number of prime valuéy of

with primen < x: 1

> 1/logF ] (1— %) . (15)

prime n<x q<n+0(/n)

Merten’s theorem and the quadratic growth rate offipghows that the expression ih5)
converges. This suggests that, for any largéine number of prime indices < x for which
F, is prime is constant. In other words, there should be a finite number of non-anomalo!
primes. In Propositiols we showed there can be only a finite number of anomalous prime:
also. This argument may be slightly refined, using the known uniform constant in Hasse
theorem (see [2, Theorem 8.3]). This changes estimate (15) to the following: the expect
number of non-anomalous primes in the sequdiie is bounded above by

Y 1/logh [] (1 - %)_1 ~ 1.9/h(0).
prime n<oo g<n+1+2y/n
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Note that an exact calculation was made, to avoid using Merten’s theorem in this conte:
since the error term in estimating the product would swamp the other terms. There does |
seem to be a reasonable heuristic for a lower bound, since the early terms (small value:
the primen) dominate the sum, so asymptotic estimates are inappropriate.

The elliptic analogue of the Lehmer problem suggests that the canonical height of
non-torsion rational point should be uniformly bounded below. Combining this with oul
heuristics suggests that the number of primes appearing should be uniformly bounded abc
A more refined conjecture of Lang suggests that the height is bounded belolodiy |.

This suggests that the number of primes should decrease as the discriminant increases.
experimental evidence suggests that the constamtist be very small; known points of
small height are used in [16] to give an upper bound of around 16 . Thus we cannot
use this conjecture to give a reasonable upper bound for the number of primes appearin
an elliptic divisibility sequence in terms of the discriminant.

4. Computational evidence

The heuristics in SectioB suggest two things. Firstly, a sequeriég (Q)) of the form
(10) is expected to be eventually composite. Secondly, the number of non-anomalous prin
in the sequence is expected to be less thamﬁ:(Q). For a selection of points on curves
found with canonical heights in the range0 to Q1, the sequencéF,,) was tested for
primality for n < 600. The selection was made by simply choosing some curves from
short list, so as to provide a reasonable cover of the range of heights.

There are major impediments to such experiments. On the practical side, there are v
few points with small height, and the quadratic growth of Khgneans that primality testing
had to be carried out on many thousands of numbers with logarithms in the range 3,000
30,000. On the theoretical side, the fact that the curve and the point both vary means tl
even the most optimistic heuristic argument leaves one expecting the experimental date
lie on many different lines. Also, it is in the nature of these sequences not to have sm:
prime factors; therefore, proving that late terms of the sequence are composite is a slo\
process than would be the case for a ‘typical’ number of comparable size.

An additional test was made of the basic heuristic (that the number of primes is finite
by testing each of the elliptic divisibility sequences considere@jo{it to index 500. In
each case, no additional primes were found beyond those found by the Chudnovskys
their search to index 100. These results are presented in Taeere the first five terms
of the sequence satisfying conditia?) @re given, followed by the observed growth rate,
and finally the prime values of for which the sequence was found to be prime. Note
that in every example, the sequence comes from an integral point on an elliptic curve tt
reduces to a non-singular point for every primeThus the growth rate that is shown is an
approximation to the global canonical height of that point, which is entirely concentrate
at the infinite prime.

The other results are presented in two forms. Tabkcords the curve (in the form used
by GP-Pari), the poin@, the canonical heigHAt(Q), the numbeV (Q) of non-anomalous
primes found fomn < 600, the logarithmic error siz&€ Q) = 109, €600(Q) from equation
(16), and the sef§ of singular primes for the curve. The only exception is the first entry
in Table2, where the prime search was carried outfag 1500; this is indicated with an
asterisk on the value d¥ (Q). For this curve, a prime was foundat= 739. The format
for elliptic curves used by GP-Pari means that the veetray, as, as, ag] corresponds to
the curve in (global minimal) Weierstrass form (5).
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Table 1: Elliptic divisibility sequences from the pap8f §f Chudnovsky and Chudnovsky.

