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TRUNCATIONS OF L-FUNCTIONS IN RESIDUE CLASSES
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Abstract. Let χ (n) be a quadratic character modulo a prime p. For a fixed integer
s �= 0, we estimate certain exponential sums with truncated L-functions

Ls,p(n) =
n∑

j=1

χ ( j)
js

(n = 1, 2, . . .).

Our estimate implies certain uniformly of distribution properties of reductions of
Ls,p(n) in the residue classes modulo p.
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1. Introduction. Let p be an odd prime and let χ (n) be a quadratic character
modulo p. For a fixed positive integer s �= 0 we define the truncated L-functions

Ls,p(n) =
n∑

j=1

χ ( j)
js

, n = 1, 2, . . . .

Various properties of such sums, especially for s = 1, have been considered in the
literature, see [2, 5, 8, 9] and references therein.

Here we consider the behaviour of these sums in the residue classes modulo p.
More precisely, in this paper we obtain nontrivial bounds on exponential sums

Ts(a; p, M, N) =
M+N∑

n=M+1

ep(aLs,p(n)),

where

ep(z) = exp(2π iz/p),

and Ls,p(n) is computed modulo p for 1 ≤ n < p. Then, in a standard fashion, we obtain
a uniformity of distribution result for the sequence of fractional parts {Ls,p(n)/p},
n = M + 1, . . . , M + N.

Here we use an approach which is similar to that of [4] however it also needs some
additional arguments.

Hereafter, the implied constants in symbols ‘O’ and ‘�’ may depend on the integer
parameter s and the real parameter ε (we recall that A � B is equivalent to A = O(B)).
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2. Exponential sums.

THEOREM 1. Let ε > 0 be a fixed real number. Let M and N be integers with
0 ≤ M < M + N < p and N ≥ p1/2+ε. Then, for every fixed integer s ≥ 1, the following
bound holds:

max
gcd(a,p)=1

|Ts(a; p, M, N)| � N(log p)−1/2.

Proof. We define 0−s ≡ 0 (mod p); thus, i−s (mod p) is defined for all integer i.
Then, for any integer k ≥ 0, we have

Ts(a; p, M, N) =
M+N∑

n=M+1

ep(aLs,p(n + k)) + O(k).

Therefore, for any integer K ≥ 1,

Ts(a; p, M, N) = 1
K

W + O(K), (1)

where

W =
K−1∑
k=0

M+N∑
n=M+1

ep(aLs,p(n + k))

=
M+N∑

n=M+1

K−1∑
k=0

ep

(
aLs,p(n) + a

k∑
i=1

χ (n + i)(n + i)−s

)

=
M+N∑

n=M+1

ep(aLs,p(n))
K−1∑
k=0

ep

(
a

k∑
i=1

χ (n + i)(n + i)−s

)
.

Applying the Cauchy inequality, we derive

|W |2 ≤ N
M+N∑

n=M+1

∣∣∣∣∣
K−1∑
k=0

ep

(
a

k∑
i=1

χ (n + i)(n + i)−s

)∣∣∣∣∣
2

. (2)

For each K-dimensional ±1-vector = (ϑ1, . . . , ϑK ) ∈ {−1, 1}K we see that for 1 ≤ n <

p − K ,

1
2K

K∏
i=1

(1 + ϑiχ (n + i)) =
{

1, if χ (n + i) = ϑi, i = 1, . . . K,

0, otherwise,

Therefore we derive from (2) (estimating the contribution of each of the at most K
possible terms with p − K ≤ n ≤ p as K2),

|W |2 ≤ N
2K

∑
(ϑ1,...,ϑK )∈{−1,1}K

M+N∑
n=M+1

K∏
i=1

(1 + ϑiχ (n + i))

×
∣∣∣∣∣
K−1∑
k=0

ep

(
a

k∑
i=1

ϑi(n + i)−s

)∣∣∣∣∣
2

+ NK2.
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For every vector (ϑ1, . . . , ϑK ) ∈ {−1, 1}K , one easily verifies that

M+N∑
n=M+1

K∏
i=1

(1 + ϑiχ (n + i))

∣∣∣∣∣
K−1∑
k=0

ep

(
a

k∑
i=1

ϑi(n + i)−s

)∣∣∣∣∣
2

=
∑

0≤m,k≤K−1

M+N∑
n=M+1

K∏
i=1

(1 + ϑiχ (n + i))

× ep

(
a

k∑
i=1

ϑi(n + i)−s − a
m∑

i=1

ϑi(n + i)−s

)
.

We observe that each sum over n splits into at most 2K sums of the form

σρ,g,f (M, N) = ρ

M+N∑
n=M+1

χ (g(n))ep (f (n)) ,

where ρ = ±1, g(X) ∈ ZZ[X ], f (X) ∈ ZZ(X) and deg g, deg f = O(K). We observe that
if |k − m| ≥ 2 then f (X) is a nonlinear rational function modulo p, and also for every
k and m, there is only one sums for which the corresponding polynomial g(X) = 1
(otherwise g(X) has no multiple roots modulo p). Thus, using the standard reduction
between complete and incomplete sums (see [1]) we derive from the Weil bound see [7,
Theorem 3, Chapter 6], that

σρ,g,f (M, N) � Kp1/2 log p, (3)

if either f is a nonlinear rational function modulo p or g is a nonconstant squarefree
polynomial modulo p. Thus (3) applies for all O(2K K2) sums σρ,g,f (M, N), except at
most O(K) such sums (as we have seen, at most one such sum may occur for O(K) pairs
of k and m with |k − m| ≤ 1). Estimating the exceptional sums σρ,g,f (M, N) trivially
as σρ,g,f (M, N) � N, and putting everything together, we obtain

W 2 � N
2K

∑
(ϑ1,...,ϑK )∈{−1,1}K

(
2K K3p1/2 log p + KN

) + NK2

� 2K K3Np1/2 log p + KN2.

Therefore, by (1), we derive

Ts(a; p, M, N) � K−1/2N + 2K/2K1/2N1/2p1/4(log p)1/2 + K.

Taking K = 	0.5ε log p
, we finish the proof. �

3. Discrepancy. We recall that the discrepancy D of a sequence of M points (γj)M
j=1

of the unit interval [0, 1] is defined as

D = sup
I

∣∣∣∣A(I)
M

− |I|
∣∣∣∣ ,

where the supremum is taken over intervals I = [α, β] ⊆ [0, 1] of length |I| = β − α

and A(I) is the number of points of this set which belong to I (see [3, 6]).

https://doi.org/10.1017/S0017089506003120 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003120


350 IGOR E. SHPARLINSKI

For an integer a with gcd(a, p) = 1, we denote by Ds,p(M, N) the discrepancy of
the sequence of fractional parts{

Ls,p(n)
p

}
, M + 1 ≤ n ≤ M + N.

Using the Erdó́s–Turán bound (see [3, 6]), which gives a discrepancy bound in
terms of exponential sums, we derive:

THEOREM 2. Let ε > 0 be a fixed real number. Let M and N be integers with
0 ≤ M < M + N < p and N ≥ p1/2+ε. Then, for every fixed integer s ≥ 1, the following
bound holds:

Ds,p(M, N) � N(log p)−1/2 log log p.
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