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Abstract

Linear multiplicative programs are an important class of nonconvex optimisation problems
that are currently the subject of considerable research as regards the development of com-
putational algorithms. In this paper, we show that mathematical programs of this nature are,
in fact, a special case of more general signomial programming, which in turn implies that
research on this latter problem may be valuable in analysing and solving linear multiplica-
tive programs. In particular, we use signomial programming duality theory to establish a
dual program for a nonconvex linear multiplicative program. An interpretation of the dual
variables is given.

1. Introduction

We consider mathematical programs of the form

n

Minimise ^ ( a / x + &,•) subject to Dx > c, (P,)
/=i

where x e Rm is a vector of variables and a, € Km, bt e R, / = 1 n, c € UK

and D e RKxm are constants. We assume that the feasible region {x \ Dx > c] is
nonempty and bounded so that program (Pi) has a finite optimal solution.

We call program (Pi) a linear multiplicative program. It is a nonconvex program
with multiple local optima. Applications include economic analysis [6], bond portfolio
optimisation [7] and VLSI chip design [12]. Matsui [13] shows that this program is
NP-hard. Extensive analysis of this problem was first carried out for n = 2 by
Forgo [5], Swarup [16] and Konno et al. [8, 9], where several earlier references may
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be found. Subsequently further development particularly with regard to.computational
methods for n > 2 occurred (see, for example, [1, 2, 10, 11, 15, 17]).

In this paper, we show that a linear multiplicative program is a particular case of a
signomial program and hence theory developed for signomial programs is transferable
to linear multiplicative programs. In particular, by making this correspondence, we
develop a dual program for a linear multiplicative program. An interesting interpre-
tation is given for the dual variables which is similar to that in prototype geometric
programming.

2. Signomial programming and duality

A general signomial problem is of the form

Minimise go(t) subject to gk(t) < 6k{= ±1), k = 1 , . . . , p, and t > 0,

where gk(t) = £1 6 l t ] 07c,- £JL, t°", k = 0 , . . . , p, are signomial functions, which
are in general nonconvex. The index sets [k], k = 0, ...,p, form a sequential

ipartition of the integers 1 to n, that is, [0] = {1,...,?!]}, [1] = {nx + 1 , . . . , n2],... ,
lip] = {np + l,..., n). Herec,, i = 1 n, are strictly positive and ay,/ = 1 n,
;j = l,...,m, are arbitrary coefficients. Further, CT, = ±1, 1 = 1, . . . , / i , and
consequently, signomial programs are nonconvex programs with multiple local optima.
Note that signomial programs are an extension of prototype geometric programs [4]
from posynomial functions to signomials [14].

The corresponding dual program [14] is

P / \ a\$i b

Maximise UYlij:) T\k*
k=Oie\k] V f / *=1

subject to a generalised normality condition 5Z1€|0| cr,5, = 1, orthogonality conditions
Zw=i 0ia,j8, =0,j = I m, linear inequality constraints 6k £,€(Jt] CTjSj = Xk > 0,
k = I,... ,p, and nonnegativity constraints

<5, > 0 , i = l , . . . , n , kk > 0 , k = l , . . . , p .

For every point t° where go(t) is a local minimum there exists a set of dual variables
5°, k° such that v(8°, k°) = go(t°).

Since a weak duality theorem does not hold, this dual is termed a pseudo-dual.
The global minimum is obtained through a process called pseudominimisation [14]
whereby all local maxima of the dual are obtained with the global minimum being
the minimum of these local maxima. This concept of "pseudo-duality" is similar to
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Craven's concept of "quasi-duality" [3] which shows the existence of points termed
"quasimin" and "quasimax" where the duality gap is zero. In both of the above cases
which deal with nonconvex problems, a strong duality result holds without a weak
duality result.

A locally optimal primal solution can be constructed from a locally optimal dual
solution from the following relations between the primal and dual variables:

r- im City

^ ^ - = i,, i 6 [0]

and

3. Dual linear multiplicative program

For notational convenience, we assume that D, c,bt, i = 1 , . . . , « , are nonnegative
and at] = o^a^, i = 1 , . . . ,n,j = 1 , . . . , m, where ay is a sign function defined by

On =
1+1, if a,, > 0 ,

1—1, otherwise.

Note that at > 0. Further, without loss of generality, we require that ar
tx + bt > 0

and*, > 0, i = 1 , . . . , n.
Program (PO may be written in the following form:

(Pi)Minimise ]~[ s( subject to

and finally as a signomial program:

Minimise FT st subject to 7=1
(Pi)

7=1

with sti > 0, i = 1 , . . . , n and Xj > 0, j = 1, . . . , m.
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Using the prescription in Section 2, we may construct the following dual to pro-
gram (Pi). This is

, , , , „ <a«s'J " /L \ Pi K m I~-\J \~n

Maximise s)nn&

i=i k=i

subject to the normality condition

<5o=l, (3.1)

the orthogonality conditions

m

So ~ J^ OijSij - A = 0, i = 1, . . . , « , (3.2)
7 = 1

n K

•j — 0 , 7 = 1 , • • • > " i

and
m

" T A + A . i = l , . . . , n , (3.3)
7 = 1

where / = 1, . . . , n,j = 1 , . . . , m, k = 1 , . . . , K.
Combining results (3.1)—(3.3) shows that Y^=\ CTy^y = 1 — A> ' = 1. • • •. «

8, = 1. Hence the dual program (D3) may be simplified somewhat to yield:

Minimise nn(?)
, = l y = l ^ < > y > '

subject to the linear constraints £ J 1 , o^,-, + A = 1. 2Z"=i a'7^y ~ Hf=i Ykj = 0,
E7-i ^ ~Yk = 0, So > 0, n ; > 0, A > 0- where i = 1 n, j = 1, . . . , m,
k= 1 , . . . , K.

Further, at optimality, the primal and dual variables are related by

*."'<*; = So /*/• *T\ = P./S,, c-k
xdkjXj = Ykj /Yk,

where / = 1 , . . . , n,j = 1, . . . , m, k = 1 , . . . , K.
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Since 5,- = 1, i = 1 , . . . , n, it follows that

js 4 * ; o b,

/-,} = \ vijuijAj ~i~ wi E> = 1 °ijaijXj + fy
and

xj =ckdkj • (3-4)

Note that the dual variables Sy and £, may be interpreted as the relative contribution of
each variable xj and parameter bt respectively to term i in the multiplicative objective
at optimality. In polynomial geometric programming, the dual variables St have an
interpretation as the relative contribution of each term i to the optimal objective value.
Hence in both cases they have an interpretation in terms of a relative contribution.
Note also that the optimal primal variables are readily calculated from (3.4).
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