Initial terms  Growth rate  Prime incidence uprte= 500
0,1,1,1,—-2 0.0560 5,7,11,13,23,61,71
0,1,1,1,6 0.1107 5,7,13,23,43,47
0,1,2,1,4 0.1262 57,71
0,1,1,2,7 0.1311 1117,73
0,1,1,1,-9 01383 747,79
0,1,1,1,10 01432 7,13,41,61
0,1,1,4,1 0.1730 71,79
0,1,1,4,3 0.1737 5,7,13,53,71
0,1,1,5,2 0.2010 743
Write 1 R
€n(Q) = ‘ﬁloan(Q)—h(Q)‘- (16)

One might have thought that the constants in equation (9) could be so large as to me
(1/n%) log F,(Q) an unreliable estimate f(izr(Q), except for very large. Howevere, (Q)
seems to be approximately 1% even for quite modest (compare Tabl®, which shows
e(Q) = logiges00(Q)). This suggests that the bounds used from transcendence theory a
rather pessimistic, especially for finite primes.

Figurel plots the number of non-anomalous primes found against the reciprocal heigt
with the upper heuristic line indicated. Data points from Tabdee recorded as solid dots,
while the nine data points in Tableare recorded as hollow circles.

Number of primes

204 heuristic upper bound
104 o o
GD(RD LN J : ..
M N N — 1/height
25 50 75 100

Figure 1: Number of primes found, against reciprocal height.
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Table 2: Number of primes found

Curve 0 h(Q) N(Q) e(Q) S
[0,1,1,—-100,406] B,7] 0.010724 8% 47 {3,5}
[0,0,1,-75,256] [-5, 22] 0.012794 9 —-4.8 {3,5}
[0, 1,0, —190 1025] [-10,45] 0.014331 9 -48 {2,3,5}
[0,1,1,—-42,110Q] [0, 10] 0.014560 7 -52 (3,7}
[0,0,1,—3,4] [4, 7] 0.014772 10 —4.8 (3,5}
[0,0,0, —12, 20] [—2, 6] 0.015621 8 54 {2,3}
[0,1,0,-57,171] [3, 6] 0.016061 10 =51 {2,3}
[1,1,1,—12 45] [1,5] 0.016445 9 —5.2 {2,3}
[0,1,1,-12 2] [—3,4] 0.017243 7 —-6.0 ({3}
[0,-1,1,-2,2] [2,1] 0.018787 12 -51 {3}
[1,-1,1,-9,9] [—1,4] 0.019495 12 -52 {2}

[0, 0, 0, —4, 4] [2, 2] 0.020132 7 -55 ({2}
[1,-1,0,-1,1] [0, 1] 0.021210 7 -49 ({2}
[0,1,0, —2, 9] [-2,3] 0.023322 5 —49 {23}
[0,1,0, —12 549] [-6, 21] 0.024213 6 —-51 {2,3,7}
[0,0,0,—-1,1] [1,1] 0.024904 8 -52 {2}
[1,0,1,—7,14] [1,2] 0.025175 5 —46 {2, 3}
[1,0,0, —19,33] 2, 1] 0.026523 7 —6.7 {2}
[0,—1,0,—-123Q 17025] RO, 5] 0.026870 3 -5.2 {2,5}
[0,1,0,—-106,281] 2, 9] 0.026923 7 -5.2 {2,3}
[0,1,1,10, 44] [1,7] 0.026989 7 —-4.8 (3,5}
[0,0,0, —67,226] [3,20] 0.027047 9 -3.7 {2,5}
[0,1,0, —81,243] B, 6] 0.027179 5 —48 (2,3}
[0,1,0, —22 41] [2, 3] 0.027455 2 —-4.8 {2,3}
[0,0,0, —187,991] [7,5] 0.027921 5 —4.7 {2,5}
[0, —1,0, —77,289] [-3,22] 0.029177 8 —49 (2,11}
[1,0,1,-9,28] [—1,6] 0.029624 5 -4.7 (2,3}
[0, —-1,0, —6,9] [0, 3] 0.029660 8 —-49 {2,3}
[0, 0,0, —3,34] [5,12] 0.029759 6 —-52 {2,3}
[0,1,1,0,0] [0, 0] 0.031408 6 -53 ©
[0,0,1,-3,0] [—1,1] 0.031606 9 -5.7 {3}
[0,1,0, —96,333] B, 3] 0.031788 6 —48 (2,3}
[0,1,1, —346,—2288] [-10,16] 0.034164 5 —-4.7 {3,11}
[0,1,0,—-61,191] B, 6] 0.035013 8 —-4.8 {2,3}

Continued on the next page
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Table 2: Number of primes foundpntinued

Curve 0 h(Q) N(Q) e(Q) S
[1,-1,1,1,39] [-1,6] 0.035622 8 —-49 (2,3}
[1,-1,1,-11,27] [-1, 6] 0.036961 5 -52 (2,3}
[0,0,0, —21,61] 5, 9] 0.038373 4 —47 (2,3}
[0,1,0, —457,3656] [M1,9] 0.038635 1 -5.0 {2,3}
[0, 0,0, —145,1825] B, 35] 0.038793 7 —-46 {2,5,7}
[1,0,0, -2, 1] [1,0] 0.039593 4 -6.3 ©
[0,1,0,—-186,1089] [-6,45] 0.040564 7 -4.7 {2,3,5}
[0,0,1,—-117,982] [—8,37] 0.040938 6 -55 {3,5}
[1,1,1,-16,-15] [—3,5] 0.041328 8 -5.0 {2}
[1,1,1,-5,0] [—=2, 3] 0.041731 5 —-4.8 ({5}
[1,-1,1,-27,-21] [-3,6] 0.041854 4 —-45 (2,5}
[0, —1,0, —36,232] [-6,14] 0.042577 7 —48 (2,7}
[0,1,1,-51,380] [—6,22] 0.045642 6 —-4.9 (3,5}
[0,0,1,—97,—180] [=7,12] 0.047199 5 —6.7 {5}
[0,1,1,—-112 —380Q] [-7,10] 0.048152 9 —-49 (3,7}
[1,0,0,—-17,9] [—2,7] 0.049920 4 -47 (2,3}
[1,1,0, —12 4] [—2, 6] 0.050171 5 —-46 {2,5}
[0,—-1,0,—-112 416] [—4, 28] 0.050523 5 5.0 {2,7}
[0, 1,0, —60, 144 [—6, 18] 0.051907 6 -49 (2,3}
[0,1,0,-8,13] [—2, 5] 0.053310 5 —-46 (2,5}
[0, —1,0, —60, 792 [-6,30] 0.055897 1 —45 {2,3,5)
[0,—1,0,—-220 1432 [—6,50] 0.056934 4 —4.7 {2,5}
[0,1,1,—-442 —3338] [-13,19] 0.058442 3 —-49 (3,13}
[0,1,1,-50, —94] [-5,7] 0.058542 2 —4.4 (3,5}
[0,1,1,-8,-6] [—2, 2] 0.059722 5 —-49 ({5}
[0,0,1,—-147,306] [—7,31] 0.059992 5 —-46 {3,7}
[1,0, 0, —40, —64] [—4, 8] 0.064265 5 —-52 {2,3}
[0,1,0,—-1342 —18271] [22,33] 0.068435 4 —-47 {2,3,11}
[0,1,0,—-133,1863] [—7,50] 0.069217 4 —-4.7 (2,5}
[0,1,1,—286,—118(Q [-11,27] 0.070143 3 —-4.4 (5,11}
[0,0, 1,40, 48] [—6, 8] 0.071586 3 -5.1 {17}
[0,1,1,—-382 —2958] [-12, 6] 0.071857 6 -49 {13}
[0,1,1,-1,-1] [—1,0] 0.082352 5 -53 ©
[1,0,0,—-43,—-103] [—4, 5] 0.085944 3 -4.7 (2,3}
[0,1,1,—2728,—-53576] [31,46] 0.096258 1 —4.9 (3,31}
[0,1,0, —413,—3009] [-11,18] 0.099665 3 -51 {2,3}
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